
Liquid Stream Processing on the Web:

a JavaScript Framework

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Masiar Babazadeh

under the supervision of

Prof. Dr. Cesare Pautasso

October 2017

Dissertation Committee

Prof. Dr. Marc Langheinrich Università della Svizzera Italiana, Lugano, Switzerland
Prof. Dr. Robert Soulé Università della Svizzera Italiana, Lugano, Switzerland

Prof. Dr. Gustavo Alonso Eidgenössische Technische Hochschule Zürich, Switzerland
Prof. Dr. Tommi Mikkonen University of Helsinki, Finland

Dissertation accepted on 25 October 2017

Research Advisor PhD Program Directors

Prof. Dr. Cesare Pautasso Prof. Dr. Igor Pivkin, Prof. Dr. Stefan Wolf

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been submit-
ted previously, in whole or in part, to qualify for any other academic award; and
the content of the thesis is the result of work which has been carried out since
the official commencement date of the approved research program.

Masiar Babazadeh
Lugano, 25 October 2017

ii

To the ones I love the most

iii

iv

Nullius addictus iurare in verba
magistri,
quo me cumque rapit tempestas,
deferor hospes.

Horace

v

vi

Abstract

The Web is rapidly becoming a mature platform to host distributed applications.
Pervasive computing application running on the Web are now common in the
era of the Web of Things, which has made it increasingly simple to integrate
sensors and microcontrollers in our everyday life. Such devices are of great in-
terest to Makers with basic Web development skills. With them, Makers are able
to build small smart stream processing applications with sensors and actuators
without spending a fortune and without knowing much about the technologies
they use. Thanks to ongoing Web technology trends enabling real-time peer-to-
peer communication between Web-enabled devices, Web browsers and server-
side JavaScript runtimes, developers are able to implement pervasive Web ap-
plications using a single programming language. These can take advantage of
direct and continuous communication channels going beyond what was possible
in the early stages of the Web to push data in real-time.

Despite these recent advances, building stream processing applications on the
Web of Things remains a challenging task. On the one hand, Web-enabled devices
of different nature still have to communicate with different protocols. On the
other hand, dealing with a dynamic, heterogeneous, and volatile environment
like the Web requires developers to face issues like disconnections, unpredictable
workload fluctuations, and device overload.

To help developers deal with such issues, in this dissertation we present
the Web Liquid Streams (WLS) framework, a novel streaming framework for
JavaScript. Developers implement streaming operators written in JavaScript and
may interactively and dynamically define a streaming topology. The framework
takes care of deploying the user-defined operators on the available devices and
connecting them using the appropriate data channel, removing the burden of
dealing with different deployment environments from the developers. Changes
in the semantic of the application and in its execution environment may be ap-
plied at runtime without stopping the stream flow.

Like a liquid adapts its shape to the one of its container, the Web Liquid
Streams framework makes streaming topologies flow across multiple heteroge-

vii

viii

neous devices, enabling dynamic operator migration without disrupting the data
flow. By constantly monitoring the execution of the topology with a hierarchical
controller infrastructure, WLS takes care of parallelising the operator execution
across multiple devices in case of bottlenecks and of recovering the execution of
the streaming topology in case one or more devices disconnect, by restarting lost
operators on other available devices.

Acknowledgements

The Ph.D. grind has been a long and illuminating journey with many ups and
few downs.

First and foremost I would like to thank Prof. Cesare Pautasso for having spent
a good amount of the past five years working with me. Our success and failures
had taught me a lot – on an academic and personal level. I grew up a lot as a
researcher during this journey thanks to his precise and sharp observations, and
his dedication in our work increased its quality, teaching me how good research
is done.

I’d like to thank Prof. Marc Langheinrich and Prof. Robert Soulé from Lugano,
Prof. Gustavo Alonso from Zürich, and Prof. Tommi Mikkonen from Helsinki for
being part of this journey of mine, and for their strong feedback and support.
Their invaluable comments had helped the development of this dissertation.

This amazing journey wouldn’t have been the same without my first travel
companion, Vassilis, and all the old and new team: Achille, Ana, Daniele, Marcin,
Saeed, and Vincenzo, and all the amazing people I’ve met at USI. Their support
through these Ph.D. years has been amazing. Last but not least, I’d like to give big
credits to Andrea with whom I shared great trips and amazing moments, while
squatting his place every morning for a cup of coffee.

The biggest shoutout of all goes to my family and their infinite support, and
all my friends that walked with me through this big journey of mine. Finally, I’d
like to credit Lisa, the most amazing person I’ve ever met. Her help and support
throughout my bachelor, master, and Ph.D. years made me grow in many ways,
making me a better person.

ix

x

Contents

Contents xi

List of Figures xv

List of Tables xix

I Prologue 1

1 Introduction 3
1.1 The Web of Things . 4
1.2 Data Streams and the Web . 4
1.3 Liquid Software . 5
1.4 Motivation . 6

1.4.1 Thesis Statement . 8
1.5 Contributions . 8
1.6 Outline . 9

2 Related Work 11
2.1 The Stream Connector . 11

2.1.1 Defining the Stream Software Connector 11
2.1.2 Stream Processing Systems and Languages Surveyed 13
2.1.3 Survey Methodology . 17
2.1.4 Design-Time . 18
2.1.5 Run-Time . 28
2.1.6 Outlook . 38
2.1.7 Stream Optimisations . 38

2.2 Streaming on the Web of Things . 39
2.3 Wireless Sensor Networks . 40
2.4 Liquid Software Architecture . 41

xi

xii Contents

2.5 Mobile/Cloud . 42

II Web Liquid Streams 45

3 The Web Liquid Streams Framework 47
3.1 Introduction . 47

3.1.1 The Liquid Software Metaphor in WLS 49
3.2 System Model . 52
3.3 Developing Operator Scripts . 53
3.4 Deploying a Streaming Topology . 62

3.4.1 Command Line Interface . 62
3.4.2 Topology Description File . 65

3.5 RESTful API . 68
3.5.1 Resources . 68
3.5.2 Uniform Interface . 70
3.5.3 Representations . 73

3.6 Graphical User Interface . 75
3.7 Use Cases . 76

3.7.1 New Peer Joins the Network 76
3.7.2 Setting up a Topology with a Topology Description File . . 76
3.7.3 Using Web Browsers to run Operators 76
3.7.4 Perform a new Binding . 77
3.7.5 Load Balancing through the REST API 77

4 The Web Liquid Streams Runtime 79
4.1 The WLS Communication Layers . 80

4.1.1 Command Layer . 80
4.1.2 Stream Layer . 84

4.2 Peer Infrastructure . 85
4.2.1 Web Server Peer . 85
4.2.2 Minified Web Server Peer . 88
4.2.3 Web Browser Peer . 90

4.3 Operator Infrastructure . 91
4.3.1 Web Server Operator Pool . 92
4.3.2 Web Browser Operator Pool 94
4.3.3 Web Server Worker Pool . 98
4.3.4 Web Browser Worker Pool . 99

4.4 Topology Creation and Dynamic Evolution 100

xiii Contents

4.5 Stateful Operators . 101
4.5.1 Overview . 101
4.5.2 Redis . 102
4.5.3 Implementation . 104

4.6 Summary . 105

5 The Control Infrastructure 107
5.1 Controller Use Cases . 107

5.1.1 Operator Migration . 107
5.1.2 Peer Failure . 108
5.1.3 Root Peer Failure . 108
5.1.4 Lack of Resources for Parallelisation 108
5.1.5 Lack of Peers for Deployment 108

5.2 The Controller Tasks and Constraints 109
5.2.1 Automatic Deployment . 110
5.2.2 Load Balancing . 110
5.2.3 Operator Migration . 111
5.2.4 Disconnection Handling . 112

5.3 Implementation . 113
5.3.1 Global Controller Implementation 113
5.3.2 Web Server Local Controller Implementation 113
5.3.3 Web Browser Local Controller Implementation 116
5.3.4 Ranking Function . 118

III Evaluation 121

6 Application Case Studies 123
6.1 Study Week in Informatics . 123

6.1.1 Lessons learned . 124
6.2 Inforte Seminar on Software Technologies and Development for

Multi-Device Environments . 124
6.2.1 Lessons learned . 126

6.3 WLS as a Mashup Tool . 126
6.3.1 Lessons learned . 129

6.4 Software Atelier 3: The Web – Home Automation System Project . 129
6.4.1 Lessons learned . 131

6.5 Experimentelle Evaluation des Web Liquid Streams-Framework . . 133
6.5.1 Lessons Learned . 138

xiv Contents

7 Performance Evaluation 139
7.1 Overview . 139
7.2 Metrics . 141
7.3 Operator Migration and Disconnection Recovery 142
7.4 Elastic Parallelisation Experiment . 145
7.5 Global Controller Algorithm . 149
7.6 Web Browser Local Controller and Fine-tuning 151
7.7 1 Failure . 156
7.8 N-Failures . 157
7.9 Summary . 160

IV Epilogue 165

8 Conclusion 167
8.1 Future Work . 170

Bibliography 173

Figures

3.1 Example of a distributed streaming topology running on differ-
ent peers. Peer 1 and peer 2 in this particular case host both the
computation of operator 2. 49

3.2 The Web Liquid Streams features in the liquid software feature
model introduced in [GPM+17]. 50

3.3 WLS in the maturity model for liquid Web software applications [GP17]. 52
3.4 Logical view of the topology we illustrate in this Chapter. 59
3.5 Hypermedia navigation map, showing the resources that can be

discovered from each GET request. 69
3.6 Web-based Graphical User Interface. 75

4.1 WLS Runtime and the three different deployment implementations. 80
4.2 RPC and IPC Interactions among distributed and heterogeneous

peers. 82
4.3 Closeup of the RPC interaction among two RPC modules, one act-

ing as a client while the other acting as a server. 83
4.4 Logical view of the command layer of the Web server peer. Stream-

ing channels are not shown. 89
4.5 Minified Web server peer infrastructure. 90
4.6 Logical view of a Web browser peer. 92
4.7 Logical view of the Web browser operator 98
4.8 The worker communication infrastructure for server-to-server and

server-to-browser communication. 99
4.9 Step-by-step setup of a topology. 100
4.10 Redis communication abstraction with WLS 104
4.11 Interaction with the Redis module. 105

5.1 Step-by-step migration of an operator. 111
5.2 Visual representation of the Web server local controller cycle. . . . 114
5.3 Local Web server controller behaviour. 115

xv

xvi Figures

6.1 Topology implemented in the study week in informatics. 124
6.2 Topology implemented in the workshop. 125
6.3 The mashup topology. 128
6.4 Physical deployment of the operators and data flow in the mashup

topology [GBP16]. 128
6.5 Screenshot of the mashup running on a Web browser [GBP16]. . . 129
6.6 Topology implemented during the Software Atelier 3 project . . . 130
6.7 Tessels and microphone modules built by the students. 131
6.8 Screenshot of the application running on a Web browser. 132
6.9 Topology for the Karlsruhe example 133
6.10 Screenshot of the consumer Web page on the running applica-

tion [Fus16]. 137

7.1 DES Encryption topology. 142
7.2 Operator Migration and Recovery Impact on Throughput. Vertical

lines indicate Low Battery and Disconnection events. 144
7.3 Throuhgput distribution during the operator migration and recov-

ery experiments with low battery and disconnection. 145
7.4 Number of workers throughout the three scenarios. 146
7.5 Parallelisation of the execution as the workload mutates every

5000 messages (slow). 147
7.6 Parallelisation of the execution as the workload mutates every 500

messages (fast). 148
7.7 Throughputs for the two different workloads in the two experiments.149
7.8 Liquid deployment: comparison of random vs. ranked resource

allocations and their median end-to-end latency. 150
7.9 Face detection and decoration topology employed for the experi-

ment. 151
7.10 Message latency and queue size distributions per peer running on

different controller configuration with 6 messages per second. . . 153
7.11 Message latency and queue size distributions per peer running on

different controller configuration with 10 messages per second. . 154
7.12 Message latency and queue size distributions per peer running on

different controller configuration with 13 messages per second. . 155
7.13 Throughput of the topologies in the three experiments with the

four controller configurations. 156
7.14 Oscillation in the number of workers throughout the experiment

with only four tablets as filter deployment. 157
7.15 End-to-end latency for the four tablets. 158

xvii Figures

7.16 Queue size shown per peer. 159
7.17 Oscillation in the number of workers throughout the experiment. 160
7.18 End-to-end latency shown per peer. 161
7.19 Queue size shown per peer. 162

xviii Figures

Tables

2.1 Summary of the design decisions (+) over the stream connector
design space. 36

3.1 List of WLS command line interface commands. 64

4.1 Data channels for different deployments. 85
4.2 Messages scopes within the RPC communication. 93

7.1 Machines used during the WLS evaluation. 140
7.2 Controller configuration parameters 152

xix

xx Tables

Part I

Prologue

1

Chapter 1

Introduction

The Web is becoming a mature platform to host distributed applications. Thanks
to standard protocols like WebSockets [FM11] and WebRTC [BBJN12] (Web
Real-Time Communication) developers are able to connect machines of differ-
ent nature, all running a Web browser, and share their resources for distributed
computations. In the era of the Web of Things [GT16], pervasive computing
applications [DR07, PdABL+13] are one example of a class of distributed ap-
plication that recently started to use the Web as a platform. Microcontrollers
and single-board PCs have become interesting platforms to develop such appli-
cations, offering powerful multicore CPUs1 while remaining cheap and small in
size. These development platforms have recently become of interest by Mak-
ers [And12], people that often do not have a background in computer science,
but enjoy tinkering and hacking, and in general like to follow the principles of
the Do It Yourself (DIY) [McK98] culture.

Makers that want to build a small-sized pervasive Web application (for ex-
ample, to make their homes a smart environment [DW16], or just simplify their
everyday life through ambient assisted living [SFBS12]) have to deal with dif-
ferent development deployment environments (microcontrollers or single-board
PCs, home desktop PCs, home servers, smartphones, tablets, ...) which often
means different programming languages and communication protocols. Besides,
failures in the execution of the streaming topologies and bottlenecks during the
execution have to be dealt by the developer of the application, with ad hoc solu-
tions.

In this dissertation we present Web Liquid Streams (WLS), a streaming frame-
work that lets developers build complex distributed streaming Web applications
by coding the functionalities of the streaming operators and describing the topol-

1https://www.raspberrypi.org/magpi/raspberry-pi-3-specs-benchmarks/

3

4 1.1 The Web of Things

ogy in plain JavaScript, without worrying about the communication channels, the
code distribution, node failures, and bottlenecks in the execution of streaming
topologies.

1.1 The Web of Things

As more and more sensors and smart devices are getting connected to the Inter-
net [TM17, GBMP13], an interest has grown in exploring the use of the World
Wide Web as a platform for such devices [GTW10]. The Web of Things (WoT) is
a set of architectural styles and programming patterns that help integrating these
smart devices and, more in general, real-world objects into the World Wide Web.
Frameworks (i.e., EVERTHNG [Gui11]), protocols (i.e., CoAP [Kov13]) and best
practices [GTMW11] have been proposed to bridge the gap between the real-
world and the Web.

The Web of Things offers a playground for Makers and developers that want
to build their own systems using single-board PCs, sensors, and actuators. De-
velopers can make their smart objects exchange data by using the Web and its
well-known standards. While using the Web as the common platform to send
and receive data may be trivial, developing an application that deals with smart
objects of different nature is more difficult. Dealing with small and faulty devices
means manually restarting the application or updating code on different devices
to solve bugs.

In this dissertation we show how we are able to offer to the developers
a framework to build streaming applications for the Web of Things by using
JavaScript and exploiting Node.js and the Web browsers as our execution en-
vironment. Our framework is able to keep track of all the connected devices,
autonomically orchestrating the execution on streaming operators on the avail-
able devices, and automatically dealing with faults by migrating the execution
on other devices with the same capabilities.

1.2 Data Streams and the Web

During the early stages of the Web, Web browsers could only interact with a Web
server through synchronous request-response interactions [FTE+17]. By down-
loading HTML code, users could navigate through a website by following links
and loading new pages: the logic and the model of a website were stored in
the server, while the browser acted as a view. More recently, rich Web applica-

5 1.3 Liquid Software

tions [CGM14] allowed the execution of parts of the logic on the Web browser
by means of JavaScript, enhancing the user experience. Users could interact
with the logic of the Web application on the webpage, modifying its model in the
server. With the advent of Web technologies such as the Comet [CM08]Web ap-
plication model or WebSockets, Web applications became real-time by allowing
Web servers update Web browsers without the Web browsers explicitly requesting
it. The recently proposed WebRTC API enhances the real time data exchange by
enabling direct browser-to-browser streams. WebRTC is an API born to support
browser-to-browser applications such as voice calls, video conferencing but also
peer-to-peer chat rooms and file sharing natively [RCTSR12, VWS13, VJWS13,
DJL15], or more recently sensor data [APC15]. WebRTC allowed exchanging
parts of the logic or the model of a Web application to other devices and users
without necessarily passing through the Web server. By pushing the logic and
the model of a Web application directly on Web browsers, we obtain peer-to-
peer Web applications in which the server only acts as discovery for the Web
browsers, where the model and the logic is stored.

This Web architecture evolution suggest a paradigm shift from the client-
server request-response pattern to a more decentralised peer-to-peer stream of
data, where Web server and Web browsers exchange data continuously. While
opening a socket and streaming data has become easier, building complex stream-
ing applications that run on Web browsers without necessarily running through
a Web server still needs effort. The Web is a volatile environment in which Web
browsers join and leave websites in a non-predictable way, thus a robust stream-
ing application should be able to deal with a dynamic and unpredictable envi-
ronment.

In this dissertation we discuss how, by taking full advantage of novel Web
technologies, the use of JavaScript, and the availability of a Web browser in al-
most any Web-enabled device, we are able to build Web-based streaming ap-
plications that run on Web browsers and Web servers, and are able to function
in a dynamic environment by migrating and restarting streaming operators on
available devices.

1.3 Liquid Software

The liquid software metaphor is used to describe applications that can oper-
ate seamlessly across multiple devices owned by one or more users [TMS14,
GPM+17, BP11]. Such applications can take advantage of computing power,
storage, and communication resources on all available devices owned by the

6 1.4 Motivation

user. Like a liquid can flow from one container to another, liquid software ap-
plications can dynamically migrate from one device to another following the
user’s needs and hiding the effort of dealing with multiple devices of different
nature [GP16a, MSP15]. Cloud-based systems such as Apple’s Continuity2, or
Samsung Flow3 already offer a similar approach, however they are tied to de-
vices supporting a similar native ecosystem locking users to the same vendor.
While paving the way for automatically synchronised multi-device experience,
these system do not yet provide a seamless transition across heterogeneous de-
vices.

The liquid software approach comes in handy when dealing with Web-enabled
devices, which are volatile by nature. Users join and leave Web pages, Web-
enabled sensors can be turned on and off; by adopting the liquid software con-
cept, developers can "pour" the application code from one device to another as
users change environment without disrupting the underlying application run-
time.

In this dissertation we make use of the liquid software metaphor to describe
the behaviour of a streaming framework that lets developers interoperate with
devices of different nature they own by offering a common development interface
and a control system that is able to autonomously deal with deployment, paral-
lelisation, and migration of streaming operators, and disconnection recovery. We
believe there is great potential in this model as nowadays almost every hardware
is able to run a Web browser, thus it can be part of a peer-to-peer system where
Web browsers and Web servers are interconnected and share resources to run
distributed stream processing applications.

1.4 Motivation

Nowadays the number of Web-enabled device per user is increasing rapidly. Most
of these devices own enough computational power to run a Web browser or a Web
server. Small single-board computers and microcontrollers have become popular
and their number is rapidly increasing [DGHN16]. These devices are used by de-
velopers to implement sensor-based applications, nonetheless while it is simple
to implement small toy-examples it becomes nontrivial to implement big applica-
tions running across multiple heterogeneous devices. Buying off-the-shelf solu-
tions solves implementation issues, but lacks flexibility in terms of programmable

2https://www.apple.com/macos/continuity/
3http://www.samsung.com/global/galaxy/apps/samsung-flow/

7 1.4 Motivation

interfaces (i.e., Mother by sen.se4, WallyHome5). Microcontrollers may also lack
resources to handle computations [IJHS14], forcing users to buy new hardware
if the computations require more effort or to run it on the Cloud [GBMP13].
Running applications that deal with private data, such as sensor data gathered
at home, may pose a threat in the privacy of the users [Lan01, LCBR02, Pea09],
which may not want to send their personal data to a server located in the Cloud,
but would prefer executing the application on the devices they own.

Current systems also tend to provide solutions for a restricted subset of ap-
pliance categories. Thus, if customers want to control multiple appliance types,
they need to integrate systems from multiple companies and deal with multiple
systems in their houses, or create custom solutions and deal with the lack of inter-
operability among most of the available sensors and devices [BSM+06, TCE+10].
Building ad hoc solutions to deal with sensors and microcontrollers may be dif-
ficult even for more seasoned developers, which should deal with different com-
munication protocols for devices of different nature, and deal with a dynamic
heterogeneous environment.

How would it be possible to exploit the users’ hardware in a peer-to-peer fash-
ion to run distributed streaming applications making use of sensors data without
the need of installing additional software? Can we make this approach com-
pletely dynamic, autonomic, and self-healing, once the stream processing topol-
ogy has been started?

The framework we propose lets developers build streaming applications on
the Web, offering a framework that can be run on most of the heterogeneous Web-
enabled devices. It is liquid because streaming Web operators can be migrated
around the available devices seamlessly. Developers can process their private
sensor data across a personal Cloud of devices they own, without the need to
deploy parts of the execution on the public Cloud. By using Web browsers and,
more in general, users’ devices, we target low-bandwidth applications in which
small data packets are sent through home or office connections and processed
with relatively low-end processors. Our aim is to make developers’ life simpler by
dealing with disconnections, autonomous operator deployment, workload fluc-
tuations, as well as offering a flexible framework to build dynamic streaming
topologies on the Web.

4https://sen.se/store/mother
5https://www.wallyhome.com

8 1.5 Contributions

1.4.1 Thesis Statement
The goal of this research is to provide developers and Makers with a framework
to build distributed streaming topologies that are able to run on the Web, and
are able to self heal failures and deal with bottlenecks during the execution. Our
research covers the areas of the Web of Things, Web engineering, data streaming,
software architecture, and autonomic computing, with the aim of providing a
robust framework to build peer-to-peer Web-based streaming topologies.

• Thanks to emerging Web technologies, it is possible to abstract the complexity
of the hardware of Web-enabled devices and offer a JavaScript data stream
processing framework with autonomic failure recovery and distributed execu-
tion across heterogeneous hardware.

The Web can be used as a platform to deploy and run streaming applications.
Thanks to the newly available technologies, Web browsers and Web servers can
interchangeably use the same code to run parts of a streaming topology. De-
velopers may use their own Web-enabled hardware to run personal streaming
topologies without the need of Cloud services. An autonomous control system
integrated in the liquid streaming framework is able to deploy streaming op-
erators on the available machines, parallelise the execution of computationally
intensive streaming operators, migrate the execution on different machines, and
recover them from nonpermanent disconnections and failures.

1.5 Contributions
This dissertation gives the following contributions:

• A novel Web-based data stream processing framework that offers develop-
ers the possibility to build streaming applications on the Web using JavaScript.
Developers can use their own devices and sensors to build streaming topolo-
gies with the help of the WLS development API, which offers stateful op-
erators and a Web browser-based HTML5 actuator display API.

• A runtime that, through the use of novel Web technologies such as Node.js,
WebSockets, and WebRTC, is able to exploit single-board PCs and micro-
controllers, Web servers, and Web browsers to offer a homogeneous expe-
rience in a heterogeneous environment. The different environments and
different programming styles of Web browsers and Web servers are ab-
stracted by WLS whose runtime takes streaming operators written by the

9 1.6 Outline

developers, and seamlessly runs them in either environment without re-
quiring to write ad hoc code. Differences in communication protocols are
dealt with by the runtime and abstracted for the developers.

• The framework presents itself as one of the earliest streaming frameworks
in the field of liquid software architecture. By implementing the liquid soft-
ware paradigm in our framework we are able to offer a seamless experience
to developers by means of the runtime that exploits connected devices se-
quentially or simultaneously to run streaming operators that roam from
device to device as needed.

• A dynamic controller infrastructure able to autonomically deploy streaming
operators and make decisions to solve runtime bottlenecks by parallelising
the execution locally, or distributing the execution of the bottleneck oper-
ator on more than one device. The controller is also able to migrate the
execution of streaming operators and recover from nonpermanent discon-
nections by restarting operators on the available devices.

1.6 Outline

The dissertation is structured as follows:
In Chapter 2 we will introduce the related work to the dissertation. The re-

lated work covers the fields of stream processing languages and frameworks, Web
of Things, wireless sensor networks, liquid software, mobile/cloud computing,
and streaming optimisations. We take inspiration from some of the stream pro-
cessing frameworks presented in the literature and the Web of Things. The liquid
software paradigm will help us define the procedures to follow to implement a
liquid application that can be spread across multiple Web-enabled devices.

Chapters 3 and 4 will introduce the programmer API, RESTful API, and the
runtime of the framework. Through realistic examples and the proposed API, we
will give an idea of the capabilities of the framework, showing how developers
can write operators. We will shown how the runtime works, and how we are able
to deal with different platforms and different communication channels under the
hood. What we give to the developer is a communication abstraction, hiding
all the complexity of dealing with different communication protocols to build a
reliable stream channel. We will also describe how operators and peers work,
showing how we achieve such flexibility at operator, peer, and topology level in
the framework.

10 1.6 Outline

In Chapter 5 we will show how our implementation of the controller gives to
WLS self healing capabilities over nonpermanent failures, and helps dealing with
bottlenecks by parallelising operator execution on more than one device. The
controller is able to start a migration procedure upon graceful shutdown, keeping
the topology running when peers disconnect. We will show the differences in the
two implementations of the controller (Web server, Web browser) and show the
algorithms implemented.

Chapter 6 will show the application case studies that have been proposed us-
ing Web Liquid Streams. We proposed the framework to high-school and middle-
school students, as well as to a workshop in the Inforte Summer School held in
Tampere, Finland. A project at the University of Applied Sciences in Karlsruhe
evaluated WLS by building a browser-to-browser streaming application based on
traffic information. We will also show how WLS can be used as a mashup tool, il-
lustrating our submission in the Rapid Mashup Challenge at ICWE 2015. Finally,
we will show the results of a project in which USI students used WLS to build a
noise and light monitor for the USI open space.

In Chapter 7 we will evaluate the framework, showing how the controller is
able to pick the best and most appropriate peers for topology deployment among
a set of heterogeneous peers, and how it deals with failures and battery short-
ages. The evaluation will also show how the controller is able to parallelise the
execution of operators on a single peer (by increasing the number of workers)
and distributing it on more peers (creating copies of the bottleneck operator).
We will also evaluate the Web browser controller by stressing the topology, and
show how the two controllers deal with permanent failures, and what happens
when not enough peers are available for operator deployment at runtime.

Finally, in Chapter 8 we will wrap up the dissertation, giving an overview on
the work done and perspectives on future research.

Chapter 2

Related Work

In the first part of this Chapter we analyse the stream software connector, pre-
senting languages and framework of the past seventeen years that wer researched
and used to build data streaming applications. The Chapter then covers related
work in the area of streaming optimisations, the Web of Things, wireless sensor
networks, liquid software, and mobile/cloud computing.

2.1 The Stream Connector
The stream software connector offers a way to connect components in a software
system enabling a continuous data feed from one endpoint to another. These
connectors usually comes in handy when dealing with real time applications,
where connectors like remote procedure call (RPC [Sun88]) offering request-
response interaction pattern do not fit the needs of such applications.

In this Chapter we survey the recent stream processing frameworks and do-
main specific languages that feature streaming support to illustrate the state-
of-the-art design. The classification of the presented systems and languages is
based on a taxonomy extracted from the features they offer (i.e., deployment
configurations, load balancing, runtime flexibility, etc.). The result identifies the
gaps in the design space and points at future research directions in the area of
distributed stream processing.

2.1.1 Defining the Stream Software Connector
The concept of "stream" has recently become popular with the emergence of Web
application streaming media on home computers [CVHDVF09]. Data is continu-
ously generated on one endpoint and pushed towards receiver machines, which

11

12 2.1 The Stream Connector

collect the packets and feed the streamed content to the end users. The notion
of "stream" in computer science, though, has a much older background and a
broader scope.

The evolution of the stream software connector is a result of the increas-
ingly large amount of data that organisations have to store, organise, and anal-
yse [AGT14]. This trend forced developers to work on ways to process large-scale
data aggregation/summarisation, without the ability to store it. The widespread
use of distributed systems to process large-scale data and, more recently, real-
time data, has encouraged the development of faster and better integrated data
analysis, resulting in the rise of stream processing technologies. Nowadays,
streaming applications are used in banking, financial sector, and pervasive com-
puting (Web of Things [GTMW11]) as well as in increasingly popular social me-
dia, like Twitter 1.

Stream processing systems are used to build relatively complex topologies
formed by operators and streaming channels. An operator is the basic execu-
tion unit that executes a function over a stream of data. We classify operators
in three categories: producers, filters, and consumers. Producers are found at
the beginning of a topology and start the data stream. Packets pass then through
filters, that upon receiving data, process it, and forward the result of the execu-
tion downstream. A topology may be composed by many concatenated filters. At
the end of the topology, consumers receive the computed data and, for example,
store it in a database or visualise it to the users.

Given that different systems use different notations and vocabulary to de-
scribe their primitives, we decided to stick with a common terminology, which
will be used throughout the rest of this thesis. With the term "system", we ad-
dress the streaming framework and/or programming language used to build a
streaming topology. The term "host" defines the hardware where (part of) the
streaming system is run. With the term "operator" we define the logical compo-
nent of a topology. The term "worker" instead indicates the thread or process that
processes the stream inside the operators. Each operator has at least one worker
running, but can have more to parallelise the work if the host allows it. For scal-
ability and reliability multiple workers running on a single logical operator can
run on multiple hosts. Operators are logically connected by a data stream, whose
elements are called "stream elements" or "packets".

1https://dev.twitter.com/streaming/firehose

13 2.1 The Stream Connector

2.1.2 Stream Processing Systems and Languages Surveyed
We collected a representative sample of systems from both the software archi-
tecture and the database area in order to attempt to provide a perspective on
the design space. We not only are interested in describing the design space of
the stream connector, but we want to take a perspective on the evolution of the
stream software connector.

First Generation Systems (2001-2004)

• InfoPipes [BHK+02] is a multimedia streaming system developed in 2001
and mainly focused on audio and video (media) streaming applications.
InfoPipes topologies are built using a set of pre-defined components such
as sources, sinks, buffers, and filters. The system also offers a basic control
interface that allows dynamic monitoring and control of the topology and
of the information flowing through it. Thanks to special connection inter-
faces, topologies can be connected at runtime, forming longer and broader
topologies (that the authors call "InfoPipelines").

• StreamIt [TKA02] is a programming language and a compilation infras-
tructure developed in 2002. Operators in StreamIt come in four different
flavours: Filter, Pipeline, SplitJoin, and FeedbackLoop. Developers can
form a streaming topology by making use of such operators and binding
them at code level, and then feed the code to the compilation infrastructure
to run the streaming application.

• CQL [ABW06] (Continuous Query Language) is a programming language
and execution engine developed in 2003. CQL is a declarative language
that extends SQL [CB74] with the capability of querying windows over
possibly infinite streams of data. CQL has been developed to run on top of
the Stanford STREAM [MWA+03] DSMS runtime engine.

• Sawzall [PDGQ05] is a procedural domain-specific programming language
developed in 2003 and built upon MapReduce [DG08]. It was developed by
Google and was used to process large batches of log records. Each Sawzall
script execution takes as input a single log record and and processes it on
operators deployed on multiple machines. The output is then emitted in
tabular form.

14 2.1 The Stream Connector

Second Generation Systems (2005-2010)

• Borealis [AAB+05] is a distributed stream processing system that inherits
the core functionalities from Aurora [CcC+02] and the networking infras-
tructure from Medusa [ZSC+03]. Aurora is a framework for monitoring
applications; its system model is composed by streaming operators that
send and receive continuous data streams executing ad hoc queries. Au-
rora* [CBB+03] is an extension of Aurora, and introduces distribution and
scalability to the framework. Medusa, on the other hand, is a network-
ing infrastructure that introduced a common networking infrastructure for
machines to support the distributed deployment of the Aurora project. Bo-
realis was developed in 2005 and implements all the functionalities inher-
ited by the previously mentioned systems. Borealis is designed to support
dynamic revision of query results, dynamic query modification, and to be
flexible and highly scalable.

• Stream Processing Core (SPC) [AAB+06] is a middleware for distributed
stream processing developed in 2006. SPC targets data mining applica-
tions, supporting information extraction form multiple digital input data
streams. Streaming application topologies are composed by Processing El-
ements (operators) that implement user-defined operations and are con-
nected by stream subscriptions.

• StreamFlex [SPGV07] is a programming model for high throughput stream
processing in Java developed in 2007. StreamFlex extends the Java Virtual
Machine (JVM) with type-safe allocation and transactional channels while
providing a stricter typing discipline on the stream components of the code.

• DryadLINQ [YIF+08] is a system and a set of language extensions devel-
oped in 2008 that enable a new programming model for distributed com-
puting on large scale by supporting general-purpose declarative and imper-
ative operations on data sets through a high-level programming language.
A DryadLINQ program is composed by LINQ [Mei11] expressions which are
compiled by the runtime into a distributed execution plan (called "execu-
tion graph", a topology) passed to the Dryad [IBY+07] execution platform.

• The Simple Scalable Streaming System (S4) [NRNK10] has been developed
in 2010 by Yahoo! and is a general-purpose distributed platform similar
to Storm and inspired by MapReduce and the Actor [Agh86] model. With
S4 programmers can build topologies that can process possibly unbounded

15 2.1 The Stream Connector

data streams out of Processing Nodes (PNs) that hosts Processing Elements
(PEs, operators). Each PE is associated with a procedure and with the type
of even that it is able to consume.

Third Generation Systems (2011-2017)

• Storm [sto11] is a free and open source distributed real-time computa-
tional environment originally developed in 2011 by Twitter. Storm works
with custom created "spouts" (operators that produce a data stream) and
"bolts" (operators that receive streaming elements), which can be arranged
into a streaming topology and distributed on one or more hosting ma-
chines. Storm takes inspiration from MapReduce as well, where the stream
is mapped to many operators and reduced at the end of the computation,
with the only exception that in its case operators can theoretically run for-
ever.

• Web Real-Time Communication (WebRTC) [BBJN12] is an API drafted by
the World Wide Web Consortium (W3C) in 2011. It enables browser-
to-browser connectivity for applications such as video chat, voice calls,
and peer-to-peer file sharing. This stream connector bypasses the com-
munication with the server, enabling a direct connection between the Web
browsers involved. The Web server’s only purpose is to help Web browsers’
discovery.

• XTream [DA11, DRAT11] is a platform developed in 2011 that supports
the design of data processing and dissemination engines at Internet scale.
Topologies are composed by slets (operators) and come in three flavours: ↵-
slets (only have an output channel, data producers), !-slets (only have an
input channel, data consumers) and ⇡-slets (both input and output chan-
nel, data filters). Slets can be added and removed at runtime, granting
high flexibility to the topologies running on top of the platform. XTream is
also able to run other kind of topologies (i.e., a CQL topology) within its
slets.

• Discretized Streams (D-Streams) [ZDL+12] is a stream processing engine
developed in 2012 whose key idea is to treat the stream as a series of deter-
ministic batch computations on very small intervals. In this way, D-Streams
is able to reuse the fault tolerance mechanism for batch processing, lever-
aging MapReduce-style recovery.

16 2.1 The Stream Connector

• IBM Streams Processing Language [HAG+13, HAG+09] (SPL) is a program-
ming language developed for the IBM InfoSphere Streams platform to anal-
yse continuous data streams. SPL abstracts the complexity of dealing with
a distributed system by exposing a graph-of-operators view to the users. It
provides a code-generation interface to C++ and Java for performance and
code reuse. SPL offers static check while providing a strong type system
and user-defined operators models. We did not include SPL in the survey
table as we were not able to determine its run-time alternatives.

• TimeStream [QHS+13] is a distributed system developed in 2013 and de-
signed for continuous processing of big streaming data on large computing
clusters. TimeStream’s topologies are fault tolerant and are able to dynam-
ically reconfigure themselves to face load changes at runtime. It runs on
top of the StreamInsight [AGR+09] platform (used to develop and deploy
complex event processing applications), and it is designed to preserve its
programming model. This way, it can scale any StreamInsight application
to larger clusters without modification.

• MillWheel [ABB+13] is a framework developed in 2013 by Google for build-
ing low-latency data-processing application at large-scale. It allows users
to focus entirely on the application logic without the need to think about its
distribution. MillWheel offers fault tolerance and guaranteed delivery by
checkpointing the state and using the concepts of strong and weak produc-
tion. Strong production is a concept by which a computation checkpoints
its state and forwards the message. When an ACK is received from the re-
ceiver, the checkpoint is garbage-collected. Weak production follows the
same principles, by which the events may be sent before checkpointing the
state; this is only possible if the processing of an event is idempotent with
respect to the persistent storage and event production.

• Samza [sam14] was presented in 2013 and is a stream processing frame-
work for writing scalable stream processing applications. Like MapReduce
for batch processing, it takes care of running message-processing code on
a distributed environment. It offers fault tolerance, scalability and stateful
operators to manage the state. It is currently in production use at LinkedIn.

• Curracurrong Cloud [KDFS14] is a light-weight stream processing system
for the cloud proposed in 2014. It is designed to be deployed in large dis-
tributed clusters hosted on cloud computing infrastructure. It features an
algebraic-style description of the processing topology which is automati-

17 2.1 The Stream Connector

cally deployed on the available computing hosts. This system is based on
Curracurrong [KAS+14], a similar stream query processing engine suited
for Wireless Sensor Networks (WSN) that focus to provide a good trade-off
between productivity, flexibility, and energy efficiency.

• StreamScope (StreamS) [LQX+16] is a reliable distributed stream com-
putation engine presented in 2016 that provides a continuous temporal
stream model that allows users to express complex stream processing logic
in a declarative way. StreamS introduces two abstractions, rVertex and
rStreams, to manage the complexity in distributed stream processing and
deal with failure recovery and allow efficient and flexible distributed execu-
tion, facilitating debugging and deployment of complex multi-stage stream-
ing applications.

• Web Liquid Streams (WLS) is the streaming systems we introduce in this
dissertation.

2.1.3 Survey Methodology
We decided to focus on the functional characteristics of the proposed set of rep-
resentative stream processing systems (frameworks and languages) to gather ar-
chitectural decisions on the software connector. We use these functional char-
acteristics to categorise, classify, and compare the surveyed systems. The archi-
tectural knowledge [KLvV06] is organised following the Issue-Based Information
Systems (IBIS) meta-model [KR70]. By reconstructing the set of principal design
issues of the stream processing systems we surveyed, we present the architectural
alternatives proposed in the frameworks and languages we analysed.

We decided to divide the issues we found in two categories: design-time and
run-time. On the one hand, design-time issues regard what has to be taken into
account for a stream processing system before running it, for example where it
can be deployed, or what kind of topology is supported. Run-time issues on the
other hand take care of describing what should be decided when the streaming
topology is running. For example, if the system is able to balance the load and
how it does it, or if it is able to tolerate faults.

We took inspiration by [JBA08] to recover the architectural decisions we gath-
ered in the survey. We based our analysis on the available documentation of
the systems, as well as testing them where possibile. We decided to include all
the issues that resulted having more than one alternative in the state-of-the-art
systems. We introduce each alternative, showing benefits and challenges, and
including examples taken from the literature.

18 2.1 The Stream Connector

The criteria followed to choose the systems to include in the survey include
the support for distributed stream processing and the availability of prototypes
(or implementations) with real-world use case scenarios. On the other hand we
omitted similar or closely-related systems as well as previous versions or prede-
cessors of state-of-the-art systems. The final sample of surveyed systems results
to be very diverse, but also representative of most design space variants of the
stream software connector.

2.1.4 Design-Time

Topology: Linear/Parallel Flows, DAG, Arbitrary

The topology of a data stream infrastructure describes how the streaming op-
erators are interconnected and in which order they process the stream. This
design issue impacts the expressiveness of the resulting stream processing infras-
tructure. We denoted three different alternatives for this issue: linear, directed
acyclic graph, and arbitrary.

• Alternative: Linear A linear topology is a simple pipeline of operators
that execute operations on the data received in linear fashion, much like
the shell does when chaining input processes. It is the simplest shape a
topology may assume for a data stream to exist, the most basic example
being a topology composed by a producer operator streaming data to a
consumer operator. This alternative keeps into account both the possibility
to build linear topologies and parallel linear topologies, where producers
branch the input stream into more linear parallel flows, all executing the
same processes. All the stream processing systems we analysed are able to
setup a linear topology.

The benefit of this approach lies in the simplicity to design a streaming
application. The applications that can be implemented using a simple
pipeline have to contain all branching decisions within the operators with-
out having alternative data flows based on intermediate results. More-
over, with the possibility to only branch the producer, having parallel flows
can help to cope with workload fluctuations, for example by exploiting the
cloud or multicore architecture [GTA06].

This approach brings the inherent challenge of limited expressiveness. Not
having the possibility to create branches limits the number of applications
that could be developed. Depending on the semantics of the application,

19 2.1 The Stream Connector

the parallel flow approach may be challenging to implement while main-
taining the order of the stream elements when the flow are merged into
the consumer. The possibility to split (map operation) the work on many
parallel linear topologies may also imply a challenge in joining the streams
afterwards (reduce operation).

• Alternative: DAG This alternative let operators branch on more than one
downstream operator. The data flow can be dictated by a routing algo-
rithm, or by the result of the computation as a branching condition. Not
having cycles in the topology is the only constraint this alternative poses.

The higher degree of expressiveness gave by this alternative let developers
implement a wider range of streaming applications, with respect to the lin-
ear alternative. The possibility to branch the work on different downstream
operators is an improvement of the previous alternative and is beneficial for
most of the applications that cannot be implemented with a simple linear
topology.

The possibility to create acyclic topologies intrinsically increases the com-
plexity in the system to be built as well as in the topologies created by the
developers. The system should give the possibility to developers to imple-
ment different routing strategies, for example heuristic-based routing, or
branching conditions. The possibility to two or more data streams in one
operator should be also taken into account (more on this in the appropriate
architectural issue).

• Alternative: Arbitrary With this alternative, any kind of topology can be
set up: with respect to the DAG alternative, this alternative lets developer
implement topologies with cycles. This possibility has to be handled care-
fully, as data may flow indefinitely many times through the topology pass-
ing by the same operators.

Besides the expressive power, this alternative gives the possibility to build
recursive data streams topologies, useful when dealing with, for example,
sensor data in control loops, or for recursive computations (i.e., genetic
algorithm [AT99]).

Cycles may create deadlocks of operators that may end up being in a state
of waiting their own results as input. In general, cycles have to be handled
with care, otherwise streaming packets may end up cycling in the topol-
ogy forever. If this alternative is chosen, both these challenges have to be
addressed.

20 2.1 The Stream Connector

Topology Representation: Textual Declarative, Textual Imperative

Operators have to be defined and linked together to form and run a topology.
We found many ways with different levels of abstractions to define and repre-
sent a topology, but decided to categorise them in two main alternatives: declar-
ative languages (i.e., rule-based) and imperative languages. We omitted visual
representations as they are usually a high-level abstraction of one of the two
representation alternatives we found.

• Alternative: Textual, Declarative Declarative programming is a style of
programming that minimises, or eliminates, side effects by characterising
what the program should compute and not how to compute it. The same
approach can be used to describe a topology, letting developers describe
them by building the structure of the system without describing the data
flow.

Using declarative programming helps focusing on the specification of the
result rather than the underlying implementation (that is, how things should
be computed). The runtime operations can be guided and optimised through
a declarative specification of the topology. It can be beneficial to reuse ex-
isting declarative languages and extend them with the notion of stream
(i.e., stream-to-relation mappings).

Despite the illustrated benefits, dealing with the high abstraction level in-
trinsic to the declarative languages may impact the visibility into the actual
topology being executed. Moreover, state-of-the-art shows that it may be
difficult to deal with stateful operators applied over an infinite data stream.
These operators have in fact to deal with the notion of windows or limited-
size buffers.

This alternative is being used by Borealis, CQL, Curracurrong Cloud, DryadLINQ,
TimeStream, and StreamScope. As the name suggests, DryadLINQ is based
on top of LINQ (Language-Integrated Query) 2, which is a programming
model developed by Microsoft that introduces formal query capabilities
into the .NET-based programming languages. TimeStream on the other
hand adopts the programming model used by the StreamInsight [ACGS11]
framework (again, a LINQ dialect). Likewise, Borealis uses the same model
used in its predecessor Aurora, while StreamScope is designed and imple-
mented as a streaming extension of the SCOPE [ZBW+12] batch-processing
system. CQL is based on SQL (Structured Programming Language), to

2http://msdn.microsoft.com/en-us/library/bb397926.aspx

21 2.1 The Stream Connector

which it adds the capability to deal with a continuous set of queries, and
works on top of STREAM [ABB+03]. The following snippet shows a simple
CQL query returning a relation containing the set of recent orders, that is
the ones that have been submitted in the last 30 seconds, for an online
store.

1 Select Distinct OrderId
2 From OrdersStr [Range 30 Seconds]

Listing 2.1. Simple CQL query with a sliding window.

The query shown in Listing 2.1 uses a stream-to-relation operator, the slid-
ing window, that defines the historical snapshot of a finite portion of the
stream. In this case the sliding window returns the orders performed in the
last 30 seconds in the OrderStr stream. The rest of the query is a simple
relation-to-relation operation derived from SQL, which performs projection
and duplicate elimination.

• Alternative: Textual, Imperative Traditional imperative languages can
also be used to implement a stream processing system. Streaming con-
structs may have to be imported through libraries, or implemented ad hoc
in order to include stream processing in an imperative programming lan-
guage.

The beneficial aspect of this approach is the possibility to reuse the same
programming language used throughout an application to implement the
streaming operators as well as to configure the topology. Existing code
that once was used for a different purpose may be recycled and made as a
streaming operator.

The challenge of this approach lies in the abstraction of a streaming topol-
ogy infrastructure with respect to the programming language: the topology
may not be as easy to grasp as its corresponding visual representation. The
separation of concerns between the composition and the component may
end up being not so clear anymore.

Most of the systems we surveyed implement this alternative. StreamFlex,
Storm, S4, and XTream support operator implementation in Java. D-Streams
makes use of Scala, while WebRTC and WLS use JavaScript. While we men-
tioned TimeStream adopting the StreamInsight declarative programming
model, users may also use an imperative language to program user-defined
operators. Listing 2.2 shows a StreamIt program that performs a moving
average over a set of streamed items.

22 2.1 The Stream Connector

1 void->void pipeline MovingAverage {
2 add IntSource();
3 add Averager(10);
4 add IntPrinter ();
5 }
6 void->int filter IntSource {
7 int x;
8 init {
9 x = 0;

10 }
11 work push 1 {
12 push(x++);
13 }
14 }
15 int->int filter Averager(int n) {
16 work pop 1 push 1 peek n {
17 int sum = 0;
18 for (int i = 0; i < n; i++)
19 sum += peek(i);
20 push(sum/n);
21 pop();
22 }
23 }
24 int->void filter IntPrinter {
25 work pop 1 {
26 print(pop());
27 }
28 }

Listing 2.2. StreamIt application that performs a moving average over a
set of streamed items.

StreamIt embeds the topology with the pipeline and add constructs,
and defines the operators with the filter keyword. push and pop are
used respectively to push an item in the output queue or to fetch an item
from the input queue. The topology, in this case a pipeline, shows a pro-
ducer sending numbers downstream to an averager filter which peeks
the first 10 items from the input queue and measures the average, push-
ing it downstream and removing the last item from the input queue. The
consumer simply takes the last element from the input queue and prints it.

Deployment Environment: Cluster, Cloud, Pervasive, Web browser

The deployment environment issue aims to define where a stream processing
system is able to run. We filtered out four different possible deployment scenarios

23 2.1 The Stream Connector

from the systems we surveyed: cluster, cloud, pervasive, and browser-based.
Every system we surveyed is also able to run on a single machine, besides, we
only surveyed systems with the possibility of a distributed deployment (with the
exception of CQL). Unlike a single machine, where the parallelisation is bound by
the processor cores, a distributed deployment should adopt good load balancing
strategies in order to parallelise correctly the work.

• Alternative: Cluster A cluster of machines is the standard deployment for
a stream processing system that requires high processing power, memory,
and storage capacity.

A cluster of machine is one of the alternatives to obtain a significant amount
of computing power. The benefit of this approach lies in the advantage of
using an optimised local network that reduces the latency and increases
the available bandwidth.

Implementing the cluster deployment alternative poses the challenge of the
development of a distributed deployment infrastructure, which is shared
among all the alternatives proposed in the survey for the deployment issue.
The implementation may be thought to be ad hoc for a cluster of machines,
or may be generalised to be able to run on a cloud of machines, which can
either be nearby or topologically distant. We discuss the latter in the cloud
alternative.

This alternative is implicit if the cloud deployment alternative is imple-
mented. Every system we surveyed, with the exception of CQL and We-
bRTC, support a cluster deployment. CQL only runs on a single machine,
while WebRTC needs the support of a cloud infrastructure, either a sig-
nalling server or a STUN server, to create the peer-to-peer channels, thus
it may not be fit for a cluster deployment.

• Alternative: Cloud This alternative is very similar to the previous one,
with the exception that the stream in this case runs across a distributed
cluster of virtual machines.

With this alternative, producer operators may be moved closed to the data
origin, while consumers may be directly served to the data consumers.
Adding new resources to this alternative can be as easy as renting a new
virtual machine and set up the stream processing system on it, with re-
spect to physically wiring a new machine to a rack of clusters in the cluster
alternative.

24 2.1 The Stream Connector

Despite the benefit of setting up a relatively big infrastructure within a
small time frame, the developer has limited control over the topological
displacement of the virtual machines in the cloud. This implies less guar-
antees on the actual network condition, which may result in increased la-
tencies and increased challenges to maintain a given Quality of Service for
the resulting stream.

Most of the systems we surveyed are able to run in a cloud environment,
with the exceptions of CQL, DryadLINQ, Sawzall, StreamFlex, StreamIt,
and WebRTC. All the systems able to run on the cloud implement operators
with socket connections which are able to create a data stream to remote
virtual machines.

• Alternative: Pervasive The pervasive alternative may be seen as a subset
of the cloud alternative, taking the distributed deployment to the extreme
by enabling the stream processing on sensors and microcontrollers. Given
the small processing power and the physical architecture of the smart de-
vices, the cloud alternative may not be suited for such deployment, where
a more ad hoc implementation is needed.

This alternative benefits applications that are fed with sensor data, or that
feed actuators (i.e., microcontrollers wired to servo motors) as consumers
of the topology. Deploying an operator on a sensor acting as a producer
may, on one side, avoid the inefficient polling of producers towards sensors,
and on the other side optimise the flow of input data by, for example, only
inserting interesting data samples.

The challenges to implement such alternative lie mostly in the inherent
small infrastructure offered by nowadays sensors and microcontrollers. Al-
though hardware is constantly improving, some of these ubiquitous devices
may not be suited yet to handle part of a stream processing infrastructure,
thus a general solution is not always possible.

We found Samza, WLS, and XTream to support pervasive deployment. XTream
is able to do so with the concepts of ↵-slets and !-slets, which are able to
incorporate pervasive devices. Also Aurora, the predecessor of Borealis,
was developed to access and stream the data produced by sensors.

• Alternative: Web Browser The Web is rapidly adopting real-time commu-
nication infrastructures in order to speedup the communication between
clients and servers, with respect to the synchronous request-response in-
teraction we are used to with HTTP. Thanks to WebSockets [FM11] we are

25 2.1 The Stream Connector

able to smoothen the connection between clients and servers, and nowa-
days thanks to WebRTC we are able to connect Web browsers to other Web
browsers in a peer-to-peer fashion, effectively creating a stream of data.

Being able to establish browser-to-browser direct connections gives life to
a new era of real-time Web applications without the support of a server in-
frastructure, especially considering that the latest hardware (mobile phone,
televisions, gaming consoles) is able to run a Web browser. By performing
a GET request to a URL, the Web browser automatically downloads all the
associated JavaScript scripts, effectively setting up the infrastructure of the
application with a simple page load. No installation on the client machine
is required besides the Web browser.

Some interactions with the server should nonetheless be kept into account
to organise and establish the bindings with other Web browsers, for exam-
ple. In fact, a browser is not able to discover other browsers by itself, it
needs the support of a server that exchanges the Interactive Connectivity
Establishment (ICE) candidates for the browsers involved in the commu-
nication, effectively establishing the infrastructure.

The examples that we found implementing this alternative are WLS and
WebRTC. WebRTC requires the Web browser to create an ID and request a
Channel token from the server. The server in turn requires the token from
a STUN server, and sends it back to the clients to setup the direct stream
connection. WLS makes use of WebRTC to implement browser-to-browser
communication in its topologies.

Join Operator: No implementation, Forward Join, Predicate Join, Function
Join

In relational databases, the join clause combines columns from one or more ta-
bles and outputs a set that can be saved as a table that contains the entries of
interest for the user. In a data streaming system, the join operation happens in-
side an operator and defines how two or more data streams have to be joined in
order to form a single output data stream. Joining two or more streams can be
offered as a special kind of operator with a different programming interface from
others operators, or may not be specified, leaving to the user the implementation
of such functionality. Not all the streaming systems we surveyed specified how
the join functionality was implemented. Among those which implemented it, we
filtered out the forward join alternative, the user-defined predicate-based join
alternative, and the user-defined functional-based join.

26 2.1 The Stream Connector

• Alternative: No Implementation Leaving no implementation for the join
operator means having users implement their own join infrastructure. If
the system allows it, users may have to deal with coding operators with
multiple input streams and a single output stream.

From a development point of view, this alternative may be suited for sys-
tems that do not take into account deployment scenarios involving topolo-
gies with joins (that is, either multiple consumers or pipelines), thus there
is no need to implement it. On the other hand, developers may want to
give the possibility to the users to implement their own join infrastructure,
thus developing a flexible enough operator component.

If the developers decide not to implement a join infrastructure, the re-
sulting topologies will not be able to perform join operations on the data
streams. Leaving the join operation as user-defined implementation may
increase the complexity when interoperating with the system.

This alternative is embraced by Sawzall, and WebRTC. The developers of
said infrastructures left the join operation implementation to the users.

• Alternative: Forward (or Echo) Join The simplest form of join takes two
or more input data streams and serialises them in one single output data
stream by forwarding the data received in a FIFO order. Each time a mes-
sage is received, it is immediately forwarded downstream.

This approach simplifies the join operation by transforming multiple data
streams in a single one.

The data in the resulting stream may be arriving from completely different
sources, thus resulting in tuples with different structure. It is on the user’s
side to deal with this heterogeneity in the join operator (if possible) by
outputting messages formatted the same way.

This alternative is implemented by InfoPipes, StreamIt, and Curracurrong
Cloud. StreamIt implements an operator called SplitJoin which is able to
parallelise the work by splitting it in one point of the topology and joining
it afterwards. The join happens in a round-robin fashion, where streamed
data is taken from each input stream in turn. Input queues are imple-
mented with the first come first served policy. The implementation of the
Curracurrong Cloud join operator reads the input from one or more input
channels and writes it out to an output channel, effectively pipelining what
once was parallel.

27 2.1 The Stream Connector

• Alternative: User-defined Predicate Join This alternative is strictly re-
lated to the topology representation issue. If the alternative chosen is "Tex-
tual, Declarative", then the implementation of a join operator is bound to
be predicate-based.

Benefits and challenges of this approach reflect the ones presented for the
"Textual, Declarative" alternative.

This alternative is implemented by the systems that implement the "Tex-
tual, Declarative" alternative: Borealis, CQL, DryadLINQ, StreamScope,
and TimeStream. CQL’s join is very similar to SQL’s, the only difference
being the sliding time window over the streamed elements. Borealis Join
is based on Aurora’s Join, which is a binary operator with the form
Join(P, Size s, Left Assuming O1, Right Assuming
O2)(S1, S2)
where P is a predicate over the pairs of tuple from input streams S1, S2
(i.e., P(x, y), x.pos = y.pos); s is an integer and O1, O2 are specification
of ordering assumed for S1 and S2 respectively. TimeStream’s join is based
on StreamInsight, with a slight difference to handle real-time events. List-
ing 2.3 shows an example of a StreamInsight join, taken from the StreamIn-
sight guide [KG10].

1 var innerJoin = from left in outerJoin_L
2 from right in outerJoin_R
3 where left.LicensePlate == right.LicensePlate
4 select new TollOuterJoin
5 {
6 LicensePlate = left.LicensePlate,
7 Make = left.Make,
8 Model = left.Model,
9 Toll = right.Toll,

10 TollId = right.TollId,
11 };

Listing 2.3. Example of a StreamInsight join.

The join implementation takes two input streams and, where the licence
plates are the same, it creates a new tuple to be forwarded downstream.

• Alternative: User-defined Function Join

Like the previous alternative, this alternative is strictly related to the topol-
ogy representation issue. In this case, if the alternative chosen is "Textual,
Imperative", the implementation will be bound to be functional-based.

28 2.1 The Stream Connector

Benefits and challenges of this approach reflect the ones presented for the
"Textual, Imperative" alternative.

Systems implementing this alternative are D-Streams, DryadLINQ, S4, Samza,
Storm, WLS, and XTream. In all the studied examples users are able to im-
plement their own join behaviour using the streaming system’s program-
ming language. S4 let users subclass the ProcessingElement class,
effectively creating a join PE. Likewise happens for Storm’s bolts and for
XTream’s ⇡� slets that can be custom-created to deal with data joins.

The same approach is taken by DryadLINQ which offers an infrastructure
which only need the specification on how the aggregation must be com-
puted. Listing 2.4 shows a join example of PageRank score update pro-
ducing a list of <target, score> pairs starting from <source,
target> pairs (edges) and a list of current scores (rank) that will be
joined together. The example is taken from a list of sample DryadLINQ
programs 3.

1 public IQueryable<Rank>
2 PageRank(IQueryable<Edge> edges, IQueryable<Rank> ranks)
3 {
4 return edges.Join(ranks,
5 edge => edge.source,
6 rank => rank.source,
7 (edge, rank) => new Rank(edge.target, rank.value)).
8 GroupBy(rank => rank.source).
9 Select(group => new Rank(group.Key,

10 group.Select(rank => rank.value).Sum()));
11 }

Listing 2.4. Example of a DryadLINQ user-defined function join.

The result is then grouped using the GroupBy function on the first field.

2.1.5 Run-Time
Dynamic Adaptation: Static, Dynamic Operator, Dynamic Topology

This issue determines how flexible the topologies can be. A static topology offers
no room for flexibility: once it has been run, it cannot change its configuration
nor the load passing through the streaming operators; a change in one of those
dimensions implies stopping the topology and re-running it. Dynamic topologies
may come in two orthogonal alternatives: whether the topology can be changed

3http://research.microsoft.com/pubs/66811/programming-dryadlinq-dec2009.pdf

29 2.1 The Stream Connector

at runtime (i.e., by re-arranging the streaming operators), or by changing the
operator configuration (i.e., by increasing or decreasing operator resource allo-
cation to face changes in the load).

• Alternative: Static Once a static topology is deployed, it cannot change at
runtime. To change the deployment configuration at runtime, the topol-
ogy has to be fully stopped and re-run with a new configuration. The static
alternative includes systems that cannot change in both the orthogonal dy-
namic alternatives we analysed.

Picking the static alternative simplifies the runtime of the system, since it
does not have to deal with the support for runtime update of the topology.

To achieve a dynamic behaviour (i.e., reordering or removal of operators),
developers may use branching operators, effectively skipping parts of the
topology. This solution however requires effort from the developer, as all
the changes that may happen in the topology at runtime have to be planned
in advance.

Among the streaming systems and languages we surveyed, CQL (STREAM),
Curracurrong Cloud, D-Streams, Samza, StreamFlex and StreamIt cannot
modify the topology configuration after the stream starts flowing through
it.

• Alternative: Dynamic at Operator level

This alternative proposes the possibility to adapt the operator configuration
at runtime. The configuration includes the parallelism level within the
operator (i.e., number of threads dedicated to the operator), the physical
location of the operator as well as the routing configuration.

Such approach is beneficial when the streaming infrastructure has to deal
with load fluctuations that impact the computational effort of the opera-
tors, by being able to increase or decrease the footprint on the machine
(that is, elastically scale or shrink). This approach is also useful when de-
velopers have to deal with a dynamic environment: machine that join and
leave the system should be able to host and migrate one or more streaming
operators while they are connected to the infrastructure. This alternative
may also imply runtime update of the operator code, effectively enabling
hotfixing of the operators at runtime.

An infrastructure that has to offer such flexibility needs to be able to sup-
port operator migration (possibly without data loss). The system should

30 2.1 The Stream Connector

also be able to support some kind of dynamic binding infrastructure as the
route of the data stream is not fixed, thus increasing the complexity and
overhead of the stream connector.

Borealis, InfoPipes, S4, Sawzall, Storm, StreamScope, TimeStream, and
WLS use this approach to handle failures. For example, TimeStream, through
the concept of resilient substitution, is able to initiate a new operator to re-
place a failed one and continue the execution (possibly on a different ma-
chine). This can also be used to balance the load, by creating more copies
of the same operator on multiple machines. Likewise, Storm through the
Nimbus daemon is able to restart at runtime streaming operators from one
(faulty) machine to another one.

• Alternative: Dynamic at Topology level

A fully dynamic topology lets developers add and remove operators from
the topology at runtime, as well as rearranging them, effectively changing
its semantics.

The high degree of dinamicity given by this alternative gives developers
the possibility to alter the semantics of the topology at runtime. This turns
out to be especially useful when dealing with a home sensing and automat-
ing environment, where the users of the system may want to add one or
more sensing agents to their topologies at runtime, without stopping the
currently running topology.

This alternative brings intrinsic challenges from the system developer side
as well as from the user’s side. On the one hand, an infrastructure that
offers such degree of flexibility needs to take care of the addition and re-
moval of streaming operators at runtime, as well as re-routing of the op-
erators which should avoid data loss. On the other hand, the user should
be aware that removing and adding operators may influence the data sent
and received from and to other operators. This could imply inconsistencies
(and thus, failures) in the resulting topology.

The systems that we surveyed that apply this alternative are DryadLINQ,
InfoPipes, Millwheel, SPC, StreamScope, TimeStream, WebRTC, WLS, and
XTream. WebRTC does not impose any constrain on when and how Web
browsers should be connected, thus even when a connection is already in-
stantiated, more browsers can connect at runtime. SPC And XTream sup-
port the connection of new operators at runtime, the topology can then be
extended as the stream flows. The Job Manager component in DryadLINQ

31 2.1 The Stream Connector

is able to modify the topology at runtime according to user-supplied poli-
cies, while TimeStream supports such alternative only if the new configu-
ration is an equivalent substitution of a sub-DAGs of the previous topology.

Operator Disconnection Recovery: Replication, Reconfiguration

The fault of a single streaming operator may compromise the execution of a
whole topology. Faults may be caused by the user’s code that caused a crash
in the execution of the operator, as well as some other hosting machine-related
factor (i.e., system-level crashes or disconnections). Some systems like CQL,
InfoPipes, and StreamIt do not address the problem, some others rely on the
underlying infrastructure – like Sawzall does with MapReduce. Borealis uses the
concept of replication to face faults, while S4, Storm, and TimeStream use ad
hoc reconfiguration methods. XTream instead exploits the intrinsic dynamicity
of its topology to cope with faults.

• Alternative: Replication

The concept of replication involves instantiating one or more copies of the
same entity through information sharing to improve accessibility, reliability,
and fault tolerance. In particular, in streaming systems this means repli-
cating streaming operator to bypass the failure of any of them.

In presence of faults, the topology is able to quickly re-route the data stream
from the faulty operator to one of the replicas. Lightweight topologies take
the most out of this approach, where the costs of replicating operators and
the cost of re-routing remains limited.

This alternative, in addition to the extra resource consumption needed to
maintain the replicas, suffers from additional problems that mainly involve
maintaining consistency of the replicated state [GHOS96]. The failure of
an operator and the subsequent recovery protocol should not invalidate the
consistency of all the other replicas.

We mentioned Borealis as an example system that supports this alternative.
When a failure is detected, the Borealis infrastructure tries to find an alter-
native upstream replica to continue processing the data stream. This forces
the upstream replicas to be consistent with each other, and this is achieved
thanks to the SUnion operator which takes as input multiple streams and
joins them, outputting a single stream with tuples ordered in a determinis-
tic way. In this way, all the replicas process exactly the same input. Support
for this alternative has also been mentioned in the future works of SPC, we

32 2.1 The Stream Connector

are not aware if the alternative has eventually been developed. Samza and
StreamScope also support this alternative.

• Alternative: Reconfiguration

With the reconfiguration alternative, topologies are able to reconfigure
themselves in order to face operator failures. Faulty operators are imme-
diately substituted or re-launched by the runtime.

Thanks to this approach, there is no footprint caused by replicas of the
operators, since the runtime is able to detect the failure and deal with it by
restarting or substituting the operator.

As a drawback, the automatic process of reconfiguring the topology needs
a reliable monitoring component which constantly checks the operators
involved in the topology and detects faults. This can be a single point of
failure, even though the system may still be implemented to run without
such reconfiguring infrastructure.

We previously mentioned the Nimbus daemon in Storm, which is also in
charge of restarting failed operators. If the operator keeps failing, the Nim-
bus daemon will reassign the execution to another host. A similar approach
is taken by WLS with its control infrastructure. D-Streams is able to re-
compute the lost stream elements while the operator is being reinitialised,
thus speeding up the recovery of the topology. DryadLINQ also supports the
re-computation of lost elements, as they are re-executed by the Job Man-
ager Component. Once again, TimeStream uses the already mentioned Re-
silient Substitution principle to replace failed operators, possibly restarting
them on another available machine. S4 restarts the failed operators on the
remaining available execution resources.

Load Balancing: Load Shedding, Reinitialisation, Adaptive Control

A well-balanced topology can process the data stream at a regular throughput by
making good use of the available resources offered by the hosting machines to
run the streaming operators. Within some streaming applications it may become
difficult to predict the computational effort of each operator, which is based not
only on its internal implementation by the user, but also by the values of the
streamed elements. The input throughput of the streamed elements should also
be taken into account, which may as well fluctuate leading to operator overload-
ing. Different alternatives have been proposed by different systems to deal with

33 2.1 The Stream Connector

the balance of the load, ranging from dropping specific streamed elements (load
shedding) to more adaptive or dynamic alternatives.

• Alternative: Load Shedding

Load Shedding is an alternative to reduce the load of streaming opera-
tors. The first approaches of this alternative dropped random streaming
elements when input queue grew past a certain threshold. More recently,
smarter approaches have been proposed which are able to drop elements
that are considered to be less important, keeping only the most important
ones following the quality of service standards given by the user [GWYL05].
This approach results in a best-effort streaming system, where no guaran-
tees are made on the data reaching the end of the streaming topology, even
though some guarantees can be given on the overall throughput as the sat-
uration may be reached without overloading the system.

Load Shedding can be a very easy alternative to implement, given the fact
that the underlying application can deal with the loss of stream elements,
randomly dropped where topology bottlenecks occur.

More smarter approaches may be implemented in order to avoid dropping
the important streaming elements, but this implies that the connector has
to know more information about the application semantics of the stream
to decide which elements to drop.

Borealis and its predecessor Aurora implement two different Load Shed-
ding alternatives based on quality of service guarantees. Aurora randomly
drops tuples that are in the input queue of a streaming operator whose out-
put can tolerate data loss. By dropping randomly selected tuples in strate-
gic points of the topology, this approach effectively reduces the workload
of the Aurora topology. Borealis instead uses an approach called Seman-
tic Load Shedding, which drops the least important tuples. Importance
once again is determined by a metric called utility interval, computed by
observing the quality of service of the application.

• Alternative: Dynamic Reinitialisation

The topology is reinitialised through a special token which is forwarded
through the whole topology, forcing the streaming operators to flush the
remaining stream elements and to reinitialise themselves allocating more
resources to face bottlenecks.

The data loss is avoided by stopping the input throughput and flushing
downstream the remaining streaming elements. The operators are then

34 2.1 The Stream Connector

reinitialised allocating more resources, effectively dealing with load bal-
ancing issues with the only drawback of a temporary flush of the topology.

The challenging part of this approach lies in the stream protocol, which
should be able not only to deal with the streamed data, but also with the
special control messages that reinitialise the topology. This control mes-
sages may either be triggered manually, or by a control infrastructure which
can trigger it without human intervention. If that is the case, a solid control
infrastructure has to be implemented to check the status of the queues.

StreamIt and StreamScope are the only systems we surveyed that planned
to use this alternative in their future work. In StreamIt, when the topology
needs to be modified to face load issues, an init message is sent. When
the message is received by an operator, it re-executes the initialisation pro-
cedure and adjust the resources allocated to run. Even though this was
presented as theoretical work, we decided to keep it as feature offered by
the system. StreamScope is able to dynamically move to a new configura-
tion with increased degrees of parallelism without interruptions by using
checkpoints available at operator level through rStreams and rVertices.

• Alternative: Dynamic Adaptive Control

This alternative proposes the most flexible and adaptive solution, by intro-
ducing a control infrastructure which balances the load along the topology
at runtime. Bottlenecks are immediately resolved by, for example, allocat-
ing more resources to the operator, or by offloading the operator on a more
powerful machine.

Thanks to this approach, the topology does not have to stop to balance
the load across the available machines. More resources are automatically
allocated to the needs of the topology, trading off resources against the
performance of the stream.

Real-time monitoring of the system is required, and the controller may need
tuning before obtaining good performances. The dynamic reconfiguration
should also be safe, by maintaining the semantics of the topology and,
depending on the quality of service, avoiding any data loss.

The literature offers many approaches to this alternative. Storm allows
to modify the number of workers inside an operator (that is, elastically
scale the computation) by the means of a controller, or a GUI/command
line administration tool. TimeStream uses once again its Resilient Substi-
tution procedure to automatically change the number of hosts on which a

35 2.1 The Stream Connector

given operator of the topology is deployed, and thus solving bottlenecks.
DryadLINQ exploits hooks in the Dryad API to aggregate operators, ef-
fectively reducing I/O operations and improving the overall performance.
WLS takes inspiration from Storm, letting the controller modify the num-
ber of workers inside an operator, and creating copies of the operator in
case the hosting machine used up all of its resources.

Overview

Table 2.1 shows the surveyed systems, highlighting the design decision taken
(+). We decided to divide the analysed systems in three different generations
based on their age and features, from left to right.

First generation systems (InfoPipes, StreamIt, CQL, Sawzall) share the fol-
lowing commonalities. Topologies are (parallel) linear or DAG, while we have
both declarative and imperative representations of the topology. The only target
deployment is the cluster of machines (with the exception of CQL). Given their
age, it’s not surprising that no cloud deployment option has been implemented.
The join alternatives offered by the systems are simple, with the exception of
CQL that offers user-defined predicate-based join. These systems do not present
a flexible topology, with the exception of InfoPipes presenting a primitive dy-
namic infrastructure, and no system addresses disconnection recovery. As for
load balancing, CQL uses load shedding, while Sawzall bases its own on MapRe-
duce; StreamIt uses a lossless dynamic initialisation.

Borealis defines itself in the literature a "second-generation distributed stream
processing engine" [AAB+05]. We included in this category SPC, StreamFlex,
DryadLINQ, and S4 as well. Topologies are more complex, being able to be de-
ployed on the cloud as well as on sensors (pervasive deployment). Join opera-
tions results to be totally user-defined, while systems are more flexible at opera-
tor level (Borealis, S4) as well as at a topology level (SPC, DryadLINQ). In these
systems, disconnection recovery is introduced with the concepts of replication
and reconfiguration. Balancing the load shifts from the load shedding approach
towards a more dynamic approach with a controller.

The latest state-of-the-art streaming frameworks show a heterogeneous sam-
ple by including Storm, WebRTC, XTream, D-Streams, TimeStream, MillWheel,
Samza, and Curracurrong Cloud. The topology deployment again includes DAGs,
with the exception of D-Streams, while WebRTC also supports arbitrary topolo-
gies. The representation has narrowed to the imperative alternative, while the
distribution is more in favour of cluster of machines and the cloud (with the
exception of XTream and Curracurrong Cloud which can run on a pervasive en-

36 2.1 The Stream Connector

Issue, Alternative In
fo

pi
pe

s
(2

00
1)

St
re

am
It

(2
00

2)

C
Q

L
(2

00
3)

Sa
w

za
ll

(2
00

3)

Bo
re

al
is

(2
00

5)

SP
C

(2
00

6)

St
re

am
Fl

ex
(2

00
7)

D
ry

ad
LI

N
Q

(2
00

8)

S4
(2

01
0)

St
or

m
(2

01
1)

W
eb

RT
C

(2
01

1)

XT
re

am
(2

01
1)

D
-S

tr
ea

m
s

(2
01

2)

Ti
m

eS
tr

ea
m

(2
01

3)

M
ill

W
he

el
(2

01
3)

Sa
m

za
(2

01
3)

C
ur

ra
cu

rr
on

g
C

lo
ud

(2
01

4)

St
re

am
Sc

op
e

(2
01

6)

W
eb

Li
qu

id
St

re
am

s
(2

01
7)

Topology
Linear + + + + + + + + + + + + + + + + + + +

Parallel Flows + + + + + + + + + + + + + + + + + + +

DAG + + + + + + + + + + + + + + + + +

Arbitrary + + +

Topology
Representation
Textual, Declarative + + + + + +

Textual, Imperative + + + + + + + + + + + + + + +

Deployment
Cluster + + + + + + + + + + + + + + + + +

Cloud + + + + + + + + + + + +

Pervasive + + + +

Web Browser + +

Join Operator
No Implementation + +

Forward Join + + +

D
es

ig
n

Ti
m

e
Is

su
es

User-defined
Predicate

+ + + + +

User-defined
Function

+ + + + + + +

Dyn. Adaptation
Static + + + + + +

Dynamic: Operator + + + + + + + +

Dynamic: Topology + + + + + + + +

Disc. Recovery
Replication + + + +

Reconfiguration + + + + + + +

Load Balancing
Load Shedding + + +

Reinitialisation + +

Ru
n

Ti
m

e
Is

su
es

Adaptive Control + + + + + +

+

Table 2.1. Summary of the design decisions (+) over the stream connector
design space.

37 2.1 The Stream Connector

vironment as well, and D-Streams which only runs on a cluster of machines). We-
bRTC and WLS are the only presented systems able to run on Web browsers. Sys-
tems appear to be dynamically adaptable at operator level (Storm, TimeStream,
WLS) or at topology level (WebRTC, TimeStream, XTream, MillWheel, WLS). D-
Streams is the only exception because of its MapReduce nature. Disconnection
recovery is dealt with reconfiguration, and load balancing is done by the means
of a controller as standard solution. We can define three different groups: Storm,
XTream, MillWheel, Samza, Curracurrong Cloud, and TimeStream leverage the
work proposed by StreamIt. D-Streams is an evolution of MapReduce, while
WebRTC is a new primitive technology to exploit streams on a Web browser.

The overall view shows an initial trend where the target hardware architec-
tures were fixed (cluster of machines), and barely any topology flexibility. Dis-
connection recovery was mostly not supported, while load balancing, if imple-
mented, was achieved by relying on the system’s underlying runtime platforms.
The trend takes a shift over time, by offering a more flexible infrastructure, more
deployment options, and disconnection recovery, and finally shifting towards dy-
namic topologies, dynamic reconfiguration both for load balancing and fault re-
covery issues, while maintaining unchanged deployment options. It is interest-
ing to observe that this trend towards higher runtime flexibility is obtained while
the representation alternative is constrained towards the use of imperative lan-
guages.

Web Liquid Streams

Table 2.1 shows the Web Liquid Streams (WLS) framework and the design de-
cisions that were adopted during the development of our streaming framework.
The results of the survey encouraged the design decisions we made. We de-
cided to let developers the freedom of implementing an arbitrary topology with
JavaScript, an imperative programming language. Our target users include Mak-
ers, thus we included Web browsers and the pervasive environment as we expect
Makers to use their personal devices to run distributed topologies. The cloud and
cluster environment deployment are given by the underlying Node.js infrastruc-
ture, able to run on big powerful cluster of local machines, or in the Cloud. To
make the system even more flexible, we decided to let the developers implement
their own join operator giving a basic infrastructure to handle multiple input
messages.

As for what concerns run time issues, we implemented a dynamic environ-
ment by letting developers modify, at runtime, topologies and operators, by ei-
ther rewiring, adding, removing, or updating operators as the topology is run-

38 2.1 The Stream Connector

ning. WLS deals with disconnection recovery by autonomously reconfiguring
the topology at runtime, running the lost operators on available machines. WLS
balances the workload on the operators by using a dynamic adaptive controller
which is able to distribute the execution of streaming operators on multiple ma-
chines at runtime to deal with bottlenecks.

2.1.6 Outlook
The overview of the stream connector evolution, studied through frameworks
and design space, highlights different trends. We noticed the rise of architec-
tures and frameworks [JAF+06, KCF15, FMG+16] targeting microcontrollers and
sensor data; we expect this interest to increase in the future, as we are wit-
nessing the rise of hardware like Arduino, RaspberryPi, BeagleBone, or Tessel,
which are becoming more and more common and powerful. The capability to
run more powerful software may lead to an interest in using microcontrollers
as development platforms for more complex applications. This holds for per-
sonal computers, home servers, and personal smart devices in general as well,
which can be used as platforms to run personal clouds in which sensitive data
can be processed and stored. We should also keep into account that the number
of devices able to run a Web browser is dramatically increasing, thus we expect
to see more and more applications running WebRTC – effectively increasing the
number of streaming applications running over the Web browser.

Disconnection recovery (and fault tolerance in general) is likely to become
even more important with the latest trend that makes use of a centralised con-
troller, which also balances the load (by increasing or decreasing the computa-
tional effort on the hosting machine). We expect future systems to be as dy-
namic as the latest examples we surveyed (i.e., TimeStream, MillWheel, Samza,
StreamScope).

2.1.7 Stream Optimisations
Besides our survey in the stream connector, we also analysed some of the re-
lated work on the optimisations for streaming frameworks and systems. During
the implementation of WLS (Chapter 4) and its controller (Chapter 5) we took
into account the list of optimisation on different streaming systems presented
in [HSS+14]. Some of the optimisations could be implemented (fission, load
balancing, state sharing when possible), while some were more suited for sys-
tems that include a compilation phase in which the streaming system could be
optimised.

39 2.2 Streaming on the Web of Things

The self-adaptation of streaming application is an important related work for
WLS, which controller works without human intervention. In [KCS05] the au-
thors derive an utility-function to compute a measure of business-value given
a streaming topology, which aggregates metrics like latency or bandwidth at a
higher level of abstraction. A self-adapting optimiser has been presented in [ABQ13]
where the authors introduced an online and offline scheduler for Storm. An-
other optimisation for Storm has been proposed in [SCCH13], where the authors
present an optimisation algorithm that finds the optimal values for the batch sizes
and the degree of parallelism for each Storm node in the dataflow. The algorithm
automatically finds the best configuration for a topology, avoiding manual tun-
ing. Our work is very similar, yet the premises of having fully transparent peers
are not met, as WLS is unable to access the complete hardware specifications of
a machine from the existing Web browser HTML5 APIs (described in Chapter 4).

2.2 Streaming on the Web of Things

The Web of Things (WoT) is a set of programming patterns and architectural
styles that integrate real-world objects into the World Wide Web. WoT reuses
most of the existing and well-known Web standards, ranging from the programmable
Web (e.g., HTTP communication, RESTful architectures, JSON), the semantic
Web (e.g., JSON-LD to link data, Microdata for metadata) and the real-time Web
(e.g., WebSockets communication).

During the reminder of this dissertation, we show how WLS is able to abstract
the complexity of the underlying hardware by using Web standards. A similar
approach is taken by Stream Feeds [DLLW08], which propose an abstraction for
the sensor Web which combines the advantages of Web feeds (XML documents
that contain dynamically changing sequence of content items) and multimedia
stream paradigm. Stream Feeds can be fused, generated, and filtered to create
new feeds. Feeds can be accessed through a RESTful API which offers filtering,
and historical and incoming data access.

Another approach in the literature that offers a Web abstraction and lets the
developer build streaming pipelines is taken by Node-Red [nod13], a browser-
based editor that lets developer wire together devices, APIs, and online services.
The created dataflow can be deployed on the Node.js runtime and can also be
saved in JSON format for future use. Nodes may implement JavaScript functions
that are executed on the received data and sent downstream. Unlike WLS, Node-
Red does not offer fault detection, flexibility in terms of modifying the topology
at runtime, nor supports heterogeneous hardware.

40 2.3 Wireless Sensor Networks

The ECCE toolkit [BAD14] (Entities, Components, Couplings and Ecology)
allows users to setup device topologies through XML programming. Like WLS,
ECCE reduces the burden of deploying applications over an heterogeneous set of
resources. Devices can be bound together in a similar way WLS does (shown in
Chapters 3 and 4), while ECCE is more oriented towards I/O events with respect
to the data stream WLS processes in its topologies.

The work presented in [RCH+04] introduces a component model for sensors
and devices around the house. Through a tablet interface, users are able to create
very simple pipelines of interconnected devices. It is not clear if more complex
scenarios can be built, what are the imposed constraint on the devices, and how
the orchestration is performed. WLS treats operators as components to build
topologies, and takes care of the orchestration of the sensors and devices.

2.3 Wireless Sensor Networks

The idea of streaming data through a wireless sensor network is not new [MRX08].
While being at a lower abstraction level than the Web of Things, the field of wire-
less sensor networks proposes related work to Web Liquid Streams.

IrisNet [NDK+03] (Internet-scale Resource-Intensive Sensor Network services)
is a general-purpose software platform that supports central tasks common to
sensing services: collecting, filtering and combining sensor feeds, and perform-
ing distributed queries within a reasonable response time. IrisNet is composed by
Sensing Agents (SA) which gather sensor data (e.g., webcams) and Organising
Agents (OA) which are hosts that keep a distributed database of sensor data and
route the queries towards SAs. While being a system at much larger scale than
WLS, it proposes an inflexible infrastructure which is difficult to update (e.g., by
adding or removing sensors).

Global Sensor Network [AHS06] (2006) is a middleware that supports discov-
ery and flexible integration of sensor networks. Thanks to its virtual sensor ab-
straction, GSN enables the user to specify XML-based deployment and descriptors
with the possibility to integrate sensor data through SQL over local and remote
sensor data sources, overcoming the problem of deploying on heterogeneous
hardware. In the next Chapters this dissertation will show how our approach in
WLS is similar in the way we use the JSON topology and the constraints given
by the users, but we do not make use of SQL queries over the data stream.

SwissQM [MAK07] (2007) is an architecture for data acquisition in sensor
networks. By separating the gateway and sensor nodes, and implementing a
virtual machine at the sensor nodes, SwissQM proposes a richer functionality

41 2.4 Liquid Software Architecture

in sensor networks and language independence by gathering sensor data at the
gateway, and letting users and devices query the gateway, rather than querying
the sensors directly. Our approach uses a similar way to abstract the hardware
of microcontrollers and single-board PCs by using Node.js, while SwissQM uses
a small subset of the Java Virtual Machine. SwissQM is a key element of the
XTream platform we presented in our survey.

Previously, in this Chapter we described Curracurrong [KAS+14] and Cur-
racurrong Cloud [KDFS14], that let developers deploy part of streaming topolo-
gies on sensors.

The concept of wireless sensor networks and the Web of Things can be tightly
coupled with Complex Event Processing [CM12, CFS+14], a computational ap-
proach that takes events from multiple sources and, through analysis, infers pat-
terns or events and responds as quickly as possible. While in this dissertation we
often focus on the home automation system example, WLS can also be used to
build CEP topologies that gather data from different sources in a Maker’s house
and infer events that can be dealt with by using actuators.

2.4 Liquid Software Architecture

The liquid software metaphor describes how Web Liquid Streams can operate in
a seamless way across multiple heterogeneous devices owned by one or multiple
users [GPM+17, GPI+16, GP17].

The concept of liquid software has been introduced in the Liquid Software
Manifesto [TMS14], where the authors use it to represent a seamless multi-device
user experience where software can effortlessly flow from one device to another.

Likewise, in [BP11] authors describe an architectural style for liquid Web ser-
vices, which can elastically scale taking advantage of heterogeneous computing
resources. Joust [HPB+98] presented an earlier attempt to characterise liquid
software, by defining it as mobile code within the context of communication-
oriented systems. It presents a complete re-implementation of the Java VM, run-
ning on the Scout operating system resulting in a configurable, high-performance
platform for running liquid software. In all of the above cases the liquid quality
is applied to the deployment of software components.

XD-MVC [HN15] is a more recent example of a framework that lets developer
create cross-device interfaces. It implements migration at the application level,
simulating the migration of the application through clipping parts of the view.
Views are annotated with rules that describe how they should adapt to the pool
of available devices. Similarly, the Liquid.js framework [GP16a, GP16b] is one of

42 2.5 Mobile/Cloud

the latest examples of a liquid software framework. It helps developer build Web
applications taking advantage of multiple heterogeneous devices by extending
Web components standards to implement the liquid user experience. Any device
can be used in a sequential or concurrent way with applications roaming from
device to device without requiring effort by the users.

2.5 Mobile/Cloud

As WLS makes use of mobile devices, we studied how to deal with battery short-
ages (shown in Chapter 5). While our solution takes only into account the battery
level, a lot of effort has been put in studying how to improve the energy efficiency
of mobile devices and smart phones, given their rapid growth both in terms of
users adoption and computing power. The efforts targeted mostly how to deal
with applications consuming a great deal of the smart phone batteries and how
offloading computation could save them [KL10]. A high level approach has been
proposed in [KSV13]where authors describe MECCA, a scheduler that decides at
runtime which applications to run on the cloud and which on the mobile device.
This approach differs from ours, in which we use any kind of device unless the
battery level is too low.

Approaches like MAUI [CBC+10] have been proposed regarding mobile phones
applications, where programmers could annotate part of the code which could
be offloaded. The MAUI runtime is then able to tell if the offloading of the of-
floadable parts could save energy or not. If that is the case, the server side would
execute the method call(s) and send back the result. A similar approach has been
taken by CloneCloud [CIM+11], which clones the OS running on the smartphone
on a cloud VM. While applications are running, CloneCloud can decide which
part of the code is convenient to be executed on the cloud replica. With this
approach also native calls to the underlying OS can be offloaded.

ThinkAir [KAH+12] improves the lack of scalability of MAUI with the same
approach of CloneCloud, but removes the restrictions on applications/inputs/en-
vironment that the latter includes by adopting an online method offloading. Like-
wise, the COMET [GJM+12] runtime environment is able to offload computations
on a cloud VM through a Distributed Shared Memory (DSM) technique and VM-
synchronisation operation to keep endpoints in a consistent state. Native calls to
the underlying OS cannot be offloaded. Cuckoo [KPKB12] is another framework
for computation offloading which integrates with the Eclipse development tool
and provides a programming model to write applications that are able to offload
part of the computations on a server running the remote service implementation

43 2.5 Mobile/Cloud

of the application. A more formal approach is taken in [ZWW13] where authors
formulate a constrained stochastic shortest path problem over an acyclic graph
for the task scheduling problem.

The next Chapters introduce the Web Liquid Streams framework, its runtime,
and its control infrastructure.

44 2.5 Mobile/Cloud

Part II

Web Liquid Streams

45

Chapter 3

The Web Liquid Streams Framework

The Web Liquid Streams (WLS) framework helps developers create stream pro-
cessing topologies and run them across a personal peer-to-peer Cloud [BMT12]
of connected heterogeneous devices. Developers can either install the framework
on their devices and run WLS, or they can connect with a Web browser to an ex-
isting WLS running instance to execute streaming operators on their browsers.
WLS is able to also run on some microcontrollers and single-board PCs, exploiting
the I/O functionalities offered and having direct access to sensor data. Thanks
to the use of JavaScript, WLS lets developer write streaming operators once and
deploy them on any kind of device supported by the runtime, abstracting the
underlying hardware.

This Chapter gives a general overview of the framework we developed, as
well as how to use it. The purpose of this Chapter is to give the reader a ba-
sic understanding of the functionalities of the framework and how developers
can use it to develop and deploy data streaming applications through realistic
examples.

3.1 Introduction

Web Liquid Streams is a framework that is able to support the execution of dis-
tributed streaming topologies. WLS offers the deployment of stateful streaming
operators on Web servers (Cloud), Web browsers, and some off-the-shelf micro-
controllers and single-board PCs. This is possible thanks to the underlying run-
time entirely developed in JavaScript, the lingua franca of the Web. By exploiting
the Node.js1 framework (a JavaScript runtime built on Chrome’s V8 engine that

1https://nodejs.org/

47

48 3.1 Introduction

lets developer exectute JavaScript code outside of a Web browser) we are able
to run parts of a streaming topology on Web servers and on microcontrollers and
single-board PCs that either support JavaScript (i.e., Tessel2) or that can be in-
stalled on them (Arduino’s Noduino3, RaspberryPi through Node.js). Most of the
available Web browsers natively run JavaScript and thus can be used to offload
part of the computation.

To build and deploy a streaming topology, the developer must become famil-
iar with the following WLS primitives.

• Peers are physical hosts where the data processing happens. The peer ab-
straction holds in the physical view of the topology, where one or more
computational entities connects to the cloud of computing devices and of-
fers its own resources. Any Web-enabled device that can run a Node.js
Web server or a Web browser can become a Peer in the Web Liquid Streams
framework. A Peer may host one or more streaming operators.

• Operators receive incoming data stream elements, process them, and for-
ward the results downstream. Each operator is associated to a JavaScript
file, which describes the stream element processing logic. Operators are
hosted in peers, and are part of the logical view of a topology.

• Workers are single processes spawned within operators. They are used
to parallelise the work of a single operator. Operators are stateful, and
start by default with a single worker, this number can elastically change
to accomodate additional resource demand by the execution of the script
associated with the operator.

• Topologies describe how operators are interconnected in the data stream.
They define an arbitrary graph of operators using data flow bindings (edges
of the topology). The structure of the topology can dynamically change
while the stream is running.

Figure 3.1 shows how peers, operators, and workers can be organised in a
topology. The first peer is hosting two operators, which stream data to a single
central operator, which is deployed on two different peers. The arrows represent
the logical flow of the stream (from operator to operator) and not the physical
wiring (from peer to peer). The central operator forwards the stream to a peer
hosting the final operator.

2https://tessel.io/
3https://sbstjn.com/noduino/

49 3.1 Introduction

Peer 0

Peer 1

Peer 2

Peer 3
Operator 0

Operator 1

Operator 2

Operator 3ww

ww

ww

ww

ww

w

w

Figure 3.1. Example of a distributed streaming topology running on different
peers. Peer 1 and peer 2 in this particular case host both the computation of
operator 2.

Developers must first connect peers to the system in order to use them to of-
fload operator execution. Each JavaScript script implements the functionality of
an operator, which starts by default with one single worker executing the script.
More workers may be started for a single operator during the startup phase, oth-
erwise the control infrastructure will add them at runtime if bottlenecks in the
execution are found. Workers can in fact be added or removed at runtime to face
load changes and solve bottlenecks caused by a slow operator execution.

3.1.1 The Liquid Software Metaphor in WLS

The metaphor of liquid software is used to illustrate the user experience during
the interaction with software deployed across more than one device. Like a liq-
uid adapts its shape to the one of its container, WLS is able to adapt the stream
computation footprint on the pool of available resources. When the resource
demand increases, new resources are allocated and de-allocated whenever the
resource demand decreases. The computation is autonomously adapted to the
workload on the set of devices being used, seamlessly splitting and migrating
streaming operators when needed. WLS follows the principles of the liquid soft-
ware metaphor [MSP15, TMS14] by adapting to the set of devices being (con-
currently) used, seamlessly migrating running applications across devices and
synchronising the state distributed across two or more devices (through stateful
operators).

50 3.1 Introduction

Liquid Software

Topology

State Replication Application
Source

UI AdaptationDevice Usage State
Identification

Client Deployment

Discovery

Primitives

Synchronisation LayeringGranularity

ManualResponsiveComplementaryParallelSequential Implicit Explicit

Forward ForkMigration Clone

BatchTrickle OS VM / Container Application Component Master-
slave

Multiple
master

Centralized DecentralizedHybrid

Single
Repository

Multiple
Repositories

Client
Repositories

Pre-installed

On-demand

Cached

Ultra
ThinThin Thick

Smartcard

Ethernet

Bluetooth

Shared
URL

QR code

Or

Alternative

Mandatory

Optional
Contact

List

Geolocation

Figure 3.2. The Web Liquid Streams features in the liquid software feature
model introduced in [GPM+17].

Figure 3.2 shows the feature model for the liquid software metaphor, intro-
duced in [GPM+17]. The bright rectangles represents our design choices, while
the blurred rectangles are the decisions that were not taken but are part of the
liquid software domain. The model is slightly adapted for WLS, which may not
include applications with a UI.

WLS uses a hybrid approach for the topology of the data stream. The starting
point of the streaming topology is centralised, while the operators are spread
across different devices, each one holding its own code (and state, in case of
stateful operators). The state replication is in a master-slave form, implemented
with Redis and described in Chapter 4. The layering adopted in WLS is consid-
ered thick, as each peer holds the operator code as well as the control infrastruc-
ture. The starting peer also holds data regarding the topology and the connected
peers.

The discovery happens either through the pre-installed WLS runtime on Web
server peers, or through shared, on-demand, URLs for Web browser peers. Web
server peers are given the IP address of the starting peer to which they can con-
nect through ethernet/WiFi and become part of the computation, while Web
browser peers only need to connect to specific URLs in order to start the com-
putation of an operator, or become idle peers. This design decision also impacts
the client deployment, which is in fact both pre-installed (Web server) and on-
demand (Web browser).

51 3.1 Introduction

The state identification defines how the developer of the application identifies
and specifies how the state is shared among the devices. WLS lets developers
explicitly define what to share at operator level (that is, what to send downstream
to other operators, or what to save on the database in the case of a stateful
operator). For this reason the design choice is explicit, and is component based
as we treat each operator as a component running on a different device.

The computational adaptation of WLS can be complementary, manual, and
responsive. The controller decides how to spread the operators on different Web
browsers, if it causes bottlenecks. The controller is also in charge to take deci-
sions on how many resources to allocate on the operator at runtime, making it
responsive. We also consider the manual design choice, as the user of the system
may decide how to allocate resources on a given device.

The device usage is parallel, as peers host part of the application at the same
time in a parallel way. The synchronisation of the operators happens in two
different layers, depending on whether an operator is stateful or stateless. The
synchronisation of the state for stateful operators is handled by the underlying
database infrastructure. When a stateless operator is moved on a different peer,
or forked to parallelise execution, the process batches the whole state of the
operator (that is, number of workers running in the operator) and moves it on
another peer. For stateful operators, we consider clone as the primitive – the
cloning of the database structure handled by the runtime through master-server
replication. The primitives for stateless operators are migration, to move an
entire operator from one peer to another, and fork, to split the execution of an
operator on more than one peer.

WLS fits in the maturity model for liquid software applications and frame-
works introduced in [GP17]. The maturity model is determined by combining
the deployment configuration of the liquid applications model view controller
(MVC) layers across server-side and client-side. WLS fits the model proposed
even if topologies do not always have a view.

Figure 3.3 shows the maturity model for Web architectures for centralised,
decentralised and distributed model layer deployments. If we consider the start-
ing peer of a topology as the "server" and other peers connected to it as the
"clients", WLS can be seen as a decentralised hybrid Web application (level 4,
highlighted in green). WLS is a hybrid Web application as it decentralises topol-
ogy execution while maintaining a degree of centralisation for what concerns
control of the topology. The topology model is bound to the starting peer, while
every other peer connected and part of a topology holds part of the model as well
as the state (in the case of stateful operators).

52 3.2 System Model

Migrate / Fork
C

lie
nt

Model

Logic

View View

Logic

Model

Logic Logic

View View

Logic

Model

Logic Logic

View View

Logic

Model

Logic Logic

View View

Se
rv

er

Level 1
Web 1.0

Applications

Level 2
Rich Web

Applications

Level 3
Real time

Web Applications

Level 4
Hybrid

Web Applications

Logic

Logic Logic

View View

Model ModelC
lie

nt
Se

rv
er

Logic

Model

Logic Logic

View View

Model Model

Logic

Model

Logic Logic

View View

Model Model

Model

C
en

tr
al

is
ed

 M
od

el
 L

ay
er

D
ec

en
tr

al
is

ed

M
od

el
 L

ay
er

Clone / Forward

Liquid U
X

Logic Logic

View View

Discovery

Model Model

Level 5
Peer-to-Peer

Web Applications

C
lie

nt
Se

rv
er

D
is

tr
ib

ut
ed

 M
od

el
 L

ay
er

Figure 3.3. WLS in the maturity model for liquid Web software applica-
tions [GP17].

3.2 System Model

Our system model is composed by a set of networked peers owned by the users
of the framework. Each peer can be of different nature: big Web servers with
a great deal of storage and RAM, Web browsers running on personal computers
or smart devices, and microcontrollers and single-board PCs. A single topology
may be deployed on different heterogeneous peers, depending on the needs of
the streaming application. WLS is able to handle the churn of connecting peers,
notifying the appropriate peers of the new incoming connections. Likewise, if a
peer has to leave the network, running topologies will be rewired – if needed –
to deal with the disappearing peer by migrating operators elsewhere.

By uploading a topology description in the form of a JSON file, or by manually
specifying the operators and bindings through the user interface, users are able

53 3.3 Developing Operator Scripts

to configure and start a data stream topology. The system checks if the requests
to run a given topology could be satisfied with the known resources. If that is the
case, operators will be allocated on the available peers and the topology will start.
More than one topology can coexist at the same time within the same set of peers.
In fact, more than one operator (either from the same topology, or from different
ones) can run on the same peer. Operator scripts can be updated at runtime by
the user, if for example a bug is found, or if the functionality of an operator has
to be updated to accomodate changes in the topology. In fact, topologies may
also change semantics at runtime: WLS supports adding and removing operators
while a stream is running, effectively changing the end result of the computation.
This can prove to be useful when, for example, a new hardware with new sensors
is added, and the topology has to be expanded to accomodate another producer
operator.

When a peer starts a topology, the newly created topology refers to that peer
as the starting peer, or root peer. The root peer deals with the churn of joining
and leaving operators, fixing the physical wiring of the topology if needed. The
command-line control interface, as well as the RESTful API for that topology are
available only on the starting peer.

Operators are implemented by the users themselves, thus no quality of ser-
vice is guaranteed; operators crashing resulting in application failures at runtime
should be handled by the users running the topology. The WLS framework en-
sures cohesion among the heterogeneous set of peers that offer their resources
as platform for stream processing.

3.3 Developing Operator Scripts

Operators are written in plain JavaScript and include the WLS library that pro-
vides all the functionalities needed for connecting operators into a streaming ap-
plication. In this Section we show how to write operator scripts for a simple topol-
ogy. We demonstrate how to interact with sensors, the Web browsers, and the
database support. The following list of commands shows the basic API to interact
with WLS. It describes the basic operations, topology operations, stateful oper-
ations, and Web browsers-only related methods. Users only need to require
the WLS library in their scripts to access the API.

Basic WLS Method Calls

• createWorker(Function callback(Object msg)) Procedure call to set up
the functionality of a single worker. The callback function is executed each

54 3.3 Developing Operator Scripts

time the worker is assigned to process a message by the operator. The call-
back function takes a Object as input parameter, which is the deserialised
version of the message received.

• createJoin(Function callback(Array [msgs])) Procedure call to set up the
functionality of a single worker in the case of a join operator. The callback
function is executed each time the worker is assigned to process a batch
of messages received from every endpoint. The callback function takes an
array of Strings as input parameter, which corresponds to the serialised
version of the messages received.

• send(Object msg) Function used to send messages downstream. It accepts
JavaScript objects as well as strings.

• sendContentBased(Object msg, String dest) Sends messages downstream
to the specified operator. dest can either be the operator id or the alias
(specified in the topology description file). If no destination is specified,
the message will be sent to all the connected operators.

• hasIncomingBinding() Checks if the operator where the worker is running
has an incoming binding from one or more operators. Returns true if
there is at least a binding, otherwise it returns false.

Topology Operations Through Operator Functions

• addOperator(Integer oid, String script, Integer workers, Bool auto-
matic, String alias, Function callback()) Creates a new operator on the
machine currently running the worker that called the method. The proce-
dure needs an operator ID, a string representing the script to be run, the
number of workers to be started, a boolean value that is used to tell the
controller to either load balance this operator (true) or not (false), an
alias (i.e., "noise_sensor"), and a callback function that is executed after the
operator started running.

• bindOperator(Integer/String from, Integer/String to, Function call-
back()) Binds operator from to operator to and calls the callback func-
tion when done. The two operators can be passed as IDs or aliases.

• unbindOperator(Integer/String from, Integer/String to, Function call-
back()) Unbinds operator from and operator to. The callback function
is called when the unbind has finished executing.

55 3.3 Developing Operator Scripts

• migrateOperator(Integer/String oID, Integer pID, Function callback())
Migrates the execution of the operator oID (that can be addressed either
with its ID or its alias) to the peer with ID pID. The callback function is
executed when the migration is completed. In case of failure, an error is
prompted on screen.

• getWorkersNumber(Integer/String oID, Function callback(Integer re-
sult)) Inquires for the number of workers currently running in a given op-
erator with ID/alias oID. The callback function takes as single parameter
the number of workers.

Stateful OperatorMethod Calls

• stateful.plainSet(String key, Object value, Function callback(String re-
sult)) Sets a value at a given key. If the key previously stored a value of
another type (i.e., trying to save a String on top of an Integer), an error
will appear in the result of the callback. Unlike the stateful.set
function, this function does not automatically stringify the received value,
thus if it is not a String or an Integer, an error will be returned. The callback
function is called with the result of the set (i.e., if it succeeded or not).

• stateful.plainGet(String key, Function callback(String/Integer result))
Gets a value at a given key. The callback function is called with the result
of the get, which is either a String (i.e., stringified Object) or an Integer.

• stateful.set(String key, Object value, Function callback(String result))
Sets a value at a given key. Unlike stateful.plainSet, this function
automatically stringifies the key if it’s an Object. If the key previously stored
a value of another type (i.e., trying to save a String on top of an Integer),
result will contain an error. The callback function is called with the
result of the set (i.e., if it succeeded or not).

• stateful.get(String key, Function callback(String/Integer result)) Gets
the value stored at a given key. The callback function is called with the
result of the get as a String or Integer.

• stateful.incr(String key, Function callback(String result)) Increments
the value stored at the key. If there is no value at the given key, stateful.incr
will behave as if 0 was stored. If a value which is not an Integer is stored
at the key, result will contain an error. If there is no error, the callback
function is called with the incremented Integer.

56 3.3 Developing Operator Scripts

• stateful.decr(String key, Function callback(String result)) Decrements
the value stored at the key. If there is no value at the given key, stateful.decr
will behave as if 0 was stored. If a value which is not an Integer is stored
at the key, result will contain an error. If there is no error, the callback
function is called with the decremented Integer.

• stateful.addToSortList(String setName, Array args, Function callback(String
result)) Adds the specified members with the specified scores in a sorted
set stored at key setName. The args array should contain a score with
a member, for example [1, "one", 2, "two"] where the strings are the mem-
bers and their preceding number is their score. This is stored in a sorted list
at the given key which updates each time a new member with a new score
is added. Objects to be added need to be stringified. The callback func-
tion returns the number of elements added to the sorted sets, not including
elements already existing for which the score was updated.

• stateful.getRangeSortList(String setName, Integer start, Integer end,
Bool withScore, Function callback(Array result)) Returns the content of
the sorted list stored with the stateful.addToSortList function.
The start and end input values define the range of the inspected list
(with end set to -1 all the elements are returned). If the scores are to
be displayed (withScore value is true), the results are retuned in a
[member, score, member, score, ...] fashion ranging from the highest score
to the lowest score in the callback function. If the scores are not to be
displayed, the results will be returned with members only, showing from
the highest scored member to the lowest scored member. If Objects were
previously stored inside the sorted list, they will be displayed as Strings.

• stateful.incrBySortList(String setName, Integer incr, String key, Func-
tion callback(Integer incrementedValue)) Increments by the given value
incr the value associated with the given key key in the given sorted list
named setName. The callback function is passed as a single parameter
the Integer representing the new value after the increment is applied.

• stateful.lpush(String key, String value, Function callback(Integer listLength))
Pushes value in the first place of the list key. If an Object is pushed, it
has to be converted to String before passing it to the function or it will
throw an error. The callback function is fired with an Integer parameter
representing the length of the resulting list.

57 3.3 Developing Operator Scripts

• stateful.lrange(String key, Integer start, Integer stop, Function call-
back(Array resultingList)) Reads the list namedkey from positionstart
to position stop. The callback function takes as parameter the resulting
list.

• stateful.llen(String key, Function callback(Integer listLength)) Inquires
the length of the list called key within the callback function as an Integer.

• stateful.ltrim(String key, Integer start, Integer stop, Function callback(String
result)) Trims the list stored at key from start to stop. The callback
function is passed an input value representing the result of the execution
on Redis (i.e., if it succeeded or not).

• stateful.del(String key, Function callback(Integer result)) Removes the
content stored at key. The callback function is passed an input value
representing the number of elements removed.

Browser-related Method Calls

• createHTML(String ID, String HTML) Function used to add HTML con-
tent in the Web page running the worker. The ID is used to identify the
block of HTML, to avoid parallel-executing worker to recreate the same
block. The HTML input string represents the HTML to be added to the
page, which is added sequentially to the page.

• createCSS(String ID, String cssFileName) Function used to add a CSS
file to the Web browser worker execution. The ID is used to identify
the added file, to avoid parallel-executing workers to add the same file.
cssFileName represents the name of the file to be added to the page,
which should be added beforehand to the /public directory of the WLS
framework.

• createScript(String ID, String scriptName) Function used to add a JavaScript
file to the Web browser worker execution. This is useful when dealing with
external libraries (i.e., visualization libraries). The ID is used to identify
the added script, to avoid parallel-executing workers to add the same script.
scriptName represents the name of the script to be added to the page,
which should be added beforehand to the /public directory of the WLS
framework.

58 3.3 Developing Operator Scripts

• callFunction(String functionName, Array args, Function callback(Function
returnValue)) Calls a function namedfunctionName defined in a script
imported with createScript. The array args contains the argu-
ments of functionName in the correct order. At the end of the exe-
cution, the function callback is executed with the return value of
the function execution.

We now show how to code a simple topology that reads data taken from sen-
sors, stores it into a database, and visualised on a Web browser. Figure 3.4 shows
a picture of the logical view of such linear topology, composed by a producer for-
warding sensor data to a stateful filter, which in turn forwards computed results
to a consumer.

59 3.3 Developing Operator Scripts

producer.js filter.js consumer.js

Figure 3.4. Logical view of the topology we illustrate in this Chapter.

1 var k = require(’./../k_global/WLS.js’);
2 var sensorLib = require(’node-dht-sensor’);
3
4 var sensor = {
5 initialize : function() {
6 return sensorLib.initialise(22, 77);
7 },
8 read : function() {
9 var readOut = sensorLib.read();

10 k.send({
11 temperature : readOut.temperature.toFixed(2),
12 humidity : readOut.humidity.toFixed(2),
13 timestamp : new Date().getTime()
14 });
15 setTimeout(function(){
16 sensor.read();
17 }, 1000);
18 }
19 };
20
21 if(sensor.initialise()){
22 sensor.read();
23 } else {
24 console.warn("Failed to initialise sensor.");
25 }

Listing 3.1. Example producer operator.

Listing 3.1 shows a simple producer operator running on a Raspberry Pi. We
wired a sensor that measures temperature and humidity to a Raspberry Pi. We
want to read the sensor data every second, format it, and send it downstream.

On the first two lines we import our library in a variable called k, and a sen-
sor library which makes inquiring the Digital Humidity and Temperature (DHT)
sensor easy. We then create an object containing two functions, one to initialise
the library and pointing it on the correct pin, and the other to deal with the read
function. Each time we read the data from the sensor, we call the k.send()
function to send the temperature and the humidity downstream. We also set a

60 3.3 Developing Operator Scripts

timeout such that every 1000 milliseconds we call sensor.read(), effec-
tively polling the DHT sensor every second. The final part of the script checks if
the sensor library is initialised, otherwise a console.warn prints on screen.

1 var k = require(’./../k_global/WLS.js’);
2
3 k.createWorker(function(raw_data){
4 k.stateful.lpush(’sensorData’, JSON.stringify(raw_data),

function(response){
5 if(response) {
6 k.stateful.lrange(’sensorData’, 0, 60, function(

response){
7 var hum_mean = 0;
8 var temp_mean = 0;
9 var light_mean = 0;

10 var date = new Date();
11 var time = date.getHours(date) + ":" + date.getMinutes(

date);
12
13 for(var i = 0; i < response.length; i++){
14 response[i] = JSON.parse(response[i]);
15 hum_mean += parseInt(response[i].humidity);
16 temp_mean += parseInt(response[i].temperature);
17 }
18
19 var to_send = {
20 "temperature_mean" : temp_mean/response.length,
21 "humidity_mean" : hum_mean/response.length,
22 "time" : time
23 }
24
25 k.send(to_send);
26 });
27 }
28 else {
29 console.warn(’There was an error processing the stored

data.’);
30 }
31 });
32 });

Listing 3.2. Example of a stateful filter operator.

Listing 3.2 shows the filter operator running on a Web server. We use this
operator to store the data measured by the producer(s) and compute a mean of
the last sixty measurements. We create an object containing the temperature and
humidity means as well as a timestamp, and forward it downstream.

61 3.3 Developing Operator Scripts

After importing the WLS library, by calling the createOperator func-
tion we create the filter operator. Its logic is described in the callback function
passed to createOperator. This callback is executed each time a message is
received; in this case we first call a database function, k.stateful.lpush
and store data in our Redis infrastructure using a user-generated id in this case
’sensorData’). If there are no errors, we call the k.stateful.lrange
function to get the last sixty measured values. We use those to compute the hu-
midity and temperature means after parsing the string we read. We then prepare
the object to be sent downstream and subsequently send it.

1 var k = require(’./../k_globals/WLS.js’)
2
3 k.createWorker(function(polished_temperature_data) {
4 k.callFunction("updateGraph", [polished_temperature_data.

temperature_mean+"", polished_temperature_data.
humidity_mean+"", polished_temperature_data.time]);

5 });
6
7 k.createHTML(’canvas_temperature’, ’<h1>Temperature Chart</h1

>
<canvas id="canvas_temperature" width="900px" height
="500px"></canvas>’);

8 k.createHTML(’canvas_humidity’, ’<h1>Humidity Chart</h1>
<canvas id="canvas_humidity" width="900px" height="500px
"></canvas>’);

9
10
11 k.createScript(’graph_functions’, ’js/graph_functions.js’);

Listing 3.3. Example consumer operator running on a Web browser.

Listing 3.3 shows the code of an example consumer. The consumer runs on
a Web browser and shows the mean values computed in the filter operator on
a graph. This gives a clear visual output to the user on the environment in his
house/office. After requiring our library, we proceed to create a worker of the
consumer operator. The operator executes the callFunction procedure,
which – as the name suggests – calls a function called updateGraph and
passes the computed means as well as the time received from upstream. The
function we call is defined in another file, graph_functions.js, which is
imported in the last line of the script by calling the createScript procedure
and passing a string identifier for the script, and the path. The rest of the op-
erator just creates the HTML infrastructure (a title and a canvas) needed by the
visualisation to build the graph.

62 3.4 Deploying a Streaming Topology

Thejs/graph_functions.js file contains all the functionalities needed
to build a self-updating graph. We won’t show the code as it goes beyond the
scope of this example.

3.4 Deploying a Streaming Topology

3.4.1 Command Line Interface
After installing the WLS framework and starting it, users will be prompted to a
command line interface. By typing help, WLS returns a list of available com-
mands.

help show help
ls Lists all peer resources
ls peers Lists all server peers
ls remote Lists all remote (Web browser) peers
ls scripts Lists all the known operator scripts
ls bindings Lists all the bindings
ls processes Lists all running workers
ls operators Lists all running operators
ls connections Lists all the operators and their connec-

tions
run {src} Runs the script {src} on a new worker

on any peer
run {src} [pID] Runs the script {src} in peer [pID]. If

[pID] is not specified, it will be run on
the first available peer

runw {src} [pID] Runs the script {src} on a new worker
in peer [pID]. If [pID] is not specified, it
will be run on the first available peer

runc {src} [pID] [num] [flag] Runs the script {src} in [num] copies in
peer [pID] with flag [flag]. If [pID] is
not specified, it will be run on the first
available peer. If num is not specified, it
defaults to 1. If no flag is specified, the
program runs the operator as if it was
run with the -a flag

63 3.4 Deploying a Streaming Topology

Flag : -a Automatic control. The operator’s num-
ber of workers is adjusted automatically
by the controller (if started)

Flag : -m Manual control. The operator’s number
of workers is not adjusted by the con-
troller, but manually (by the user)

stop Stops the topology
update_script {src} {oI D} Updates the script {src} in the operator

with oID {oI D}
bind {oI D1} {oI D2} Connects operator {oI D1} to operator

{oI D2}
bindw {oI D} {wI D} Connects operator {oI D} to worker

{wI D}
bindc_content_based {wI D}
{oI D}

Connects worker {wI D} to operator
{oI D} in a content_based sending algo-
rithm (hash function to be definend in
the koala.js file)

unbind {wI D1} {wI D2} Disconnects worker {wI D1} from
worker {wI D2}

unbindc {oI D1} {oI D2} Disconnects all the workers running in
the operator with id {oI D1} from all the
workers running in the operator with id
{oI D2}

addworker {src} {oI D} {pI D} Adds a worker to an operator with id
{oI D} and running script {src} on peer
{pI D}

migrate {oI D} {pI D} Migrates the operator {oI D} to the new
location peer {pI D}

kill {wI D} Kills worker {wI D}
killp {oI D} Kills a (random) worker in an operator

{oI D}
killall {pI D} Kills all workers of every operator in

peer {pI D}
killc {oI D} Kills an operator {oI D} with all the

workers running in it
start_controller Starts the controller
sc Starts the controller (shortcut version)

64 3.4 Deploying a Streaming Topology

exec file.k Executes the content of a .k file (list of
manual inputs)

exec file.js Executes the content of a .js file (topol-
ogy description file)

Table 3.1. List of WLS command line interface commands.

Table 3.1 shows the commands available to the command line interface (CLI).
Once the operator scripts are ready, users can run and manage their topologies
using the illustrated commands. Through the use of the CLI, we are able to set
up the topology by running the operators on the appropriate peers.

1 run dht_producer.js 1
2 dht_producer.js is now running on peer 1 with operatorID 0
3 run dht_filter.js 0
4 dht_filter.js is now running on peer 0 with operatorID 1
5 run dht_consumer.js 2
6 dht_consumer.js is now running on peer 2 with operatorID 2
7 bind 0 1
8 operatorID 0 bound to operatorID 1
9 bind 1 2

10 operatorID 1 bound to operatorID 2

Listing 3.4. Command execution in the WLS CLI.

Listing 3.4 shows the commands to be executed on the CLI to setup a simple
linear topology. We call the run commands specifying the scripts to be run and
the peerID, that is the identifier of the peer where we want the script to be run. In
our case, peerID 0 represents a Raspberry Pi, peerID 1 is a home Web server, while
peerID 2 is a Web browser (Peer IDs are assigned as the hardware connects in an
increasing fashion). Once the scripts are running, we use the system-generated
operatorIDs to specify the bindings of the topology. We bind operatorID 0 to
operatorID1, that is dht_producer.js to dht_filter.js. Then we
bind dht_filter.js to dht_consumer.js. The data stream will start
automatically as the binding is performed.

The shown list of commands can be written in a topology file (with the .k
extension) and passed to the WLS runtime with the exec command (i.e., exec
topology.k). While writing the file, the user should keep into account the
operatorIDs. Each command in the file is executed sequentially. For example, by
writing the command to run the producer operator first on a Raspberry Pi, run
dht_producer.js 0, the assigned operatorID to the producer would be 0
(zero), since it is the first one to be run.

65 3.4 Deploying a Streaming Topology

3.4.2 Topology Description File

The command line interface can be easily used to quickly deploy small topolo-
gies, or to test operators before actually deploying them on a live application.
However, for big and complex topologies, this approach may not be the most
suitable one to adopt from the point of view of the user. Wiring and deploying
by hand big DAG topologies can take time and can be error prone, given the fact
that the user should keep in mind many different operatorIDs and peerIDs.

For this reason we decided to give the user the possibility to feed a JSON file
describing the logical topology to our runtime. The idea is to use the structure
JSON offers to organise operators and bindings as array of objects, each one
describing the structure of the operator and binding to be created. The result is
a human-readable topology configuration which becomes easier to write and to
maintain. Listing 3.5 shows the topology schema that describes the JSON to be
fed to the CLI when creating a new topology.

1 {
2 "title": "Topology Schema",
3 "type": "object",
4 "properties": {
5 "id": {
6 "type": "string"
7 },
8 "operators": {
9 "type": "array",

10 "minItems" : 1,
11 "items" : {
12 "type" : "object",
13 "properties" : {
14 "id" : { "type" : "string" },
15 "script" : { "type" : "string" },
16 "sensors" : {
17 "type": "array",
18 "minItems" : 1,
19 "items" : { "type" : "string"}
20 },
21 "workers" : { "type" : "integer" },
22 "browser" : {
23 "type" : "object",
24 "properties" : {
25 "path" : { "type" : "string"},
26 "only" : { "type" : "boolean"}
27 }
28 },
29 "max-workers" : { "type" : "integer" },

66 3.4 Deploying a Streaming Topology

30 "min-workers" : { "type" : "integer" }
31 }
32 }
33 },
34 "bindings": {
35 "type": "string",
36 "minItems" : 0,
37 "items" : {
38 "type" : "object",
39 "properties" : {
40 "from" : { "type" : "string" },
41 "to" : { "type" : "string" }
42 }
43 }
44 }
45 }
46 }

Listing 3.5. Stream topology schema.

The operators key contains an array of objects describing which opera-
tor runs which script and the number of workers that should be started in the
initial deployment configuration of the operator. If no number of workers is pro-
vided, the operator will be started with one worker by default. The sensors
key specifies an array of sensors that may be needed by the operator to run.
The browser key specifies whether browsers can connect to this operator and
become part of the topology, by specifying the path to which users should
connect to make their browsers interact with WLS and a boolean value speci-
fying if the operator can only run on Web browsers (only). Web browsers can
also connect to a more generic – and always available – URL, /remote, which
doesn’t wire them to a specific operator, rather pools the Web browser resources
for future use (i.e., deployment of new topologies, target migration, etc.). The
max-workers and min-workers keys define the maximum or minimum
amount of workers that can be run for that operator. By default, the minimum is
one and the maximum depends on the available resources on the hosting peer.

The value of the bindings key contains String describing the bindings,
that is, how the data stream flows between operators. If an operator is bound to
more than one operator downstream, it may forward data in a round-robin
(default value) or broadcast fashion.

67 3.4 Deploying a Streaming Topology

1
2 {
3 "topology": {
4 "id": "dht_topology",
5 "operators": [
6 {
7 "id": "producer",
8 "script": "dht_producer.js",
9 "sensors": ["temperature", "humidity"]

10 },
11 {
12 "id": "filter",
13 "script": "dht_filter.js"
14 },
15 {
16 "id": "consumer",
17 "script": "dht_consumer.js",
18 "browser": {
19 "path" : "/consumer",
20 "only" : true
21 }
22 }
23],
24 "bindings": [
25 {
26 "from": "producer",
27 "to": "filter"
28 },
29 {
30 "from": "filter",
31 "to": "consumer"
32 }
33]
34 }
35 }

Listing 3.6. Stream topology example.

Listing 3.6 shows the topology description file for the previously defined
topology. After defining a string identifier for the topology, we identify an ar-
ray for the operators. Each operator is described in an object containing the id
and the script fields as mandatory values, all the other fields we left them
with the default value. The producer object also specifies a list of sensors that
needs to be available on the hosting machine to run the operator, in this case the
temperature and the humidity sensors. The filter object doesn’t have constraints,

68 3.5 RESTful API

while the consumer specifies "only": true, which forces its execution on
a Web browser on the path /consumer.

The subsequent array describes the list of bindings for the topology. We con-
nect the producer to the filter and the filter to the consumer.

The topology can be saved in a .js file and executed in the WLS runtime
using the exec command. The runtime takes the input JSON file, analyses the
requirements (i.e., if there are Web browsers available, or peers that have access
to temperature and humidity sensors), and if all the requirements are met, it
deploys the topology and starts it.

3.5 RESTful API
We implemented a RESTful API to deploy and control topologies. The API offers
the same flexibility as the CLI, giving the possibility to the user to build appli-
cations on top of WLS. The implementation of such API comes naturally as Web
server peers are basically Node.js servers which are able to serve HTTP requests.
The API is in fact available on each Web server peer running WLS, accessible to
the port specified when running the framework. The RESTful API as well as the
graphical user interface were implemented by Mattia Candeloro’s in his Master
Thesis [Can14].

3.5.1 Resources

The resources exposed by the API represent the most important concepts used
to manage the deployment and the execution of streaming topologies in WLS.
We introduce the URI template and the informal semantics and hypermedia re-
lationships between the resources. The API hypermedia graph is summarized in
Figure 3.5, showing the hyperlink connections between representations returned
by performing GET requests on the corresponding resource.

/
The peer root resource provides hyperlinks to the other top-level resources so
that hypermedia can be used to dynamically discover what feature each of the
WLS peer can offer.

/peers
This resource represents the collection of peers known by a peer and allows peers
to discover and refer to each other.

/peers/:pid
This resource represents the information about a peer that is known by the peer

69 3.5 RESTful API

Peer

/operators

/peers

/topologies /topologies/:tid

/topologies/:tid
/operators/:oid

/topologies/:tid
/operators/:oid/
/workers/:wid

Figure 3.5. Hypermedia navigation map, showing the resources that can be
discovered from each GET request.

from which it is retrieved. It also includes the hyperlink to the root of the REST
API of the peer.

/operators
The operator resource collection represents the set of all operators (from all
topologies) deployed on the peer.

/topologies
The topology resource collection represents the set of topologies known by the
peer.

/topologies/:tid
A specific topology represents how operators are interconnected to form a data
stream. It is used to deploy a new topology into the system as well as to dy-
namically modify it and control its state of execution. A topology representation
contains hyperlinks to its operators, which are addressed as sub-resources for
namespacing purposes.

/topologies/:tid/operators
The operators collection of a topology.

/topologies/:tid/operators/:oid
Each operator resource represents the individual processing step within a topol-
ogy and contains the actual script to be executed. It also contains hyperlinks to
connected operators that allow to follow the topology.

/topologies/:tid/operators/:oid/workers
Each operator resource allows to manage its worker collection (start, stop, mi-
grate workers).

/topologies/:tid/operators/:oid/workers/:wid
The worker resource represents the execution state of an individual worker thread
and allows the Controller to retrieve monitoring information about its perfor-
mance.

70 3.5 RESTful API

3.5.2 Uniform Interface

For each of the previously introduced resources, we specify the semantics of ap-
plying one of the HTTP methods to it. If a method is not mentioned, a default
405 Method not allowed response can be expected.

Root

GET /
Retrieves a list of hyperlinks to the contents of the peer. There are three main
links: /peers, /topologies, /operators. Additionally, some sum-
mary statistics about the peer performance are included.

Resource Management and Peer Discovery

GET /peers
Retrieves the collection of peers known to the peer inquired. The collection in-
cludes both relative hyperlinks to the local peer resource identifiers (/peers/:pid)
as well as to the absolute hyperlinks to the REST API of the known peers (http://ip:port/).
Finding a peer listed in the collection does not mean that the peer has established
an actual connection to it for the purpose of streaming data, but only that the
peer is known. If a connection has been established, the list contains the last
CPU usage value seen on that peer.

POST /peers
A POST request on the /peers path with a payload referencing the address
(IP:port) of the peer informs the receiver that a new peer exists on the network.
The receiver stores the peer data in the collection and returns the updated list of
known peers. This turns out to be useful when connecting a new resource to a
root peer.

GET /peers/:pid
Retrieves the state of the peer and a hyperlink to its REST API.

DELETE /peers/:pid
Used to remove a peer with id pid from the list of known peers.

DELETE /peers/:IP:port
Used to remove the peer with address IP:port from the list of known peers.

71 3.5 RESTful API

Topology Management

GET /topologies
Retrieves the list of topologies started from the inquired peer with hyperlinks to
their resource identifier in the form of /topologies/:tid.

GET /topologies/:tid
Retrieves the current execution state of the topology with id tid. The result
shows the topology specifying which operators are running where and which
script are they running. Hyperlinks to each operator are also included.

DELETE /topologies/:tid
This method call shuts down a topology.

POST /topologies
This method is used to create a new topology. The payload represents the struc-
ture of the topology to be implemented.

PUT /topologies/:tid
This method is used to create a new topology and associate it with the given
identifier. The payload represents the the structure of the topology to be imple-
mented.

Operator Configuration

GET /operators
Retrieves the list of all operators deployed on this peer with hyperlinks to their
resource identifier.

GET /topologies/:tid/operators
Retrieves the list of operators running on this peer for topology with id tid.

GET /topologies/:tid/operators/:oid
Retrieves the representation of the operator with id oid. The representation
includes the list of workers running (with hyperlinks to contact them), the script
that they are running, the connections they have, as well as a hyperlink back
to the topology it is part of and information about the overall performance (for
example, the request/response rate or the CPU usage aggregated across all of its
workers).

PUT /topologies/:tid/operators/:oid
Performing the request with a payload carrying a script and the bindings creates
an operator named oid for the topology tid. This operation is not supported
by POST as the name of the operator has to be know a priori in order to perform
the bindings described in the topology. Workers created in this operator will run
the script and performs the connections specified in the bindings. If the operator

72 3.5 RESTful API

identifier already exists, it is updated with the new information. This requires
to stop the workers, update the script and the stream connections and then start
the workers with the new script.

PATCH /topologies/:tid/operators/:oid/script
This request with a payload linking a new script updates at runtime the current
script workers are running with a new version of it, without modifying the con-
nections they have.

PATCH /topologies/:tid/operators/:oid/bindings
This request with a payload referencing new connections updates the bindings.
In this case the overall topology is modified at runtime.

DELETE /topologies/:tid/operators/:oid
Stops and removes the operator with id oid.

Worker Configuration

POST /topologies/:tid/operators/:oid/workers
The request creates a new worker, the payload is not necessary as the opera-
tor already has all the information for its creation (that is, script to be run and
connections to make).

GET /topologies/:tid/operators/:oid/workers
Retrieves the list of workers running on the operator with id oid. The list con-
tains hyperlinks to contact every worker.

GET
/topologies/:tid/operators/:oid/workers/:wid
Retrieves the status of the worker with id wid. The result includes uptime, and
information about the worker performance (for example, request/response ratio,
or the throughput).

DELETE
/topologies/:tid/operators/:oid/workers/:wid
Deletes the worker with id wid from the operator by stopping it and removing
its connections and deleting it.

POST /topologies/:tid/operators/:oid/browsers
Used to create a worker for operator with id oid on a browser. Returns a Web
page and a script to be run. It only works if browser flag is specified in the
topology description.

73 3.5 RESTful API

3.5.3 Representations

Operators

A collection of operators is either returned when performing a GET request on
/operators or on
/topologies/example/operators.

{
"operators" : [

{
"topology" : "example",
"id" : "a",
"workers" : [...],
"CPU usage" : "50%",
"href" : "/topologies/example/operators/a",
"peer" : "http://IP:port/",
"replicas" : [

"http://IP2:port2/topologies/example/operators/a"
]

}
]

}

Listing 3.7. Example collection of operators.

Listing 3.7 shows an example collection of one operator. The JSON format is
custom, as it is less verbose. Through content negotiation it is possible to retrieve
different kind of representations. The representation is similar to the one we use
to describe a topology: the array contains objects representing the operators,
defining the id of the operator, the hyperlink to contact it and the name of the
topology it is part of. A link back to the peer on which the operator is deployed is
also provided. This allows to conveniently aggregate the operator configuration
of multiple peers. Moreover, if the operator had to be replicated on other peers,
due to overloading, an array with direct hyperlinks to the replicas is provided.

The topology description file, shown in Listing 3.5, can be fed through a PUT
/topologies/:tid request. The operator IDs may be given by the user and
are used to create the corresponding resource identifiers.

Operator Configuration

When executing a PATCH request to patch an operator, a JSON payload is sent
containing the description of the change to apply. There are two kinds of patches:
to modify which script is associated with the operator on the .../script sub-

74 3.5 RESTful API

resource or a modification of the bindings (that is, the topology) at runtime on
.../bindings.
{

"bindings" : {
"from" : "/topologies/example/operators/c",
"to" : "/topologies/example/operators/a"

}
}

Listing 3.8. Updating the bindings of operator b at runtime.

Imagine a linear topology a ! b ! c. Listing 3.8 shows the JSON sent to
update the bindings of operator b, reversing the flow of the topology. The object
contains a from key and a to key whose values are different from the previous
binding of the workers. Note that in this case, we can use the URI of the operators
as yet another alias. It is mandatory to define at least one of the two in order
to update a binding (the one not defined remains unmodified). If the operator
is supposed to become a consumer, then it is sufficient to leave empty the string
in the to key. Likewise, vice versa for operators that should be moved at the
beginning of the topology (empty from). A similar JSON needs to be sent to
the other operators a and c to update their connections as well.

Worker state monitoring

Listing 3.9 shows the result of a GET request on the
/topologies/example/operators/a/workers/0 path. It contains
the id of the worker, information about how to contact it again and a hyperlink to
its operator. Performance information includes how long has it been up, the total
number of messages that have been processed since it was started, as well as its
request/response ratio for the last second. The latter is very important for the
controller in order to detect whether the operator is a bottleneck in the topology.
{

"worker" :
{

"id" : "0",
"href" : "/topologies/example/operators/a/workers/0",
"operator" : "/topologies/example/operators/a",
"uptime" : "3600",
"messages" : 42,
"req-res-ratio" : 1.5

}
}

Listing 3.9. Worker state returned as JSON.

75 3.6 Graphical User Interface

3.6 Graphical User Interface

Based on the RESTful API we built a Web Graphical User Interface (GUI) that
shows in real time the running topology as a directed graph. Peers are shown
as coloured overlays on top of the operators, which in turn contain the workers
they are running. The GUI is able to do so by polling in real time the status of
the topology from the RESTful API.

Figure 3.6. Web-based Graphical User Interface.

Figure 3.6 shows the GUI. The left part displays the information regarding
the topology pulled from the RESTful API and fed to a D34 visualisation. This
visualisation gives the user, through keyboard shortcuts and mouse clicks, the
ability to modify the configuration of the operators (by, for example, adding and
removing workers) and of the topology (by adding and removing operators).
On the right-hand side of the picture we show a textual representation of the
information regarding currently running operators. The GUI offers the same
capabilities of the command-line interface in a graphical form.

4https://d3js.org/

76 3.7 Use Cases

3.7 Use Cases
We now show use case scenarios that define some of the most common interac-
tions with WLS from the developer’s perspective. We show how they are carried
out both with the CLI and with the REST API.

3.7.1 New Peer Joins the Network

When the developer wants to add a peer P to the network of devices connected
in WLS, he/she needs to give P the IP address or the URL of the root peer in the
WLS network as a command line argument. Peer P contacts another peer through
either internal RPC communication or through aPOST request on/peers. The
payload of the request in both cases references the address of P. The root peer
updates its list of known peers. The list not only features the address of known
peers, but also their available sensors, and CPU usage if known. This list is used
by the runtime whenever a topology has to be run, or when a migration by the
control infrastructure is triggered.

3.7.2 Setting up a Topology with a Topology Description File

To setup a topology users have to execute a exec command followed by the
topology description file in the CLI, or to perform a PUT request with a pay-
load that contains the description of the topology which includes the links to
download the scripts to run for each operator. The peer receiving the topology
description fetches the scripts and deploys them on the most suited peers (more
on this in Chapter 4). Peers receive the setup though either RPC or a PUT re-
quests on /topologies/example/operators/:oID with a payload
referencing the script and the connections to be performed. The level of paral-
lelism with which the operators will be started (that is, the number of workers)
is defined by the user on the topology description file.

3.7.3 Using Web Browsers to run Operators

Web browsers can be used to offload (part of) operator executions. Browsers
have to connect to a URL to be part of a WLS topology, either the general URL
/remote to be pooled as idle resources or a specific one to immediately be
part of a specific operator execution. The hosting peer registers the browser as
an available peer resource where computation can be offloaded, and sends the
appropriate scripts to run as a reply to the request. On the one hand, if the Web

77 3.7 Use Cases

browser queried the general URL, a generic page will be shown. Whenever an
operator needs more computing resource, or a new topology needs Web browser
execution, the connected Web browser will receive a script and execute it auto-
matically. On the other hand, if the Web browser connected to a specific URL,
the hosting peer will immediately send the execution script of the interested op-
erator to the browser, which can immediately start the computation. This will
happen even if no more resources are needed to execute that operator, as it’s the
user that directly requested – through the URL – to be able to run that specific
streaming operator on its machine. The connected machine will also be used to
parallelise other operators, if needed.

3.7.4 Perform a new Binding
Performing a new binding at runtime can be done through the CLI executing
a bind command specifying the operator from where the stream should go,
to where it has to arrive. This can be done by the REST API as well by per-
forming a PATCH request on .../operators/:oID/bindings to the
operator with a payload specifying the new connections. The operator auto-
matically updates its connections and redirects the traffic of its workers to the
newly connected operator with the connections received through the request,
thus changing the topology at runtime.

3.7.5 Load Balancing through the REST API
In general, load balancing is performed by the controller, which calculates the
efficiency of the operator by accessing the state of the workers and takes deci-
sions on the amount of workers to be added or removed from the operator. We
introduce the controller in Chapter 5. Load balancing can also be done manually
by the user through the CLI or through the REST API. Users may also create their
own control infrastructure through the REST API.

With the received data, and by performing a GET request on the list of Work-
ers .../operators/slow_operator/workers, a control infrastruc-
ture has the ability to compute the efficiency of the operator and detect if there
are bottlenecks. If that is the case, the control infrastructure may want to paral-
lelise more by performing a POST request on
.../operators/slow_operator/workers, effectively increasing the
number of running workers. If the workload decreases, the infrastructure may
want to perform a DELETE request on the corresponding worker resources to
shut them down and free some space on the peer hosting the operator execution.

78 3.7 Use Cases

If parallelisation on the peer results to be impossible (i.e., busy CPU), it is
possible to exploit another available peer. This can be achieved by running a
new instance of the bottleneck operator on a new peer (through run CLI com-
mand or PUT request on /topologies/:tID/operators/:oID and
then performing the appropriate bindings), or by migrating the operator on a
more powerful peer.

Chapter 4

The Web Liquid Streams Runtime

In Chapter 3 we introduced the WLS framework, showing how users can set up
topologies and modify them at runtime depending on their needs. This Chapter
introduces the WLS runtime infrastructure.

WLS deployment mainly targets Web servers, Web browsers, and microcon-
trollers and single-board PCs. To face the intrinsic differences in these environ-
ments, we developed three different implementations of the WLS runtime. A
Web server implementation, a Web browser implementation, and a minified ver-
sion of the Web server for some microcontrollers. Some single-board PCs and
microcontrollers are able to interpret Node.js, thus we can reuse the Web server
implementation. Nonetheless, some of the microcontrollers are too small to host
the entire WLS framework, for that reason we created a minified version of it,
which only offers a single communication channel and no control infrastructure.

Figure 4.1 overviews the WLS runtime running on the three different imple-
mentations. These WLS implementations cooperate as a single entity, abstracting
the underlying hardware and offering its computational power through the WLS
primitives. The only constraint posed by the runtime is to start a topology on a
server deployment of WLS. In the remainder of this Chapter, whenever we refer
to "server" deployment, we also include the microcontrollers and single-board
PCs able to run Node.js, if not stated differently.

We start by identifying the communication layers, we then introduce the
Web server and Web browser peer infrastructures and the implementation of
the streaming operators. We show how topologies are implemented, and finally
we introduce how we developed stateful operators.

79

80 4.1 The WLS Communication Layers

WLS (Server) WLS (Browser) WLS (Minified)

Node.js Web Browser Tessel (LUA VM)

H
ar

dw
ar

e
So

ftw
ar

e

Figure 4.1. WLS Runtime and the three different deployment implementations.

4.1 The WLS Communication Layers
There are two main communication layers in WLS. One is dedicated to the com-
mand passing and execution (command layer), the other represents the stream-
ing channels that are created and destroyed during topology execution (stream
layer).

4.1.1 Command Layer
Peers in WLS need the ability to form a network of connected, heterogeneous
devices. In every WLS network of connected device, there is one WLS peer that
acts as the root server (introduced in Section 3.2), and one or more client peers
that connect to the root in order to offer their resources to run a streaming topol-
ogy. When a root peer receives a topology as input from the user, it may need to
contact known peers in order to deploy streaming operator execution on them.
Similarly, when a user – or the control infrastructure – needs to modify a run-
ning topology, the root needs the ability to contact other peers in order to issue
commands remotely.

We decided to implement the command layer using remote procedure call
(RPC). RPC not only helps structuring a persistent network of connected peers,
but it also offer bidirectional channels and detects disconnections as soon as
possible. It also comes as the more natural way to implement the command
layer, as we interact with remote processes as if they were running locally. We
implemented RPC with the DNode 1 NPM library, which is an asynchronous RPC
library that includes a Web browser distribution perfectly suited for our needs.
DNode is built using WebSocket as the communication channel.

1https://github.com/substack/dnode

81 4.1 The WLS Communication Layers

Traditional RPC implementation have clients call procedures on the server
and synchronously wait for the result of the execution. In our case we make use
of reverse asynchronous RPC. The root peer executes commands (calls proce-
dures) on the connected clients, which execute a callback when the execution is
terminated. On the one hand, from an implementation point of view it comes
more natural to be able to call functions on connected peers through method calls
that abstract the communication layer – which is one of the purposes of RPC. On
the other hand we make use of callbacks instead of waiting for synchronous re-
sults, following the JavaScript programming model.

Peer Discovery

Before setting up a distributed topology, the system should be able to discover
other peers and store their addresses and general information. In our model,
users can set up peers to either listen to incoming connections (root peers) or to
connect to other peers (client peers).

If a root peer p is running an instance of WLS, a client peer q that wants
to connect to p needs to run the WLS instance passing the address of the first
peer as a command line argument. The WLS infrastructure will take the address
and connect to p. Peer p will store q’s details in a list of known peers, which
is inquired whenever the runtime needs to deploy a new topology or needs to
migrate existing operators.

In case no address is passed when running a WLS instance, qwill start a server
instance and will be listening to incoming connections (becoming an RPC server
instance). Web browser peers can connect by accessing the /remote URL on
the root server running WLS to access the idle page. The idle page holds the
connection with the Web server peer through WebSocket. Web browser peers that
connect to the idle page effectively open a WebSocket channel (through DNode)
with the server and wait for an operator to be deployed on them. Alternatively,
they can directly access paths related to already running operators, starting a
new instance of a given operator with the appropriate bindings automatically
(see Chapter 3).

RPC Command Execution

We use the described DNode infrastructure to send commands to other peers
from the root peer. They map the CLI and RESTful API high level interfaces and
execute the commands that are received from either the user or the system and

82 4.1 The WLS Communication Layers

Server Server

Web Browser

RPC Module
(client)

Operator

RPC Module
(server)

CLI Operator

Operator

REST API
Module

RPC Module
(slave)

Operator

RPC IPC

IPC

RPC

IPC

IPC IPC

IPC

Figure 4.2. RPC and IPC Interactions among distributed and heterogeneous
peers.

execute actions on a topology (e.g., run it, stop it, add a new operator/worker,
remove an operator/worker, etc.).

Figure 4.2 shows RPC and inter-process communications (IPC) interactions
among peers of different nature (we omitted the modules that are not related
to the command execution). The peers p and q both run operators, and are
connected through the RPC module. One acts as the server, while the other acts
as a client. The Figure also shows a Web browser peer which is connected to the
server peer and is running a single operator. Figure 4.3 shows in more details an
example RPC interaction between two servers, one running the RPC module as a
client, while the other running the RPC module as a server. The server RPC sends
commands to the client, which performs the procedure and returns by executing
a callback on the server.

We now show the low-level commands that can be called from the RPC in-
frastructure. We map the CLI/REST API introduced in the previous Chapter to
the more low-level RPC call.

• run_operator(String oid, String script, Int workers_number, Array wids,
String automatic, String alias, Function cb) represents the low-level im-
plementation of the function call run executed in the CLI. While in the
CLI we only pass as mandatory arguments the script that has to be run, in

83 4.1 The WLS Communication Layers

Peer 1 Peer 0

RPC Module
(client)

Operator

RPC Module
(server)

run_worker1

run_worker2callback 3

callback4

Figure 4.3. Closeup of the RPC interaction among two RPC modules, one
acting as a client while the other acting as a server.

the remote procedure call we have to specify the operator id to be created
(generated by the server RPC), the script to be run, the number of workers
to start the operator with, their workerIDs, a string specifying if the oper-
ator has to be checked by the controller, and a callback function executed
whenever the execution ends.

• bind_operator(String from_oid, String to_oid, Array to_peers, Object
aliases, Function cb) is the low-level implementation of the bind CLI
command. This procedure is called on the peer which hosts the sender
operator (from_oid) It takes as input parameters the operator id from
where the connection should start to where it should end, a list of peers
where the to_oid is hosted (may be more than one in case of an operator
running on multiple peers), the aliases of both the operators as an object,
and a callback to be called at the end of the execution.

• run_worker(String oid, String wid, Function cb) is a low-level function
call which runs a new worker in a given operator with a given workerID.
The call is executed on (one of) the peers executing the operator with ID
oid and starts a new worker with id wid. The callback cb is called at
the end of the execution.

• unbind_operator(String from_oid, String to_oid, Function cb) supports
the unbind command. Much like the high-level command, it only takes
the endpoints of the binding that has to be removed. The callback function
is executed when the unbind is complete.

84 4.1 The WLS Communication Layers

• kill_operator(String oid, Function cb) is used to remove a single operator
from the topology. The peer hosting it is contacted, passing the operator
ID, and it will perform the unbind and disposal of the operator.

• kill_worker(String wid, Function cb) is used to remove a single worker. It
is enough to specify the ID of the worker, when contacting the peer hosting
it.

These commands represent the low-level WLS RPC interface. Other com-
mands that can be issued through the CLI, the REST API, or the controller are
a combination of such commands. For example, migrate include a series of re-
mote procedure calls executed by the runtime using these functions (run_operator,
bind_operator, unbind_operator, kill_operator).

4.1.2 Stream Layer

The stream communication layer is a communication channel that has to be per-
sistent, fast, and handle a high number of messages in one direction. To handle
heterogeneity in the system, we implemented different communication channels.

For server-to-server communication we aimed for a broker-less approach,
looking for a lightweight low latency/high throughput message queue. We de-
cided to opt for the NPM library ZeroMQ [Hin10] which offered such charac-
teristics and was available on NPM and thus could be implemented in Node.js
applications.

Browser-to-server and server-to-browser communication can not rely on Ze-
roMQ for the lack of such library on the Web browser. We took into account
AJAX, which works for browser-to-server interaction but it’s difficult to achieve
server-to-browser interaction, besides it lacks of persistency and is generally un-
feasible for a stream channel. We decided then to pick the WebSocket protocol
for this type of channel. While being a primitive and requiring effort to build
infrastructures, WebSocket offers flexibility and persistency (and a full-duplex
channel), avoiding more complex communication infrastructures (i.e., Comet).

Finally, for the browser-to-browser communication, WebRTC DataChannels
(introduced in Chapter 2) are the state-of-the-art solution for browser-to-browser
streaming communication (without relying on a Web server). They are estab-
lished through an ad-hoc component called signalling server (introduced later
in this Chapter) which manages the WebRTC Interactive Connectivity Establish-
ment (ICE) candidates.

85 4.2 Peer Infrastructure

For data streams running on the same machine, we rely on IPC in both cases.
Table 4.1 shows the communication channels for the stream layer for each de-
ployment configuration of the streaming operators.

The different communication infrastructure is hidden from the user, which
only task is to develop operators and describe how they have to be wired to
the WLS infrastructure (by either using the CLI, the REST API, or the topology
description file). It is the WLS runtime task to use the appropriate channels to
physically connect the operators.

4.2 Peer Infrastructure

The peer infrastructure represents the WLS runtime on the hosting machine,
and is in charge of handling operators and workers running on a device. When
a peer initialises, it either instantiates the RPC module as a server and waits for
incoming connections, or it instantiates it as a client and connects to a root peer.
Either way, it executes commands to setup, modify, or stop a streaming topology.

The number of operators that can be hosted depends on the hardware capa-
bilities of the peer. Users may force the deployment of an operator on a given
peer or let the runtime decide where to deploy the operator by relying on the
control infrastructure (described in the next Chapter).

4.2.1 Web Server Peer

RPC Module

The RPC module is the most important part of the peer. It receives commands
from the CLI, the REST module, and the controller to issue commands to run and
modify topologies. The main methods offered by the RPC module are shown in
Section 4.1.1.

Operator 1 Operator 2 Data Channel
Server Server ZeroMQ

Browser Browser WebRTC
Server Browser WebSocket

Browser Server WebSocket
Browser or Server Self IPC

Table 4.1. Data channels for different deployments.

86 4.2 Peer Infrastructure

The RPC module in the root is in charge of dealing with the distributed nature
of the topology in WLS, and deals with the differences in terms of communica-
tion channels when setting up bindings. The global controller makes use of the
RPC module through hooks when decisions about the topology are taken, and
commands have to be sent to client peers.

In client peers, this module receives the commands from the root and exe-
cutes them. It is also used by local controllers in order to deal with bottlenecks
by using hooks to increase (or decrease) the number of workers in the hosted
operators. Callbacks are also set up in the RPC module to be used by the con-
troller when one or more operators need to be parallelised across multiple peers.
By firing these callbacks, the topology controller, through the root peer, receives
the commands and distributes the execution of an operator.

Signalling Server

The peer infrastructure also sets up a signalling server module, used to perform
bindings with WebRTC, and when Web pages connected to the peer need to per-
form bindings. Signalling is not defined by the RTCPeerConnection API, thus the
signalling server has to be implemented by developers that want to make use of
WebRTC. The easiest signalling server that could be created is a passive module
that implements three main functionalities:

• Discovery: The clients connect to the same sever, the server knows who
has connected and possibly who left. Since all the clients connect to a
single point, the server knows all the clients that could potentially create a
new RTCPeerConnection.

• Communication: The server must establish a communication channel with
each client, in fact the server must be able to send data directly to each
client and initiate their peer-to-peer binding.

• Signalling: The signalling depends directly on the communication channel
used. Once the communication channel is chosen, the server must allow
clients to exchange offers and answers.

The signalling server also implements the NAT traversal functionality. The
NAT traversal functionality is implemented thanks to the STUN (Session Traver-
sal Utilities for NAT) or TURN (Traversal Using Relays around NAT) protocols.
The address of a peer is usually hidden by NATs, so an additional server is needed
in order to discover its own public address, and thus create the binding [HHE15].

87 4.2 Peer Infrastructure

STUN servers are cheap structures used to find Web browsers’ public ad-
dresses, while TURN is an extension of STUN that implements a fallback if the
peer-to-peer connection fails, named relay server – servers that simulate the
peer-to-peer topology with a client-server-client one.

Command Line Interface

The Command Line Interface (CLI) module is a small structure that interprets the
commands issued by the user and issues RPC calls through the RPC module. We
decided to implement a module instead of bridging the user commands directly
to the RPC module to improve flexibility and achieve loose coupling. In this way
both parts can evolve independently while maintaining a fixed communication
interface.

REST API Module

The Web server peer also hosts the REST API module that bridges the REST
calls to the RPC module infrastructure. We decided to create an ad-hoc module
instead of implementing it directly in the RPC module for a matter of separation
of concerns. We introduce stateful operators and the Redis module in greater
details in Section 3.5.

Redis Module

The Redis module helps the implementation of stateful operators. It bridges the
communication between the operators and the underlying Redis data structure
store. The Redis module offers an API which operators can use to store and read
data to and from the storage system. We introduce the choice of data storage
and a more in-depth implementation of the module in Section 4.5.

Controller

The controller is an infrastructure that is tightly coupled with the RPC module
and periodically checks on the topology and the operators running in the peer,
we discuss the controller in Chapter 5. The controller issues commands through
the RPC module modifying the elasticity of the operators locally (that is, the
number of workers inside an operator) or globally (by running copies of opera-
tors on more than one peer) to face bottlenecks. The controller also checks on
the integrity of the topology, and issues run and bind commands if one or more
operators fail (i.e., when a peer fails or disconnects abruptly).

88 4.2 Peer Infrastructure

Proxy

The last important structure in the Web server peer infrastructure is the proxy.
The proxy is a module used to handle streaming channels to Web browsers. It is
used by the streaming operators to avoid creating multiple WebSocket connec-
tions towards the same Web browser. Since Web workers inside Web browsers
are not able to instantiate WebSocket channels, we decided to open a single Web-
Socket channel from operators running on server peers to operators running on
Web browser peers. The WebSocket channels are opened at peer level, not at
operator level. Each server peer must have at most one WebSocket channel open
per Web browser peer in the topology; the proxy module helps keeping track of
the open channels and routes messages accordingly.

Architecture

Figure 4.4 shows the logical view of the server peer. The view only shows the
logical connections of the command layer, and not the streaming channels. The
RPC module deals with incoming requests (as RPC client) or executes commands
received by the REST API, the CLI, or the controller (as RPC server). It commu-
nicates directly to the operators spawned in the local peer, and with the proxy
component to setup browser-to-server and server-to-browser bindings. In this
case, since it interacts with the REST API module and the CLI, the portrayed
peer is an instance of a root peer, and the RPC module is a server instance of the
module. The signalling server is in charge of the handshake between two Web
browser peers in the process of establishing a WebRTC channel, while the Redis
module directly interacts with the operator(s), offering state storage.

4.2.2 Minified Web Server Peer

While most of the single-board PCs and some microcontrollers are able to ac-
comodate WLS and its dependencies, a subset of microcontrollers is not able
to run WLS or make use of external libraries needed to run it. For this reason
we decided to implement a minified version of the Web server peer, in order to
make it possible for smaller hardware to work within WLS. This work was part of
a Master Thesis [Bla15] by Virginie Blancs, which studied the implications and
implemented such infrastructure for the Tessel 2 microcontroller.

The minified Web server peer is divided in two main parts: the WLS runtime
and the operator code. Given the capabilities of the hardware where such im-

2https://tessel.io/

89 4.2 Peer Infrastructure

Figure 4.4. Logical view of the command layer of the Web server peer. Stream-
ing channels are not shown.

plementation could run, we decided not to allow parallel execution of operators,
and to fix the number of workers inside an operator to one. The runtime part im-
plements WebSocket channels for both the command layer and the stream layer.
At startup, the minified version connects to a WLS server instance as an idle
microcontroller peer. The server peer, knowing the nature of the device, issues
commands through the WebSocket channel instead of using the standard RPC
infrastructure. The procedures implemented in the minified version of WLS are
the most basic ones to setup and stop a streaming topology: run, bind, unbind,
and stop an operator.

Figure 4.5 shows the structure of the minified Web server peer. The WLS
runtime deals with the creation of the single operator and the single worker by
receiving messages through WebSocket. When a streaming operator is running
and a binding happened, the stream flows through a parallel WebSocket channel
which connects directly to the WLS server peer proxy, which in turn routes the
message to the right destination. By reusing the proxy component, we are able
to hide the complexity of dealing with a different kind of hardware from the
internal runtime of WLS. From the point of view of the Web server peer in fact,

90 4.2 Peer Infrastructure

WLS
Runtime

Minified Web Server Peer

w

Operator

WebSocket

Figure 4.5. Minified Web server peer infrastructure.

the minified Web server peer is considered as a Web browser peer. The runtime
just routes messages coming from ZeroMQ channels to a WebSocket channel
as if it was communicating with a Web browser. From the Web browser peer,
the connection to the minified version happens passing through a server and
WebSocket, thus behaving like a Web server peer.

4.2.3 Web Browser Peer

RPC Module

The RPC module is used by the Web browser peer to connect to the Web server
peer and receive commands from it. The commands are directly issued from the
Web server peer.

HTML5 Actuator Display API

The HTML5 Actuator Display API module is in charge of dealing with the HTML
and the visualisation of outputs (if any) of the operator. Through method calls
such as createHTML, it is able to modify the output on screen and give vi-

91 4.3 Operator Infrastructure

sual feedback to the user. The module also includes the instantiation of graphic
libraries.

HTML5 Sensors APIs

The HTML5 Sensors APIs are used by the operators and offer access to the under-
lying sensors that can be accessed from a Web browser (i.e., battery level, num-
ber of processors, etc.). The module also offers stateful operator functionalities,
which call hooks in the RPC module to store data on Redis on the server peer. The
module can be extended to support future utility infrastructure such as browser-
related and platform-related information (available in the navigator Web
browser object).

Controller

We implemented a control infrastructure in the Web browser peer to deal with
bottlenecks and failures at browser level. While the behaviour of the controller is
similar to the one running on the Web server peer, the implementation is slightly
different. Chapter 5 introduces in greater details the functionalities and the im-
plementation differences of the two controllers.

Architecture

Figure 4.6 shows the architecture of the Web browser peer. The RPC module is
connected to the Web server peer serving the page (RPC channel not shown) and
offers an interface both to the local controller and the HTML5 Actuator Display
API. The operator is connected to the latter, and the HTML5 Sensors APIs to both
use functionalities related to the Web browser and make use of the graphical
user interface, if needed. It is also connected to the signalling server to establish
WebRTC connections with other Web browsers.

4.3 Operator Infrastructure

In the previous Section we analysed the communication infrastructure of the WLS
runtime and the peer infrastructure. Now that the reader is familiar with how
messages are exchanged within the runtime (be it a stream of messages or single
commands to build, control, or stop a topology), we describe the operator inter-
nal infrastructure. Given the differences between the Web server environment

92 4.3 Operator Infrastructure

Figure 4.6. Logical view of a Web browser peer.

and the Web browser environment, we decided to build two different operator
infrastructures.

4.3.1 Web Server Operator Pool

The Web server implementation of the operator pool receives commands through
IPC by the RPC module and executes them on the appropriate operator. The pool
contains objects representing the operators running on the peer. Each object con-
tains all the data related to the operator, such as its operator ID (oID), the script
it has to run, the list of workers currently running, its alias (human-readable
unique identifier), a control flag, and a list of workers with their IDs (wIDs).

While the Web browser operator infrastructure takes care of multiplexing the
messages to the underlying pool of workers (shown in Section 4.3.2), in the
Web server operator the streaming channels are connected directly to the work-
ers and not multiplexed by the operator pool. The operator pool communicates
to the spawned children through child.send(Object message)where
the message is a structured object specifying its scope (command) and the data
needed.

93 4.3 Operator Infrastructure

1 {
2 "command" : {
3 "type" : "string",
4 },
5 "data" : {
6 "type" : "object",
7 "properties" : {
8 "oID" : {"type" : "string"},
9 "wID" : {"type" : "string"},

10 "target_oID" : {"type" : "string"},
11 "target_wID" : {"type" : "string"}
12 }
13 }
14 }

Listing 4.1. Worker message command schema.

Listing 4.1 shows the schema of the message, which is a JavaScript object
wrapping the data to be sent to the worker and including the command field
describing its scope. Not all of the fields are required, as they are strictly depen-
dant to the type of command issued.

Table 4.2 shows the message scopes that are sent to the worker from the RPC
module. The messages that can be sent to the workers cover the setup and the
halting of the worker, as well as the bindings (to another Web server instance, or
to a Web browser), and the data collection call from the controller.

1 {
2 "command" : "unbind",
3 "data" : {
4 "wID" : "from_wID",
5 "target_wID" : "to_wID",
6 }
7 }

Listing 4.2. Example unbind message sent by the Web server operator to a
worker.

Scope Usage
setup Sets up the worker infrastructure (i.e., wID, oID he is part of, etc.).
kill Stops the worker.
bind Binds the worker to another Web server worker.

unbind Unbinds a worker (either from a Web server worker or from the proxy).
bind_remote Binds the worker to a Web browser worker through the proxy infrastructure.
data_collect Message type used by the controller to gather usage data from the worker.

Table 4.2. Messages scopes within the RPC communication.

94 4.3 Operator Infrastructure

Listing 4.2 shows an example unbind command sent to a worker to remove
an outgoing connection. It specifies the binding (through the workers IDs) that
has to be removed.

4.3.2 Web Browser Operator Pool
Given the differences in the two deployment environments, the operator in the
Web browser was implemented with a slightly different architecture. The devel-
opment of such infrastructure has been the focus of Andrea Gallidabino’s Master
Thesis [Gal14].

The Web browser operator has the following purposes:

• Manage workers

• Receive messages from upstream

• Store messages that must be processed later (buffer)

• Send messages downstream

We created the corresponding components inside the operator to deal with
those:

• Receiver

• Sender

• Message queue

• Workers handler

Workers Handler Module

The workers handler manages everything related to workers inside an operator.
This logical structure contains references to all the workers running inside the
operator, and offers an interface used by other components to access its function-
alities.

It contains three main structures:

Workers array
The workers array is an array containing a reference to all the workers
inside the operator. The workers array dynamically changes during the

95 4.3 Operator Infrastructure

lifespan of the operator and is used to pass the worker’s references to out-
side the operator when needed. It implements the add(Object worker)
and delete(String wid) functions.

Free workers stack
The free workers stack is a last-in-first-out data structure containing the
reference of idle workers. Every time a worker is not initialising, or pro-
cessing data (that is, it is idle), it is pushed in this structure. It implements
the push(Object worker), pop() and delete(String wid) functions.

Executing workers pool
The executing workers pool is an associative array containing the reference
to all processing workers indexed by their own IDs. It implements the
add(String wid, Object worker) and delete(String wid) functions.

These three structures are managed by a common interface called workers
proxy. It also keeps track of all information related to them and of the script they
are running inside the topology.

The workers proxy needs to communicate directly with the message queue,
the sender, and the UI. The methods needed by the workers proxy are:

Sender

• send(Object message)

Message Queue

• getMessage()

UI

• getDOM(String id, String command)

• setDOM(String id, String command, String value)

• addHTML(String id, String HTML)

• addScript(String script)

The following list shows the methods offered by the workers proxy to the
other components. These low-level methods help setting up a topology by man-
aging the workers proxy and are used by the RPC module and the controller.

• getScript() Returns the path of the script associated to the operator.

96 4.3 Operator Infrastructure

• hasFreeWorkers(Object message) Returns true or false. If the op-
erator has any free worker it will process the message and return true,
otherwise it returns false.

• getWorkersArray() Returns an array of references of all the workers inside
the operator.

• getWorkersArrayLength() Returns the number of workers inside an oper-
ator.

• getWorkersUsage() Returns an associative array with statistics related to
the workers during a cycle: throughput, messages in, messages out number
of messages executed.

• terminateWorker(String wid) Starts the procedure to terminate a worker.

• newWorkers(Array wids) Workers proxy spawns new workers given an
array of worker IDs. The number of workers started corresponds to the
length of the array of IDs.

• getUpperBound() Returns data related to the current worker number lim-
itation of the operator.

• producerSend(Object message) The producer operator receives a special
message from the UI, which is immediately sent to a worker.

Receiver Module

The receiver uses either PeerJS or WebSocket to establish both browser-to-browser
and server-to-browser communication. It contains an array of opened incoming
connections as well as statistics associated to them, such as latency, throughput,
and the communication channel used.

The receiver communicates directly with the message queue and the Workers
Proxy.

Message queue

• push(Object message)

Workers Proxy

• hasFreeWorkers(Object message)

97 4.3 Operator Infrastructure

Message Queue

The message queue is a first-in-first-out data structure which contains all the
messages that can’t be processed right away by the workers inside the operator.
The following list shows the methods offered by the message queue to the other
components.

• push(Object message) Inserts a message in the queue.

• pop() Returns the first message that was pushed into the queue and deletes
it from the queue.

• getQueueSize() Returns the current size of the queue.

The message queue is a passive structure similar to a database, it just offers
an interface to store and retrieve messages.

Sender

The sender module, similarly to the receiver, interacts with both the signalling
server and Websocket in order to establish browser-to-browser and browser-to-
server communication. It contains an array with all the opened connections and
the statistics associated to them. The sender also implements the same events,
but offers a slightly different interface. The following list shows the methods
offered by the sender to the other components.

• getThroughput() Return the value of the current incoming throughput.

• getLatencies() Returns an array of latencies of all the established connec-
tions.

• unbindWebRTC(String oid) This procedure unbinds the operator from the
downstream when connected through a WebRTC channel. If ID is null the
receiver leaves the current WebRTC room, if ID is specified it only closes
the current WebRTC connection with the corresponding operator.

• unbindServer(String oid) This procedure unbinds the operator from the
downstream when connected through a WebSocket channel. ID must al-
ways be specified and corresponds to the ID of the operator that needs to
unbound.

• send(Object message) This procedure sends a message downstream.

98 4.3 Operator Infrastructure

Figure 4.7. Logical view of the Web browser operator

Figure 4.7 shows the logical view of the Web browser operator. It’s important
to remember that a Web browser peer, much like a Web server peer, may contain
any number of operators. In the pictures presented in this Section, we only show
one for simplicity.

4.3.3 Web Server Worker Pool

A new worker is instantiated by spawning a new Node.js child_process
executing the script submitted by the user. The script imports our library, which
immediately instantiates the scaffolding for the communication on both the lay-
ers. Workers receive commands from the operator pool, and executes them.

The difference with respect to the Web browser workers is that everything
related to the communication happens inside the worker. Web server operators
do not need to deal with queues and messages dispatching. On the one hand,
when communicating with another Web server operator, the Web server work-
ers instantiate ZeroMQ channels and connect directly to the receiving workers.
Queues are handled by the underlying ZeroMQ library, packets are received di-

99 4.3 Operator Infrastructure

Server Peer 0
Operator 0

w

w

Server Peer 1
Operator 1

w

w

PR
O
XY

w

wPRO
XY

Browser Peer 2

Operator 2

Figure 4.8. The worker communication infrastructure for server-to-server and
server-to-browser communication.

rectly by the correct worker. On the other hand, if the connection is towards a
Web browser operator, workers send messages to the proxy module, which in
turn routes them on a WebSocket channel directly to the Web browser operator.
The receiving operator is then in charge to dispatch it to a free worker, as shown
in the previous Section. Receiving messages from a Web browser operator hap-
pens likewise: the message is received by the proxy module, which in turn routes
it to the correct Web server worker. Messages are routed in a round-robin fashion
to the workers in the receiving operator.

4.3.4 Web Browser Worker Pool

Workers in Web browser operators are instances of WebWorkers 3. By definition,
WebWorkers can’t instantiate communication channels (either WebRTC or Web-
Socket), thus their only purpose is to receive packets from the message queue,
execute the script they implement, and pass the result to the sender which for-
wards the result downstream.

Figure 4.8 shows the two different approaches for the server-to-server con-
nection and the server-to-browser connection, which holds for the browser-to-
server connection as well. The workers inside server peer 0 are directly con-
nected to the workers running in server peer 1 through ZeroMQ channels. To
send data downstream towards Web browser workers, the workers in server peer
1 make use of the proxy component which gathers the messages for the Web

3https://www.w3.org/TR/workers/

100 4.4 Topology Creation and Dynamic Evolution

Web Server Peer

RPC Module
(server)

RPC Module
(client)

REST API
Module

Web Server Peer

w

w

Operator 1

w

w

Operator 0

CLI

HTTP POST

List of
Commands

Operator
Pool

Operator
Pool

3

1

1

2

2

3 3

4

Figure 4.9. Step-by-step setup of a topology.

browsers and uses a single channel to send them. Whenever their are received
downstream by the receiver, they are dispatched to WebWorkers to be executed.

4.4 Topology Creation and Dynamic Evolution

In the previous Sections we introduced the communication infrastructure as well
as the basic building blocks to set up a topology. We now show how topologies are
created by illustrating the steps taken by the CLI through the exec command, or
from a POST/PUT request from the REST API. We then show how we perform
changes in the topology at runtime (new bindings, migrations, etc.).

We mentioned that the exec command takes as input a file containing a
topology. The file can be a list of commands to be executed (.k file) or a topology
in a JSON format (.js file). In the first case, the runtime parses the file, splits it,
and executes all the commands serially as some commands cannot be executed
in parallel (i.e., binding two operators while they are being instantiated). In
the second case, the JSON file is parsed, operators are taken from the list of
operators and run with the given properties in an asynchronous way. Once the
operator execution is done, the bindings are applied, again asynchronously, and
the topology is started.

101 4.5 Stateful Operators

Following the same principle, the REST API upon receiving a PUT or a POST
request on /topology/:tid and /topologies respectively, takes the
payload of the request – which is a JSON representing the topology – and per-
forms the appropriate calls to the RPC module to set the topology up. The order
of the requests is the same as the exec execution, where first operators are run
in an asynchronous way, and then the bindings are performed asynchronously as
well. Figure 4.9 shows the step-by-step procedure in setting up a topology. After
a topology has been submitted in the two previously described ways 1 , either
the REST or the CLI modules parse the topology and send commands to the RPC
module 2 , which in turn executes RPC calls and instantiates the operators and
the bindings 3 . Operators and workers are instantiated, and the bindings are
performed 4 .

Topologies can be retrieved through a combination of ls commands (de-
scribed in Chapter 3) which can show a list of operators and a list of bindings.
Alternatively, by performing a GET request on /topologies/:tid specify-
ing the id of the topology, users are able to get the representation of the topology
with ID tid. This can be useful when the user has built – by hand – a topology
and wants to get its JSON representation, to save it in a file for further reuse.

Modifying a topology can be done at runtime by using commands such as
run, bind, unbind, kill to respectively run, bind, unbind, and stop oper-
ators. This may impact the end result of the topology and change its semantics
while the stream is running. If a binding is removed from a running operator
and no more outgoing channels are available, the elements sent by the operator
are not stored by the runtime and lost, thus the user should be careful and first
bind new outgoing channels before removing old ones.

Operators may be patched through the update_script command or a
PATCH request on the/topologies/:tid/operators/:oid/script
to start a different script (or an updated version of it). Likewise the previous op-
erations, this can be executed at runtime. The runtime stops the outgoing and
incoming channels, restarts the operator with a different script by re-instantiating
all the workers and creating new incoming and outgoing channels.

4.5 Stateful Operators

4.5.1 Overview

Stateful operators are streaming operators that need to maintain state through-
out the execution of the topology. For example, they can be used to store home

102 4.5 Stateful Operators

environmental data that can be subsequently retrieved to highlight trends on en-
ergy consumption. The following list illustrates the features we took into account
in the decision making process to pick a suitable data storage system.

• Replication and Persistence Operators can be distributed across several
peers, and they may communicate with the root peer in order to perform
reads and writes on the storage system. Distributing and replicating the
storage system not only improves the performances by offering local reads,
but also replicates the state (and makes it persistent) across a distributed
set of connected peers that can be used on failover.

• Availability The storage system should be able to deal with internal faults
without human intervention. In this way the stateful operators could be
kept up and running even when a fault happens at database level.

• Flexible Data Structure Given the flexibility offered by WLS at topology
and operator level (the possibility to rewire, add, remove, or update opera-
tors) a flexible NoSQL database could be the best solution. The horizontal
scaling of NoSQL DBs also fits the distributed nature of WLS.

4.5.2 Redis

Among the available databases that offered the mentioned features, we decided
to pick and implement Redis 4 in WLS. The decision making process is illustrated
in Davide Nava’s Master Thesis [Nav15].

Redis is a key-value [BCE+12] cache and storage system. It features a data
structure that lets the users save strings, hashes, lists, sets, sorted sets, bitmaps,
and offers the flexibility to store structured data while keeping the application as
transparent as possible.

The features offered by Redis satisfy the requirements we defined for the WLS
implementation.

• Replication: Redis implements a master/slave replication infrastructure.
There must be at least one master instance in the system, which receives
write commands, and there can be an arbitrary number of slaves con-
nected, on which data is eventually replicated. This helps keeping data
consistent since there is only one possible place where data is written,
which then is eventually propagated to all slave instances. In WLS the

4http://redis.io/

103 4.5 Stateful Operators

master can be stored in the root peer, while the slaves run in the client
peers connecting to the system.

• Persistence: when used as a cache, Redis operates in-memory and keeps
all data in RAM, which is still the most expensive part of a server, so it
is limited in quantity. Redis deals with the lack of RAM with an eviction
policy that is able to free space for newer data. Data can also be dumped to
disk in two ways: dumping database to disk with a background operation,
or by writing on a log file all the operations performed. Failures can always
be recovered by reading back the copy stored on disk, or by executing all
the logged operations.

• Flexible Data Structures: Redis offers support for different data types. In
a typical key-value system a key is associated with a simple string. The sup-
port of strings as data structure comes in handy when stringifying complex
JavaScript objects. In Redis it is also possible to link a key to data struc-
tures like lists, sets, sorted sets and hashes. These data structures allow the
system to shape data to fit software requirements.

• Availability: Redis supports replication: all client writes to a master in-
stance are replicated on slaves, staying up to date. Replication improves
availability by performing automatic failovers of masters to slaves replica
through Redis Sentinel. Its work, paired with our controller, makes topolo-
gies more resistant to software faults. Whenever a master results not to
be responsive anymore, a slave is elected as new master and it takes over
receiving requests from clients.

The main features of Redis Sentinel are:

Monitoring: checks for availability on master and slave instances.

Notification: notifies via API an administrator (or another computer
program) that something is not working on a particular instance.

Automatic Failover: promotes a slave instance to master whenever
the latter is not responding or faulty.

Configuration provider: clients connect to a Sentinel to ask where a
master instance is located. Sentinels are particularly useful in case of
failover when other instances need to be notified about a new master.

104 4.5 Stateful Operators

Stateful API Node Redis
(Redis module) Redis

Operator

Figure 4.10. Redis communication abstraction with WLS

4.5.3 Implementation

We implemented Redis clusters in such a way that each Web server peer running
WLS could have its own Redis instance running. This results in having a single
master Redis instance (on the root Web server peer) while the slaves would be
running on the client Web server peers.

Stateful operators are able to store and retrieve data on the Redis instance,
while other Web server peers connected offer their Redis distribution as slaves for
replication. The replication is done under the hood by Redis which is shipped in
the WLS distribution, and is already configured with Sentinel to deal with faults.
In this way operator migration is not affected by Redis: the operator is migrated
and replicated data will be accessible on the new peer.

To make operators and workers able to interoperate with Redis, we designed
a wrapper for the redis Node.js NPM library 5. Calls to the stateful API
described in Section 3.3 pass through the wrapper and are executed against the
Redis instance, as shown in Figure 4.10.

The wrapper abstraction to communicate with Redis takes into consideration
modularity, flexibility, and loose coupling of modules. Figure 4.11 shows the
interactions of the WLS infrastructure running on a single Web server peer with
a connection to a Web browser peer. Each operator makes use of the exposed
API to perform state operations. Encapsulation makes the module transparent to
WLS which only needs to acknowledge the exposed methods and does not need
to be aware of changes in the module.

Stateful Web browser operations, and stateful operations coming from the
minified WLS, are supported through the proxy module, which receives read-
/write calls and forward them to the local Redis instance.

5https://github.com/NodeRedis/node_redis

105 4.6 Summary

Operator 2
Operator 0

Operator 1

RPC Module

Web Server Peer

Web Browser Peer

PR
O

XY

PRO
XY

Local
Controller

Node Redis
(Redis module)Redis

Figure 4.11. Interaction with the Redis module.

4.6 Summary
Web Liquid Streams has two main implementations to deal with the differences
between Web browsers (sandboxed JavaScript event loop) and Web servers (Node.js).
The main difference in the two implementation is the way JavaScript is inter-
preted in the Web browser. The limitations around the Web Worker concept
– which make Web applications safe – had to be worked around in WLS. This
impacted the implementation of the runtime as well as the controller. Another
difference between the two implementation lies in the message handling: we do
not deal with queues server-side, while on the Web browser we implemented a
queue infrastructure.

A third implementation of WLS is a minified version for smaller microcon-
trollers (i.e., Tessel) which are able to interpret JavaScript but have less resources
than a single-board PC. The implementation removes most of the components in-
side the WLS runtime and only keeps the most important ones to deal with the
operator execution.

The next Chapter introduces the controller we implemented for WLS.

106 4.6 Summary

Chapter 5

The Control Infrastructure

The control infrastructure is part of the WLS runtime and is distributed across
the connected peers. Its purpose is to check the peers connected for disconnec-
tions, overloads, and faults. It is composed by two main instances: a global
controller which is in charge of checking the running topology and take actions
upon peer crashes and disconnections, and a local controller which is deployed
on the peers involved in the streaming topology, and is in charge of checking on
locally deployed operators to balance the load and avoid bottlenecks. Local con-
trollers are directly connected to the global controller and query it for operator
migration and operator cloning when needed.

In this Chapter we introduce the controller use cases, tasks, and Web server
and Web browser implementations.

5.1 Controller Use Cases
We first show WLS use cases scenarios that define some of the controller’s tasks
within the WLS runtime. We show how they are carried out from the user, the
controller, and the REST API perspective.

5.1.1 Operator Migration
If a peer has to disconnect, a gentle shutdown message is sent to the root peer
where the topology started. The root peer, with the help of the controller, takes
care of migrating the execution of the leaving peer to another available peer with
roughly the same (or more) computing power. The runtime first creates a new
operator on the receiving machine, it binds it, and then proceeds to unbind the
leaving operator, and finally stop it. The migration process can also be triggered

107

108 5.1 Controller Use Cases

manually by the user through the migrate CLI command, or by the REST API
by creating copies of the operators and binding them (PUT requests on the re-
ceiving peer), and remove the operators from the leaving peer (DELETE request
on the leaving peer).

5.1.2 Peer Failure
When a gente shutdown triggers, the runtime is able to deal with it by migrating
the operators from the leaving peer. This is not the case when a peer abruptly
disconnects (i.e., because of a failure). In this case, the controller is able to
restore part of the lost computation on another available peer by using the last
seen configuration of the failed peer. If no controller is running, it is the user’s
task to restore the lost operators and bindings using the aforementioned CLI
commands or REST method calls.

5.1.3 Root Peer Failure
The root peer holds all the information regarding the topology started by it. If
it fails, part of the control infrastructure as well as the command line interface
become unavailable. The stream continues to run as long as no operators were
deployed on the starting peer, but failures are not treated by the controller any-
more, while bottlenecks are still dealt with on a peer level, but no distribution
can be done anymore if a peer lacks resources. The current implementation of
WLS does not implement recovery in such scenarios.

5.1.4 Lack of Resources for Parallelisation
A running topology may end up requiring more resources than the currently
available ones. This issue impacts on the latency of the packets passing through
the topology, which in the long run starts dropping packets, and eventually may
crash some of the available resources. Users monitoring the topology can add
resources at runtime to deal with the workload. As new resources are added, the
runtime liquidly spreads the stream on the newly added machines, trying to deal
with the bottlenecks.

5.1.5 Lack of Peers for Deployment
When a topology starts, either the user or the runtime have to deploy the stream-
ing operators on the available resources. If one or more operators need specific

109 5.2 The Controller Tasks and Constraints

criteria to be deployed (i.e., Web browsers, sensors, etc.), and those criteria are
not met, the topology is unable to start, throwing an error when running the
commands. The user should connect the appropriate resources to WLS before
starting the topology again.

The same issue may rise when operators only running on specific devices (i.e.,
Web browsers) are left without devices where they can be run when the topology
is already up and running. This disrupts (parts of) the topology.

5.2 The Controller Tasks and Constraints

The control infrastructure deals with operators deployment, disconnections of
peers, load fluctuations, and operator migrations. In this Chapter we target the
joint work of both the controllers to deploy, migrate, and clone operators seam-
lessly across peers in order to face disconnections, but also to improve the overall
performance of the topology in terms of latency and resource consumption by
parallelising the execution when possible.

To do so, the controllers take into account a list of constraints, presented here
in descending order of importance.

• Hardware Dependencies, the availability on the peer device of specific
hardware sensors or actuators must be taken into consideration by the global
controller as first-priority deployment constraint. An operator that makes use of
a gyroscope sensor cannot be migrated from a smartphone built with such sensor
to a Web server.

• Battery, whenever a peer has battery shortage, the controllers should be
able to migrate the operator(s) running on such peer in order not to completely
drain out the battery. At the same time, a migration operation should not be
performed targeting a peer with a low battery level.

• CPU. The current CPU utilisation of the peer must leave room to deploy
another operator. Since JavaScript is a single-threaded language, we use the
number of CPU cores as an upper bound on the level of parallelism that a peer
can deliver.

These constraints are used to select candidate peers (for either the deploy-
ment of a topology, or for a clone operation), which are then ranked according to
additional criteria (introduced in 5.3.4), whose purpose is to ensure that the end-
to-end latency of the stream is reduced, while minimising the overall resource
utilisation.

All the constraints, with the only exception of the dependencies, can be re-
laxed. In fact, the global controller does not allow operators with a deployment

110 5.2 The Controller Tasks and Constraints

constraint to be migrated on peers that do not satisfy the constraint, but it ac-
cepts deploying on peers with, for example, low CPU availability as long as it is
able to run the operator. It can also happen that the number of peers is lower
than the number of operators. In that case one or more peers will host more than
one operator each.

5.2.1 Automatic Deployment

By feeding a topology to the runtime, users of the system can deploy and execute
their topologies on (a subset of) the available peers, which will be autonomously
and transparently managed by WLS. Upon receiving a topology description or
manual configuration commands, the system checks if the request can be satis-
fied with the currently available resources (i.e., sensor-requiring operators, Web-
based operators). First of all, it will try to run the operators that have a fixed
host destination specified by the user. Then, the runtime proceeds to query the
global controller for available peers to run the remainder of the operators. For
each operator, the global controller will check the constraints and assign a peer
to host it, following the above mentioned constraints. Once all the operators are
running, the RPC module takes care of the bindings, as illustrated in Chapter 4.

5.2.2 Load Balancing

While a Topology is running, operators exploit the parallelism of the underlying
host processors in order to achieve better performance and solve bottlenecks.
This is done by the local controller forking more processes and parallelising the
execution of the operator. Each process receives part of the streamed data and ex-
ecutes the operator function. As illustrated in Section 4.3, on Web servers forked
processes are Node.js processes which implement the operator script, while on
Web browsers we make use of HTML5 Web Workers.

If the rate of the incoming data stream decreases, the operator automatically
decreases the number of forked processes by detecting their idleness. This is
implemented through an auto-adjusting timeout inside each worker. The timeout
adjusts itself based on the number of messages received per second, and is fired
whenever the worker has not received any message after a given amount of time.
The implementation of such mechanism is illustrated in 5.3.

111 5.2 The Controller Tasks and Constraints

Operator

Peer 0

Operator

Peer 1

1

2

3

4

5

6

7

Figure 5.1. Step-by-step migration of an operator.

5.2.3 Operator Migration

The operator migration is an autonomous functionality that lets operators move
freely from peer to peer in a transparent way without disrupting the data flow of
the topology. There are two main reasons we implemented operator migration:

• Gentle Peer Disconnection Whenever a peer needs to disconnect, it starts
a gentle disconnection procedure which informs the global controller. The global
controller is then in charge of issuing a migration of the operators from the leav-
ing peer to other available peers, respecting the constraints of the operators to
be migrated.

• Battery Saving In case of operators running on portable or mobile devices,
a migration command may be issued when the battery level drops under a certain
threshold. In order to avoid an abrupt disconnection caused by a battery short-
age, the local controller, which monitors the battery levels, contacts the global
controller to start a migration procedure.

Operator migration can be manually triggered as well; users may be willing
to move operators around by themselves (testing operators on different peers,
moving the GUI from one host to another, etc.), they can issue a migration pro-
cedure directly from the CLI or the RESTful API specifying the operator to be
migrated and the destination peer. If the constraints allow it, the operator is
migrated by the runtime while the topology is running.

Figure 5.1 shows the step-by-step procedure that the runtime takes to mi-
grate an operator. To execute a migration the runtime first creates a copy of the
operator to be migrated on the target peer 1 and binds the associated input

112 5.2 The Controller Tasks and Constraints

and output channels 2 3 . Then it unbinds the first incoming channel of the
operator to be migrated 4 , it waits until every worker finished executing 5 ,
and then it unbinds the outgoing channel 6 . In this way the runtime first stops
the incoming flow, and then waits until all the messages are sent downstream.
Finally, the runtime removes the operator 7 . If the operator was stateful, the
state is shared by Redis replication, thus already available on the target peer.

Operator Cloning

The process forking described in section 5.2.2 is executed up to the point in which
the operator is not a bottleneck anymore (i.e., the incoming data stream does not
accumulate in the incoming queue), or the peer hosting the operator has no more
CPU available to host more forked processes. In that case, the local controller
informs the global controller which in turn looks for a suited peer to host part
of the operator’s computation (based on the constraints of the operator and the
ranking algorithm 5.3). Once found, the copy of the operator is started on the
found peer, and connected accordingly to the topology.

The process works in the following way. Once a suitable peer is found, a copy
of the operator is run, then first the outgoing bindings (if any) are performed,
and then the incoming bindings are performed. This way, when the data starts
flowing, we have the outgoing bindings ready to forward data downstream.

5.2.4 Disconnection Handling

During the execution of a topology, a peer may abruptly disconnect from the WLS
network. This could happen as a result of a network error, or as a peer crash.
Application errors resulting from wrong operators implementation are not dealt
by the runtime and should be resolved by the users of the system. Whenever
a peer abruptly disconnects (i.e., a Web browser crashes), the controller notices
the channel closing through error handling and starts executing a recovery proce-
dure in order to restore the topology by restarting the lost operators on available
peers. The recovery is similar to the migration decision algorithm: the controller
restarts the lost operators on peers satisfying the deployment constraints and
with the highest ranking. It may be possible that the channel closing was caused
by temporary network failures. In this case, if the peer assumed lost comes back
up, the connections will be restored by the communication channel primitive
(ZMQ and WebRTC automatically handle reconnections, while for WebSockets
we implemented a reconnection timeout on the peer).

113 5.3 Implementation

5.3 Implementation

In this Section we describe the implementation of the global controller and the
local controller. The local controller features two different implementations, one
for Web servers and one for Web browsers.

5.3.1 Global Controller Implementation

The main concerns of the global controller are to monitor connected peers and
to take decision on where to run operators. It is global to the topology and thus,
to all the WLS peers. The global controller is composed by routines that analyse
the current state of the peers connected and, upon request, decide where to run
a given operator. This turns out to be useful when submitting a topology to WLS,
but also when local controllers ask for help to the global controller (operator
cloning), in order to distribute the work on available peers. The metrics used to
take the deployment decision are introduced in Section 5.3.4.

From the point of view of the global controller, the operator cloning procedure
works exactly like running a new operator on a given peer. The global controller
finds an appropriate peer candidate, and through the RPC command layer it
starts a copy of the overloaded operator, binding it accordingly.

The monitoring of the peers is done through heartbeats sent by the local
controller of each peer to the global controller. In this way, the global controller
has a snapshot of the peers (with all the operators and workers running on them)
that can be used in case of faults. At the same time, the global controller can
keep into account the latest configuration of the peers in order to decide where
to parallelise the execution of operators or run another topology.

5.3.2 Web Server Local Controller Implementation

The role of the local controller is to check on the peer and the different operators
running on it, and to help parallelising the work on the peer if needed. The
parallelisation is based on the metrics collected on the workers running in the
peer, as well as the data of its CPU, accessible thanks to the os module available
on Node.js, and the overcpu module1. The worker metrics, specifically the
request rate and the response rate, help the controller decide if the topology is
experiencing a bottleneck on that operator.

1Developed by Achille Peternier at USI

114 5.3 Implementation

Operator

w

w

Requests/s Responses/s

Δ

?

Add Workers

Figure 5.2. Visual representation of the Web server local controller cycle.

Figure 5.2 shows a visual representation of the Web server local controller
algorithm over a streaming operator. Request and response rates are used to de-
termine if the controller needs to add more workers to the operator. Algorithm 1
shows the pseudocode implementation of the controller.

Data: Operator o
Result: Workers to be added
requestRateMean computeRequestRateMean(Operator o) ;
responseRateMean computeResponseRateMean(Operator o) ;
del ta requestRateMean - responseRateMean ;
if del ta > 0 then

requiredWorkers delta / o.numberOfWorkers ;
else

requiredWorkers = 0;
end
return requiredWorkers

ALGORITHM 1: Server-side local controller algorithm to add new workers to an operator.

The algorithm takes the metrics of each worker in a given operator. It first
computes the request rate mean for the whole operator, and then the response
rate mean. Then in computes a delta by subtracting the response rate to the re-

115 5.3 Implementation

Peer

LOCAL
CONTROLLER

Operator 0 Operator 1

w w

w

w

w

1

2

3

4

4

5

Figure 5.3. Local Web server controller behaviour.

quest rate. This tells the controller how the operator is performing. If the request
rate is higher than the response rate (� > 0), then the operator is experiencing
a bottleneck: more stream elements are incoming than the ones that are out-
going, additional workers may be required to solve the issue. To decide how
many workers have to be added, the algorithm divides the delta by the number
of workers currently running in the operator. The higher the number of currently
deployed workers, the smaller the impact of delta over the resulting workers to
be added. If delta is big and there are very few workers running in the operator,
a higher number of workers will be added. If the two rates are equal (� = 0),
the operator doesn’t need additional workers. In some cases the response rate
may end up being higher than the request rate (� < 0). This could be a tempo-
rary result due to the addition of workers to solve a bottleneck. In this case the
controller treats the result as � = 0 and does not interact with the operator.

The local controller checks on the running operators through polling: the
controller polls the operators every 500 milliseconds for metrics related to their
execution, if an operator takes too long to reply a controller query message, the
local controller assumes it is too busy dealing with incoming messages As a result,
the local controller tries to add more workers, one per unresponsive cycle. If the
CPU of the peer indicates that no more workers are able to run on the machine,
the local controller will contact the global controller using the same RPC channel
used to send messages from peer to peer, asking for a peer where to parallelise the
execution (operator cloning). Otherwise, one worker is added to the operator.

116 5.3 Implementation

Figure 5.3 shows the cycle of the Web server local controller. The local con-
troller asks for local values to the operators through polling 1 . If the reply by
the operator shows a bottleneck situation 2 , or if no reply is received, the local
controller issues a command to add a single worker on the operators 3 which
in turn add the worker 4 . The polling cycle continues during the whole lifes-
pan of the peer, as long as there are operators running on it. If the CPU usage is
capped, the local controller contacts the global controller to clone the bottleneck
operator(s) 5 .

Workers Self Shutdown

Workers implement a timeout (from now on, the idle timeout) based on the
average interval between messages received, and a counter. Each time a worker
receives a message, its counter resets to zero. When the idle timeout fires, the
counter is increased, the average interval between messages is re-computed, and
the timeout is set again. If the counter reaches a given threshold and the idle
timeout fires, the worker initiates a process to self shutdown. For the experiments
we present in Chapter 7, we set a timeout counter threshold of five. The value of
the threshold can be modified in the code to suit different families of applications.

5.3.3 Web Browser Local Controller Implementation

The Web browser local controller executes the work of the Web server local con-
troller with all the limitations given by the Web browser environment. Web
browser peers are fundamentally different from Web servers peers and need a
different approach to deal with load balancing and fault tolerance for the fol-
lowing reasons.

• The Web browser hides most of the hardware information from the JavaScript
virtual machine. The OS cannot be inquired directly, nor use the Node.js
modules we used server-side to inspect the machine’s CPU.

• The Web browser is just an application running on a fast mutating envi-
ronment, where the user opens and closes applications, or leaves them idle
indefinitely. Thus, it is difficult to predict the resource availability of the
device. Besides, the sandboxed processes of JavaScript have no different
priority than other running applications.

117 5.3 Implementation

• By their nature, Web browsers live shorter in comparison with Web servers.
Ideally, the controller should be able to adapt the streaming computation
as fast as possible to exploit the machine before it leaves.

To cope with the differences and the lack of more in-depth information re-
garding the hosting Web browser, we decided to implement a flow control mech-
anism that we called slow mode. The slow mode triggers when the queue of an
operator becomes too long, and tries to avoid overfilling queues of overloaded
operator. It is triggered by a two-threshold rule:

Q(t) > Tqh! SlowModeON
< Tql ! SlowModeOF F

The idea behind the slow mode is to slow down the input rate of a given
(overloaded) operator to help it dispatch the messages in its queue Q, while
increasing the input rate on other instances of said operator. Once the queue is
consumed below a given threshold Tql, the controller removes the slow mode,
re-enabling the normal stream flow. In [BGP15b] we tuned many aspects of the
controller, including the slow mode, for three different families of experiments.
Results suggested that Tqh = 20 messages in the queue were enough to trigger
the slow mode, which was released the moment the queue reached Tql = 10 or
less elements. We show said results and more in-depth evaluation in Chapter 7.

To compute the CPU usage we rely on thenavigator.hardwareConcurrency
API, which is not as precise as inquiring the underlying machine.

P(t)> TC PU ⇤hardwareConcurrency
When the number of WebWorker threads P on the machine reaches the amount
of concurrent CPUs TC PU available on the machine (100% CPU capacity), the
operator cloning procedure is started.

Like the Web server local controller, the Web browser local controller cycles
through the operators hosted on the device and collects data through polling,
every 500 milliseconds. The data is gathered by the operators by querying their
workers, and is passed to the controller upon being queried. The execution data
contains throughput information, input queue sizes, and how many messages
were executed in that cycle. This helps the controller determining if any of the
operators running on the Web browser is a bottleneck in the same way as the
Web server local controller, but keeping into account the queue size as well.

The local controller checks the number of times each worker has been called
and remove the worker that worked less in that cycle. A more in-depth descrip-
tion and analysis of the Web browser controller can be found in Andrea Gall-
idabino’s Master Thesis [Gal14]. We also studied the tuning of the controller

118 5.3 Implementation

cycle, the slow mode threshold and the CPU threshold for the Web browser local
controller. We presented the work in [Bab17] and show the results in Chapter 7.

5.3.4 Ranking Function

The ranking function is used by the global controller to take decision on where
to run operators. The following metrics are taken into account by the controller
for selecting the most suitable peer for each operator:

• Energy consumption for example when the computation of an operator
is too taxing on a battery-dependent peer. In this case a migration may occur,
moving the heavy computation from a mobile device to a desktop or Web server
machine. Thus, the priority is given to fully charged mobile peers or to hard
wired peers without battery dependency.

• Parallelism can be achieved by cloning a bottleneck operator. For example,
a migration or a cloning operation may be expected if the computation is very
CPU-intensive and the peer hosting the operator not only has its CPU full but it is
also the topology bottleneck. Thus, higher priority is given to peers with larger
CPUs and higher CPU availability.

• Deployment Cost Minimisation by prioritising Web browsers instead of
making use of Web servers, WLS tries to avoid incurring in additional variable
costs given by the utilisation of pay-per-use Cloud resources.

The presented metrics can be accessed on a Web server through the Node.js
APIs, while on the Web browser we can again use the HTML5 APIs to gather
the battery levels besides a rough estimate of the maximum available processing
power.

The ranking function is evaluated by the controller at topology initialization
to find the best deployment configuration of the operators, and while the topol-
ogy is running to improve its performance and deal with variations in the set
of known/available peers. For each peer, the function uses the previously de-
scribed constraints and metrics to compute a value that describes how much a
peer is suited to host an operator. The function is defined as follows:

r(p) =
nX

i=1

↵iM i(p) (5.1)

Where n is the number of metrics, ↵i is the weight representing the impor-
tance of the i� th metric. We set these values to 1, but can be modified based on
user requirements. Mi is the function that returns the current value of the i� th
metric in p. It linearly maps the score of the peer in terms of CPU availability and

119 5.3 Implementation

remaining battery levels from -100 to 100. Devices plugged to a power source
(no battery consumption) have a fixed score of 100. The result gives an estimate
of the utility of the peer p to run one or more Operators on it. In case the utility
turns out to be negative, the semantics implies that the peer p should no longer
be used to run any operator.

Whenever a Topology has to start, the controller polls the known Peers and
executes the procedure shown in Algorithm 2.

Data: Known Peers, Topology
Result: Peers Ranking
P Known Peers ;
foreach Operator o in Topology do

foreach Peer p in P do
if !compatible(o, p) then

P P \ p ;
end

end
end
if P = ; then

return cannot deploy Topology
else

foreach Peer p in P do
Poll p for its current metrics M i(p);
Compute r(p) according to Eq. (5.1);

end
return Sorted list of available Peers P according to their assigned metrics r(p)

end
ALGORITHM 2: Peer Ranking for Topology Initialization

The controller first determines which of the known peers are compatible with
the operators of the topology. Then it polls each peer for its metrics. Once re-
ceived, the ranking is computed and stored for further use. The peers are then
ordered from the most suited to the least suited, then for each operator to be de-
ployed the controller iterates the list top to bottom deciding which peer will host
it. This deploys the whole topology and starts the data stream. As the topology
is up and running, the ranking is performed periodically. This is used by the con-
troller to check the status of the execution and adapt the topology to a) changes
in workload (reflected by changes in the CPU utilisation of the peers), b) changes
in the available peers (and thus deal with disconnections), as well as c) changes

120 5.3 Implementation

to the topology structure itself (e.g., when new operators are added to it). The
status check is shown in Algorithm 3.

The controller checks each peer hosting at least one operator in the topology.
If the value of the ranking is negative, the controller will try to find a better peer
to host its operator(s). First it will filter out the peers based on the constraints
of the operators, then based on the outcome of the ranking function it will run
the operator on other better ranked peers. If no peer is found that is suited for
the migration, the migration does not take place. The controller will migrate
the operator as soon as a peer with the needed constraints connects to the WLS
network.

Data: Known Peers
Result: Migrated Operators
foreach Known Peer p hosting at least one Operator do

if r(p)< 0 then
Get Operators running on p foreach Operator o running on p do

P Find Peers satisfying constraints of Operatori to host o;
p0 Best Peer in P to run Operator o based on the ranking r(P) ;
if (p0) then

Migrate Operator o to Peer p0 ;
else

return;
end

end
end

end
ALGORITHM 3: Migration Decision

Part III

Evaluation

121

Chapter 6

Application Case Studies

The design and improvements of WLS have been user and developer-driven. This
Chapter introduces some of the applications that have been developed using the
WLS framework, showing how the proposed features in the framework have been
useful for the developers. The application use cases and the developer’s com-
ments and feedback helped us improving the overall interaction between the
programmers and the framework.

6.1 Study Week in Informatics

In collaboration with Schweizer Jugend Forsch, every year the University of
Lugano organises a study week in informatics for middle and high-school stu-
dents from all over Switzerland. In 2014 we proposed one project related to
Web Liquid Streams for such event. During the first day, the students would
learn the basics of programming with JavaScript. For the remainder of the week
they would code a simple WLS application that monitors a small plant. It was
the first time we let non-developers use WLS.

Figure 6.1 shows the topology implemented by the students. The monitoring
was done through a webcam (on a Web browser running the webcamProd.js
operator) and a THP (temperature, humidity, and pressure) sensor wired to a
Raspberry Pi running the data_producer.js operator. The data is for-
warded and joined in filter.js which is placed on a Web server to format
the data and store it in a database, and then forwarded downstream to a Web
browser that showed the data about the plant’s environment as well as the web-
cam feed.

123

124
6.2 Inforte Seminar on Software Technologies and Development for

Multi-Device Environments

data_producer.js filter.js

webcamProd.js

consumer.js

Figure 6.1. Topology implemented in the study week in informatics.

The code related to the Web browser plotting of the data and the webcam
feed retrieval was given as part of the skeleton to the students. The students
coded by themselves all the operators and the topology.

6.1.1 Lessons learned
The students were very proactive and tried to understand bugs by themselves.
Some of the bugs were difficult to spot because the WLS runtime didn’t give
proper info about what was happening. People with a background in IT or some
experience with JavaScript could easily spot the issues by reading the error mes-
sages, but for middle and high-school students with no experience in program-
ming it was a difficult task. After this experience, we decided to improve the
error logs in order to help developers understand by themselves some of the
most common issues regarding operator development.

6.2 Inforte Seminar on Software Technologies and De-
velopment for Multi-Device Environments

In Summer 2015 we held a workshop on WLS as part of the Inforte seminar on
software technologies and development for multi-device environments summer
school1 in Tampere, Finland. The workshop had an 8-tasks assignment in which
participants would get started with WLS and its functionalities (how to set up a
topology, how to run it, how to run it in a Web browser, how to migrate operators,

1http://inforte.jyu.fi/events/multi-device_environments

125
6.2 Inforte Seminar on Software Technologies and Development for

Multi-Device Environments

temp_producer.js filter.js

consumer.js

tempDecision.js actuator.js

Figure 6.2. Topology implemented in the workshop.

how to gather data from Raspberry Pi sensors), and by the end of the workshop
they would produce a fully functioning data stream topology.

Figure 6.2 shows the final topology implemented during the workshop. The
producer temp_producer.js runs on a Raspberry Pi with a DS18X20 tem-
perature sensor wired to it. The raw data is forwarded to a filter which pol-
ishes it and sends it further downstream to the tempDecision.js and the
consumer.js operators. The consumer.js Web browser operator shows
the temperature on screen by the means of the D3 plot tool to which the pol-
ished data is fed. The tempDecision.js runs on a server and decides if
an actuator has to be started. If the temperature gets above thirty degrees, the
tempDecision.js operator forwards a message to the actuator.js op-
erator which starts a fan. If the temperature is below thirty degrees, the fan is
turned off. During the summer school we did not have access to many servo
motors to simulate a fan, so the actuator.js operator was implemented on
a Web browser operator which showed a fan animated gif if the fan had to start
running.

We had around fifteen participants, some of which worked in pairs. The
total number of Raspberry Pis available was ten, each group could work with
one. Participants had access to a single server on which they started the WLS
framework to run the server side of their streaming topologies. Web browser
operators were run on their own laptops.

126 6.3 WLS as a Mashup Tool

6.2.1 Lessons learned

We started by giving a small introduction on the WLS framework, gave access
to one of our servers to the participants, and explained how to start WLS. The
list of commands displayed with help gave them an idea on how to run WLS
from the command line interface. Since we did not have much time, WLS was
already installed on our server. About half of the participants didn’t know how
to program in JavaScript, so it took some time for some of them to complete sim-
ple programming tasks. Some of the participants had hard time understanding
the commands in the command line interface offered by WLS. In fact, we used
nontrivial keywords which were not user-friendly for people using WLS for the
first time.

After the workshop we decided to improve the command line interface by
implementing more self-explaining commands in the command line interface.
We also took the chance to improve the commands descriptions when typing the
help command.

6.3 WLS as a Mashup Tool

A mashup is a Web application that makes use of data, presentation, or func-
tionality from two or more Web sites to create a new service. The concept of
mashup and the subsequent interest in the mashup tools started to appear as
more and more Web services and Web Data sources were released [ZRN08].
While mashups can be built using traditional Web development tools, languages,
and frameworks, specialised mashup composition tools have appeared focusing
on raising the level of abstraction and thus enabling non-programmers to com-
pose mashups [LLX+11]. In this Section we show an example of how streaming
APIs can be integrated using our stream processing framework. We do so by
showing our submission [GBP16] to the Rapid Mashup Challenge 2015 [DP16]
held at ICWE 2015. Our work ranked third (out of eight) in the competition.

Within Web Liquid Streams, mashup components can be seen as stream op-
erators, while the mashup can be defined by building a streaming topology. The
following list shows the features that WLS offers to mashup developers.

Reusable mashup components Mashup components written as JavaScript op-
erators can be reused in more than one topology. Component development
is completely open for developers that can reuse JavaScript libraries and
remotely access any Web service API.

127 6.3 WLS as a Mashup Tool

Live mashup development Thanks to the flexibility of the topology at runtime,
mashup developers can change their mashup while it runs. Developers
can run, stop, or bind mashup components, furthermore they can decide to
migrate them on any peer connected to the application.

JSON mashup definition language Mashups can be defined by using our in-
ternal DSL based on the JSON syntax. Once the mashup is launched, the
structure of mashups created can be edited and deployed to reconstruct a
different mashup.

Web of Things mashups WLS enables integration with smart devices and sen-
sors which can create streams of data. WLS can run mashup components
directly on those devices so that they can directly access hardware sensors
and actuators.

Distributed user interface mashups Multiple operators to visualise the data stream
can be instantiated and deployed on different client devices so that the
same mashup results can be shared among multiple users.

In the challenge demo we presented a topology deployed both on Web server
and Web browsers. We used three different APIs: Google Maps2, GeoNames3,
and the Twitter REST4 and streaming5 APIs. During the presentation we showed
how operators and bindings behave in a topology and how the latter can change
dynamically at runtime by adding, removing, or migrating operators. Figure 6.3
shows the topology that has been implemented during the mashup challenge. At
the end of the demo we also involved the audience by deploying the mashup UI
components on their Web browsers to see for themselves the results of the stream
processing.

The topology has three producers: clickMarker.js, hoverMarker.js,
and tweetRetriever.js. The first two are placed on a Google Map Web
page and react to user-produced events: hoverMarker.js reacts to the user
hovering the mouse on top of a marker on the map and draws the retrieved
Tweet on top of the marker. clickMarker.js receives the click event on
top of a marker, and forwards the event to the retweetGatherer.js op-
erator which, using the Twitter APIs, gathers the retweets of the clicked tweet
on the map. The tweets are passed to the tweetGeolocator.js operator

2https://developers.google.com/maps/
3http://www.geonames.org/
4https://dev.twitter.com/rest/public
5https://dev.twitter.com/streaming/overview

https://developers.google.com/maps/
http://www.geonames.org/
https://dev.twitter.com/rest/public
https://dev.twitter.com/streaming/overview

128 6.3 WLS as a Mashup Tool

clickMarker.js retweet
Gatherer.js

tweet
Geolocate.js

hoverMarker.js

markerCreator.js

tweet
Retriever.js

Figure 6.3. The mashup topology.

Tweet
Retriever

Tweet
Geolocate

Stream

Marker
Creator

REST

Marker
Clicker

Retweet
Gatherer

Marker
Viewer

on
mouseclick

on
mouseover

Server-side
C
lient-side

Figure 6.4. Physical deployment of the operators and data flow in the mashup
topology [GBP16].

which, through the GeoNames API, gets the location of the retweets, and for-
wards the result to the consumer. markerCreator receives the retweets and
places them on the map. The third producer is tweetRetriever.js which
is constantly connected to the Twitter API and forwards the received tweets to
the tweetGeolocate.js operator to eventually display new tweets on the
map.

Figure 6.4 shows the physical deployment of the operators as well as the data
flow of the topology in our mashup example.

Figure 6.5 shows a screenshot of the mashup running on a Web browser. By
clicking on a tweet (big marker), the retweets (small markers) are placed on the
interactive map.

129 6.4 Software Atelier 3: The Web – Home Automation System Project

Figure 6.5. Screenshot of the mashup running on a Web browser [GBP16].

6.3.1 Lessons learned
During the execution of the demo, Andrea Gallidabino migrated one of the Web
browser operators from his machine to another (random) machine by using the
numerical ID assigned by WLS. After the migration we had to ask to the partic-
ipants who received the operator, and sometimes it took a while for somebody
to raise their hand, wasting demo time. By using a logical naming scheme – for
example, the name of the machines – instead of physical addressing, we could
migrate more easily operators from one machine to another being sure of the
migration destination.

6.4 Software Atelier 3: The Web – Home Automation
System Project

During the Web Atelier course for second year students in the Fall semester 2015
students learn client/server programming, emerging Web technologies, and Web
design. Web Atelier covers Web technologies such as REST, HTTP, CSS3, HTML5,
and Web Components, and teaches how to program in JavaScript on the client
side and on the server side with the Node.js framework. During the second part
of the semester, students focus on a project that can be proposed by themselves,

130 6.4 Software Atelier 3: The Web – Home Automation System Project

data_gatherer.js data_cleaner.js gui.js

Figure 6.6. Topology implemented during the Software Atelier 3 project

or by the teaching assistants. Given the skills learned during the first part of the
semester, during the Fall semester 2015 we proposed a small home automation
system project built with WLS. We provided all the help and support related to
the implementation of sensors, while the students had to work on their own on
the topology and the operators implementation.

The students that picked our project decided to build an open space live mon-
itor. The open space in the Faculty of Informatics of the University of Lugano is
a space where students can work together and cooperate for projects and study
for exams. The open space worked very well during the first years of the faculty,
but quickly became overcrowded as classes got bigger and students from other
faculties decided to use it to work on assignments. Nowadays the open space is a
crowded and noisy place where it has become difficult to concentrate. Students
use it to work on assignments and projects, but it’s not as silent as it used to be.
To show the degradation of the open space, the WLS project team decided to
monitor the noise levels of the open space through this live monitor. They also
decided to keep track of the light level, in order to see how frequently the open
space was used during the night.

Figure 6.6 shows the topology implemented by the students. The noise and
light levels are gathered by sensors wired to three different Tessels and a Rasp-
berry Pi deployed across the open space. The data is sent to a server where it
is stored and polished, and then forwarded to a Web browser operator which
shows the noise and light levels.

While the topology and the operators could be built by coding, students had
to build by hand a small module with a light sensor, a microphone, and a resistor.
Figure 6.7 shows the module they have built. The module was then wired to the
Tessel and deployed across the open space.

Figure 6.8 shows a screenshot of the running application. The four graphs
show the four different deployment of the Tessels and Raspberry Pi across the
open space. The students decided to normalise the values of light and noise in

131 6.4 Software Atelier 3: The Web – Home Automation System Project

Figure 6.7. Tessels and microphone modules built by the students.

a range between 0 an 100. They also decided to test two different visualisations
of the data: one with smooth transitions and one with a bar chart.

6.4.1 Lessons learned

We worked closely with the students, helping them whenever they had issues.
The main problems the students had were the following.

• Dealing with dependencies

Installing the framework, the dependencies, and the OverCPU module with
node-gyp can be an issue. The students did not have a lot of experience with
the terminal and installing tools from command line, so it took them some time
to get the whole system up and running. Two members of the team also installed
the wrong ZeroMQ distribution, causing bugs during the execution of the frame-
work. Once again, by having an installer that takes care of installing the right
dependencies for the underlying OS could solve this issue and save time.

• Developing operators

• Understanding stream processing applications

132 6.4 Software Atelier 3: The Web – Home Automation System Project

Figure 6.8. Screenshot of the application running on a Web browser.

The development of operators was difficult for some members of the team be-
cause they did not understand the model in which data was sent and received by
operators. This was also related with the difficulty in understanding how stream
processing applications work. In this case code examples were very useful, as
they could build a topology using example code and see how it worked. For this
reason, we decided to keep some code examples in the WLS distribution avail-
able on Git that can be used by developers to learn how WLS works. Students
were also having difficulties with understanding how some method worked, so
we prepared a well-written documentation of most of the method they needed
to use, which is now available on the Git page as well.

• Dealing with the controller

While the controller helped the students during their deployments, at the
very beginning it was difficult for them to understand bugs. Bugs in the operator
implementation could cause operators to be overloaded, and having a controller
automatically trying to deal with the issue wasn’t helpful as it wasn’t clear for the
students what was going on at first, and subsequently if the streaming operator
they implemented was working properly or not. For this reason we decided to
remove the automatic initialisation of the controller for their test phase. They
would then turn it on manually when the deployment started.

133 6.5 Experimentelle Evaluation des Web Liquid Streams-Framework

getGeoData.js drawMarkers.js

Figure 6.9. Topology for the Karlsruhe example .

6.5 Experimentelle Evaluation des Web Liquid Streams-
Framework

During the Spring semester 2016 Web Liquid Streams has been the target of
a short-term (6ETCS) software development project. The project focused on
concrete collaborative browser-to-browser Web applications and was organised
by Professor Christian Zirpins at the University of Applied Sciences in Karlsruhe,
in Germany6. The project was developed by Tobias Fuss, a Master student, and
resulted in a 40-pages report [Fus16] (in German).

In the report, the author describes the interest in exploring novel Web tech-
nologies to directly connect Web browsers without passing through a Web server,
and the development of such applications. The interest in WLS stems from the ap-
plication of novel Web technologies that let developers connect in a peer-to-peer
fashion Web browsers through a data stream. The report describes the technolo-
gies used under the hood in WLS, and the problems encountered by the devel-
oper during the installation and development phase. Then, a use case scenario
making use of geo-localisation and Google Maps is presented.

The presented application takes the geolocation of mobile Web browsers con-
nected to a topology and, through WLS, displays them on a map. The author
explains that the idea of such application originated from the poor road situ-
ation in the Karlsruhe area, where many road construction sites exist and are
constantly changing. By having an overview of the current road situation in real
time, drivers may adjust their own route leading to potentially large time savings.

The topology is a very simple linear two-stage pipeline shown in Figure 6.9.
The producer sends the data gathered from by thenavigator.geolocation
Web browser API, and the consumer displays it on the map. Depending on the
speed of the device, the Google Maps marker is given a different colour.

1 var k = require("./../k_globals/koala.js");

6https://www.hs-karlsruhe.de/en/

134 6.5 Experimentelle Evaluation des Web Liquid Streams-Framework

2
3 // Creates the script to access the geolocation
4 k.createScript("locationScript", "js/location-script.js");
5
6 var latitude , longitude , accuracy , speed;
7
8 setInterval(function() {
9 k.callFunction("getLocation", [], function(position) {

10 latitude = position.latitude;
11 longitude = position.longitude;
12 accuracy = position.accuracy;
13 speed = position.speed;
14
15 k.send({
16 "latitude": "longitude": "accuracy":
17 latitude , longitude ,
18 accuracy ,
19 "speed": speed
20 });
21 }, true);
22 }, 5000);
23 console.log("Producer started , sending locations!");

Listing 6.1. Real time road analysis producer.

Listing 6.1 shows the getGeoData.js producer code implemented to
gather data from connected mobile Web browsers. The operator first adds the
location-script.js on the Web page, then every 5 seconds sends the
geolocation data associated with the peer: latitude, longitude, accuracy, and
speed. The geolocation data is gathered directly from the Web page through the
callFunction call, which calls the geoLocation function on the Web
page.

1 /**
2 * Calls the HTML5-API method "getCurrentPosition" to access

the users location.
3 * @param cb: Callback function
4 */
5 var getLocation = function(cb) {
6 navigator.geolocation.getCurrentPosition(function(position)

{
7 cb ({ "latitude": "longitude": "accuracy":
8 position.coords.latitude , position.coords.longitude ,
9 position.coords.accuracy ,

10 "speed": position.coords.speed });
11 });

135 6.5 Experimentelle Evaluation des Web Liquid Streams-Framework

12 };

Listing 6.2. The geoLocation function implemented on the Web browser
in the location-script.js file..

Listing 6.2 shows the function getLocation implemented on the Web
page and called through callFunction.

The procedure calls thenavigator.geolocation.getCurrentPosition
function which returns an object describing the position of the device.

1 // Creates the Google Maps object and the script to work with
it

2 k.createHTML("map", "<div id="map-canvas" width=’500px’
height =’500px’ style=’height:500px’></div>");

3 k.createScript("mapScript", "js/map-script.js");
4
5 var latitude , longitude , accuracy , speed;
6
7 k.createNode(function(data) {
8 latitude = data.latitude;
9 longitude = data.longitude;

10 accuracy = data.accuracy;
11 speed = data.speed;
12 k.callFunction("addMarker", ["Test", latitude , longitude ,

speed], undefined , false);
13 });
14
15 console.log("Consumer started , showing locations!");

Listing 6.3. Real time road analysis consumer.

Listing 6.3 shows the drawMarkers.js consumer code. After adding
the map-script.js JavaScript file to the Web page, the operator calls the
addMarker function on the Web page forwarding the latitude, longitude, and
speed data.

1 var mapOptions = {
2 center: {lat: 49.0, lng: 8.4}, // Karlsruhe
3 zoom: 13
4 };
5
6 var map = new google.maps.Map(document.getElementById("map-

canvas "), mapOptions);
7
8 /**
9 * Adds a marker at the given position with optional title to

the
10 map.

136 6.5 Experimentelle Evaluation des Web Liquid Streams-Framework

11 * @param title: Title of the marker
12 * @param latitude: Latitude for the marker
13 * @param longitude: Longitude for the marker * @param speed:

Current speed (optional)
14 */
15 var addMarker = function(title, latitude, longitude, speed) {
16 // Color mapping according to speed
17 var color = "D"; // Blue (default)
18 if (speed != undefined) {
19 if (speed == 0) {
20 color = ’0’; // Red
21 } else if (speed > 0 && speed <= 10) {
22 color = ’4’; // Orange
23 } else if (speed > 10 && speed <= 30) {
24 color = ’8’; // Yellow
25 } else if (speed > 30 && speed <= 50) {
26 color = ’I’; // Blue (dark)
27 } else if (speed > 50) {
28 color = ’J’; // Green (light)
29 }
30 }
31
32 var pin = new google.maps.MarkerImage("<Image-URL>" + color

,
33 new google.maps.Size(21, 34),
34 new google.maps.Point(0, 0),
35 new google.maps.Point(10, 34));
36
37 var marker = new google.maps.Marker({
38 position: new google.maps.LatLng(latitude , longitude),

map: map,
39 title: title,
40 animation: google.maps.Animation.DROP,
41 icon: pin
42 });
43 };

Listing 6.4. The addMarker function implemented on the Web browser in
the map-script.js file.

Listing 6.4 shows the code implemented in the map-script.js file. The
script first sets up the Google Map widget, then upon receiving a function call
from the consumer, it draws a marker in the appropriate position with the as-
signed color scheme representing the speed of the vehicle.

137 6.5 Experimentelle Evaluation des Web Liquid Streams-Framework

Figure 6.10. Screenshot of the consumer Web page on the running applica-
tion [Fus16].

Figure 6.10 shows a screenshot of the running application on the consumer’s
page. A single producer is bound to the consumer, thus the map only shows a
single blue marker.

In the conclusion of the report, the author describes his overall satisfaction
with the tool, and appreciates how simple and versatile WLS is (besides the initial
installation struggle). The author mentions his inexperience with JavaScript and
how simple was implementing and connecting operators for WLS.

138 6.5 Experimentelle Evaluation des Web Liquid Streams-Framework

6.5.1 Lessons Learned
During the development of the project, Tobias asked many questions through
e-mail and sought help when stuck in the implementation of his topology. The
major problems Tobias has faced happened while carrying the following tasks
out:

• Dealing with dependencies

The issues regarding the installation of the framework were caused by the
installation of the OverCPU module. Being it a module never released on NPM7

(Node Package Manager), it has to be manually installed. To install OverCPU
developers are required to install node-gyp and use it to compile the module.
Depending on the platform the developer is working on, compilation flags in C++
(located in the bindings.gyp file) have to be modified in order for OverCPU
to be compiled properly. The first struggle for Tobias was discovering how to
compile such module by modifying the flags accordingly for his OS (MacOSX).

• Interaction between the Web browser operator and external libraries

The second issue he had was implementing Web browser operators. Tobias
knew very little JavaScript before starting the project, but quickly developed a
small toy topology to play with WLS before starting with his project. The prob-
lems he had while implementing Web browser operators were related to the in-
teraction between external libraries and helper files, and the Web browser oper-
ator. This is done in WLS through the callFunction method call (described
in Section 3.3), which Tobias had a hard time understanding. Through e-mail
help he managed to understand how the method works, and managed to include
it in his code to show the map.

We took the chance to perform a formative evaluation of WLS by taking ad-
vantage of the e-mail exchange we had with Tobias and annotate every time he
had issues with the system. To solve the installation issues, we should build an
installer which takes care of the difference in OS and performs all the needed
dependencies installation, removing this burden from the developers. The issues
regarding the understanding of the framework API could be solved by preparing
a more detailed documentation of each method available. This has been done
in this Dissertation and on the WLS GitHub page8 dedicated to the project after
Tobias had such issues.

7https://www.npmjs.com
8https://github.com/masiarb/Web-Liquid-Streams

Chapter 7

Performance Evaluation

7.1 Overview

In the previous Chapters have shown how Web Liquid Streams is able to deal
with faults autonomically, as well as parallelize the execution of operators on a
single peer by increasing the number of workers, and on multiple heterogeneous
peers. Our aim is to let developers only deal with the implementation of the code
and the topology, and let the framework deal with nonpermanent disconnections,
battery shortages (given that many Web-enabled devices are battery powered),
and load fluctuations autonomically. In this Chapter we evaluate how well Web
Liquid Streams deals with such issues in a fully autonomic way.

Table 7.1 introduces the machines we used to perform the evaluation in the
various Sections of this Chapter. All the Web server resources run Node.js version
0.10.15, while all the Web browser resources run Google Chrome Version 40.
Web servers and laptops are wired through ethernet with 100Gbit/s of maximum
bandwidth, while smartphones and iPad are either connected through 4G or WiFi
(802.11n, 300Mbit/s), unless otherwise stated.

The Chapter is organised as follows. In Section 7.3 we show how WLS is able
to migrate operators (introduced in Section 4.4) and recover disconnections at
runtime (presented in Section 4.1.1). In Section 7.4 we show how well the local
controller (introduced in Section 5.3.2) adapts to changes in the workload at
runtime, increasing and decreasing resource usage (workers) to adapt to the
throughput. Section 7.5 shows the global controller (shown in Section 5.3.1)
evaluation when picking target peers for deployment with respect to a random
decision and an inverse ranking function. In Section 7.6 we evaluate the local
controller in the Web browser (presented in Section 5.3.3) and perform some
fine tuning for a specific class of experiments. We show how we are able to keep

139

140 7.1 Overview

Machine Experiment
(3x) MacBook Pro quadcore i7 (2012)
2.3GHz, 16GB RAM, OSX 10.12

Section 7.3 (3x), Section 7.4 (3x), Sec-
tion 7.5 (1x), Section 7.6 (1x), Sec-
tion 7.8 (1x)

MacBook Pro quadcore i7 (2011) 2GHz,
4GB RAM, OSX 10.12

Section 7.6, Section 7.8

MacBook Pro quadcore i5 (2011)
2.53GHz, 4GB RAM, OSX 10.12

Section 7.6, Section 7.8

Windows 7 quadcore 2.9GHz, 8GB RAM Section 7.3, Section 7.4, Section 7.5
iPhone 5S Dual-core 1.3 GHz, 1 GB
RAM, iOS 8

Section 7.3, Section 7.4, Section 7.5

Samsung Galaxy S4 Octa-core (4x1.6
GHz Cortex-A15, 4x1.2 GHz Cortex-
A7), 2 GB RAM, Android Lollipop 5.0.1

Section 7.3, Section 7.4

(3x) iPad 3 WiFi Apple A5X, 1 GB RAM,
iOS 8

Section 7.3 (3x), Section 7.4 (3x), Sec-
tion 7.5 (1x)

DELL Server with twenty-four Intel
Xeon 2GHz cores, 128 GB RAM, Ubuntu
12.04

Section 7.3, Section 7.4

DELL Server with four Intel Core 2 Quad
3GHz cores and 8GB RAM, Ubuntu
12.04

Section 7.3, Section 7.4

Samsung Galaxy Tab A, Octa-
core1.6GHz, 2GB RAM, Android
Marshmallow 6.0.1

Section 7.8

Table 7.1. Machines used during the WLS evaluation.

141 7.2 Metrics

throughput and queue sizes low by adjusting the local controller through four
different configurations. Finally, in Section 7.8 we show how the system behaves
in case of failures, and how the performance of the topology degrades as less
machines are available.

7.2 Metrics

In this Chapter we use a set of different metrics to evaluate our system.
The throughput of a topology is an important metric that defines how many

messages pass through the topology each second. The higher the throughput, the
higher the effort on the streaming operators that have to deal with a higher num-
ber of messages. We use the throughput to define the effort on the topology. We
measure the throughput at every controller cycle, which corresponds to 1 second
for both the server and the Web browser controller. The Web browser controller
cycle has been studied and modified in Section 7.6, thus the computation of the
throughput is affected as well.

The latency of a message is the time taken by a message to traverse the whole
topology. As the stress in the topology grows (i.e., by increasing the throughput,
or by sending messages that have long processing times), the topology may ex-
perience bottlenecks that affect the latency of the messages. It is measured at
the consumer after the consumer is done processing the single message.

The queue size gives an idea of how much a Web browser topology is stressed,
and is a measure strictly related to the Web browser part of WLS. We explain the
differences in the implementation of the Web server and Web browser controllers
in Chapter 5. The size of the queue is affected by the throughput and suggests
bottlenecks in a Web browser streaming operator, and affects the latency of a
message. We measure the queue size in CPU-intensive operators through the
messages passing in the operator. Each message will have the current queue size
attached to it before leaving the operator.

The worker number is a measure related to how many workers are spawned
to face high loads in a streaming operator. As the load increases, the controller
increases the number of workers in an operator to face bottlenecks, keep the
input throughput, and lower latencies and queue sizes. This number oscillates
throughout the experiment depending on how the load changes.

The peer number measures the number of peers available to deploy stream-
ing operators. It affects how the topology is able to deal with bottlenecks (by
parallelising the execution on more than one peer) and failures (by restoring the
computation on another peer). Both the worker number and the peer number

142 7.3 Operator Migration and Disconnection Recovery

producer.js filter.js
(DES) consumer.js

Tweets

Figure 7.1. DES Encryption topology.

are measured when the message leaves the CPU-intensive operator (filter). This
gives us an idea of the state of the topology at the end of the execution of each
message after the CPU-intensive operation.

In some plots we use the message count as the x-axis. We order the messages
starting from zero in their arrival order and plot the measures attached to them.
This shows how the topology behaves through time as messages arrive at the
consumer. We store the payloads attached to the messages at their arrival at the
consumer and plot them using the index of the message as the x-axis.

7.3 Operator Migration and Disconnection Recovery

In this Section we aim to demonstrate how the framework, through the coordi-
nated work of the controllers, is able to autonomously migrate streaming opera-
tors, and to reconstruct the topology when a peer disconnects (and the operators
running on it are lost).

The topology we use to evaluate the ranking controller is shown in Figure 7.1.
The topology takes as input a stream of tweets, encrypts them using triple DES
and stores the encrypted result on a server. The topology thus consists of a
pipeline of three operators: the constraints of the first and last operators are
to run on a server, in order to respectively read the Twitter stream and store the
encrypted result.

The CPU-intensive operator average execution times significantly change de-
pending on the peer computational power: from 2.003ms on the MacBook (WLS
server), 2.103ms on the MacBook (WLS browser), 2.115ms on the Windows ma-
chine (WLS server), 12.508ms on the iPhone and 13.005ms on the iPad. Since
this operator can be deployed on all of these devices, as we are going to see, the

143 7.3 Operator Migration and Disconnection Recovery

controller decisions on the liquid deployment have an impact on the topology
end-to-end latency. Given the unpredictable dynamics of the Twitter Firehose
API we decided to sample 100000 tweets and use them as benchmark workload
for all experiments. The size of the messages exchanged along the stream is thus
less than 1Kb.

We compare three scenarios: the first one is a stable scenario where the con-
troller deploys the operators in the best possible way and no failure, or battery
shortage happens. The second scenario involves deployment on devices that can
handle the computation but are short on battery. To make the experiment re-
producible, a battery shortage is triggered every 5000 messages, which in turn
triggers a migration on another device. The final scenario instead triggers a
disconnection every 5000 messages. Disconnected peers are substituted by the
controller with idle ones.

We used the twenty-four cores server as the data producer, and the four-cores
server as the consumer. We left the other peers idle for the deployment of the
filter, which can be deployed on both Web server and Web browsers. We always
start the experiment on the Web browser peer running on the MacBook Pro. We
also manually blacklisted the twenty-four cores and the four-cores servers for
the deployment of the filter operator. This was done as in the battery shortage
scenario we would have to trigger a battery shortage event on machines that are
plugged in, while in the failure scenario we wanted to avoid triggering a failure
in a peer that was hosting the producer operator, or the consumer operator. For
these reasons we decided to only use the above mentioned pool of devices to run
the filter operator.

Figure 7.2 shows the throughput measured at the consumer during the ex-
periment runs for the three different scenarios. The static and the battery sce-
narios share similar throughput, while the failure scenario presents downward
spikes caused by the sudden disconnection of a peer hosting the computation,
thus breaking the data stream. The vertical dashed lines represent the "battery
shortage" and the "crash" events every 5000 messages. The Y axis represents the
throughput measured as messages per second, while the X axis represents the
total number of messages received by the consumer.

On the one hand, the battery scenario gives a good indication of how well the
controller performs in gracefully migrating the operators from the low battery
peer to another one while the topology is running, without having significant
impact on the throughput. On the other hand, the failure scenario shows that the
controller is able to quickly recover the disconnected operators redeploying them
on another suitable peer so that the stream throughput returns to the nominal
level after the failure occurs.

144 7.3 Operator Migration and Disconnection Recovery

60

80

100

Static

60

80

100

Th
ro

ug
hp

ut
(m

sg
/s

)

Battery

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·105

60

80

100

Number of Messages Received at the Consumer

Disconnection

Figure 7.2. Operator Migration and Recovery Impact on Throughput. Vertical
lines indicate Low Battery and Disconnection events.

Figure 7.3 statistically summarises the throughput over the entire runs. The
battery and stable scenario show once again a very similar throughput, confirm-
ing our claims on the adaptability of the controller. The failure scenario shares
the same throughput in most cases, but it presents a lower median throughput
and lower whisker, caused by the sudden disconnections that momentarily stop
the data stream.

Figure 7.4 shows the number of workers in the filter operator during the
whole experiment. The Y axis represents the number of workers, while the X
axis is once again the number of messages received by the consumer.

We can see how in the static case, the controller parallelises on a single ma-
chine, adding up to four workers in the MacBook Pro’s Web browser, and then
lowering them to three towards the end of the experiment. The battery short-
age scenario shows how the shortage happens on one peer and the migration
immediately triggered moves the operator with the same number of workers on
another available peer. In this case the peer chosen is the MacBook Pro with the

145 7.4 Elastic Parallelisation Experiment

50 60 70 80 90 100 110 120 130

Disconnection

Battery

Static

Throughput (msg/s)

Figure 7.3. Throuhgput distribution during the operator migration and recov-
ery experiments with low battery and disconnection.

Web server deployment of WLS. When the battery event is triggered on it, the
controller chooses again the MacBook Pro running the Web browser peer (ob-
served by the controller as the most powerful machine available). This operator
migration between the two happens every 5000 messages as the event triggers
throughout the experiment.

The same can be observed in the failure scenario experiment, where the two
peers keep exchanging the operator. Once we crashed one machine, we made it
immediately available afterwards, that is how the controller always picked one
of the two MacBook Pros. The choice of the global controller among the whole
pool of machines available always falls on the MacBook Pro available, as it is the
most powerful machine in the pool. Also in this case we notice message loss as
the topology runs and experiences the scheduled failures.

7.4 Elastic Parallelisation Experiment

In this Section we aim to show how well the local controller in the Web server
peers is able to parallelise the execution of an operator. We decided to run an ex-
periment where a CPU-intensive operator is running on a very powerful machine.
In this way the controller can parallelise the execution of the operator without
offloading, and we can measure the impact of a mutating workload on the topol-
ogy in terms of number of workers (that is, resource consumption), latency of
the messages, and the overall throughput. This Section offers an extended result
of the experiments depicted in [BGP15a].

To do so, we reused the topology shown in Figure 7.1 and the dataset we
employed in Section 7.3 but changed the throughput rate. Instead of reusing
the throughput measured with the Twitter Firehose and replicate it, we decided
to send messages with two fixed throughputs alternating over time, and mea-

146 7.4 Elastic Parallelisation Experiment

1

2

3

4 Static:Peer 1

0

1

2

3

W
or

ke
rs

N
um

be
r

Batt.:Peer 1
Batt.:Peer 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·105

0

1

2

Message Count

Disc.:Peer1
Disc.:Peer2

Figure 7.4. Number of workers throughout the three scenarios.

sure how the controller adapts the resource usage to the change of workload.
We devised two different workloads: a light workload where the producer sends
40 messages per second, and a heavy workload, where the producer sends 500
messages per second. These two workloads are alternated in two different exper-
iments. The first experiment alternates the two workloads every 5000 messages
(slow workload transition), while the second one alternates the two workloads
every 500 messages (fast workload transition).

To show the ability of the controller to dynamically parallelise the execution
of an operator we opted for the following deployment. The producer runs on the
MacBook Pro, the filter operator runs on the twenty-four cores machine, while
the consumer runs on the four-cores server. The aim is to show how the controller
is able to parallelise the execution, thus we picked the most powerful machine
we had and forced the execution of the filter there.

Figure 7.5 shows the number of workers, the delay, and the throughput dur-
ing the execution of the slow workload transition. The dashed vertical lines
indicates the workload change. As the workload transitions from 40 messages

147 7.4 Elastic Parallelisation Experiment

2

4

6

W
or

ke
rs

N
um

be
r

Workers

0
50

100
150
200

D
el

ay
(m

s) Delay

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
·104

0

200

400

600

Message CountTh
ro

ug
hp

ut
(m

sg
/s

)
(f

)

Throughput

Figure 7.5. Parallelisation of the execution as the workload mutates every 5000
messages (slow).

per second to 500 messages per second we can see how the number of workers
increases as the demand for resources increases. This is triggered by the local
Web server controller which, by computing the request and response rate of the
operator, adds workers. We can see how the delay spikes when the workload
changes from slow to fast, caused by the lack of workers. As the controller adds
workers to solve the bottleneck, the delay of the messages decreases and the
throughput grows, reaching almost 500 messages per second, showing that the
controller is reacting to the change in workload as expected.

Figure 7.6 shows the number of workers, the delay, and the throughput dur-
ing the execution of the fast workload transition. From the plots we notice how
the controller only manages to add a second worker to deal with the bottleneck

148 7.4 Elastic Parallelisation Experiment

1

1.5

2
W

or
ke

rs
N

um
be

r
Workers

0
50

100
150

D
el

ay
(m

s) Delay

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
·104

0

200

400

Message Count

Th
ro

ug
hp

ut
(m

sg
/s

)

Throughput

Figure 7.6. Parallelisation of the execution as the workload mutates every 500
messages (fast).

before the throughput goes back to 40 messages per second. The reaction is
not fast enough to add the same amount of workers added in the previous ex-
periment. Despite this the topology manages to maintain a similar delay and
throughput.

Figure 7.7 shows two sets of box plots picturing the throughput in the two
different experiments, both in the slow workload and the fast workload. The
slow transition experiment shows to be able to maintain the throughput of the
producer (40 messages per second in slow workload, 500 messages per second in
fast workload), by achieving 39.4 messages per seconds as a median during the
slow throughput and 499 messages per second as a median for the fast through-
put. The fast transition experiment shows a good 39.5 messages per second as
a median in the slow throughput, but it is not able to go past 477 messages per

149 7.5 Global Controller Algorithm

Slow Transition Fast Transition

39.5

40

Slow Workload

Slow Transition Fast Transition

400

500

Th
ro

ug
hp

ut
(m

sg
/s

)

Fast Workload

Figure 7.7. Throughputs for the two different workloads in the two experiments.

second as a median value in the fast transition. The controller is not able to
add enough resources to face the fast transition, only adding one worker most of
the times as shown in Figure 7.6, thus reducing the filter throughput in the fast
workload.

7.5 Global Controller Algorithm
This experiment extends the work shown in [BGP15b], where we analyse how
the decisions of the global controller regarding the liquid deployment of oper-
ators affect the performance of a topology in terms of latency of the messages,
and how this impacts the resource consumption on the available resources.

We once again reused the topology we employed in Section 7.3, but doubled
the throughput of the topology (from around 80 messages per second to around
160 messages per second) in order to stress the filter and see how the initial
deployment of the streaming operators impacts on the resource usage. A good
deployment should make use of as few resources as possible while keeping the
throughput as high as possible. A random deployment, on the other hand, could
make use of more resources by initially deploying on any available resource, and
possibly ending up parallelising on other devices. We compare our ranking algo-
rithm (described in Section 5.3) with four random deployments and an inverse
ranking function, always taking the worst available peer.

Figure 7.8 shows a stacked bar chart illustrating the resource usage per peer,
per number of workers, and the end-to-end median latency for each run of the ex-
periment for six different configurations. We can see how the ranking approach

150 7.5 Global Controller Algorithm

Ranking Random 1 Random 2 Random 3 Random 4 Ranking�1
0

2

4

6

8

#
W

or
ke

rs
-#

Pe
er

s

0

50

100

150

200

6
22

164

102

220

110

M
ed

ia
n

La
te

nc
y

(m
s)

Peers MacBook
(8C)

Windows (4C) Phone (4C) iPad (1C)

Processes MacBook
(8C)

Windows (4C) Phone (4C) iPad (1C)

Median Latency

Figure 7.8. Liquid deployment: comparison of random vs. ranked resource
allocations and their median end-to-end latency.

in deploying the filter operator takes into consideration the availability cores
availability and deploys on the strongest machine, being the MacBook Pro fea-
turing 8 threads (4 cores virtualised). The MacBook pro gets up to four workers
to deal with the incoming load and maintains a low median latency. By randomly
deploying the filter operator, we can see how receiving peers become overloaded
and ask for help. Random 1 is deployed first on the iPad, and then the con-
troller randomly picks the MacBook Pro when the iPad is overloaded. The Mac
spawns three workers and manages to keep the latency low. This is not the case
for the rest of the random controller experiments, in which the controller does
not pick the MacBook Pro at all, and forces the computation to spread on more
than devices. These small devices cannot keep up with the workload, causing
the topology to experience higher end-to-end latencies.

The results of this experiment suggest that even when dealing with peers of
different nature, in most cases using the number of CPUs as a rough estimate of
the computing power of a device helps the controller ranking the peers.

151 7.6 Web Browser Local Controller and Fine-tuning

producer.js filter.js
(face-detect) consumer.js

Figure 7.9. Face detection and decoration topology employed for the experi-
ment.

7.6 Web Browser Local Controller and Fine-tuning

In Chapter 5 we introduced the controller and illustrated the differences between
the local controller in the Web browser and the one running in the Web server
operators. The differences mostly rely in the infrastructure offered by client-
side JavaScript that forced the development of ad-hoc infrastructures such as the
message queue. In Section 5.3.3 we mentioned three main variables inside the
Web browser local controller: the controller cycle (which is available in the Web
server controller too), the CPU usage threshold, and the slow mode thresholds
(one to trigger it, one to release it).

In this Section we introduce how we fine-tuned the Web browser local con-
troller in order to deal with a certain class of streaming applications [Bab17].

The experiment features a three-staged linear topology fully deployed on Web
browsers. The topology is shown in Figure 7.9. The producer acquires the web-
cam feed taken from the user’s webcam and forwards it to a face-detecting filter
which, after detecting faces in the received snapshot, applies a decoration on the
faces found. The resulting image is forwarded to the consumer which displays it.
The idea of the experiment is to stress the filter and trigger parallelisation while
modifying parameters in the controller configuration. Through empirical results
we then study the impact of those changes on throughput and delay.

Table 7.2 shows the configuration of variables we tuned for this experiment.
Configuration 1 is the one we used throughout all the experiment presented in
this Chapter, unless explicitly stated. Configuration 2 reduces the controller cy-
cle timeout, making it more reactive to changes as it checks on the operators
more often. Configuration 3 keeps the change of cycle introduced in configura-
tion 2 and halves the threshold to offload and parallelise operators execution.

152 7.6 Web Browser Local Controller and Fine-tuning

While on the one hand this does not use the machine at its fullest, it leaves some
free resources that could be used to further parallelise the execution, while al-
ready moving part of the computation elsewhere – if possible. Configuration 4
keeps the changes introduced in configuration 2 and 3 and halves the slow mode
thresholds, becoming more greedier on the resources used. Instead of waiting
for the queue to reach 20 messages, it already triggers the slow mode at 10 mes-
sages in the queue, halving the time taken for the operator to execute messages
in the queue and remove the slow mode. We expect to see that for use cases in
which the throughput is high and the computation takes long, the controller is
able to parallelise faster and tries to solve queues faster by redirecting the traffic
momentarily from one peer to another.

We decided to deploy the producer and the consumer on a single machine,
peer 3, while we used peer 1 (P1) and peer 2 (P2) as free machines where the
WLS runtime can run and eventually offload the computation of the filter. In
every run of the experiment we let WLS pick the peer where to deploy the fil-
ter operator, which always ended up being peer 2, the most powerful available
peer. This nonetheless lead to parallelisation on the weaker machine during the
experiment runs.

We decided to send a total of 6000 messages at three different rates: 6 mes-
sages per second, 10 messages per second, and 13 messages per second. The
size of the webcam image is fixed to 400x300 pixels, which are converted into
messages to be sent, for a total weight of about 800Kb per message. We used the
WiFi (802.11n, 300Mbit/s) to simulate a normal use case scenario environment.

Figure 7.10 shows the impact on end-to-end latency and queue size of the
four controller configurations in the 6 messages per second scenario. The graph
shows the percentage of messages executed on the y-axis and the delay of the
messages on the x-axis. We can see how configuration 1 (C1) shows some delay
with respect to the other configurations, this can be seen reflected on the queue
size plot, where C1 shows a longer queue in P1, which brought the need to

Table 7.2. Controller configuration parameters

Tuned Parameter Config 1 Config 2 Config 3 Config 4
Controller Cycle 500ms 300ms 300ms 300ms
TC PU 100% 100% 50% 50%
Tqh 20 20 20 10
Tql 10 10 10 5

153 7.6 Web Browser Local Controller and Fine-tuning

1 2 3 4 5 6 7 8 9
·104

0.2

0.4

0.6

0.8

Latency (ms)

N
um

be
r

of
M

es
sa

ge
s

C1P1

C1P2

C2P1

C2P2

C3P1

C3P2

C4P1

C4P2

C1P1 C1P2 C2P1 C2P2 C3P1 C3P2 C4P1 C4P2

0

10

20

Q
ue

ue
Si

ze

Figure 7.10. Message latency and queue size distributions per peer running on
different controller configuration with 6 messages per second.

trigger the slow mode. This helped solve the long queue, which also caused the
messages to experience latency.

In Figure 7.11 we can see the result of the experiment sending 10 messages
per second. We can see how the performance in terms of delay degrades for C1
and C3, while C2 and C4 seem to be able to deal with the increased throughput,
in fact both P1 and P2 in both cases maintain a lower delay for most of the
messages received than the same peers in C1 and C3. If we look at the queue
size we can see the delay reflected on the number of messages in the queues: C1
and C3 show longer queues, with respect to C2 and C4 that manage to keep the
queue much smaller. This is be given by the fact that while on one side C1 notices
late the increase of resource demand by the filter operator, on the other side the
controller triggers a parallelisation soon enough, but doesn’t get to the threshold
to trigger the slow mode, thus P1 keeps receiving and queueing work, increasing
the delay of its messages executed. C2 manages to deal with the workload by
using 100% of the CPU before triggering a CPU overload, which results in a better

154 7.6 Web Browser Local Controller and Fine-tuning

1 2 3 4 5 6 7 8 9
·104

0.2

0.4

0.6

Latency (ms)

N
um

be
r

of
M

es
sa

ge
s

C1P1

C1P2

C2P1

C2P2

C3P1

C3P2

C4P1

C4P2

C1P1 C1P2 C2P1 C2P2 C3P1 C3P2 C4P1 C4P2

0

10

20

Q
ue

ue
Si

ze

Figure 7.11. Message latency and queue size distributions per peer running on
different controller configuration with 10 messages per second.

use of the resources, while C4 triggers the CPU overload request but unlike C3
it triggers the slow mode earlier (shown in the queue sizes plot), being able to
redistribute the work and deal with the workload without impacting as much as
C3 on the delay.

Figure 7.12 shows the results of the experiment with a producer throughput
of 13 messages per second. The delay shown in the four configurations suggests
that C4 can handle a higher throughput better than the other configurations,
maintaining less latency overall. Both curves in fact show a better performance
than the others, in which either one peer or the other exhibit latencies in mes-
sage execution. C1 does not react soon enough, parallelising late and resulting
in high latencies, and less messages executed by P1 (the target of parallelisa-
tion). C2 has a faster controller cycle but waits until 100% of the CPU is used.
This results in longer queues, and thus longer latencies. C3 also reacts fast and
is able to parallelise sooner, keeping queues and latencies lower. The same ap-
plies to C4 which maintains even lower latencies by triggering and releasing the

155 7.6 Web Browser Local Controller and Fine-tuning

1 2 3 4 5 6 7 8 9
·104

0.2

0.4

0.6

Latency (ms)

N
um

be
r

of
M

es
sa

ge
s

C1P1

C1P2

C2P1

C2P2

C3P1

C3P2

C4P1

C4P2

C1P1 C1P2 C2P1 C2P2 C3P1 C3P2 C4P1 C4P2

0

10

20

Q
ue

ue
Si

ze

Figure 7.12. Message latency and queue size distributions per peer running on
different controller configuration with 13 messages per second.

slow mode sooner. This results in slightly longer queues as the slow mode is
triggered sooner, but also in an improved latency and overall parallelisation. In
fact, by triggering the slow mode more often, we can see that the difference in
the number of messages executed by the two peers is narrower.

Figure 7.13 shows the throughput differences for the four configurations in
the three analysed scenarios. As we increase the throughput of the topology, mea-
sured in kilobytes per second in the plot, we notice how the performances of C1
and C2 drift, while C3 and C4 maintain a slightly higher throughput. The trend
in general drifts from the optimal throughput, indicating that we are reaching
the machines maximum capacity in terms of CPU power.

The three runs with the four different controller configurations show that
a more reactive and more resource-aware controller is able to deal sooner with
CPU-intensive operators running in topologies with high throughput. While main-
taining a good throughput, more reactive controllers are able to save in latency
and keep relatively short queues through a more sensible flow control policy.

156 7.7 1 Failure

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
·104

0.6

0.8

1

1.2

·104

Expected Throughput (Kb/s)

W
LS

Th
ro

ug
hp

ut
(K

b/
s)

C1
C2
C3
C4

Perfect

Figure 7.13. Throughput of the topologies in the three experiments with the
four controller configurations.

This approach requires more effort from the WLS-runtime to constantly adjust
the data flow when in slow mode, and by keeping a low threshold on the CPU
usage, some use cases may spread the computation unnecessarily.

7.7 1 Failure

In Section 7.3 we analysed how the local and global controller cooperate to mi-
grate operators and recover computation from disconnections. In this Section
and the next one we aim to induce crashes in one or more peers at runtime
while not bringing them online afterwards, showing how the system gracefully
degrades while analysing the impact of the crashed machines on the overall
throughput, end-to-end latency, and queue sizes.

We reused the topology presented in Section 7.6, but we decided to lower
the throughput and send a message every 250ms (4 messages per second), and
only use the four tablets as platform for the runtime to deploy the execution of
the filter. This time we run the experiment for 4400 messages.

Figure 7.14 shows the oscillation in the number of workers throughout the
experiment. We can see how the workload is immediately spread across all the
available devices, and how the controllers try to keep the total amount of workers
throughout the topology the same after peer 1 crashes. This is the result of the

157 7.8 N-Failures

Peer 1 Crash

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10

12

Message Count

W
or

ke
r

N
um

be
r

Peer 1
Peer 2
Peer 4
Peer 5

Figure 7.14. Oscillation in the number of workers throughout the experiment
with only four tablets as filter deployment.

increased effort required by the topology as the workload is rebalanced on the
remaining peers.

Figure 7.15 shows the end-to-end latency of the messages passing through
the four tablets. We can see the effect of the crash of the first peer on the laten-
cies experienced by the messages passing through the available peers, especially
on peer 4 which has a small spike given by the increased workload received.
Overall the topology appears to be able to deal with the increased workload, as
the latencies just slightly increase.

Figure 7.16 shows the queue sizes throughout the experiment. Once again
we can see how the crash happening in peer 1 effects the queues of the remaining
peers, especially peer 4 and peer 5, without being too taxing – unlike the previous
experiment. The reduced workload, more tailored with the given resources, does
not impact so heavily on the remaining peers after a crash.

7.8 N-Failures
In this Section we induce more than one failure at runtime and study the be-
haviour of WLS in these circumstances. Again, we reused the topology presented
in Section 7.6 (13 messages per second, but 7500 messages in total), this way
we could use the Galaxy Tabs Web browsers and stress them with the face detec-
tion and image editing. Once again we used a single machine (peer 3) to act as
producer and consumer, and deployed the filter on the available machines. We

158 7.8 N-Failures

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

0.5
1

1.5
2
·104

Peer 1 Crash

La
te

nc
y

(m
s) Latency peer 1

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500
0.5

1
1.5

2
·104

La
te

nc
y

(m
s) Latency peer 2

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500
0.5

1
1.5

2
·104

La
te

nc
y

(m
s) Latency peer 3

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500
0.5

1

1.5

2
·104

Message Count

La
te

nc
y

(m
s) Latency peer 4

Figure 7.15. End-to-end latency for the four tablets.

let the WLS runtime pick the best machine where to deploy, always resulting in
peer 1. We then observe how peer 1 and the WLS runtime liquidly spread the
computation and face crashes happening on some of the Galaxy Tabs due to the
excessive stress. We run the experiment for 7500 messages.

Figure 7.17 shows the resources allocated by the WLS runtime per device,
and the crashes happened during the execution. The plot shows the number of
workers in each peer at a granularity of 10 messages per measurement. We can
see how after an initial deployment on peer 1 and peer 2, the runtime starts
exploiting the tablets. At around 1800 messages through the topology we can
see peer 4 crashing, then peer 2 at 4000 messages, peer 5 at 4800, and finally
peer 7 at around 7400 messages.

159 7.8 N-Failures

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

5

10

15
Peer 1 Crash

Q
ue

ue
si

ze Queue size peer 1

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

5

10

15

Q
ue

ue
si

ze Queue size peer 2

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

5

10

15

Q
ue

ue
si

ze Queue size peer 3

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

5

10

15

Message Count

Q
ue

ue
si

ze Queue size peer 4

Figure 7.16. Queue size shown per peer.

We can see the effect of these crashes on the end-to-end latency in Figure 7.18.
The Figure shows how crashes (peer 2, 4, 5, 7 – second plot) increase the latency
of the messages processed by the peers which are still up and running (peer 1,
6 – first and third plot). Peer 1 deals with the crashes in a better way as it has
more resources to cope with the increased workload, while peer 6 start slowly
to struggle as more and more devices crash, ending up with accumulating long
delays because of the increased workload.

Increased latencies can be associated with long queues. Figure 7.19 shows
how the queue sizes change as the topology experiences crashes. As the various
peers crash, we can see how the queue sizes increase on the remaining peers,
growing more and more as crashes happen, resulting in queues with more than

160 7.9 Summary

Peer7 Crash
Peer5 Crash

Peer2 CrashPeer4 Crash

0 1000 2000 3000 4000 5000 6000 7000
0

5

10

15

20

25

Message Count

W
or

ke
r

N
um

be
r

Peer 1
Peer 2
Peer 4
Peer 5
Peer 6
Peer 7

Figure 7.17. Oscillation in the number of workers throughout the experiment.

100 elements for the remaining peers. Peer 1 is able to deal with messages faster,
keeping the queue at around 100 messages towards the end of the experiment,
while peer 6 struggles more as shown in the curve on the plot, which goes beyond
100 messages and keeps growing linearly.

The experiment shows that the WLS runtime with the help of the controller is
able to use the available resources when a (large portion of) the system crashes,
keeping the data stream running through the topology. The performance de-
grades drastically in terms of end-to-end latency, but the topology is still able to
process messages relying on the available peers.

7.9 Summary

In this Chapter we have shown the evaluation we performed on Web Liquid
Streams. The system we built is able to deal with a dynamic, heterogeneous,
and volatile environment like the Web. We have shown how we deal with low-
battery levels in battery-powered devices by migrating the computation on other
devices with the same capabilities and with a higher battery availability. In this
way, battery-powered devices owned by the users may be used to deploy parts of
a streaming application while the runtime deals with the migration when battery
levels drop under a certain threshold. Disconnection recovery is also another im-
portant factor when dealing with the Web. If a user accidentally closes the Web
browser, unplugs a sensor, or loses signal on his device the topology could be dis-

161 7.9 Summary

1,000 2,000 3,000 4,000 5,000 6,000 7,000

1

2

·105

Peer 4 Crash Peer 2 Crash
Peer 5 Crash

Peer7 Crash

La
te

nc
y

(m
s) Latency peer 1

1,000 2,000 3,000 4,000 5,000 6,000 7,000

1

2

3
·105

La
te

nc
y

(m
s)

Latency peer 2

Latency peer 4

Latency peer 5

Latency peer 7

1,000 2,000 3,000 4,000 5,000 6,000 7,000

1

2

·105

Message Count

La
te

nc
y

(m
s) Latency peer 6

Figure 7.18. End-to-end latency shown per peer.

rupted. We have shown how our runtime is able to keep the topology running by
instantiating copies of the lost operators on other available peers, and how well
that happens by confronting the throughputs in a static scenario, a low-battery
level scenario, and a disconnection-recovery scenario.

Users may modify the topology at runtime to solve operators bugs, or to
slightly change the semantics of the application (by for example adding new
sensors as producers in a topology and patching a filter to store the newly pro-
duced data). These changes at runtime may impact on the data flow, which can
unpredictably oscillate and that may cause bottlenecks. We have shown how
well our framework adapts to workload oscillation by elastically modifying the
number of workers deployed in an operator. The number of workers increases
and decreases following the CPU demand of the workload, in this way it allo-
cates just the right amount of workers needed for the computation, and removes

162 7.9 Summary

1,000 2,000 3,000 4,000 5,000 6,000 7,000

100

200

300
Peer 4 Crash Peer 2 Crash Peer 5 Crash

Q
ue

ue
si

ze
Queue size peer 1

1,000 2,000 3,000 4,000 5,000 6,000 7,000

100

200

300

Q
ue

ue
si

ze

Queue size peer 2

Queue size peer 4

Queue size peer 5

Queue size peer 7

1,000 2,000 3,000 4,000 5,000 6,000 7,000

100

200

300

Message Count

Q
ue

ue
si

ze

Queue size peer 6

Figure 7.19. Queue size shown per peer.

unneeded workers when the resource demand decreases. This avoids resource
consumption that may impact on the battery of the devices.

Web Liquid Streams abstracts the complexity of dealing with the deployment
of streaming operators and communication channels from the users. Our runtime
is able to deploy streaming topologies on the available devices by the means of a
ranking function which ranks the available devices. By using the number of CPUs
as a rough estimate of the computing power of a device, the runtime gives the
best possible deployment keeping into account the operators deployment needs
(i.e., sensor-based operators).

163 7.9 Summary

We have studied how to improve the Web browser controller, making it more
resource-aware and more reactive. The studied configuration fits streaming ap-
plications that have CPU-intensive operators running in topologies with high
throughput. We have shown that a more sensible control flow policy is able to
save in latency and keep queues relatively short, despite making use of more re-
sources and possibly spreading the computation on other available devices when
not strictly needed.

Finally, we have shown how WLS is able to make use of the remaining devices
when a failure happens. When a single failure happens, the runtime is able to use
the connected devices to run the lost operators, even if no free device is available.
This gives time to the user to notice the failure and connect more resources to
the runtime while WLS guarantees that the stream continues to flow. The same
holds when more than one device fails, and the computation is forcefully spread
on busy devices. The runtime tries to keep the topology alive, even though this
drastically impacts on the end-to-end latency.

164 7.9 Summary

Part IV

Epilogue

165

Chapter 8

Conclusion

Recently proposed Web technologies such as WebSockets and WebRTC made the
Web a mature platform to run distributed applications, connecting and orches-
trating Web-enabled devices of different nature in a single cloud of computing
devices. The hosting platform of such applications could be user-owned desk-
tops and laptops, big Web servers, but also microcontrollers and single-board
PCs. These devices are growing in number and shrinking in price, becoming an
affordable playground for programmers and Makers – people that do not have a
background in computer science, but enjoy experimenting with technology and
like to apply the Do It Yourself approach.

While the development of small applications on microcontrollers and single-
board PCs may be simple even for a Maker, more complex applications involving
more than one device with different nature may become a tougher task. For
example, integrating a Web server in a distributed application to host a Web
monitor for a home automation system, or storing and processing streamed en-
vironmental data on a privately owned laptop may be a complicated task for
an unskilled developer which should deal with different environments, different
programming languages, and different communication channels. A distributed
application could also suffer of bottlenecks in the execution, and failures that
should be dealt with to keep it up and running unattended over long periods of
time.

In this dissertation we presented the Web Liquid Streams framework. WLS
offers developers a JavaScript programming environment for streaming Web ap-
plications. Developers do not have to worry about running applications on de-
vices of different nature: with WLS streaming operators can be developed in
JavaScript, while the runtime takes care of dealing with hardware differences
thanks to Node.js and the Web browser. The WLS runtime takes care of the data

167

168

channels as well, hiding from the developers the complexity of dealing with hard-
ware and network heterogeneity. By following the principles of the liquid soft-
ware architectural style, WLS offers full code mobility, letting developers move
the application code transparently from device to device. Dealing with bottle-
necks and failures is done by the controller, a runtime component which purpose
is to keep the topology up and running and solve bottlenecks despite device fail-
ures during the execution.

We surveyed the state of the art in stream processing frameworks, languages,
and tools. The results suggested a growing interest in sensor data and microcon-
trollers, being the target of some of the surveyed systems. Last but not least, given
the introduction of WebRTC to stream data between browsers without passing
through a server, and the growing number of Web-enabled devices, we expect to
see more pure browser-to-browser streaming applications.

Next, we presented the Web Liquid Streams framework from the developer’s
perspective. We described the terminology we use in describing streaming topolo-
gies, and the liquid abstraction we use to describe streaming applications devel-
oped with WLS. The proposed API lets developers build streaming topologies by
implementing operators that are called whenever a stream message arrives. De-
velopers can also modify the structure of the topology within the operator code,
as well as use a database through stateful operators. Browser-related methods
only work on Web browsers and extend the functionality of an operator by adding
GUI methods. Developers can include HTML and CSS inside the operator code
to build a GUI to, for example, monitor and visualise their streams. Through the
command line interface of WLS, developers are able to create and change stream-
ing topologies on the fly; by creating a JSON topology file instead, developers
can statically describe a topology by specifying operators and bindings. Such file
can then be fed to the runtime which takes care of deploying the operators on
the available devices and perform the bindings. By the means of a RESTful API
external applications can interact with the WLS runtime as if developers were
interacting with the command line interface. We have shown a monitor for WLS
that uses the RESTful API to show a graphical representation of the topology, the
operators, the bindings, and the workers.

We introduced the WLS runtime describing its two communication layers.
The first communication layer, the command layer, is used by WLS to send and
receive command messages (i.e., run an operator, bind an operator, add a worker,
etc.) to and from peers, or the root. We have shown the RPC method calls that
are used by the root to call procedures on the connected peers. We have then
introduced the stream layer by describing the three different channels that WLS
uses to stream data across streaming operators. For server-to-server communi-

169

cation we make use of ZeroMQ, for server-to-browser and browser-to-server we
use WebSockets, while for browser-to-browser communication we use WebRTC.
We introduced the minified Web server peer implemented to run on smaller and
weaker devices, such as Tessel. The Web browser peer implementation includes
modules to deal with the display APIs and with the HTML5 sensors APIs. While in
the Web server peer, the operator pool is an array of objects, in the Web browser
peer it is a more complicated infrastructure that has to deal with the deficiencies
of the browser’s sandboxed environment. Inside both operator infrastructures, a
worker pool stores all the workers running to parallelise the execution. The con-
nection with Redis, the database of choice for WLS, happens server-side through
an ad hoc module built to support database transactions.

To support less skilled developers to deal with bottlenecks and different kinds
of failures in the execution of the topology, we implemented a control infras-
tructure. The control is composed by two instances: a single global controller
running on the root which checks the running topology and takes actions upon
peer crashes and disconnections, and local controllers running on the peers in-
volved in the topology that check on locally deployed operators to balance the
load and avoid bottlenecks. The local controllers are connected with the global
controller and query it for operator migrations and cloning when needed – for
example, when the CPU usage is too high the operator is cloned on another ma-
chine, while if the battery level of a device drops under a certain threshold, the
controller starts a migrating procedure to avoid losing the running operator. The
global controller is also in charge of checking available peers for the automatic
deployment of the topology upon receiving command line interface commands
or a JSON topology file. By making use of the presented algorithms, the local
controllers are able to deal with bottlenecks by autonomically increasing and
decreasing the amount of workers deployed.

Web Liquid Streams has been used by different developers and with different
purposes during the past few years. We used it as a mashup tool for the first
Rapid Mashup Challenge 2015, scoring a third place and showing how WLS can
be expressive and flexible enough to be used as a mashup tool. WLS has been the
target of an experimental evaluation performed in the University of Applied Sci-
ences in Karlsruhe, Germany, and also presented during the Inforte seminar on
SW technologies and development for multi-device environments summer school
in Tampere, Finland. During the summer school we let the participants get their
hands dirty with the code and build their first topology integrating Raspberry
Pi sensors, Web servers and Web browsers. We let middle- and high-school stu-
dents play with WLS during the USI Study Week, where participants with no
background in computer science tried coding for the first time. With a little help

170 8.1 Future Work

with the programming language at first, the students managed to implement a
simple topology to stream data from a Web cam and a sensor to a Web server,
storing the data, and showing the video feed with the sensor data printed on
screen on a Web browser. Through a project proposed in Software Atelier 3,
second year bachelor students implemented a monitor for the USI open space,
monitoring light and noise levels throughout the project weeks. The feedback we
obtained at each deployment was very useful to improve the framework design
and implementation.

Besides a formative evaluation, we also did a performance evaluation on WLS
and its controller. The purpose of the evaluation was to test how well the con-
troller works under certain conditions and further improve it. We studied the
throughput, the latency, the queue sizes, but also the number of available peers
and the number of workers spawned to deal with a bottleneck in different sce-
narios. We have shown how the controller deals with operator migration and
disconnection recovery by illustrating three different cases (static, battery short-
age, and seldom disconnections) and illustrating the throughput differences. The
results showed only little differences in the three cases. We explored the paral-
lelisation of the execution on a single operator, by adding and removing workers,
showing how the number of workers adapts to the needs of the topology and does
not consume more resources than needed during the execution. Finally, we eval-
uated the Web browser local controller by fine-tuning its variables and showing
improvements of the controller decisions under certain conditions.

To conclude, in this dissertation we have shown how, thanks to emerging
Web technologies and the liquid software metaphor, it is possible to abstract the
complexity of the underlying hardware of Web-enabled devices and offer a ro-
bust JavaScript data stream framework with autonomic failure recovery and dis-
tributed execution on heterogeneous hardware. Through our implementation
of the Web Liquid Streams framework, Makers and less experienced program-
mers are able to use their own machines to build and run complex streaming
applications.

8.1 Future Work

The security of a topology implemented in Web Liquid Streams is an important
topic which was left as a future work. Given the premises, the devices in a topol-
ogy are all owned by a single user. The moment more than one user want to
use a single streaming application, and URLs of the operators become public, we
must find a way to hide sensitive data (home temperature, home energy con-

171 8.1 Future Work

sumption, etc.) that may be streamed through a WLS topology. A solution for
such issue may be adding a password verification when accessing an operator
on a Web page. If the attacker doesn’t know the password, he/she will never be
able to access the operator execution – thus the sensitive data.

The WLS experience by Tobias Fuss at the University of Applied Sciences in
Karlsruhe, with almost no JavaScript expertise gave us feedback on the difficul-
ties while installing and using the system. While the programming API was not
difficult to understand, in his experience the installation of the framework and
the dependencies was difficult. As the framework is targeted for Makers that
may not have experience in dealing with command-line installations, the easiest
solution would be a single bundle that installs the framework and dependencies
automatically with a single click.

Thanks to the controller, the WLS runtime is able to deal with failures by
restarting lost operators on other available devices. If the failure happens on the
root peer, where the global controller runs, it is impossible for the runtime to
restart it. To solve this issue a leader election algorithm could be implemented
to elect a new root peer which would then start another instance of the global
controller. If the previous root comes back up online, the new root will inform it
of its new role and downgrade it to normal peer.

In the very last experiment shown in Section 7.8 we noticed how the degra-
dation of the topology (in terms of queue sizes and latencies) increases as the
number of peers with permanent failure increases. To solve this issue we thought
about implementing a load shedding protocol [GWYL05], which would help the
topology reduce the load if there are no more peers where the stream can be
parallelised across.

172 8.1 Future Work

Bibliography

[AAB+05] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur
Cetintemel, Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lind-
ner, Anurag S Maskey, Alexander Rasin, Esther Ryvkina, Nesime
Tatbul, Ying Xing, and Stan Zdonik. The Design of the Borealis
Stream Processing Engine. In Second Biennial Conference on Inno-
vative Data Systems Research, CIDR 2005, pages 277–289, 2005.

[AAB+06] Lisa Amini, Henrique Andrade, Ranjita Bhagwan, Frank Eskesen,
Richard King, Philippe Selo, Yoonho Park, and Chitra Venkatra-
mani. Spc: A distributed, scalable platform for data mining.
In Proceedings of the 4th International Workshop on Data Mining
Standards, Services and Platforms, DMSSP ’06, pages 27–37. ACM,
2006.

[ABB+03] Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith
Ito, Itaru Nishizawa, Justin Rosenstein, and Jennifer Widom.
Stream: The stanford stream data manager (demonstration de-
scription). In Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’03, pages 665–665.
ACM, 2003.

[ABB+13] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh
Haberman, Reuven Lax, Sam McVeety, Daniel Mills, Paul Nord-
strom, and Sam Whittle. Millwheel: Fault-tolerant stream pro-
cessing at internet scale. The Proceedings of the VLDB Endowment,
6(11):1033–1044, 2013.

[ABQ13] Leonardo Aniello, Roberto Baldoni, and Leonardo Querzoni.
Adaptive online scheduling in storm. In Proceedings of the 7th ACM
International Conference on Distributed Event-based Systems, DEBS
’13, pages 207–218. ACM, 2013.

173

174 Bibliography

[ABW06] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The cql contin-
uous query language: Semantic foundations and query execution.
The VLDB Journal, 15(2):121–142, 2006.

[ACGS11] Mohamed Ali, Badrish Chandramouli, Jonathan Goldstein, and
Roman Schindlauer. The extensibility framework in microsoft
streaminsight. In Proceedings of the 2011 IEEE 27th International
Conference on Data Engineering, ICDE 2011, pages 1242–1253,
2011.

[Agh86] Gul Agha. Actors: A Model of Concurrent Computation in Dis-
tributed Systems. MIT Press, 1986.

[AGR+09] M. H. Ali, C. Gerea, B. S. Raman, B. Sezgin, T. Tarnavski, T. Verona,
P. Wang, P. Zabback, A. Ananthanarayan, A. Kirilov, M. Lu, A. Raiz-
man, R. Krishnan, R. Schindlauer, T. Grabs, S. Bjeletich, B. Chan-
dramouli, J. Goldstein, S. Bhat, Ying Li, V. Di Nicola, X. Wang,
David Maier, S. Grell, O. Nano, and I. Santos. Microsoft cep server
and online behavioral targeting. The proceedings of the VLDB En-
dowment, 2(2):1558–1561, 2009.

[AGT14] Henrique C. M. Andrade, Buğra Gedik, and Deepak S. Turaga. Fun-
damentals of Stream Processing: Application Design, Systems, and
Analytics. Cambridge University Press, 1st edition, 2014.

[AHS06] Karl Aberer, Manfred Hauswirth, and Ali Salehi. A middleware for
fast and flexible sensor network deployment. In Proceedings of the
32nd International Conference on Very Large Data Bases, VLDB ’06,
pages 1199–1202. ACM, 2006.

[And12] Chris Anderson. Makers: the new industrial revolution. Random
House Business Books, 2012.

[APC15] João Azevedo, Ricardo Lopes Pereira, and Paulo Chainho. An api
proposal for integrating sensor data into web apps and webrtc.
In Proceedings of the 1st Workshop on All-Web Real-Time Systems,
AWeS ’15, pages 8:1–8:5. ACM, 2015.

[AT99] Enrique Alba and José M. Troya. A survey of parallel distributed
genetic algorithms. Complex., 4(4):31–52, March 1999.

175 Bibliography

[Bab17] Masiar Babazadeh. Tuning browser-to-browser offloading for het-
erogeneous stream processing web applications. In Proceedings
of the 9th ZEUS Workshop, Lugano, Switzerland, February 13-14,
2017., ZEUS ’17, 2017.

[BAD14] Andrea Bellucci, Ignacio Aedo, and Paloma Diaz. Ecce toolkit: Pro-
totyping ubicomp device ecologies. In Proceedings of the 2014 In-
ternational Working Conference on Advanced Visual Interfaces, AVI
’14, pages 339–340. ACM, 2014.

[BBJN12] Adam Bergkvist, Daniel C Burnett, Cullen Jennings, and Anant
Narayanan. Webrtc 1.0: Real-time communication between
browsers. Working draft, W3C, 2012.

[BCE+12] Cristina Bǎsescu, Christian Cachin, Ittay Eyal, Robert Haas,
Alessandro Sorniotti, Marko Vukolic, and Ido Zachevsky. Robust
data sharing with key-value stores. In IEEE/IFIP International Con-
ference on Dependable Systems and Networks, DSN 2012, pages 1–
12, 2012.

[BGP15a] Masiar Babazadeh, Andrea Gallidabino, and Cesare Pautasso. De-
centralized stream processing over web-enabled devices. In Pro-
ceedings of the 4th European Conference on Service-Oriented and
Cloud Computing, volume 9306, pages 3–18. Springer, 2015.

[BGP15b] Masiar Babazadeh, Andrea Gallidabino, and Cesare Pautasso. Liq-
uid stream processing across web browsers and web servers. In
Proceedings of the 15th International Conference on Web Engineer-
ing, ICWE 2015. Springer, 2015.

[BHK+02] Andrew P. Black, Jie Huang, Rainer Koster, Jonathan Walpole, and
Calton Pu. Infopipes: An abstraction for multimedia streaming.
Multimedia Syst., 8(5):406–419, 2002.

[Bla15] Virginie Blancs. Introducing Tessel.io microcontroller into the Web
Liquid Streams framework. Master’s thesis, University of Lugano,
Switzerland, 2015.

[BMT12] Ozalp Babaoglu, Moreno Marzolla, and Michele Tamburini. De-
sign and implementation of a p2p cloud system. In Proceedings of
the 27th Annual ACM Symposium on Applied Computing, SAC ’12,
pages 412–417, New York, NY, USA, 2012. ACM.

176 Bibliography

[BP11] Daniele Bonetta and Cesare Pautasso. An architectural style for liq-
uid web services. In 9th Working IEEE/IFIP Conference on Software
Architecture, WICSA 2011, pages 232–241, 2011.

[BSM+06] Sara Bly, Bill Schilit, David W. McDonald, Barbara Rosario, and
Ylian Saint-Hilaire. Broken expectations in the digital home. In
Extended Abstracts on Human Factors in Computing Systems, CHI
EA 2006, pages 568–573. ACM, 2006.

[Can14] Mattia Candeloro. A RESTful API for controlling dynamic stream-
ing topologies. Master’s thesis, University of Lugano, Switzerland,
2014.

[CB74] Donald D. Chamberlin and Raymond F. Boyce. Sequel: A struc-
tured english query language. In Proceedings of the 1974 ACM SIG-
FIDET (Now SIGMOD) Workshop on Data Description, Access and
Control, SIGFIDET ’74, pages 249–264. ACM, 1974.

[CBB+03] Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska, Don-
ald Carney, Ugur Cetintemel, Ying Xing, and Stan Zdonik. Scalable
Distributed Stream Processing. In Proceedings of the First Biennial
Conference on Innovative Data Systems Research, CIDR 2003. ACM,
2003.

[CBC+10] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wol-
man, Stefan Saroiu, Ranveer Chandra, and Paramvir Bahl. MAUI:
Making Smartphones Last Longer with Code Offload. In Proceed-
ings of the 8th International Conference on Mobile Systems, Applica-
tions, and Services, MobiSys 2010, pages 49–62. ACM, 2010.

[CcC+02] Don Carney, Uǧur Çetintemel, Mitch Cherniack, Christian Convey,
Sangdon Lee, Greg Seidman, Michael Stonebraker, Nesime Tat-
bul, and Stan Zdonik. Monitoring streams: A new class of data
management applications. In Proceedings of the 28th International
Conference on Very Large Data Bases, VLDB ’02, pages 215–226.
VLDB Endowment, 2002.

[CFS+14] Ching Yu Chen, Jui Hsi Fu, Today Sung, Ping-Feng Wang, Emery
Jou, and Ming-Whei Feng. Complex event processing for the inter-
net of things and its applications. In Proceedings of the 2014 IEEE
International Conference on Automation Science and Engineering,
CASE, pages 1144–1149, 2014.

177 Bibliography

[CGM14] Sven Casteleyn, Irene Garrigós, and Jose-Norberto Mazón. Ten
years of Rich Internet Applications: A systematic mapping study,
and beyond. ACM Trans. Web, 8(3):18:1–18:46, 2014.

[CIM+11] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik,
and Ashwin Patti. Clonecloud: Elastic execution between mobile
device and cloud. In Proceedings of the Sixth Conference on Com-
puter Systems, EuroSys ’11, pages 301–314. ACM, 2011.

[CM08] Dave Crane and Phil McCarthy. Comet and Reverse Ajax: The Next-
Generation Ajax 2.0. Apress, 2008.

[CM12] Gianpaolo Cugola and Alessandro Margara. Processing flows of
information: From data stream to complex event processing. ACM
Comput. Surv., 44(3):15:1–15:62, 2012.

[CVHDVF09] Stefano Ceri, Frank Van Harmelen, Emanuele Della Valle, and Di-
eter Fensel. It’s a streaming world! reasoning upon rapidly chang-
ing information. IEEE Intelligent Systems, 24:83–89, 2009.

[DA11] Michael Duller and Gustavo Alonso. A lightweight and extensi-
ble platform for processing personal information at global scale.
Journal of Internet Services and Applications, 1(3):165–181, 2011.

[DG08] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data
processing on large clusters. Commun. ACM, 51(1):107–113,
2008.

[DGHN16] Linda Di Geronimo, Maria Husmann, and Moira C. Norrie. Sur-
veying personal device ecosystems with cross-device applications
in mind. In Proceedings of the 5th ACM International Symposium
on Pervasive Displays, PerDis 2016, pages 220–227. ACM, 2016.

[DJL15] Caroline Desprat, Jean-Pierre Jessel, and Hervé Luga. A 3d collab-
orative editor using webgl and webrtc. In Proceedings of the 20th
International Conference on 3D Web Technology, Web3D ’15, pages
157–158. ACM, 2015.

[DLLW08] Robert F. Dickerson, Jiakang Lu, Jian Lu, and Kamin Whitehouse.
Stream feeds - an abstraction for the world wide sensor web. In
Christian Floerkemeier, Marc Langheinrich, Elgar Fleisch, Friede-
mann Mattern, and Sanjay E. Sarma, editors, IOT, volume 4952 of
Lecture Notes in Computer Science, pages 360–375. Springer, 2008.

178 Bibliography

[DP16] Florian Daniel and Cesare Pautasso. Rapid Mashup Development
Tools: First International Rapid Mashup Challenge, RMC 2015, Rot-
terdam, The Netherlands, June 23, 2015, Revised Selected Papers.
Springer, 2016.

[DR07] Krista M. Dombroviak and Rajiv Ramnath. A taxonomy of mobile
and pervasive applications. In Proceedings of the 2007 ACM Sym-
posium on Applied Computing, SAC ’07, pages 1609–1615. ACM,
2007.

[DRAT11] Michael Duller, Jan S. Rellermeyer, Gustavo Alonso, and Nes-
ime Tatbul. Virtualizing stream processing. In Proceedings of
the 12th International Middleware Conference, Middleware 2011,
pages 260–279. IFIP, 2011.

[DW16] Audrey Desjardins and Ron Wakkary. Living in a prototype: A re-
configured space. In Proceedings of the 2016 Conference on Human
Factors in Computing Systems, CHI ’16, pages 5274–5285. ACM,
2016.

[FM11] I. Fette and A. Melnikov. The websocket protocol (proposed stan-
dard), 2011.

[FMG+16] Ioannis Flouris, Vasiliki Manikaki, Nikos Giatrakos, Antonios Deli-
giannakis, Minos Garofalakis, Michael Mock, Sebastian Bothe,
Inna Skarbovsky, Fabiana Fournier, Marko Stajcer, et al. Ferari:
A prototype for complex event processing over streaming multi-
cloud platforms. In Proceedings of the 2016 International Confer-
ence on Management of Data, SIGMOD/PODS 2016, pages 2093–
2096. ACM, 2016.

[FTE+17] Roy T. Fielding, Richard N. Taylor, Justin Erenkrantz, Michael M.
Gorlick, E. James Whitehead, Rohit Khare, and Peyman Oreizy,
editors. Reflections on the REST Architectural Style and "Principled
Design of the Modern Web Architecture", 2017.

[Fus16] Tobias Fuss. Experimentelle evaluation des web liquid streams-
framework. Short-term software development project on collabo-
rative peer-to-peer Web browser communication, 2016.

[Gal14] Andrea Gallidabino. Browser-to-browser Pipelines. Master’s the-
sis, University of Lugano, Switzerland, 2014.

179 Bibliography

[GBMP13] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and
Marimuthu Palaniswami. Internet of things (iot): A vision, ar-
chitectural elements, and future directions. Future Gener. Comput.
Syst., 29(7):1645–1660, 2013.

[GBP16] Andrea Gallidabino, Masiar Babazadeh, and Cesare Pautasso.
Mashup development with web liquid streams. In Proceedings of
the 1st International Rapid Mashup Challenge, RMC 2015, pages
98–117. Springer, 2016.

[GHOS96] Jim Gray, Pat Helland, Patrick O’Neil, and Dennis Shasha. The
dangers of replication and a solution. In Proceedings of the 1996
ACM SIGMOD International Conference on Management of Data,
SIGMOD ’96, pages 173–182. ACM, 1996.

[GJM+12] Mark S. Gordon, D. Anoushe Jamshidi, Scott Mahlke, Z. Morley
Mao, and Xu Chen. Comet: Code offload by migrating execution
transparently. In Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation, OSDI’12, pages 93–
106. USENIX Association, 2012.

[GP16a] Andrea Gallidabino and Cesare Pautasso. Deploying stateful web
components on multiple devices with liquid.js for polymer. In
Proceedings of the 19th International ACM Sigsoft Symposium on
Component-Based Software Engineering, CBSE 2016, pages 85–90,
2016.

[GP16b] Andrea Gallidabino and Cesare Pautasso. The liquid.js framework
for migrating and cloning stateful web components across multiple
devices. In Proceedings of the 25th International World Wide Web
conference, pages 183–186. ACM, 2016.

[GP17] Andrea Gallidabino and Cesare Pautasso. Maturity model for liq-
uid web architectures. In Proceedings of the 17th International Con-
ference on Web Engineering, ICWE2017, pages 206–224. Springer,
2017.

[GPI+16] Andrea Gallidabino, Cesare Pautasso, Ville Ilvonen, Tommi Mikko-
nen, Kari Systa, Jari-Pekka Voutilainen, and Antero Taivalsaari. On
the architecture of liquid software: Technology alternatives and
design space. In 13th Working IEEE/IFIP Conference on Software
Architecture, WICSA 2016, 2016.

180 Bibliography

[GPM+17] Andrea Gallidabino, Cesare Pautasso, Tommi Mikkonen, Kari
Systa, Jari-Pekka Voutilainen, and Antero Taivalsaari. Architect-
ing liquid software. Journal of Web Engineering, 16, 2017.

[GT16] Dominique Guinard and Vlad Trifa. Building the Web of Things:
With Examples in Node.Js and Raspberry Pi. Manning Publications
Co., 1st edition, 2016.

[GTA06] Michael I. Gordon, William Thies, and Saman Amarasinghe. Ex-
ploiting coarse-grained task, data, and pipeline parallelism in
stream programs. In Proceedings of the 12th International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XII, pages 151–162. ACM, 2006.

[GTMW11] Dominique Guinard, Vlad Trifa, Friedemann Mattern, and Erik
Wilde. From the internet of things to the web of things: Resource-
oriented architecture and best practices. In Architecting the Inter-
net of Things, pages 97–129. 2011.

[GTW10] Dominique Guinard, Vlad Trifa, and Erik Wilde. A resource ori-
ented architecture for the web of things. In Proceedings of the 2010
First International Conference on the Internet of Things, IoT2010,
pages 1–8, 2010.

[Gui11] Dominique Guinard. A Web of Things Application Architecture –
Integrating the Real-World into the Web. PhD thesis, ETH Zurich,
Zurich, Switzerland, 2011.

[GWYL05] Buğra Gedik, Kun-Lung Wu, Philip S. Yu, and Ling Liu. Adaptive
load shedding for windowed stream joins. In Proceedings of the
14th ACM International Conference on Information and Knowledge
Management, CIKM ’05, pages 171–178. ACM, 2005.

[HAG+09] Martin Hirzel, Henrique Andrade, Buğra Gedik, Vibhore Kumar,
Howard Nasgaard, Giuliano Losa, Mark Mendell, Robert Soulé,
and Kun-Lung Wu. Spl stream processing language specification.
Technical Report RC24 897, IBM Research, 2009.

[HAG+13] Martin Hirzel, Henrique Andrade, Buğra Gedik, Gabriela Jacques-
Silva, Rohit Khandekar, Vibhore Kumar, Mark Mendell, Howard
Nasgaard, Scott Schneider, Robert Soulé, and Kun-Lung Wu. Ibm

181 Bibliography

streams processing language: Analyzing big data in motion. IBM
Journal of Research and Development, 57(3-4):1:7–1:7, 2013.

[HHE15] Christer Holmberg, Stefan Hakansson, and Goran A.P. Eriksson.
Web real-time communication use cases and requirements. RFC
7478, 2015.

[Hin10] Pieter Hintjens. ZeroMQ: The Guide, 2010. http://zguide.
zeromq.org/page:all.

[HN15] Maria Husmann and Moira C. Norrie. XD-MVC: Support for cross-
device development. In First International Workshop on Interacting
with Multi-Device Ecologies in the Wild, Cross-Surface 2015. ETH
Zürich, Switzerland, 2015.

[HPB+98] John H. Hartman, Larry L. Peterson, Andy Bavier, Peter A. Bigot,
Patrick Bridges, Brady Montz, Rob Piltz, Todd A Proebsting, and
Oliver Spatscheck. Joust: A Platform for Liquid Software. IEEE
Computer, 32:50–56, 1998.

[HSS+14] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra Gedik, and
Robert Grimm. A catalog of stream processing optimizations. ACM
Comput. Surv., 46(4):46:1–46:34, 2014.

[IBY+07] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis
Fetterly. Dryad: Distributed data-parallel programs from sequen-
tial building blocks. In Proceedings of the 2nd ACM SIGOPS/Eu-
roSys European Conference on Computer Systems 2007, EuroSys
’07, pages 59–72. ACM, 2007.

[IJHS14] Yuichi Igarashi, Kaustubh Joshi, Matti Hiltunen, and Richard
Schlichting. Vision: Towards an extensible app ecosystem for
home automation through cloud-offload. In Proceedings of the
Fifth International Workshop on Mobile Cloud Computing & Ser-
vices, MCS ’14, pages 35–39. ACM, 2014.

[JAF+06] Shawn R. Jeffery, Gustavo Alonso, Michael J. Franklin, Wei Hong,
and Jennifer Widom. A pipelined framework for online cleaning
of sensor data streams. In 22nd International Conference on Data
Engineering, ICDE’06, pages 140–152, 2006.

http://zguide.zeromq.org/page:all
http://zguide.zeromq.org/page:all

182 Bibliography

[JBA08] Anton Jansen, Jan Bosch, and Paris Avgeriou. Documenting af-
ter the fact: Recovering architectural design decisions. Journal of
Systems and Software, pages 536–557, 2008.

[KAH+12] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and Xin-
wen Zhang. Thinkair: Dynamic resource allocation and parallel
execution in the cloud for mobile code offloading. In Proceedings
of the 2012 IEEE International Conference on Computer Communi-
cations, INFOCOM2012, pages 945–953, 2012.

[KAS+14] Vasvi Kakkad, Saeed Attar, Andrew E. Santosa, Alan Fekete, and
Bernhard Scholz. Curracurrong: a stream programming en-
vironment for wireless sensor networks. Softw., Pract. Exper.,
44(2):175–199, 2014.

[KCF15] Supun Kamburugamuve, Leif Christiansen, and Geoffrey C. Fox. A
framework for real time processing of sensor data in the cloud. J.
Sensors, 2015:468047:1–468047:11, 2015.

[KCS05] Vibhore Kumar, Brian F. Cooper, and Karsten Schwan. Distributed
stream management using utility-driven self-adaptive middle-
ware. In Second International Conference on Autonomic Computing,
ICAC’05, pages 3–14, June 2005.

[KDFS14] Vasvi Kakkad, Akon Dey, Alan Fekete, and Bernhard Scholz. Cur-
racurrong cloud: Stream processing in the cloud. In Workshops
Proceedings of the 30th International Conference on Data Engineer-
ing Workshops, ICDE 2014, pages 207–214, 2014.

[KG10] Ramkumar Krishnan and Jonathan Goldstein. A hitch-
hiker’s guide to microsoft streaminsight queries. http:
//go.microsoft.com/fwlink/?LinkID=196344&
clcid=0x409, June 2010.

[KL10] Karthik Kumar. and Yung-Hsiang Lu. Cloud computing for mo-
bile users: Can offloading computation save energy? Computer,
43(4):51–56, April 2010.

[KLvV06] Philippe Kruchten, Patricia Lago, and Hans van Vliet. Building up
and reasoning about architectural knowledge. In Proceedings of
the Second international conference on Quality of Software Architec-
tures, pages 43–58, 2006.

http://go.microsoft.com/fwlink/?LinkID=196344&clcid=0x409
http://go.microsoft.com/fwlink/?LinkID=196344&clcid=0x409
http://go.microsoft.com/fwlink/?LinkID=196344&clcid=0x409

183 Bibliography

[Kov13] Matthias Kovatsch. Coap for the web of things: From tiny
resource-constrained devices to the web browser. In Proceedings
of the 2013 ACM Conference on Pervasive and Ubiquitous Comput-
ing Adjunct Publication, UbiComp ’13 Adjunct, pages 1495–1504.
ACM, 2013.

[KPKB12] Roelof Kemp, Nicholas Palmer, Thilo Kielmann, and Henri Bal.
Cuckoo: A computation offloading framework for smartphones.
In Mobile Computing, Applications, and Services, volume 76 of Lec-
ture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, pages 59–79. Springer Berlin
Heidelberg, 2012.

[KR70] Werner Kunz and Horst WJ Rittel. Issues as elements of information
systems, volume 131. University of California Berkeley, California,
1970.

[KSV13] Dharmesh Kakadia, Prasad Saripalli, and Vasudeva Varma. Mecca:
Mobile, efficient cloud computing workload adoption framework
using scheduler customization and workload migration decisions.
In Proceedings of the First International Workshop on Mobile Cloud
Computing & Networking, MobileCloud ’13, pages 41–46. ACM,
2013.

[Lan01] Marc Langheinrich. Privacy by design - principles of privacy-aware
ubiquitous systems. In Proceedings of the 3rd International Confer-
ence on Ubiquitous Computing, UbiComp 2001, pages 273–291.
Springer-Verlag, 2001.

[LCBR02] Marc Langheinrich, Vlad Coroama, Jürgen Bohn, and Michael
Rohs. As we may live – real-world implications of ubiquitous com-
puting. Technical Report, 2002.

[LLX+11] Yan Liu, Xin Liang, Lingzhi Xu, Mark Staples, and Liming Zhu.
Composing enterprise mashup components and services using ar-
chitecture integration patterns. Journal of Systems and Software,
84(9):1436–1446, 2011.

[LQX+16] Wei Lin, Zhengping Qian, Junwei Xu, Sen Yang, Jingren Zhou, and
Lidong Zhou. Streamscope: Continuous reliable distributed pro-
cessing of big data streams. In Proceedings of the 13th USENIX Sym-

184 Bibliography

posium on Networked Systems Design and Implementation, NSDI 16,
pages 439–453. USENIX Association, 2016.

[MAK07] René Müller, Gustavo Alonso, and Donald Kossmann. Swissqm:
Next generation data processing in sensor networks. In Proceed-
ings of the Third Biennial Conference on Innovative Data Systems
Research, CIDR 2007, pages 1–9, 2007.

[McK98] George McKay. DiY Culture: Party & Protest in Nineties Britain.
Verso, 1998.

[Mei11] Erik Meijer. The world according to linq. Commun. ACM,
54(10):45–51, October 2011.

[MRX08] Satyajayant Misra, Martin Reisslein, and Guoliang Xue. A survey
of multimedia streaming in wireless sensor networks. Communi-
cations Surveys & Tutorials, IEEE, 10(4):18–39, 2008.

[MSP15] Tommi Mikkonen, Kari Systa, and Cesare Pautasso. Towards liquid
web applications. In Proceedings of the 15th International Confer-
ence on Web Engineering, ICWE 2015, pages 134–143. Springer,
2015.

[MWA+03] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock,
Shivnath Babu, Mayur Datar, Gurmeet Manku, Chris Olston, Justin
Rosenstein, and Rohit Varma. Query processing, resource manage-
ment, and approximation in a data stream management system.
In Proceedings of the First Biennial Conference on Innovative Data
Systems Research, CIDR2003, pages 245–256, 2003.

[Nav15] Davide Nava. Stateful operators for dynamic streaming topologies.
Master’s thesis, University of Lugano, Switzerland, 2015.

[NDK+03] Suman Nath, Amol Deshpande, Yan Ke, Phillip B. Gibbons, Brad
Karp, and Srinivasan Seshan. Irisnet: An architecture for internet-
scale sensing services. In Proceedings of the 29th International
Conference on Very Large Data Bases - Volume 29, VLDB ’03, pages
1137–1140. VLDB Endowment, 2003.

[nod13] Node-red, 2013. http://nodered.org/.

http://nodered.org/

185 Bibliography

[NRNK10] Leonardo Neumeyer, Bruce Robbins, Anish Nair, and Anand Ke-
sari. S4: Distributed stream computing platform. In Proceedings
of the 2010 IEEE International Conference on Data Mining Work-
shops, ICDMW ’10, pages 170–177. IEEE Computer Society, 2010.

[PdABL+13] Ricardo Aparecido Perez de Almeida, Michael Blackstock, Rodger
Lea, Roberto Calderon, Antonio Francisco do Prado, and He-
lio Crestana Guardia. Thing broker: A twitter for things. In
Proceedings of the 2013 ACM Conference on Pervasive and Ubiqui-
tous Computing Adjunct Publication, UbiComp ’13 Adjunct, pages
1545–1554. ACM, 2013.

[PDGQ05] Rob Pike, Sean Dorward, Robert Griesemer, and Sean Quinlan.
Interpreting the data: Parallel analysis with sawzall. Sci. Program.,
13(4):277–298, October 2005.

[Pea09] Siani Pearson. Taking account of privacy when designing cloud
computing services. In Proceedings of the 2009 ICSE Workshop on
Software Engineering Challenges of Cloud Computing, CLOUD ’09,
pages 44–52. IEEE Computer Society, 2009.

[QHS+13] Zhengping Qian, Yong He, Chunzhi Su, Zhuojie Wu, Hongyu
Zhu, Taizhi Zhang, Lidong Zhou, Yuan Yu, and Zheng Zhang.
Timestream: Reliable stream computation in the cloud. In Pro-
ceedings of the 8th ACM European Conference on Computer Systems,
EuroSys ’13, pages 1–14. ACM, 2013.

[RCH+04] Tom Rodden, Andy Crabtree, Terry Hemmings, Boriana Koleva,
Jan Humble, Karl-Petter Akesson, and Pär Hansson. Between the
dazzle of a new building and its eventual corpse: Assembling the
ubiquitous home. In Proceedings of the 5th Conference on Designing
Interactive Systems: Processes, Practices, Methods, and Techniques,
DIS ’04, pages 71–80. ACM, 2004.

[RCTSR12] Pedro Rodríguez, Javier Cerviño, Irena Trajkovska, and Joaquin
Salvachua Rodriguez. Advanced Videoconferencing Services
Based on WebRTC. In Proceedings of the 2012 International Con-
ference on Web Based Communities, pages 180–184, 2012.

[sam14] Apache samza. http://samza.incubator.apache.
org, 2014.

http://samza.incubator.apache.org
http://samza.incubator.apache.org

186 Bibliography

[SCCH13] Matthias J. Sax, Malu Castellanos, Qiming Chen, and Meichun
Hsu. Performance optimization for distributed intra-node-parallel
streaming systems. In Proceedings of the 2014 IEEE 30th Inter-
national Conference on Data Engineering Workshops, ICDE2014,
pages 62–69. IEEE Computer Society, 2013.

[SFBS12] Frederick Steinke, Tobias Fritsch, Daniel Brem, and Svenja Simon-
sen. Requirement of aal systems: Older persons’ trust in sensors
and characteristics of aal technologies. In Proceedings of the 5th In-
ternational Conference on Pervasive Technologies Related to Assistive
Environments, PETRA ’12, pages 15:1–15:6. ACM, 2012.

[SPGV07] Jesper H. Spring, Jean Privat, Rachid Guerraoui, and Jan Vitek.
Streamflex: High-throughput stream programming in java. In Pro-
ceedings of the 22nd Annual ACM SIGPLAN Conference on Object-
oriented Programming Systems and Applications, OOPSLA ’07,
pages 211–228. ACM, 2007.

[sto11] Storm, distributed and fault-tolerant realtime computation, 2011.
http://storm-project.net/.

[Sun88] Sun Microsystems, Inc. RPC: Remote Procedure Call Protocol
Specification Version 2. RFC 1057, RFC Editor, 1988.

[TCE+10] Peter Tolmie, Andy Crabtree, Stefan Egglestone, Jan Humble,
Chris Greenhalgh, and Tom Rodden. Digital plumbing: The mun-
dane work of deploying ubicomp in the home. Personal Ubiquitous
Comput., 14(3):181–196, 2010.

[TKA02] William Thies, Michal Karczmarek, and Saman P. Amarasinghe.
Streamit: A language for streaming applications. In Proceedings
of the 11th International Conference on Compiler Construction, CC
’02, pages 179–196. Springer-Verlag, 2002.

[TM17] Antero Taivalsaari and Tommi Mikkonen. A roadmap to the pro-
grammable world: Software challenges in the iot era. IEEE Soft-
ware, 34(1):72–80, 2017.

[TMS14] Antero Taivalsaari, Tommi Mikkonen, and Kari Systä. Liquid soft-
ware manifesto: The era of multiple device ownership and its im-
plications for software architecture. In Proceedings of the 2014

http://storm-project.net/

187 Bibliography

IEEE 38th Annual Computer Software and Applications Conference,
COMPSAC ’14, pages 338–343. IEEE Computer Society, 2014.

[VJWS13] Christian Vogt, Max Jonas Werner, and Thomas C. Schmidt.
Content-centric User Networks: WebRTC as a Path to Name-based
Publishing. In Proceedings of the 21st IEEE International Conference
on Network Protocols (ICNP), pages 1–3. IEEEPress, 2013.

[VWS13] Christian Vogt, Max Jonas Werner, and Thomas C. Schmidt. Lever-
aging WebRTC for P2P Content Distribution in Web Browsers. In
Proceedings of the 21st IEEE International Conference on Network
Protocols, ICNP, pages 1–2. IEEEPress, 2013.

[YIF+08] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlings-
son, Pradeep Kumar Gunda, and Jon Currey. Dryadlinq: A system
for general-purpose distributed data-parallel computing using a
high-level language. In Proceedings of the 8th USENIX Conference
on Operating Systems Design and Implementation, OSDI’08, pages
1–14. USENIX Association, 2008.

[ZBW+12] Jingren Zhou, Nicolas Bruno, Ming-Chuan Wu, Per-Ake Larson,
Ronnie Chaiken, and Darren Shakib. Scope: parallel databases
meet mapreduce. The VLDB Journal, 21(5):611–636, 2012.

[ZDL+12] Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, and
Ion Stoica. Discretized streams: An efficient and fault-tolerant
model for stream processing on large clusters. In Proceedings of
the 4th USENIX Conference on Hot Topics in Cloud Ccomputing, Hot-
Cloud’12, pages 10–16. USENIX Association, 2012.

[ZRN08] Nan Zang, Mary Beth Rosson, and Vincent Nasser. Mashups: who?
what? why? In Proceedings of the 2008 CHI Conference on Human
Factors in Computing Systems, CHI2008, pages 3171–3176. ACM,
2008.

[ZSC+03] Stanley B. Zdonik, Michael Stonebraker, Mitch Cherniack, Ugur
Çetintemel, Magdalena Balazinska, and Hari Balakrishnan. The
aurora and medusa projects. IEEE Data Eng. Bull., 26(1):3–10,
2003.

[ZWW13] Weiwen Zhang, Yonggang Wen, and Dapeng Oliver Wu. Energy-
efficient scheduling policy for collaborative execution in mobile

188 Bibliography

cloud computing. In Proceedings of the 2013 IEEE International
Conference on Computer Communications, INFOCOM2013, pages
190–194, 2013.

	Contents
	List of Figures
	List of Tables
	I Prologue
	Introduction
	The Web of Things
	Data Streams and the Web
	Liquid Software
	Motivation
	Thesis Statement

	Contributions
	Outline

	Related Work
	The Stream Connector
	Defining the Stream Software Connector
	Stream Processing Systems and Languages Surveyed
	Survey Methodology
	Design-Time
	Run-Time
	Outlook
	Stream Optimisations

	Streaming on the Web of Things
	Wireless Sensor Networks
	Liquid Software Architecture
	Mobile/Cloud

	II Web Liquid Streams
	The Web Liquid Streams Framework
	Introduction
	The Liquid Software Metaphor in WLS

	System Model
	Developing Operator Scripts
	Deploying a Streaming Topology
	Command Line Interface
	Topology Description File

	RESTful API
	Resources
	Uniform Interface
	Representations

	Graphical User Interface
	Use Cases
	New Peer Joins the Network
	Setting up a Topology with a Topology Description File
	Using Web Browsers to run Operators
	Perform a new Binding
	Load Balancing through the REST API

	The Web Liquid Streams Runtime
	The WLS Communication Layers
	Command Layer
	Stream Layer

	Peer Infrastructure
	Web Server Peer
	Minified Web Server Peer
	Web Browser Peer

	Operator Infrastructure
	Web Server Operator Pool
	Web Browser Operator Pool
	Web Server Worker Pool
	Web Browser Worker Pool

	Topology Creation and Dynamic Evolution
	Stateful Operators
	Overview
	Redis
	Implementation

	Summary

	The Control Infrastructure
	Controller Use Cases
	Operator Migration
	Peer Failure
	Root Peer Failure
	Lack of Resources for Parallelisation
	Lack of Peers for Deployment

	The Controller Tasks and Constraints
	Automatic Deployment
	Load Balancing
	Operator Migration
	Disconnection Handling

	Implementation
	Global Controller Implementation
	Web Server Local Controller Implementation
	Web Browser Local Controller Implementation
	Ranking Function

	III Evaluation
	Application Case Studies
	Study Week in Informatics
	Lessons learned

	Inforte Seminar on Software Technologies and Development for Multi-Device Environments
	Lessons learned

	WLS as a Mashup Tool
	Lessons learned

	Software Atelier 3: The Web – Home Automation System Project
	Lessons learned

	Experimentelle Evaluation des Web Liquid Streams-Framework
	Lessons Learned

	Performance Evaluation
	Overview
	Metrics
	Operator Migration and Disconnection Recovery
	Elastic Parallelisation Experiment
	Global Controller Algorithm
	Web Browser Local Controller and Fine-tuning
	1 Failure
	N-Failures
	Summary

	IV Epilogue
	Conclusion
	Future Work

	Bibliography

