
ADkwik: Web 2.0 Collaboration System for Architectural Decision Engineering

Nelly Schuster, Olaf Zimmermann, Cesare Pautasso
IBM Zurich Research Laboratory, Säumerstrasse 4, 8803 Rüschlikon, Switzerland

{nes, olz, cpa}@zurich.ibm.com

Abstract

Capturing and sharing software architecture design
rationale has always been particularly challenging in
complex application domains such as enterprise com-
puting. Facing the ongoing acceleration of technology
innovation and economic forces such as outsourcing
and offshoring, conservative knowledge management
practices and existing tools are no longer sufficient,
offering only rudimentary support for knowledge ex-
change and collaboration on the Internet. In this pa-
per, we present ADkwik, a Web 2.0 collaboration system
supporting the cooperative decision making work of
software architects. We describe the realization of
ADkwik as a situational application wiki and discuss
initial evaluation results. Thanks to its ease of use,
ADkwik has already shown concrete benefits to its users,
including rapid team orientation, tangible decision
making advice, and simplification of asset harvesting.

1. Introduction
Architectural decisions capture the rationale behind

software architecture design. In current practice, this
knowledge is tacit and rarely captured explicitly [1].
However, an explicit knowledge engineering approach
to architectural decision capturing is beneficial, e.g., to
attain regulatory compliance. Governance and maturi-
ty models such as Capability Maturity Model Integra-
tion (CMMI) desire architectural decisions to be captu-
red and archived along with justifications.

A second motivation for explicit decision capturing
is team collaboration. On large software development
projects (e.g., in enterprise computing), architectural
decision making is a team effort. Typically a lead ar-
chitect has the overall technical responsibility, but de-
legates certain decisions to subsystem architects, chief
developers, and platform specialists. Communication
problems between these roles occur frequently; it is
challenging to reach a shared view and a consensus
over the architecture. This is even more difficult to
achieve due to the current offshoring and outsourcing

trends; more and more development teams are geo-
graphically distributed.

A third motivator for architectural decision captu-
ring is reuse. A vast amount of architectural know-
ledge exists in practitioner networks such as company-
wide Community of Practice (CoP) networks [2].
Often architectural knowledge is tacit or embedded in
code. If documented at all, it resides in inappropriate,
therefore rarely visited data stores such as personal
mail archives and poorly structured team repositories.

In response to the regulatory compliance require-
ments, the need for collaboration during architectural
decision making and the opportunities for reuse of ar-
chitecture design rationale in CoPs, we have started to
apply architectural decision trees as a fine-grained unit
of knowledge exchange within and between project
teams [3]. In this paper, we present how such a know-
ledge exchange can be facilitated by ADkwik

1, a Web
2.0 collaboration system supporting the cooperative
work of software architects. ADkwik embeds a rich do-
main model into a situational application wiki, with the
goal of making it easy for practitioners to share their
knowledge about architectural decisions across project
boundaries. The system is in use within a small com-
munity of software architects already. Their feedback
has shown us the benefits of the approach, in terms of
the acceleration of project initiation (team orientation),
improvement of decision making quality, and simpli-
fication of project result sharing (asset harvesting).
Users have also pointed out critical success factors:
ease of use and dealing with extreme change dynamics.

The remainder of this paper is structured as follows:
Section 2 introduces the context of this work and pre-
sents related work. Section 3 gathers requirements for
ADkwik. Section 4 discusses the knowledge engineering
aspects of ADkwik, while Section 5 focuses on its
architecture and implementation. Section 6 presents
our preliminary evaluation; Section 7 concludes the
paper.

1 ADkwik stands for “Architectural Decision Knowledge Web
Interchange Kit” and pronounces “AD-quick”.

255

2. Background and Related Work
In the 1990s, Design Decision Rationale (DDR)

research [4] proposed techniques such as QOC dia-
grams [5] structuring the decision making process for
the general design process of software systems and hu-
man-computer interfaces. Knowledge-Based Software
Engineering (KBSE) proposals such as Argo [6]
stressed that tools for designers should support their
cognitive needs such as “Reflection in Action, Op-
portunistic Design, Comprehension and Problem Sol-
ving”. To achieve this, a “Managed To Do List” was
seen as one of several key features. At that time, the re-
gulatory compliance and team collaboration forces
were not as dominating as today; therefore, aspects
specific to these forces were not addressed. Furthermo-
re, DDR and KBSE did not provide any support speci-
fic to architectural decision modeling.

Recently, the DDR ideas were revived and applied
to the particular domain of architectural design decisi-
ons [7][8]. Each decision describes a concrete, atomic
design issue for which several alternate solutions with
pros and cons exist. Examples for such decisions in-
clude: selection of programming language and tools
for any development project, of communication proto-
cols in client-server environments, of architectural pat-
terns [9] in certain application domains, and of highly
available network topologies in enterprise computing.
In general, we defined architectural decisions as “con-
scious design decisions concerning a software system
as a whole, or one or more of its core components” [3].
Many inhibitors for capturing such decisions have
been reported, including no appreciation from project
sponsors and missing short-term benefits, as well as
lack of time, budget, and tool support [10]. Several ar-
chitectural decision capturing tools have been pro-
posed [11][12]. For example, PAKME [13] is the
prototype of an architecture knowledge management
system implemented on top of an existing groupware
platform. It uses 25 tables to capture various forms of
architectural artifacts, including design rationale.
PAKME is populated from patterns repositories and
the literature.

As potential building blocks for our solution, we
also evaluated existing assets such as the Eclipse-based
Architects’ Workbench (AWB) [4], UML tools, plain
HTML and wiki technologies. None of these met all of
our requirements. Due to its powerful refactoring
capabilities, AWB is well suited for architectural deci-
sion content capturing; it can generate reports, thus
addressing the regulatory compliance issues. However,
it was not designed for knowledge exchange and team
collaboration over the Internet. UML tools are strong
in capturing analysis- and design-level structure
models such as use cases, class, activity, and sequence

diagrams; they fall short when it comes to modeling
knowledge comprising of text, often semi-structured,
combined with other formats, e.g., images and Web
links, that motivate and justify the rationale behind the
designs captured in UML models.

Plain HTML and standard wiki engines provide fle-
xible human user interfaces when designed and confi-
gured appropriately. One advantage is that many de-
velopment projects already use plain wikis for collabo-
ration and information sharing. Still, using plain wikis
does not fully meet our needs. First, no explicit domain
model exists since the content is left unstructured and
blended with presentation elements in HTML or wiki
code. Furthermore, there is no API to access the con-
tent apart from the HTML data sent to the browser via
HTTP. Thus, it is difficult to populate the system from
third party software, or to extract any well-structured
knowledge content for further automatic processing.

3. Requirements and Use Cases
We believe that a lack of collaboration and syste-

matic knowledge reuse features are key deficiencies of
existing approaches. Unlike passive knowledge bases,
we aim to guide the user through the content in the
spirit of Argo’s Managed To Do List, providing team
orientation. This To Do list should be organized accor-
ding to domain-specific engagement types and pat-
terns, e.g., business process integration in enterprise
computing. To keep its value, the knowledge base
must be updated continuously with new decisions, ex-
periences, and rationale gathered both on successful
and failed projects. We refer to this collaborative
knowledge maintenance activity as asset harvesting.

In response to these shortcomings, we propose
ADkwik, a Web-centric collaboration system, providing
explicit support for sharing and reusing knowledge ele-
ments from the domain of architectural decision
capturing. We see the following use cases for ADkwik:

Obtain architectural knowledge, captured in
decision models, from other projects and CoP.
Tailor imported decision models according to
project-specific needs, e.g., filtering content.
Involve experts from other projects and CoP
leaders when looking for advice.
Manage dependencies between correlated de-
cisions automatically to guide the user.
Share gained architectural knowledge with
other projects and CoP (after sanitization).

Discussion and interaction support, e.g., via email,
comments and issue tracking, document management,
and versioning are additional functional requirements
shared with existing wiki-like collaboration systems.
Integration with other tools is also an important factor
to ease the adoption of ADkwik. An Application Pro-

256

gramming Interface (API) should be provided so that
import and export mechanisms to automatically po-
pulate the ADkwik content repository can be built, e.g.,
from requirements management systems and UML
design tools. The system must be highly usable, as
practitioners do not appreciate having to work with yet
another tool to fulfill extra obligations. It must be intu-
itive to browse the content, and users should be attract-
ted to contribute new knowledge. User management,
including simple workflow and basic security support
(authentication, authorization) is required if decision
making responsibilities are shared within the team. A
thin client eases deployment and remote access.

4. Knowledge Engineering in ADkwik

In this section we present ADkwik from the user’s
point of view, both including an overview of its do-
main model and also briefly describing the most im-
portant features of the user interface. For the organiza-
tion of the knowledge content in ADkwik, the main
elements of the domain model are: Architectural Deci-
sion (AD), ADAlternative, ADOutcome, and ADTopic.
AD is the core entity describing the context of a decisi-
on including decision drivers [3] and relationships with
other decisions [8]. ADAlternative instances present
solution design options for ADs with their pros and
cons. ADOutcome elements record the selection of
ADAlternatives and the justification for decisions.
ADTopic is a simple hierarchical grouping construct.
We also define three ADLevels of abstraction in our
domain model: conceptual, technology, and assets.

To give an example: on the conceptual level, the
choice of programming language and runtime plat-
forms such as application servers and databases are
among the key executive decisions according to the on-
tology defined in [8]. A screenshot with this exemplary
decision is shown in Figure 1. Several of the domain
model elements, e.g., an AD (here: “Platform And
Language Preferences”) are visible at first glance (1).
Applying the master-details pattern, ADs can be
browsed using the hierarchical ADLevel/ADTopic
Explorer (2). Clicking on entries then displays the
details about the AD and its ADAlternatives in the
main window (1,3). The breadcrumb pattern provides
additional means of orientation, flattening the ADTo-
pic hierarchy into a link list (4). The knowledge is
organized and displayed in a hierarchical structure (2),
but also tagged to enable searches (5).

The same user interface can be used for decision
identification, decision making, and decision enforce-
ment in a development team: Rather than identifying
decisions from scratch, an initial set can be imported,
e.g., from AWB, realizing the Obtain use case (6);
export features also exist, supporting the Share use
case (6). Decision drivers (forces) provide basic de-
cision making support (1); more detailed do-
cumentation including scoring spreadsheets and DDR
QOC diagrams can be attached to the page. ADs carry
owner and status information to further facilitate team
collaboration (7). In support of the Involve use case,
there are literature links (8). The domain model is sha-
red between projects so that knowledge can be ex-
changed, e.g., via generated e-mails.

Fig. 1. User interface of ADkwik: ADTopic Explorer as master, detail views organized according to domain model

ADLevel/
ADTopic
Explorer

as AD master
(2)

Team collaboration (7)

Literature links (8)

Dependencies (9)

Architectural Decision
(AD) details (1)

ADAlternative
master/
details (3)

ADTopic
breadcrumbs
(4)

Import/export and other project-level operations (6)Search via tags (5)

257

ADs can be related to each other. Dependencies
between them are shown (9), e.g., “Tooling Preferen-
ces”. For example it is no longer required to select
between C# and Visual Basic as a programming langu-
age if it has already been decided that .NET will not be
used as a platform. On the technology and asset level,
many more such constraining relationships exist, often
buried in vendor information and best practices docu-
ments. Explicit, fine-grained representation of decision
dependency relationships helps uncovering implicit
assumptions, contradictions, and implementation limi-
tations so that a more objective technical discussion
becomes possible (Manage use case). Active depen-
dency management leads to a more dynamic and
therefore up-to-date knowledge base than static content
repositories can provide, which is very important when
dealing with the complexity and change dynamics of
current enterprise computing environments. It also
helps attaining regulatory compliance.

5. Software Architecture of ADkwik

Conceptual Design. ADkwik combines the benefits of a
rich Web 2.0 front end [14] with those of the domain
model pattern from [9]. The use cases from Section 3
and the user interface design from Section 4 lead to a
logical decomposition as shown in Figure 2.

Fig. 2. High-level building blocks of ADkwik

There are four functional building blocks: Collabo-
ration Features, Decision Workflow, Content Reposi-
tory, and Dependency Management. A Domain Model
is orthogonal to these four building blocks. The Colla-
boration Features and Decision Workflow building
blocks realize the Obtain, Involve, and Share use
cases. The Content Repository provides Create, Read,
Update, Delete, and Search (CRUDS) operations for
the Domain Model elements.

Dependency Management structures the knowledge
into a graph. As opposed to a simple decision catalog,
the graph improves the user’s navigation across related
decisions and provides the basis for advanced features
such as context-specific, dynamic decision tree
morphing and what-if simulations.

An example of an abstract conceptual decision in
the Web services integration domain is the message
exchange pattern (request-response vs. one-way) [3],
which can be refined into a technology decision
dealing with Web Services Description Language
(WSDL) contract design (in and out message vs. in
message only), which in turn lead to two asset decisi-
ons (which SOAP engine and WSDL tool to use when
realizing the abstract pattern as a WSDL-described
service that can be invoked via SOAP). These decision
dependencies modify the asset-level To Do List for the
user depending on the outcome of the conceptual and
the technology decisions.

To refine this functional view into a logical compo-
nent model we use logical layering [9] as our gover-
ning architectural pattern. The three layers of ADkwik
are: Presentation, Domain, and Persistence Layer (Fi-
gure 3). The Presentation Layer supports all functional
building blocks, e.g., Collaboration Features. Blogs
and feeds from vendor forums such as IBM developer-
Works [15] and industry thought leaders [16] can be
integrated here without development effort. Dependen-
cy Management and Decision Workflow are key Do-
main Layer responsibilities. The Persistence Layer im-
plements the Content Repository as a Relational Da-
tabase Management System (RDBMS); hence, the full
power of the RDBMS technology can be leveraged,
e.g., for reporting purposes during technical audits (in
response to the regulatory requirements). The Domain
Model affects all layers: each model element is re-
presented by one user interface component, related do-
main layer logic, and a corresponding database entity.

Implementation. The design of ADkwik resembles tra-
ditional enterprise application architectures. However,
using wiki technology as the presentation layer of such
an enterprise application is a new approach requiring
an application wiki rather than a plain wiki engine.
Application wikis extend the user and page mana-
gement capabilities of plain wikis with application
server features and a mash-up API. This allows us to
create and manage content programmatically.

User Interface

Collaboration
Features

Dependency
Management

Decision
Workflow

Content
Repository

Domain Model

258

More specifically, ADkwik is implemented in a situ-
ational application and Web 2.0 mashup environment
called QEDWiki [14]. QEDWiki can be characterized
as a hybrid wiki engine and PHP application server,
providing access to incoming HTTP request data via a
command interface. QEDWiki extends the Zend PHP
Framework and uses the XAMPP distribution from
apachefriends.org. It includes the Apache HTTP server
and the MySQL RDBMS. HTTP server and QEDWiki
provide the required user management.

Through predefined commands, QEDWiki provides
out-of-the-box support for adding comments, attach-
ments, and email threads. We customized and extended
these commands to provide native support for our do-
main model, also using the Dojo JavaScript library in
order to provide a user experience as attractive as that
of rich clients. The domain layer – comprising the
model elements outlined in Section 3 – is implemented
in PHP. It accesses the persistence layer via the active
record pattern [9], requiring little coding effort. The
integration with other tools is realized via file import,
and a RESTful interface that can be accessed remotely
via HTTP.

6. Evaluation
ADkwik has knowledge acquisition and presentation

capabilities similar to, for example, PAKME [13].
ADkwik also provides support for dependency manage-
ment, decision workflow, and decision maker gui-
dance. Its initial content comes from large-scale indu-
stry projects conducted since 2001. Since then we have
updated the repository continuously with input from
additional projects and refactored it many times accor-
ding to the needs of practitioners [3]. At present,
ADkwik contains 130 decision nodes capturing reusable
knowledge about enterprise application architectures
and Web services integration.

We started to make the system available to selected
colleagues and clients in December 2006. To obtain
usability feedback, we conducted several workshops.
ADkwik already is in use within one industry project.
From these engagements, the initial user feedback
regarding the value and usability of ADkwik is en-
couraging: users appreciate that all knowledge required
during architectural decision making can be
conveniently located in a single place, and that the
system comes with a rich set of initial content. Despite
the large size of the decision space, early users
reported to be productive without major training
efforts. ADkwik leverages Web 2.0 application wiki
technologies; first users perceive the HTML-based
user interface to be compelling and well designed.
Thanks to the modeling and collaboration features, we
can already report improvements in the quality of the
decision making experienced by several ADkwik users.
For example, one architect consulting to an IBM client
in a SOA coach role reported that he could locate and
reuse detailed advice regarding 13 of 15 required deci-
sions related to the usage of Web services [3].

We also have received constructive criticism regar-
ding the challenges of modeling a large and complex
decision space facing a high degree of change.
Numerous new ADs and even more new
ADAlternatives become available almost on a daily
basis. If we aimed for completeness, just for enterprise
applications organized according to SOA principles,
we estimated that ADkwik would contain thousands of
decision nodes with numerous dependencies and alter-
natives. While this complexity is inherent to the pro-
blem domain, we run the risk of being criticized for
exposing it. However, experienced practitioners report
that they prefer to be made aware of this complexity
and to have a system that manages it collaboratively,
rather than to let the knowledge remain tacit and unma-

Domain Layer

Decision Workflow Component

Dependency Management Component

Versioning and Reporting Component

Persistence
Layer

Collaboration Component

Application W
ikiInfrastructure, API

Presentation
Layer

Decision-
WorkflowView

Dependency-
Management-

View

AdView

Collaboration-
View

NavigationView

ErrorHandlingComponent

LoggingComponent

SecurityComponent

AdData-
Source-

Component

Server-
Component

RDBMS Import/Export Component

Import/Export-
View

Content
Repository

 Fig. 3. Logical view on architecture of ADkwik, our Web 2.0 collaboration platform for architectural knowledge exchange

259

naged. As we further improve ADkwik based on the
feedback of this initial evaluation, we will continue the
usability studies on a larger scale.

7. Conclusion
In this paper, we described the conceptual design

and implementation of ADkwik, a Web-centric collabo-
ration platform for architecture knowledge capturing
and exchange. ADkwik supports five use cases, Obtain-
Tailor-Involve-Manage-Share. Its design employs both
domain modeling concepts and a layered architecture.
ADkwik features an API to populate the initial decision
model from existing requirements models, reference
architectures, and other community assets. The
presentation layer is a Web 2.0 application wiki facili-
tating community collaboration. The persistence layer
is implemented as a RDBMS so that database reports
can be generated to meet regulatory requirements.

Using Web 2.0 technology for team collaboration
and project internal documentation purposes is state-
of-the-practice; layered software architectures and do-
main modeling are known concepts as well. We com-
bine these technologies in a novel way, and apply them
to the domain of architectural decision knowledge ex-
change. Key features of the ADkwik knowledge mana-
gement approach include pre-population of content, a
rich domain model with decision relationship
management, support for collaborative decision
making, and project result sharing over the Internet.
ADkwik has been tested by a small number of early
adopters. Extended user tests are planned already.

A critical success factor for ADkwik is to create
incentives for users to contribute, not only consume,
content, which according to our experience has been a
challenge for many industrial knowledge management
approaches in the past. Through close contacts with
practicing architects, e.g., via a CoP, we have con-
tinuous access to up-to-date project results and lessons
learned which have to be quality assured and generali-
zed before they can be added to the knowledge base.
Architectural decision engineering is a broad, complex,
and continuously changing domain. Therefore, keeping
the organization of the hierarchical classification of the
decision space consistent and manageable is another
important factor for future success.

Future research work will investigate additional
use cases. For instance, we plan to study design space
pruning and recommendation making algorithms.
When team collaboration support becomes available
on top of the Eclipse platform, additional integration
opportunities will arise. Improving usability even
further is another focus area. Finally, we are interested
in the interdisciplinary aspects of architectural decision
making. For instance, will investigate the relationship

of architectural decision knowledge with project mana-
gement concerns such as effort estimations, status
reporting, and work breakdown structure creation.

References
[1] Tyree, J., Akerman, A., Architecture Decisions:
Demystifying Architecture, IEEE Software, 22 (2005)
[2] Gongla P., Rizzuto C.R., Evolving Communities of
Practice: IBM Global Services Experience, IBM
Systems Journal Vol. 40, 4/2001
[3] Zimmermann O., Koehler J., Leymann F., The
Role of Architectural Decisions in Model-Driven
Service-Oriented Architecture Construction,
Workshop on Best Practices and Methodologies in
SOA, OOPSLA 2006
[4] Lee J., Lai, K, What's in Design Rationale?,
Human-Computer Interaction, 6(3&4), 1991
[5] MacLean A., Young R., Bellotti V., and Moran T.,
Questions, Options, and Criteria: Elements of Design
Space Analysis, Human-Computer Interaction, 6
(3&4), 1991
[6] Robbins J. E. , Hilbert D. M. , and Redmiles D. F.:
Extending Design Environments to Software Architec-
ture Design, KBSE 1996
[7] Farenhorst R., de Boer R., Deckers R., Lago P.,
van Vliet H., What’s in a Domain Model for Sharing
Architectural Knowledge?, SEKE 2006
[8] Kruchten P., Lago P., van Vliet H, Building Up and
Reasoning About Architectural Knowledge, QOSA
2006
[9] Fowler M., Patterns of Enterprise Application
Architecture, Addison Wesley 2003
[10] Tang W., Ali Babar M., Gorton I., Han J., A
Survey of the Use and Documentation of Architecture
Design Rationale, WICSA 2005
[11] Abrams S. et al, Architectural thinking and
modeling with the Architects' Workbench, IBM
Systems Journal Vol. 45, 3/2006
[12] Jansen A., Bosch, J., Software Architecture as a
Set of Architectural Design Decisions, WICSA 2005
[13] Ali Babar M., Gorton I., Jeffery R., Capturing and
Using Software Architecture Knowledge for Architec-
ture-Based Software Development, QSIC 2005
[14] IBM QEDWiki,
http://services.alphaworks.ibm.com/qedwiki
[15] IBM developerWorks,
http://www.ibm.com/developerworks
[16] Booch G., Handbook of Software Architecture,
http://www.booch.com/architecture

260

