
Deploying Stateful Web Components on Multiple
Devices with Liquid.js for Polymer

Andrea Gallidabino
Faculty of Informatics

University of Lugano (USI)
CH-6900 Lugano, Switzerland

andrea.gallidabino@usi.ch

Cesare Pautasso
Faculty of Informatics

University of Lugano (USI)
CH-6900 Lugano, Switzerland

c.pautasso@ieee.org

Abstract—Nowadays, the average users owns two or more Web-
enabled devices (smart phones, personal computers and tablets),
while more are coming: watches, cars, glasses. While responsive
Web applications can adapt to the specific device (e.g., screen
size or input method) on which they are deployed, they only
provide limited support when one user connects from more
than one device at the same time. In this paper we present
Liquid.js for Polymer, a framework whose goal is to support
developers that need to build liquid Web applications taking full
advantage of multiple heterogeneous devices. It extends emerging
Web components standards to enable the liquid user experience,
whereby any device can be used sequentially or concurrently
with applications that can roam from one device to another with
no effort required by users controlling them. This way, users do
not need to stop and resume their work on their Web application
as they switch devices. Developers using Liquid.js for Polymer
do not need to worry about the underlying connectivity, pairing
and synchronization issues of their stateful Web components.

Keywords-Web Components, Liquid Software, Liquid Web
Applications, Stateful Web Components

I. INTRODUCTION

On average a user owns two or more Web-enabled de-
vices [9], ranging from more common smart phones, tablets
and personal computers, to newest technologies such as smart
watches and wrist-bracelets. In the near future the set of
programmable Web enabled devices is likely to grow even
more [11]. While responsive Web applications can adapt to
each device running them [17] and every Web application is
designed to scale to handle a large number of concurrent users,
currently the architecture of most Web applications is not
designed to withstand the interactions of one user accessing
their application from multiple heterogeneous devices.

Liquid is a metaphor which characterizes software designed
to be seamlessly deployed on multiple heterogeneous de-
vices [1]. The metaphor was inspired by the ability of a liquid
to adapt its own shape to the one of the container holding it.
More precisely Liquid software is able to flow (e.g. migrate)
between devices without losing the focus and the state of the
application ran by users [16]. A software is considered liquid
whenever its layers [18] can adapt to take full advantage of
every device on which they are deployed on.

The liquid software metaphor was originally proposed in
the context of active networks research in 1996 [12]. The
platform Joust [13] tied liquid software with code mobility [6].

Other similar metaphors appeared in literature, like the concept
of Fluid computing [2] by Bourges-Waldegg et al. In the
metaphor the state of an application is seen as a fluid and
the research takes into account data synchronization and
replication in multi-device applications. More recently, the
Liquid Software Manifesto [23] introduced the concept of
Liquid User Experience.

In this context, we propose to apply the liquid metaphor
to stateful software components and present our design of the
Liquid.js for Polymer framework, targeting Web components,
an emerging technology for building component-based Web
applications. We discuss our solution for the declarative and
explicit representation and synchronization of the runtime state
of a component, so that developers can have full and fine-
grained control over where and when the state of components
is persistently stored. In previous works [7] we have evaluated
the framework expressiveness with realistic application exam-
ples and demonstrated how developers can easily inject the
liquid behavior into standard Web components so that the user
can dynamically migrate or clone them on different devices.

Liquid.js aims to help developers build their own Liquid
component-based Web applications able to run seamlessly
on multiple heterogeneous devices. The framework will also
provide the tools to support the Liquid User Experience,
by offering a set of primitives (migration, forking, cloning)
allowing developers to build Liquid software without dealing
with the underlying complexity of developing their own real-
time state synchronization infrastructure [8].

II. RELATED WORK

Our work is inspired by Grundy et. al. [10], who proposed a
thin-client approach where collaborative applications are dis-
tributed across multiple devices. Their study however did not
take into consideration liquid behavior and the corresponding
state synchronization.

The growth in complexity of Rich Internet Applications has
been surveyed by Casteleyn et al. [3], who observed that larger
and larger amounts of state are accumulated during normal
usage sessions, making it challenging to migrate modern
Web applications across different devices. Likewise, it is also
difficult to synchronize such shared state among multiple Web



browsers that access the same Web application concurrently on
behalf of the same (or different) user.

Together with the TUT Liquid software group, we applied
the concept of liquid software to Web applications by provid-
ing usage scenarios and possible solutions to take advantage
of existing or emerging Web technologies for creating Liquid
Web applications [18].

Component-based Web applications can also be built as
mashups of Widgets, encapsulating user interface components,
their behavior and state. Chudnovskyy et al. [4] presents a
solution to develop a (semi) automatic system that creates the
inter-communicating mesh between all the widgets embedded
in a Web page. The same authors [5] discuss in more de-
tails the challenges of inter-widget communication in widget-
based mashups and composite Web applications, in particular:
awareness, the ability of the user to know which widgets
are connected; and control, the ability of the user to change
the mesh of connections among the widgets. Liquid.js takes
a very similar approach by using Web components, which
provide reusable user interface widgets using standard Web
technologies but targets the development of Web applications
that can be distributed over multiple Web browsers.

Outside the Web browser, there exist many attempts to
enable applications to flow between mobile devices or mobile
and desktop operating systems. One of most notable examples
are continuity and handoff by Apple. With continuity it is
possible to migrate a call from one device to another, while
with Handoff it is possible to roam from device to device
while holding the work session that was initially created, for
example while composing an email. In the Apple implemen-
tation [20], devices discover one another via bluetooth and the
synchronization mechanism of the application state is provided
by the centralized iCloud backend.

Liquid applications with simultaneous screening require to
deal with replicated data synchronization issues, which have
been studied in the database community for many years [14].
On the Web, given the heterogeneity of the devices (i.e., the
amount of storage may vary) and their frequent disconnected
state (e.g., due to battery or network connectivity problems),
some of the assumptions of classical data replication mecha-
nisms may need to be revisited.

III. THE LIQUID.JS FOR POLYMER FRAMEWORK

The Liquid.js framework targets the development of Web
applications that require support for sequential and simultane-
ous screening across multiple devices owned by the same user,
and can be generalized to collaborative scenarios involving
multiple devices owned by multiple users. The framework
enables the creation of transparently decentralized Web ap-
plications that need to operate on a shared decentralized
state. The assumption is that these applications are developed
using Web components, which provide the necessary level
of granularity to structure the application user interface and
its state. Liquid.js takes care of the state synchronization by
using Yjs [19], a concurrency control and conflict resolution
framework.

The Liquid.js framework is built for developers whose
goal is to easily create applications able to run on multiple
devices transparently implementing all the features of Liquid
software. The framework supports three scenarios: 1) sequen-
tial screening, a single user owns two or more different
devices, and runs an application at different times on different
devices; 2) simultaneous screening, a single user owns two
or more different devices, on which he runs an application
simultaneously on more than one device; 3) collaboration: a
set of users collaborate using on the same application running
on all the devices they own. Liquid.js provides developers with
the following abstractions (Figure 1a):

• Liquid component: a piece of executable code defined
by both JavaScript and HTML. The Liquid component encap-
sulates both the state and the Liquid behavior, which is the
core module that provides the Liquid API to the component.

• Liquid frame: The Liquid frame is an optional UI
container surrounding a Liquid component that enables liquid
user experience by providing support for the interactions of
the user with the Liquid.js library. It provides a default user
interface visualization of migration, cloning, and destruction
operations, as well as feedback on the available devices.
Component developers can choose to expose their own liquid
controls implemented directly using the Liquid API. In this
case, they can hide the default Liquid frame, which is primarily
meant to surround legacy Web components to which the liquid
behavior has been attached.

• Liquid variable: The Liquid variable is the smallest part
of state contained in a Liquid component. The Liquid variable
is defined by a name, a value, and some permissions. The
state of a Liquid component is defined by all Liquid variables
it contains.

Figure 1b shows one possible component created in Liq-
uid.js. The Liquid Webcam component shares pictures taken
from the Webcam feed with all other paired instances of the
same component. This component defines two Liquid variables
to store the pictures to be shared with all other webcam
components and to display the webcam video feed. The Liquid
frame, the dark bar above the component, includes buttons
and icons than enhance the liquid user experience. This frame
lets the users interact with the Liquid.js API and trigger the
instantiation, migration, cloning or destruction of a particular
Liquid component.

A. Liquid components

While many Web applications are built following the model-
view-controller pattern [15], we are concerned not only about
the synchronization of the data model of the application,
but also about the state of individual UI components, which
needs to be properly migrated and synchronized when such
components begin to flow between multiple devices.

Compared to other HTML5-based solutions [22], we de-
cided to use a different approach: we based our design on
a component-based architecture used to enhance liquidity
in all layers of an application. The Liquid components are
built on top of the Web Components standard using the



Web page

[Frame]

Component

Variable Variable

(a) Liquid Web application structure
(b) Example Liquid Web application with the webcam compo-
nent. The frame controls the liquid user experience, the variables
store the image snapshot and the webcam video feed.

Fig. 1: Liquid.js abstractions (Frame, Component, Variable) and example liquid Web application

Polymer syntax. This way we can instantiate multiple stateful
Liquid components isolated from each other. In addition, with
Liquid.js developers can explicitly declare which part of the
component state needs to be synchronized.

We take a component-based approach because our goal is
to have fine-grained control over which parts of the Web
applications should run on each device. The decomposition
allows fine-grained control over the dynamic deployment
configuration of the Web application as components are in-
stantiated and migrated from a device to another in response
of user commands. By decomposing the UI we also can reduce
the size of the state that is tied to each component. Thus, the
detection of changes in the state of the application and their
propagation across other devices, on which the corresponding
components have been cloned, can be more efficient.

The Liquid components are dynamically loaded in the Web
application by using the HTML imports API. A Liquid com-
ponent encapsulates behaviors (JavaScript) and UI (HTML).
Whenever a Liquid component is needed, it is dynamically
loaded in the page through the HTML imports. Figure 3
shows the internal structure of the Liquid component. A liquid
component is defined by its Web Component, which is the
expected solid functionality of the component implemented
by the developer, and the Liquid behavior, a Polymer behavior
which allows automatic state synchronization and data storage
between multiple instances of the component provided by
Liquid.js.

The Liquid behavior takes care of propagating and syn-
chronizing changes of the state in all component instances
transparently. The developer does not have to worry about the
location and the number of instances running, nor keep track
of the set of devices that are connected to the application on
behalf of the user. The state synchronization messaging with
other Liquid components is also managed transparently. By
exploiting the WebRTC standard protocol, the Liquid compo-
nents exchange peer-to-peer messages between them, freeing
the server from relaying WebSockets messages whenever
applicable, e.g. if the WebRTC Datachannels are available,
otherwise the communication will relay on the Liquid Server.

The Liquid Server is also used for device discovery and pairing
whenever a new WebRTC communication must be established,
moreover it can be used as storing repository for the Liquid
components that need be imported and loaded in the Web page.

The liquid component lifecycle API makes it possible to
create new components and move them from a device to
another. The API exposes the following methods:

• createComponent(componentType [, deviceID])
• pairComponents(componentID1, componentID2)
• unpairComponents(componentID1, componentID2)
• removeComponent(componentID)
• moveComponent(componentID, deviceID)
• cloneComponent(componentID, deviceID)
• forkComponent(componentID, deviceID)

B. Liquid variables

The state of a component is decomposed into one or more
Liquid variables. A variable is identified by its name and its
current value can hold any JSON-serializable JavaScript data
type. Values of Liquid variables are automatically synchro-
nized among paired component instances, according to the
permissions associated to each variable.

While each Liquid component instance holds the current
synchronized state of a Liquid variable, the Liquid.js frame-
work may choose to replicate them elsewhere. This approach
ensures that the value of the state is as close as possible to
the source using it, while the data synchronization mechanism
is as close as possible to all parties participating in the
synchronization.

The Liquid State Storage API helps developers declare
which state variables should be managed by Liquid.js so that
their values get automatically synchronized. The API exposes
the following three methods:

• registerVariable(name, init[, permissions])
• variableChange(name, value)
• pairVariable(compID1, name, compID2, name2)

C. Permissions

The permissions affect the synchronization of Liquid vari-
ables. They define how the state of a variable can be changed



Presenter ScreenKeyboard

Input Letter
subscribe = false

publish = true

Input Letter
subscribe = true
publish = false

Screen
subscribe = false

publish = true

Viewer Screen

Screen
subscribe = true
publish = false

Viewer Screen

Screen
subscribe = true
publish = false

Viewer Screen

Screen
subscribe = true
publish = false

Fig. 2: Example permissions

and propagated among paired components. There are two
Boolean permissions: 1) publish; 2) subscribe. The publish
permission defines if a component is allowed to propagate
changes in the state of a variable to other paired variables.
The subscribe permission defines if a component is allowed
to accept changes from another paired component.

The publish and subscribe permissions are not only used to
define the flow of the data among components, but they also
prevent malicious or glitchy components to access data they
should not. Granting control to both parties of the communica-
tion is important to avoid unwanted interactions since liquid
components run on a Web Browser and permissions can be
unilaterally changed by malicious users.

These permissions make it possible to create useful prop-
agation patterns. Figure 2 shows one possible application
composed by three different Liquid components: Presenter
Screen which shows in a text-area all the letters input by a
keyboard; the Keyboard which is used to input letters; and the
Viewer Screen which shows the same text shown inside the
Presenter Screen. In this application Presenter Screen pairs
itself with a Keyboard component. Since they both define an
Input Letter variable they share it. The keyboard publishes the
input letter in the presenter screen, which allows subscription
to the keyboard. Similarly the Presenter Screen pairs with
many Viewer Screens. The viewer screens allows subscription
to the variable Screen, the presenter screen publishes any new
value to all viewers.

D. Liquid Storage

The decision of where a liquid variable is stored is affected
by the following dimensions:

1) Sharing Policy: The sharing policy defines how many
components a variable is shared with. The possible values of
the sharing policy are:
• Global: a global variable is shared with all instances of all

components automatically. It is not necessary to pair them
explicitly.

• Shared: variables with matching names are shared between
paired components of the same type, while variables can
also be paired explicitly between arbitrary component types.

• Local: a local variable is never synchronized among any
components.

Web Browser 1

Liquid Server 

Liquid Component

Session
Storage

Web Browser 2

WebSocket

Local
Storage

Session
Storage

Local
Storage

Database

Browser
Memory

WebSocket

WebRTC DataChannel

Web Component

Liquid
Behaviour

Liquid Component

Browser
Memory

Web Component

Liquid
Behaviour

Fig. 3: Liquid.js runtime and storage mechanisms

2) Component Scope: The component scope defines
whether variables are shared among instances of the same
component type (Intra-component) or among instances of
any type of Liquid components (Inter-component).

3) Device deployment: The device deployment defines if
a variable can be shared across multiple devices.
• one device: a variable can be shared with components which

are deployed and instantiated on the same Web browser.
• many devices: a variable can be shared with any component,

also if it is running on another Web browser (on the same
or different device).
4) Persistence Policy: The persistence defines how long a

variable should be stored. We distinguish:
• Persistent: the value of a variable is permanently stored

even if all instances of the Liquid components containing it
are closed or all the devices are shut down.

• Session: the value of the variable is stored until the user
closes every Web browser running one instance of the
component containing the variable.

• Volatile: the value of the variable is stored until at least one
instance of a component holding the value exists.
The composition of these four dimensions makes it possible

to automatically decide where the value of a variable should
be stored by the Liquid.js framework. This opens up the
opportunity to minimize the bandwidth consumption and the
latency of the synchronization.

We identified four possible places where the state of Liquid
variables can be stored:

• Browser Memory (JS Heap): the Browser Memory is the
best place to store volatile variables. Whenever the component
is closed, the state of its volatile variables is lost.

• Local Storage allows to store and efficiently share the
state among all components running on the same Web browser.
If the local storage is not available in the Web browser, the
server-side solution is used instead.



TABLE I: Storage mechanism chosen based on the sharing policy, component scope, device deployment and persistence policy
of a Liquid Variable

Scope Intra-component (same type) Inter-component (different types)
Deployment One Device Many Devices One Device Many Devices

Persistent
Global Local Storage Server-side Local Storage Server-side
Shared Local Storage Server-side Local Storage Server-side
Local Local Storage

Session
Global Session Storage Server-side Session Storage Server-side
Shared Session Storage Server-side Session Storage Server-side
Local Session Storage

Volatile
Global Browser Memory Browser Memory Browser Memory Browser Memory
Shared Browser Memory Browser Memory Browser Memory Browser Memory
Local Browser Memory

Persistence Sharing
Policy Policy

• Session Storage: Unlike local storage, session storage
discards the state when a session ends. If the session storage
is not available in the browser, the server-side solution is used
instead.

• Server-side Storage: Global variables potentially require
all devices to access and synchronize their state. To do so,
we implement server-side storage using the Liquid Server
since this is directly connected to all instances of all Liquid
components. The Liquid Server is the only component of the
runtime which may survive disconnection of all client devices,
and thus can safely store the state of persistent global variables.
Global variables with a session persistence policy are also
retrieved from the Liquid Server, but synchronized directly
between devices. The server will discard their value once all
sessions end on all devices.

Liquid variables are mapped to the corresponding storage
mechanism based on the four dimensions discussed previously.
Table I summaries where the state of a variable should
be stored for each valid combination. The synchronization
mechanism is implemented directly in the Liquid components
where the value of a variable is cached. Liquid components
directly exchange messages through WebRTC DataChannels
in multi-device communications (if available) or by using
internal messages during single-device synchronization. The
different storage we proposed are used to make data persistent.
Synchronization is carried out by the Liquid Server for global
persistent variables, while shared variables are synchronized
using the peer-to-peer mesh built with WebRTC among all
devices. This way, it is possible to make data persistent while
reducing the bandwidth consumption of the server.

Figure 3 summarizes all the possible places where Liquid.js
stores Liquid variables to keep the data as close as possible
to the component using it. The volatile data is stored in the
browser heap memory inside the Liquid Component. When-
ever the data does not need to be persistent, it can be stored
inside the Web browser in both Local and Session storage
(if available). Whenever the data is persistent it is stored in
the database connected to the Liquid Server so that it can be
accessed also from other devices.

IV. DISCUSSION

With Liquid.js we provide the basic infrastructure for Web
developers that would like to add support for the liquid user

experience while taking advantage of emerging standard Web
component technology. In this section we discuss issues that
we gathered while assessing how to ease the adoption of
Liquid.js in practice.

A. Security

Devices of the same user discover one another using
standard pairing techniques [21]. Communication channels
between devices and the Liquid Server can be secured using
standard cryptographic techniques. Applications built using
Liquid.js can precisely control which information is shared
among multiple devices through the publish-subscribe variable
permissions, (Section III-C) which require both parties to agree
to establish a pairing.

For collaborative scenarios involving multiple users, it is
possible to reuse a similar mechanism for allowing users to
control which information is revealed as Liquid components
cross user ownership boundaries. Likewise, a device may reject
the dynamic deployment of unauthorized Liquid components
flowing from other untrusted users.

B. Synchronization and Latency Issues

Liquid.js optimises the transport bindings among the Liquid
components. The priority of the channels is the following:
if possible Liquid.js will try to synchronize the data locally;
if local communication channels are not enough it will try
to share data through the peer-to-peer RTCDataChannels; if
peer-to-peer is not available it will relay messages through
a central Web-server. In the case of collaborative scenarios,
conflict resolution is taken care by Yjs [19].

C. Liquid User Experience

The Liquid frame default implementation can be overridden.
Not only the Liquid frame is optional, but the developer can
completely redefine it by using the component deployment
lifecycle API. In particular, we are using a push-based ap-
proach, where users interact with existing instances of a com-
ponent to move them elsewhere. We are also experimenting
with pull-based approaches, where the target device is used to
choose the component instance that should be migrated on it.



D. Scalability

As the number of devices grows, a method to classify them
is needed, not only according to their capabilities but also
according to the role they are expected to perform in the
application. This is particularly useful in parallel screening
scenarios where multiple similar devices (e.g., smart phones)
are supposed to present complementary views (the presenter
broadcasting content vs. the viewers consuming it) or access
channels to the same Web application. This would simplify
capturing the deployment configuration of the Liquid compo-
nents, which is currently specified targeting individual devices.

V. CONCLUSIONS AND FUTURE WORK

Liquid.js for Polymer is a framework that simplifies the
creation of component-based Web Applications featuring a
liquid user experience. The framework provides developers
with an explicit, declarative definition of Liquid components,
encapsulating user interactions, behavior, and their state. These
components can be deployed among standard Web browsers
running on multiple devices through the provided Component
Deployment Lifecycle API, which provides support for cre-
ation, migration, cloning and destruction of the components
across all devices owned by one or more users. Stateful
components are transparently synchronized whenever multiple
instances are cloned and deployed on multiple paired devices.
In this paper we presented the design of the framework
focusing on its liquid state storage management features.

While some solutions [24], [17] to make components re-
sponsive and enhancing their adaptability already exists, we
are trying to automatically add the adaptation to the het-
erogeneous devices in the framework, in such a way that
Liquid.js will be able to take advantage of all the collective
capabilities of all devices. Moreover, the ultimate goal is to
liquefy all layers of an application and not only in its stateful
user interface components. In the current design a component
uses only the local resources of the device instantiating it,
but in our vision we want to make paired devices share
also the logic layer of the application. This would help
to minimize redundant computations and avoid unnecessary
conflict resolution over the shared state. To do so, we plan
to investigate how to dynamically deploy component logic by
finding the most suitable execution environment to make it
possible for non-visual components of liquid Web applications
to transparently share the aggregated computational power of
all connected devices.

Acknowledgments

We are grateful for valuable feedback of George Fairbanks
and the anonymous reviewers. This work is partially supported
by the SNF and the Hasler Foundation with the Fundamentals
of Parallel Programming for Platform-as-a-Service Clouds
(SNF-200021 153560) and the Liquid Software Architecture
(LiSA) grants.

REFERENCES

[1] D. Bonetta and C. Pautasso. An architectural style for liquid web
services. In Proc. of the 9th Working IEEE/IFIP Conference on Software
Architecture (WICSA), pages 232–241, 2011.

[2] D. Bourges-Waldegg, Y. Duponchel, M. Graf, and M. Moser. The
fluid computing middleware: Bringing application fluidity to the mobile
internet. In IEEE/IPSJ International Symposium on Applications and
the Internet (SAINT’05), pages 54–63, 2005.

[3] S. Casteleyn, I. Garrigós, and J.-N. Mazón. Ten years of rich internet ap-
plications: A systematic mapping study, and beyond. ACM Transactions
on the Web (TWEB), 8(3):18, 2014.

[4] O. Chudnovskyy, C. Fischer, M. Gaedke, and S. Pietschmann. Inter-
widget communication by demonstration in user interface mashups. In
Web Engineering, pages 502–505. Springer, 2013.

[5] O. Chudnovskyy, S. Pietschmann, M. Niederhausen, V. Chepegin,
D. Griffiths, and M. Gaedke. Awareness and control for inter-widget
communication: challenges and solutions. In Web Engineering, pages
114–122. Springer, 2013.

[6] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding code mobility.
Software Engineering, IEEE Transactions on, 24(5):342–361, 1998.

[7] A. Gallidabino and C. Pautasso. The liquid.js framework for migrating
and cloning stateful web components across multiple devices. In Demo
accepted at WWW’16, 2016.

[8] A. Gallidabino, C. Pautasso, V. Ilvonen, T. Mikkonen, K. Systä, J.-P.
Voutilainen, and A. Taivalsaari. On the architecture of liquid software:
technology alternatives and design space. In accepted at WICSA’16,
2016.

[9] Google. The connected consumer. http://www.google.com.sg/publicdata/
explore?ds=dg8d1eetcqsb1 , 2015.

[10] J. Grundy, X. Wang, and J. Hosking. Building multi-device, component-
based, thin-client groupware: issues and experiences. In Australian
Computer Science Communications, volume 24, pages 71–80, 2002.

[11] D. Guinard, V. Trifa, and E. Wilde. A resource oriented architecture for
the web of things. In Internet of Things (IOT), 2010, pages 1–8. IEEE,
2010.

[12] J. Hartman, U. Manber, L. Peterson, and T. Proebsting. Liquid software:
A new paradigm for networked systems. Technical report, Technical
Report 96, 1996.

[13] J. J. Hartman, P. Bigot, P. Bridges, B. Montz, R. Piltz, O. Spatscheck,
T. Proebsting, L. L. Peterson, A. Bavier, et al. Joust: A platform for
liquid software. Computer, 32(4):50–56, 1999.

[14] B. Kemme and G. Alonso. Database replication: a tale of research across
communities. Proc. of the VLDB Endowment, 3(1-2):5–12, 2010.

[15] G. E. Krasner, S. T. Pope, et al. A description of the model-view-
controller user interface paradigm in the smalltalk-80 system. Journal
of object oriented programming, 1(3):26–49, 1988.

[16] M. Levin. Designing Multi-device Experiences: An Ecosystem Approach
to User Experiences Across Devices. O’Reilly, 2014.

[17] E. Marcotte. Responsive web design. A Book Apart, 2011.
[18] T. Mikkonen, K. Systä, and C. Pautasso. Towards liquid web applica-

tions. In Proc. of ICWE, pages 134–143. Springer, 2015.
[19] P. Nicolaescu, K. Jahns, M. Derntl, and R. Klamma. Yjs: A framework

for near real-time p2p shared editing on arbitrary data types. In Proc.
of ICWE, pages 675–678. Springer, 2015.

[20] J. Pérez, M. Murray, G. Coffin, J. Fluker, and Z. Bailes. Connectivity
and continuity: New fronts in the platform wars. In Panel at Twenty-First
Americas Conference on Information Systems (AMCIS), 2015.

[21] N. Saxena and M. B. Uddin. Automated device pairing for asymmetric
pairing scenarios. In Information and Communications Security, pages
311–327. Springer, 2008.

[22] K. Systä, T. Mikkonen, and L. Järvenpää. HTML5 agents: Mobile agents
for the web. In Web Information Systems and Technologies, pages 53–67.
Springer, 2014.

[23] A. Taivalsaari, T. Mikkonen, and K. Systa. Liquid software manifesto:
The era of multiple device ownership and its implications for soft-
ware architecture. In Computer Software and Applications Conference
(COMPSAC), 2014 IEEE 38th Annual, pages 338–343. IEEE, 2014.

[24] J.-P. Voutilainen, J. Salonen, and T. Mikkonen. On the design of a
responsive user interface for a multi-device web service. In Proc. of the
Second ACM International Conference on Mobile Software Engineering
and Systems, pages 60–63, 2015.

http://www.google.com.sg/publicdata/explore?ds=dg8d1eetcqsb1_
http://www.google.com.sg/publicdata/explore?ds=dg8d1eetcqsb1_

