From OpenAPI Fragments to
API Pattern Primitives and Design Smells

Souhaila Serbout
Software Institute, USI
Lugano, Switzerland
souhaila.serbout@usi.ch

Uwe Zdun
University of Vienna, Faculty of Computer Science,
Software Architecture Research Group
Vienna, Austria

ABSTRACT

In the past few years, the OpenAPI Specification (OAS) has emerged
as a standard description language for accurately modeling Web
APIs. Today, thousands of OpenAPI descriptions can be found by
mining open source repositories. In this paper, we attempt to exploit
these artifacts to extract commonly occurring building blocks used
in Web API structures, in order to assist Web API designers in their
modelling task. Our work is based on a fragmentation mechanism,
that starts from OpenAPI descriptions of Web APIs to extract their
structures, then fragment these structures into smaller blocks. This
approach enabled us to extract a large dataset of reoccurring frag-
ments from a collection of 6619 API specifications. Such fragments
have been found multiple times in the same or across different APIs.
We have classified the most reoccurring fragments into four pattern
primitives used to expose in the API access to collections of items.
We distinguish for each primitive variants from design smells. This
classification is based on the specific combinations of operations
associated with the collection items and on an in-depth analysis of
their natural language labels and descriptions. The resulting pattern
primitives are intended to support designers who would like to in-
troduce one or more collections for a specific class of items in their
HTTP-based APL

CCS CONCEPTS

- Software and its engineering — Patterns; Designing software.

ACM Reference Format:

Souhaila Serbout, Cesare Pautasso, Uwe Zdun, and Olaf Zimmermann. 2021.
From OpenAPI Fragments to API Pattern Primitives and Design Smells.
In European Conference on Pattern Languages of Programs (EuroPLoP’21),
July 7-11, 2021, Graz, Austria. ACM, New York, NY, USA, 35 pages. https:
//doi.org/10.1145/3489449.3489998

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EuroPLoP’21, July 7-11, 2021, Graz, Austria

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8997-6/21/07...$15.00
https://doi.org/10.1145/3489449.3489998

Cesare Pautasso
Software Institute, USI
Lugano, Switzerland
c.pautasso@ieee.org

Olaf Zimmermann
University of Applied Sciences of Eastern Switzerland
Rapperswil, Switzerland

1 INTRODUCTION

Application Programming Interfaces (APIs) open up software archi-
tectures so that the resulting software system can be integrated with
external systems, developed at different times by different parties.
In this paper, out of many existing kinds of APIs, we focus on Web
APIs [3, 14, 17, 18, 21, 24] remotely accessible through the HT TP
protocol and described using the standard OpenAPI specification
language [22]. We do so because of the large number of API descrip-
tions using this language which can be retrieved by crawling open
source repositories (Figure 3). While the original purpose of Ope-
nAPI was to generate human-readable documentation, it can also
be used to generate interactive test clients, as well as client-side and
server-side stubs [1, 2, 11].

In this paper, we statically analyze a large collection of real-world
API descriptions looking for recurring structures that can play the
roles of pattern primitives [25] which can be composed to obtain
API design patterns [28]. In particular, we are interested in the re-
sources exposed by the HTTP API naming and in the relationship
between resource paths and the corresponding HT TP methods. This
information can be used by clients to invoke the corresponding
operations.

As shown in Figure 1, we started by crawling open-source code
repositories for API description documents that use the OpenAPI
specification. These documents are parsed and fed to a model from
which API structure trees can be extracted. These trees are then
fragmented, and the resulting fragments are matched to detect reoc-
curring ones. Finally, they are clustered to obtain known uses.

Our contributions include:

(1) A method to detect similar reoccurring API structures, which
takes into account natural language labels associated with each path
segment. This method can be also used to compare the structure of
different Web APIs.

(2) Acollection of widely used API fragments, with a quantitative
analysis about how frequently they occur across the same or different
real-world APIs.

(3) A collection of structural pattern primitives which have been
used as building blocks for HTTP-based APIs. In particular we se-
lected API structures used to provide API clients with access to
resource collections of related items (e.g., user accounts, purchase
orders and their items, computational jobs, blog posts and their
comments, videos or audio tracks).

(4) A classification of some design smells found across Web APIs.

https://doi.org/10.1145/3489449.3489998
https://doi.org/10.1145/3489449.3489998
https://doi.org/10.1145/3489449.3489998

EuroPLoP’21, July 7-11, 2021, Graz, Austria

GitHub Public Repositories

v

Crawler

API Specification Documents

OpenAPI Parser

API Model

API Structure Extraction

APITree

API Fragmentation

Labeled API Fragments

Matching and Clustering

API Structure Primitives

Selection

PR

API Patterns API Design Smells

Figure 1: API Analytics Pipeline: From API Specifications to
Patterns

(5) Two composition operators for assembling the pattern primi-
tives into larger API structures and a proposal for connecting them
with API design patterns and service contracts.

The remainder of this paper is structured as follows: In Section 2,
we first give an overview about the data set of OpenAPI documents
under study. Then we present our approach that consists of rep-
resenting APIs as trees based on their textual documentation. We
finally detail the fragmentation approach we followed in order to
extract common frequent structures that can be found across same or
different APIs. Section 3 presents our two-step clustering approach,
which takes into accounts both the structure and the semantic close-
ness between the labels sequences attached to the nodes of a specific
fragment. The collection of structural API pattern primitives is pre-
sented in Section 4. Section 5 provides two examples of how these
pattern primitives can be combined to form larger API structures.
It also demonstrates how the pattern primitives and fragments can
be mapped to architectural patterns and interface description lan-
guages. Section 6 and Section 7 cover related work and present the
threats to validity of our work. Finally in Section 8, we present our
conclusions.

2 FRAGMENTING APIS
2.1 APICollection Overview

We analyze technical API descriptions written in OpenAPI, a com-
monly used Interface Description Language (IDL) to specify the
functional characteristics of HT TP-based and RESTful APIs, as well
as selected non-functional ones (for instance, some security policies).

By mining public repositories shared on GitHub during December
2020 and January 2021, we collected a data set of 6919 API description
documents, with an average size of 22.8KB, including specifications
of some well-known APIs such as Twilio, Slack, Flickr APIs, Google
APIs, and Amazon APIs. All the APIs described in the descriptions
under study contain at least one method and one path. Because of
the lack of space, in this paper, we only include one visualization of
one of the largest API in the dataset (Figure 9), and other examples
of smaller APIs (Appendix A) to show how the detected primitives
are used as building blocks to construct the whole API’s structure.

The yearly distribution of the age of the OpenAPI documents in
our dataset is depicted in Figure 3. The horizontal axis refers to the
year of the last commit that updated the document.

2.1.1 OAS versions distribution. The collection studied in this work
contains 6619 OAS descriptions. 28.9% are written in OpenAPI 3.0
and 71.1% are written in Swagger 2.0, coming from more than 600
different providers.

The two versions are slightly different from each other on the
content level, but they both allow describing API structures with
almost the same level of granularity. In Figure 4, we describe the
main differences between the two versions. The numbers (1), (2),.., (9),
show the mappings between the sections of a description written in
OAS 2.0 and their corespondents in a description document written
in OAS 3.0. The first difference is in the servers details section. While
in OAS 2.0 it was possible to include only one endpoint for an API,
in OAS 3.0 it is allowed to include multiple server objects. Other
structural rearrangements have been done in OAS 3.0 in order to
increase the reusability of definitions, such as the inclusion of the
Components section, where securityDefinitions, schema definitions,
parameters, and responses are defined. In addition, in OAS 3.0 a
Component object can also contain callback descriptions, which
makes this version more efficient in describing asynchronous APIs.
Moreover, OAS 3.0 improved the description of the parameters and
supports more security schemes and bearer formats than OAS 2.0.

In our case, these differences between the two versions do not
impact the results of the structural analysis and the APIs fragments
extraction, because our study focused on the paths and methods
provided by APIs, which are described in both versions.

2.1.2 HTTP Methods usage. In Figure 2 we show an overview of
HTTP methods usage in a subset of the APIs under study. We clas-
sify APIs based on which HTTP methods they use following the
RESTful maturity model [7], which distinguishes L0) APIs that use
only one endpoint and one method from L1) APIs that use multiple
endpoints and still one method associated to each endpoint, and L2)
APIs which use multiple methods with multiple endpoints. Given the
lack of support for describing hypermedia in OpenAPI documents,
we are unable to distinguish the highest level of the maturity model
L3, which includes the APIs that make use of the REST principle
Hypermedia as the Engine of Application State (HATEOAS).

Number of Methods

From OpenAPI Fragments to
API Pattern Primitives and Design Smells

EuroPLoP’21, July 7-11, 2021, Graz, Austria

TTTT T T T T T T T T T TTT T T T TTT T T T T T TTT 5 N N N N N N N A |
B cer H HEAD [PosT M puT Ml DELETE Ml PATCH [] OPTIONS
300 - n
200 - N
ol I SO 0l 5 e g i s
N A O
EEEETEEEIEE LTS E P N eSS S S S IR P YT S Y S S R YEAS 5P 4L EUIIELSSEEIESDEsEsEEERE
EEEEESEEE 5852258039 E8dn g R & S LPEF 0 TEREESGER 898 =38528582 5088 EE A 8o E22 R E8%EE
SEESZEEg0 25T T 222 ZESEafEETi08f T 52E<S:ZEY Ziafs FE5 mE7E85270 EEPEEENECE ARl
§572E27E78 FYT TRESIEETossgcs § 6L ATED pisc B O25F 5% B R o CEETONESEE & i03% ¢ 352
225 SF 0 ZEEET EiR & 2 S 22 EERE T 77 g g2z £or TEEEEE T 2z 2 9%
S S8 5 2 &8 P 2 25 Q
s 8 58‘ ° ag E i< z = g £ %E <5 5 £ "é
API
Figure 2: API Collection Sample (sorted by Number of Paths)
Still, we can clearly see different types of APIs emerging if we OAS 2.0 : OAS 3.0
simply count how many HT TP methods are associated with each ¢ | : P
path enumerated in the API description (Figure 5). We have grouped =~ [———— Info : Info
the APIs into sets according to the HT TP method combinations they host | security @
use and depicted the results in the bar chart in Figure 5. The most 1| basePath | servers security
popular group makes use of the CRUD-like primitives of GET, PUT, 1 schemes | f securityDefinitionsT" -
POST, and DELETE. The second most popular group only uses the .
’ A pop g. P Y R o produces " consumes e .
read-only GET method. This is closely followed in terms of size, by : paths
the APIs which use only the GET or POST methods. Another group of ¢ paths :
similar size can be observed by combining CRUD APIs which do not a " @ - | m 9
B : : tags externalDoc . tags externa ocs!
use the PUT method (so they alias update and creation operations — gs__]| =cema oo - 9
un.der the same POST method) toget'herbwnh APIs which instead of : definitions : * | [calbacks re uestBodies |
using the PUT method they replace it with the PATCH method. The N lreeen
-) 1 parameters 1- schemas headers
next group includes the pure RPC APIs, which only use the POST 1 [
responses ' components

method. The last group worth mentioning is the ones that use all
five methods, which includes 442 APIs. The collection also includes
about 500 APIs with different method combinations, but of rather a
small size.

2.1.3 APl sizes distribution. Figure 6 presents an overview of the
size of the APIs in the same groups, measured with two different
metrics [8]: a) the number of pathslisted in the API description and b)

-10*
1 T]

0.5 — -
3,055
919 ’ D
L 1 l_Tl ;l l__\l [
2015 2016 2017 2018 2019 2020
Cumulative
Number of OAS documents D [J Number of OAS documents

Figure 3: Yearly distribution of the age of the OAS files
crawled from GitHub

Figure 4: Open API Specification Metamodel Versions: 2.0 vs
3.0

the nodes present in the API tree. The boxplots in Figure 6 represent
the distribution of the size measurements for each API. Overall, the

median values for the size of the APIs in the collection reach approx.

50 nodes and 20 paths.

2.2 Domain Concepts

In this work, we focus on analyzing the structures of Web APIs
with the goal of detecting APIs with similar structures. Due to the
granularity of API descriptions in OpenAPImodels, we could a create
tree model representation for each API in the collection, which we
call from now on API Tree. For lifting the level of abstraction of the
tree model, we unlabel all its nodes. We refer to the unlabeled tree
model as API Tree Structure.

In our analysis, we aim to detect repetitive tree fragments in the

API tree models. For that, we define an object called API Fragment,

a subtree of an API tree. As for an AP, the fragment also has an

unlabeled version, which we call henceforth Fragment Tree Structure.

EuroPLoP’21, July 7-11, 2021, Graz, Austria

‘ ‘ mPUT
HEAD —| |10 I \ O POST
GETOPTION — |10 * |
POSTPUT — |} 12 = | B PATCH
DELPOSTPUT —— |16 = | JOPTIONS
— DEL GET PATCH PUT —| 117 [|
Ay DEL GETHEAD POSTPUT —|— | 21 -] M HEAD
ﬁ DEL GET OPTION POST PUT —{ 122 [~ 1 B GET
ﬁ DEL GET HEAD OI’TIQN PATCH PO?TPUT - 123 [1 B DELETE
= GET PATCHPOSTPUT —{ | 29 = |
o rut B30 = |
g GETOPTIONPOST —|— |} 34 = 1
3 GeTpuT {77 - [
Q"_“ GETPATCHPOST — [l 85 * 1]
- pELGETPUT ——— 100 ~]
3 GETPOSTPUT —| [289 = ()|
= DEL GETPATCHPOSTPUT —| | 442 =) o |
% posT —{ N 448 . —
DELGETPATCHPOST —{ [449 = [s |
pELGETPOST ——— | 510 = [|
ceTposT | [1,080 = [—
GeT —| - I 1,106 - [
peLGeTPoSTPUT | [1,718 5 N |
| | | | | | | |
0 500 1,000 1,500 0 10,000 20,000 30,000
Number of APIs Total Number of Methods

Figure 5: API Method Combination Overview

After matching and filtering the set of API tree structures extracted
from the whole API collection under study, we obtained a list of
APIT structure primitives and another for API Structure smells, as
described in the domain concepts summary of Figure 7.

2.3 Representing the API Structure as a Tree

2.3.1 API Tree Model. We transform the textual documentation
related to the resources and the methods supported by the API into
atree data model, to represent the nesting relationships between the
API endpoint URIs, enumerated as paths in the OpenAPI specifica-
tion. This model has two purposes:

(1) It can be used to visualize the functional characteristics of
the APIs graphically, to provide a quick overview supporting the
understanding of the APIs structure.

(2) The second purpose of this tree data model, described in Fig-
ure 8, is to help to rapidly spot commonly used patterns by analyzing
reoccurring fragments found within a large set of APIs. The elements
colored in gray in Figure 8 are the ones being mapped to graphical
notations for being visualized in the API Tree representation.

An example of an API Tree model visualization is in Figure 9.
Each API operation, originally listed in the OpenAPI file, can be
enumerated by following the path from the root until reaching a leaf
of the tree. These later represent the HTTP methods, enumerated in
each path in the Open API description. The nodes within the tree
are labeled with the corresponding URI path segment and labeled
depending on the type of the path segment (Table 1). The types of
nodes are explained in Section 3.1.1.

Due to this graphical representation we can also visually detect a
repetitive usage of an API Fragment in an API. This same fragment
can also reoccur in other APIs, with different labels.

In Table 1, we summarize the notation used in our APIs Tree
visualization.

Table 1: API Tree notation

Name Notation | Signification

Root o The root of the API Tree.

Method Q The HTTP methods, where each
method has a specific color.

Static path segment L] Path segment with no parameter

Parametric path seg- | | Path segment with single {pa-

ment rameter}

Complex path seg-] Path segment mixing parame-

ment ters with static labels

2.3.2 OpenAPI to Tree model transformation. For explaining the
model transformation, responsible of producing the tree visualiza-
tion of the OpenAPI descriptions, we use the description example in
Listing 1, whichis an excerpt extracted from the OpenAPI description
of Apacta Web API whose API Tree is shown in Figure 9.

The path /cities only contains one path segment {1:cities}
labeled cities. In our transformation, each segment is transformed
to a PathSegment object (Figure 8). We always connect the first path
segment to the Root object @, an added graphical element which
helps to visualize the API model as a tree. The {1:cities} path seg-
ment has no in-path parameters, thus it is mapped to the static path
segment notation [] (Table 1). As a result, the obtained first portion

cities
of the tree is @] , where we label the path segment node
‘cities’. Moreover, the PathSegment object contains fields holding
some original information such as the summary, description and
the parameters information, for further usages. In this study, we
only distinguish between paths that are having in-path parameters

From OpenAPI Fragments to
API Pattern Primitives and Design Smells

EuroPLoP’21, July 7-11, 2021, Graz, Austria

HEAD |~
GET OPTION |~
POSTPUT |-
DELPOSTPUT |-
DEL GET PATCH PUT |~
DEL GET HEAD POST PUT |~
DEL GET OPTION POST PUT |
DEL GET HEAD OPTION PATCH POST PUT [~
GET PATCH POST PUT |~

puT |- |
GET OPTION POST [~
GETPUT |-
GET PATCH POST [~
DEL GETPUT |-
GETPOSTPUT |~
DEL GET PATCH POST PUT |

Methods Present in the API

POST |—

DEL GET PATCH POST |—
DEL GETPOST |~
GETPOST [~

GET [~

DEL GETPOST PUT |~

0 20 40 60

API Size (Number of Nodes)

80 100 O 10 20 30 40
API Size (Number of Paths)

Figure 6: API Method Combination Overview vs. API Size

e 7
API Tree APITS W

1 1701 J
(. J S

API Fragment TS

1.7

7 s 7
(Labels Sequence API Fragment

L 1.7 1 1.1
J N J

Pattern Primitive Variant Design Smell

Figure 7: Domain Concepts and their relations

and the one that don’t have them. However we plan to extend the
graphical visualization to include also the other type of parameters
and the responses details.

This path provides only one GET operation, which allows to
get a city by its zip code. The HTTP methods are transformed to
the Method object, which also keeps most of the original informa-
tion about the method, such as the summary, description, and the
response details. This Method object is mapped to the graphical

3 IS
Info Contact
>
0..1
. J . J
ﬁl,.l
e N e
API Tree Path Response
1.x
. J & J
Parameter PathSegment Method
1.k
g >
1.7
-

-

ParametricPathSegment (StaticPathSegment w (DynamicSegment W

Figure 8: Excerpt of the API Tree metamodel, highlighting
the visualized elements

notation: O, which contains as a label the name of HTTP method
and colored in specific color depending on the method. In this case,

EuroPLoP’21, July 7-11, 2021, Graz, Austria

paths:
/cities:
get:
parameters:
- description: Search for a city with specific zip code
in: query
name: zip_code
required: false
type: string
responses:
'200":
description: OK
schema:

'404":
description: Not found
schema:

summary: Get list of cities supported in Apacta
/cities/{city_id}:
get:
parameters:
-in: path

name: city_id

required: true

type: string
responses:

'200":
description: OK
schema:

properties:
data:

success:
default: true
type: boolean
'404":
description: Not found
schema:

Listing 1: Excerpt from the OpenAPI description of the
Apacta API shown in Figure 9

the notation should be . And as a result, the whole path visual
cities
representation is: L .

Once all the methods of a path are all transformed, the algorithm
jumps to the next path and start extracting the path segments, and
put them in a list, respecting their original order. In our example the
second path is /cities/city_id. It contains tow path segments {
1:cities, 2: city_id}. The path segment{ 1: cities } has already
been created. Knowing that each next path segment is a child of
the previous one, the path segment {2: city_id} should be then

connected to { 1: cities}, which is already created and added to the
tree. This new node is also mapped to the PathSegment object, and
more specifically to the ParametricPathSegment object, which is
associated to the notation: Il As consequence, the tree becomes :

cities

{city_id}

Same as for the previous path, this path also provides only one
Get HTTP method. So the API Tree corresponding to the whole
OpenAPI description example is:

cities

{city_id}

The corresponding API Tree Structure for this API Tree is simply
obtained by removing all path labels:

Looking at the tree model visualization in Figure 9, we can notice
this same portion of the tree, constructed from the example in List-
ing 1, appears multiple times with different labels. For computing
exactly how much frequently, a specific structure of a tree fragment
appears in the set of APIs in our collection, we proceed to apply the
fragmentation and matching technique presented in Section 2.4.

2.4 APIFragments

An API Fragment is any sub-tree (a connected sub-graph that in-
cludes some of the leaves of the original tree) of an API tree structure.
A sub-tree is also a tree, therefore a fragment can be also seen as
an API itself, which can be further decomposed. For instance, the
excerpt in Listing 1, is an example of an API fragment extracted from
the Apacta API (Figure 9).

To achieve our goal of detecting recurrent fragments in the API
structures, we present a two-step approach that uses an algorithm
that first extracts significant model fragments from a dataset of APIs
models, and then compares them across multiple APIs to detect
recurring ones.

2.4.1 APIs fragmentation approach. A tree T is a non-linear data
structure, where each non-leaf node can be seen as a root of one
or many sub-trees. The goal of the fragmentation function §: T —
1f1,lf2,..,Lfn is to extract all the possible sub-trees If,lfa,..,lf; con-
taining a sub-set of the ensemble of leaves of T. For collecting the
nodes we walk T using Depth-First Search (DFS). In this way, we can
extract all the trivial sub-trees, which are the ones having as root the
different nodes of T. The algorithm extracts also non-trivial sub-trees,
which are built by extracting all the branches of a sub-tree having
as root a node N, then reconstructing the Tree Structures from all
the possible combinations of the branches. Note that a branch starts
from the root of the tree, and keeps all the methods attached to the

From OpenAPI Fragments to
API Pattern Primitives and Design Smells

deepest path segment node of the tree. Doing so, we obtain all the
possible sub-trees having as a root the node N. Once a sub-tree is
retrieved, it is serialized as JavaScript Object Notation (JSON) and
stored in a MongoDB database. The same process is repeated over
all the nodes of T until no node is left.

We analyse each API description in the collection and extract
T1,T5,..., T, where m is equal to the size of our OpenAPI descriptions
collection. Then we apply & on each tree to extract all possible labeled
sub-trees, or labeled fragments I f which include a subset of the leaves
of the tree from where it was extracted T. While labeled fragments
carry the original path segments labels, unlabeled fragments f; only
distinguish whether a path segment is parametric or not, and if it
contains an unusual label. The leaves of both labeled and unlabeled
fragments refer to the HT TP methods which can be applied to the
corresponding sub-path.

We extract all fragments from all API trees in the collection and
look for reoccurring ones. To speed up the process, we first match
unlabeled fragments based on their topology, then we further com-
pare the semantic similarity of labeled fragments sharing the same
structure. To do so, we project the labeled fragments If; into Label
Sequences which enumerate the labels found during the traversal
of each node of the API fragment tree. In other words, we apply
the projection function B : [f; — (TS;,LS;), to obtain for each la-
beled fragment a Tree Structure T'S; (also called unlabeled fragment
fj) and a Labels Sequence LS;. All the resulted output objects are
also serialized as JavaScript Object Notation (JSON) and stored in a
MongoDB database.

3 FRAGMENTS CLUSTERING

3.1 APIFragments Clustering and Selection

Having obtained the set of all labeled API fragments, which in our
collection corresponds to 277°094 entities, we proceed to remove
duplicates and cluster them.

For clustering the fragments, we followed a two-step similarity
checking approach, which consists of exact topologies matching and
labels closeness similarity scoring:

(1) first by their common structure (i.e., the unlabeled fragment),

(2) then, we compute the average label semantic similarity for
each cluster of fragments sharing the same structure.

The output of structural clustering consists of a set of clusters
where the elements of each cluster share the same API Structure,
using different labels. We give higher priority to the larger clusters
(more than 40 elements), knowing that the size of the cluster reflects
how common is a specific structure. These Known uses are then con-
sidered as candidate structural pattern primitives. The goal behind
semantically comparing the fragment sharing the same structure
is to find out if there is a common use context of a highly recurring
API Structure.

3.1.1 Structures matching. In our approach, we see an API fragment
as a sequence of labels LS placed on the nodes of a Tree Structure
TS. Where a node of a TS can be either a path segment or a leaf
representing an HTTP method. During our analysis, we decided to
distinguish between three types of path segment: segments contain-
ing a parameter, noted as single word label between { }, segments
that are not containing a parameter, and segments holding labels

EuroPLoP’21, July 7-11, 2021, Graz, Austria

®
o
cities/ {city_id}/
clocking_records/ checkout/
{clocking_record_id}/ gE
companies/ {company_id}/ integration_feature_settings/ {integration_feature_setting_id}/
® ®

contact_types/

- -l
contacts/ {contact_id}/

currencies/ {currency_id}/

{contact_type_id}/

employee_hours/

. ‘e

expense_files/ {expense_file_id}/

&

expense_lines/

{expense_line_id}/ \.I

.Q.
expenses/ {expense_id}/ original_files/ {file_id}/
form_field_types/ {form_field_type_id}/
®
form_fields/ {form_field_id}/
form_templates/ {form_template_id}/
<
forms/ {form_id}/
e 3
invoice_ines/ finvice_tine_id)/ g

8 @
invoices/ {invoice_id}/

mass_messages_users/ {mass_messages_user_id)/ @
° oee
materials/ {material_id}/ rentals/ checkout/

{material_rental_id}/

payment_term_types/ {payment_term_type_id}/

payment_terms/ {payment_term_id}/

ping/

8 @
products/ {product_id}/

project_statuses/ {project_status_id}/

°

projects/ {project_id}/ files/

<o
e id)/ g

project_files/ {project_file_id}/
users/ {user_id}/

Figure 9: Visual representation of the Apacta API structure
as a tree of resources and HTTP methods. This API tree in-
cludes many reoccurring subtrees, which we extract as API
fragments (Click for OpenAPI source)

https://raw.githubusercontent.com/roscopecoltran/krakend-admin/f27bc4ee41d133f35301ef2fabf606cdce51b47b/shared/public/downloads/v2/specs/apacta.com/0.0.1/swagger.yaml
https://raw.githubusercontent.com/roscopecoltran/krakend-admin/f27bc4ee41d133f35301ef2fabf606cdce51b47b/shared/public/downloads/v2/specs/apacta.com/0.0.1/swagger.yaml
https://raw.githubusercontent.com/roscopecoltran/krakend-admin/f27bc4ee41d133f35301ef2fabf606cdce51b47b/shared/public/downloads/v2/specs/apacta.com/0.0.1/swagger.yaml
https://raw.githubusercontent.com/roscopecoltran/krakend-admin/f27bc4ee41d133f35301ef2fabf606cdce51b47b/shared/public/downloads/v2/specs/apacta.com/0.0.1/swagger.yaml
https://raw.githubusercontent.com/roscopecoltran/krakend-admin/f27bc4ee41d133f35301ef2fabf606cdce51b47b/shared/public/downloads/v2/specs/apacta.com/0.0.1/swagger.yaml
https://raw.githubusercontent.com/roscopecoltran/krakend-admin/f27bc4ee41d133f35301ef2fabf606cdce51b47b/shared/public/downloads/v2/specs/apacta.com/0.0.1/swagger.yaml

EuroPLoP’21, July 7-11, 2021, Graz, Austria

with more complex parameter notations, such as the example in
Figure 10, which occurs 222 times. In our comparison approach, we
consider the type of the path segment as part of TS. Thus, API Frag-
ments in Figure 11 and Figure 10 are detected to be distinct since the
first structural clustering step. In this way, we already distinguish
fragments, which even if they have the same tree topology, have
parameters in different positions along the tree.

{name}:updatePrimaryVersion .

Figure 10: Example of a repetitive fragment with complex
parametric path segments labels

query

N 1
video stream ™

Figure 11: Example of a repetitive fragment with non para-
metric path segments labels

Following our fragments TS comparison approach, we extracted,
from a set of 277°094 labeled fragments, 79’728 TS unlabeled frag-
ments sharing the same tree structures, considering also the type of
path segment node, and the types of the HTTP method in the leaves.
3.1.2 Semantic closeness.

Oftentimes, path segment labels carry some semantic meaning
related to the resource handled by the path. For that reason, we con-
sidered taking into account the labels of the fragments nodes. Doing
so, we involve the semantic context and have a better understanding
of the common usage contexts of a specific fragment.

In our two-step similarity checking approach, we first clustered
the fragments by their TS, then extracted all ordered sequences of
node labels found for each TS of the labeled fragment (Figure 12).
Doing so, we obtain a collection of labels sequences for each TS.
The size of the sequence is equal to the number of nodes of the T'S,
excluding the leaves.

To compute the similarities between the labels sequences, we
use spaCy?, an open-source library for Natural Language Process-
ing (NLP) in Python and Cython. In our case, we use a spaCy’s
trained model for English language [20], using the latest version
of the "en_core_web_md" model package, multi-task CNN trained
on OntoNotes, with GloVe vectors trained on Common Crawl for
spaCy.

We distinguish the following types of labels:

IspaCy: https://spacy.io/

Structure extraction [| .

. «—o Fragment Structure

® Labels extraction
P ————» F1 = {label_1, label_2, .., label n}
® F2 = {label_1, label_2, .., label n}
F3 = {label 1, label 2, .., label n}

Labeled fragments with
similar structures

vectorizer
Distance matrix

V1l V2 V3
Vi 0 d21 d31
V2 di12 0 d32
V3 di13 d23 0

Clusters
Hierarchical
clustering

Figure 12: Fragments semantic clustering pipeline

Distance

calculation VI=tv.1Lv2.vn

V2={v_1,v_2,.,v_n}
V3={v_1,v_2,.,v_n}

(1) Single words (i.e., stream, details, etc as in the example frag-
ment in Figure 11),

(2) composedlabels, which concatenate single words using camel-
case,ora"-"ora"_" symbol (Figure 42),

(3) unusuallylong, complexlabels (i.e., #x-amz-target=codedeploy
20141006deleteapplication),

We added a formatter to the spaCy’s processing pipeline in order
to cover the different labels types cases we have. We also added a
filter at the end of the pipeline, which has a goal to exclude the labels
that could not be matched to any semantic concept.

We define the distance between two label sequences S= {ll,..,lp}
and S’ = {l],.., l;?} as dist(S,S’) = '§1 Ww Where

i=
sim(A,B) = \/Z;‘:lz;‘:l (ajj—bij)? is the Euclidian Distance be-
tween the matrices A=(a;;) and B=(b;;). And where nip(l;) is the
vectorizer function of a label /; in S. We normalize these distances to
values between 0 and 10. As much is d(S,S”) closer to 0, S and S’ are
semantically close.

Doing so, within each TS cluster, we measure the semantic close-
ness of each sequence by calculating a similarity score between the
labels attached to the same nodes of the tree. This score consists of
the distance between the vectors representing the labels sequences
of each fragment. Using Agglomerative Hierarchical Clustering,
we obtain the semantic clusters for each set of structurally similar
fragments, by setting a threshold depending on the similarity score
distribution in each T'S cluster.

3.2 Labels Similarity Results

While we do not have space to include the complete clustering results,
we summarize the results with five metrics (Table 2):

(1) The average distance between each couple of sequences: the
goal of this metric is to depict how much are each two labels se-
quences are alike or similar. A low average means that most of the
labels sequences are composed of semantically close elements.

(2) The median of these distances: the median gives an idea about
the distribution of the distances. A high median means that the
majority of the labels sequences are not semantically close.

https://spacy.io/

From OpenAPI Fragments to
API Pattern Primitives and Design Smells

EuroPLoP’21, July 7-11, 2021, Graz, Austria

Labels sequences distances

Primitive Variant/Smell Average Median Max Clusters Threshold
GET (P1.v1) 3.07 5.87 9.97 218 5
ENUMERABLE
GET/PUT (P1.v2) 2.60 523 9.01 20 5
CoLLEcTION (P1) by gy, (p1.v3) 2.94 551 9.03 13 5
GET/PUT/DEL (P1.v4) 2.89 580 9.79 34 5
GET/POST (P1.s1) 3.26 7.53 9.42 14 5
GET/DEL (P1.s2) 2.54 5.56 8.65 8 6
GET/PUT/DEL (P2.v1) 2.41 2.16 9.87 24 5
APPENDABLE GET/DEL (P2.v2) 1.90 0.00 9.86 23 5
CoLLECTION (P2) GET (P2.v3) 3.06 558 9.98 52 5
PUT/DEL (P2.s1) 2.54 4.98 8.77 24 5
DEL (P2.s2) 3.33 6.78 9.48 23 6
GET/PUT/DEL/PATCH (P3.v1) 1.93 3.06 9.28 19 5
GET/PUT/DEL (P3.v2) 2.62 5.02 9.81 120 5
GET/DEL/PATCH (P3.v3) 2.74 5.31 9.84 12 5
CorLecTioN (P3) GET (P3.v4) 278 517 9.98 36 6
PUT/DEL (P3.v5) 2.54 4.72 9.91 25 5
GET/DEL (P3.v6) 3.07 5.77 9.98 39 6
DEL (P3.v7) 2.59 5.34 8.50 39 5
PUT-ONLY (P3.s1) 2.58 5.34 8.50 12 5
GET/PUT (P3.52) 232 441 9.16 24 5
GET/PUT/DEL/PATCH (P4.v1) 1.22 0.00 8.08 19 4
MUTABLE
DEL (P4.s1) 2.55 5.49 9.70 10 5
CoLLECTION (P4) GET/DEL (P4.52) 251 0.00 893 20 5

Table 2: Overview of distances between all the labels sequences of each primitive and its variants/smells. The smells are color-
coded. Design Smells:[]Create without Delete,_1Delete without Create,] Ambiguous POST, 1 Ambiguous PUT,[] Write-

only

(3) The maximum distance between a couple of sequences.

(4) The number of clusters that sequences were grouped by.

(5) The threshold defining the maximum distances between all
observations of two sets. This value was defines based on the the
distribution of the values in the distance matrix.

Table 2 shows that label sequences in different collections of frag-
ments are semantically similar. For each primitive, we will provide
detailed examples of labels associated with each variant/smell in the
next Section.

4 STRUCTURAL API PRIMITIVES

Out of the results obtained from the fragmentation and clustering
process, we selected a set of most occurring fragments and classified
them to four primitives (Figure 14), depending on their functionality
based on their structures.

+POST|

L 4

/(P2) Appendable’ (P3) Collection :
Collection P

Figure 14: Overview: API Structure Collection Primitives

The context for all pattern primitives is the same: a designer needs
to use an HTTP-based API to provide access to a collection of items
which are stored on the server.

Allthe primitives are used to expose in the API collections of items,
where each collection if identified by a statically-named container re-
source and its items are dynamically addressed within the container
resource. We distinguish each primitive based on which combination
of HTTP methods are attached to the container resource.

container resource

] ‘ HTTP methods

‘ HTTP methods

{collection item address}

The ENUMERABLE COLLECTION (P1) primitive is used when clients
can use the API to only discover the content of the collection by
retrieving a list of their items. The APPENDABLE COLLECTION (P2)
primitive makes it possible for clients to only append items into
the collection exposed by the API. The CoLLECTION (P3) primitive
combines both features of the APPENDABLE COLLECTION and the
ENUMERABLE COLLECTION, so that clients may use it to both append
new items and list existing items. Since this primitive is the most
commonly found one, we choose to name it with the simplest and
shortest name, while adding qualifiers to the names of the other

EuroPLoP’21, July 7-11, 2021, Graz, Austria

+POST R promeee N 2
i ' N ! DEL(P2.s2)
A R o Lagy | PUT/DEL(P2s1) DapUT | '
GET/POST (P1.s1) " GET/DEL (PLs2) PUT/DEL (PLv3)' 3 . « ; '
) ; ' c: ! :C. Q ' : :C. 1
L) 3 L : 2 S . O W , +GEy~'_) _J+GET|
2 = ! forost B Gmon i, | cerjoeiivai) Pl
o s by d Rl o {GET/DEL(P2. v2), { GET(P2v3) |
O et +PUT + GETL <Q:! L PUT)) : ; i
EE N =3 it o . ®
2O\ T oo /GET/PUT/DEL (PLua), DN n d : ' i
S3 " GET (P1.v1) : YGET/PUT (PL. V2 | bl , A= : \ 5 \ ;
,\U : * & “--—-——--j ---------- o
- : : v
e ' ; *GET N eeET
+POST +POST +POST +GET
S AT :GEI'/PUT/DEL (P3.v2)" ' : “PUT/DEL (P3. Vv5)", PUT (P3.51) + GET/DEL (P3.v6), E
" GET (P3.v4) (P3.52) 0 | seET | : +DEL : H
5:: L +PUT +DEL g, 1 <« ;]
'-E : —> i , 1 ' i 1
o 0 : I HPATCH | JNRHPUT DU, S g
- BAEEER ‘ :::::::::::::::_ \ --------- <
(8] /'GET/PATCH/DEL (93.v3f‘ ’GETIPUTIDELIPATCH (P3.v1)Y,] DEL (P3.v7) 0 < GET +PUT
m : 1] & ;
o H ' : P '
~ ' — ! 3 :
1 t+PUT | N K
| :] : +PUT
2 @ GET Delete without Create ’
2 Create without Delete w
S @ DELETE s i N A ,
] @ PUT g ‘-0 Ambiguous POST 9 GET/PUT/DEL/PATCH (P4v1)'\ " pgy Pasy) /' GET/DEL (P4:s2) . |
= w .) 2 O ; : b
E O PATCH ‘-2 Ambiguous PUT s : Deoes >
C73 Write- = b : : i
T O PposT *_0 Write-Only = P : : v
: . < Y : \ Vi
@) New operation on the collection a | 4 :
£ W Parametric segment 5, Ney operation on the collection items -
& D Static segment

Variant
Pattern primitive

Figure 13: Overview: API Structural Primitives and their variants and design smells

primitives. Finally, the MuTABLE COLLECTION (P4) primitive extends
the CorLLECTION with the ability to perform batch operations on
the entire collection (e.g., to delete the entire content or replace the
entire content of the collection).

Within each primitive, we have collected many variants and de-
sign smells depending on which combination of HTTP methods is
attached to the collection item resource.

In Figure 13, we provide a more detailed overview showing for
each primitive the corresponding variants and design smells. Each
variant and design smell of the same primitive are encapsulated in
a gray frame. We also show how each variant can be obtained by
changing another one with the black and gray arrows. The black
arrows trace the paths that allow moving from a structure primitive
to another by adding an operation on the items of the collection. And
the gray ones are showing which methods are added to the container
resource. In the rest of this section we present overviews focused on
each structural primitive.

10

During our analysis, we have also detected some structural design
smells, which we highlight in Figure 13 with colored frames. We
classified the detected smells into the following categories:

[Create without Delete: API structures that allow the clients
to create elements from a collection, but do not provide a possibility
to delete elements from it.

[1Delete without Create: API structures that allow the clients
to delete elements from a collection, but do not provide a possibility
to append elements to it.

1 Ambiguous POST: API structures that contain a POST opera-
tion on the items of a collection. Is this POST method used to append
items to the collection?

[JAmbiguous PUT: API structures that provide aPUT operation
on the collection. Is this PUT method really used to update the whole
collection?

[IWrite-Only: APIstructures thathave noread operation neither
on the whole collection nor on its items.

From OpenAPI Fragments to
API Pattern Primitives and Design Smells

EuroPLoP’21, July 7-11, 2021, Graz, Austria

Most distant labels sequences

Primitive Variant Occurrence Size nDLS
Sequence 1 Sequence 2

GET (P1.v1) 1588 4 744 {operations,{operation}} {cidades{nome}}

ENUMERABLE GET/PUT (P1.v2) 99 5 43 acls,{user} users,{id}

Cotirction (P1) PUT/DEL (P1.v3) 40 4 26 {song{id}} {oauth,{provider}}
GET/PUT/DEL (P1.v4) 176 6 71 countries,{country} namespaces,{namespace}
GET/POST (P1.s1) 77 5 22 msgs,{username} servers,{ framework}
GET/DEL (P1.s2) 56 5 26 {serveurs{id}} {tasks,{task}}

A GET/PUT/DEL (P2.v1) 194 6 64 item,{itemid} bucketlist,{id}

PPENDABLE . . .

Corirction (P2) GET/DEL (P2.v2) 145 5 43 vim,{vim_uuid} ul,{album}.
GET (P2.v3) 202 4 127 {user2,{username}} {disease,{disease}}
PUT/DEL (P2.s1) 50 5 31 rulesets,{rulesetName} pelicula{peliculald}
DEL (P2.s2) 69 4 51 {token<iat}} {jobs{id}}
GET/PUT/DEL/PATCH (P3.v1) 328 8 159 lenses{key} movies,{movie}
GET/PUT/DEL (P3.v2) 1123 7 574 nodes,{ip} tickets,{tid}
GET/DEL/PATCH (P3.v3) 232 5 139 rooms,{key} taxrate{zipcode}

CorrecTION (P3) GET (P3.v4) 323 5 168 {deposits,{depositor}} {txs,{txid}}
PUT/DEL (P3.v5) 169 6 84 pedidos,{numero} countries,{code}
GET/DEL (P3.v6) 345 6 187 applications,{appid} caixa,{codigo}
DEL (P3.v7) 201 5 87 byon,{id} client,{pubkey}
PUT-ONLY (P3.51) 78 5 38 {Chems,{chemid}} {users,{userid}}
GET/PUT (P3.s2) 63 6 47 manager,{username} pessoas,{idPessoa}

M GET/PUT/DEL/PATCH (P4.v1) 74 9 52 workflows,{name} boards,{id}

UTABLE)

CoLLrcTion (P4) DEL (P4.s1) 43 6 18 p.rogressi{ordlnal} beverages,{.beverage}

GET/DEL (P4.s2) 102 7 56 ciudad,{id} themes,{uuid}

Table 3: Known Uses of Selected Fragments: Number of Distinct Label Sequences (nDLS) and their Occurrences within APIs.
Design Smells:] Create without Delete,_1Delete without Create, 1 Ambiguous POST,[1 Ambiguous PUT,] Write-only

In Table 3, we show an overview of the selected collections of
fragments, by listing their occurrences and the number of unique
labels sequences used by the same structures in the same API or
across different ones. We also give an example of the most distinct
sequences fount among the unique labels sequences, in order to
show the extreme use contexts for each structure.

The rest of this section details each of the selected primitives
where we present for each primitive the different occurring variants.
For each variant of each primitive we filtered the most frequent labels
used by all the variants of a primitive, and sort them alphabetically
to ease the readability of the heatmaps (Tables 5, 7, 10, and 12). In
the Figures, we show the occurrences (counting how many times a
Labels Sequence is used for the same T'S) of each cluster of labels in
a specific variant/smell.

We also provide a set of guidance tables, based on known uses.
The listed labels are obtained by clustering the Labels Sequences by
the container resource label, as explained in Appendix D.

The goal is to support designers who would like to introduce a
collection for a specific class of items in their API. They can take
advantage of the observations we have collected as they attempt
to look up the collection label and see if there is a non-ambiguous
mapping to a given primitive variant.

In order to give anidea about the yearly distribution of the variants
ages and popularity, we calculate the number of APIs in which a
specific variant appears (Tables 4, 8, 9, 11).

4.1 Enumerable Collection (P1)

Summary. Expose an enumerable set of items within their own con-

tainer resource.

Problem. How to make the collection items discoverable by clients?

11

Solution. Provide a unique address for each collection item. Allow
clients to read the content of each items applying the GET method
to the address of the item. Group together related items under the
same resource path prefix. And, allow clients to enumerate the items
within the collection by applying the GET method to the container
resource.

____ : :
------------ \ +GET$

/GET/PUT (P1.v2)\
wPUT! I
)
h

Figure 15: Enumerable Collection - Overview of Variants and
Design Smells

EuroPLoP’21, July 7-11, 2021, Graz, Austria

L2 5 2 2 8

S & & & & &
“$2P1s2 0 0 34
“$*P1sl 0 1 24
“¥P1v4 0 0 12 23 30
“=2P3v3 0 1 5 3 5 20
“s2P2v2 1 3 4 11 15 35
SRR EARUA 50 86 165 374

Table 4: Yearly distribution of the API specifications where
the ENUMERABLE COLLECTION (P1) variants appear

In Table 4, we can clearly see the increasing usage of the Variants
and Smells in the API collection over time. This increase can be both
because of the yearly distribution of the API specifications gathered
in our data set, and to the popularity the structural primitives gained
through the years.

e Enumerable Collection Variants

For the Enumerable Collection primitive we have identified 2
variants and 3 design smells (Figure 15).

GET (P1.v1). The read-only variant is one of the most occurring
structures, which allows clients only to enumerate the content of
the collection and to read the corresponding items. APIs use it to
publish one immutable set of related items. By setting a threshold of
5 obtained 218 Labels Sequences clusters. Which depicts the variety
of usage contexts of this variant.

According to the whole labels sequences set that we extracted,
we noticed that this read-only structure is widely used for differ-
ent domains. In Table 5, we show some of the labels clusters used
by this variant. We can notice that all the most frequent labels
in the ENUMERABLE COLLECTION (P1) are used by this variant, ex-
cept 3 ones: keys and and episodes, which are used by the variant
GET/PUT/DEL (P1.v4) which allows also to update and delete the
items of the container resource, and client, which is only used by
GET/PUT (P1.v2).

An example of API where this structure primitive is present sev-
eral times, in the Apacta API showed in Figure 9. In this API we can
see clearly the high occurrence of GET (P1.v1) with different labels,
combined with variants of other primitives.

Size: 4 — Occurrence: 1588 — Distinct Labels: 744

buildings

Figure 16: Enumerable Collection - GET Variant (P1.v1) Visu-
alization

12

IS T 2 I a]

A A A A A A
accounts 6 0 0 2 0 0
api-docs 9 0 0 0 0 0
applications 0 0 0 0 0
artifacts 12 0 0 0 0 0
clients 0 0 0 0 17 0
concepts 8 0 0 0 0 0
config_schemas 8 0 0 0 0 0
configs 2 8 0 0 0 0
content 16 0 0 0 0 0
currencies 13 0 0 0 0 0
descriptor 10 0 0 0 0 0
devices 8 0 0 8 0 0
documents 13 0 0 0 0 0
email_history 9 0 0 0 0 0
episodes 0 0 0 10 0 0
events 29 0 0 0 0 0
files 7 0 0 6 0 0
groups 9 0 0 0 0 0
health_profile 8 0 0 0 0 0
health_profile_answer 8 0 0 0 0 0
health_question_definition 8 0 0 0 0 0
history 7 0 0 0 0 1
images 9 1 0 0 0 1
instances 1 0 0 0 0 21
items 9 0 0 0 0 0
jobs 2 10 0 0 0 1
keys 0 0 0 11 0 0
locations 24 1 0 0 0 0
manifests 29 0 0 0 0 0
metadata 8 0 0 0 0 1
namespaces 4 3 0 1 0 0
networks 3 0 0 6 0 1
operations 0 0 0 5 0
organizations 16 0 0 0 0 0
overview 8 0 0 0 0 0
people 4 0 0 6 0 0
policydefinitions 3 0 0 6 0 0
products 13 1 0 0 0 0
resources 33 0 0 3 0 0
roles 9 0 0 0 0 0
servers 3 0 0 0 17 0
services 16 0 0 0 0 0
shows 5 0 4 6 0 0
tags 8 0 3 0 0 0
tasks 5 0 0 2 0 5
types 26 0 0 0 0 0
users 29 1 4 11 1 1
versions 9 0 0 0 0 1
views 16 0 0 0 0 0
vuln 16 0 0 0 0 0

Table 5: ENUMERABLE COLLECTION (P1) — Labels found in
each variant/smell

GET/PUT (P1.v2). This variant allows clients to use the GET and
PUT methods on the collection items. This makes it possible to
read and update the content of individual collection items. This
API structure also appears in Apacta API (Figure 9). Figure 43, is
a use case example of this API structure. The GET operation in
the resource handled by the path /users/id/topics allows the
client to get all the topics of a specific user. The get operation in
the path /users/{id}/topics/{topic_id} has as goal to verify
if a user is following a specific topic. The response is an object of
boolean type. In this case, the PUT operation is for interpolating the

From OpenAPI Fragments to
API Pattern Primitives and Design Smells

FOLLOW / UNFOLLOW relationship between the user {id} and the
topic {topic_id}.

Size: 5 — Occurrence:99 — Distinct Labels: 43

topics

Figure 17: Enumerable Collection - GET/PUT Variant (P1.v2)

PUT/DEL (P1.v3). The particularity of this variant is that it allows
to both update and delete items, however, it does not allow the client
to create new items in the collection by using the container resource.
Instead, it still allows them to do so by invoking the PUT method
directly on the items to be created. In this case, clients themselves
should provide the identifiers for the items to be added to the collec-
tion.

Size: 5 — Occurrence: 40 — Distinct Labels: 26

Figure 18: Enumerable Collection - PUT/DEL Variant (P1.v3)

This API structure appears one in the TVmaze user API showed
in Figure 42. Where it is used for reading the collection of shows, and
deleting or updating each. Another API example where this struc-
ture appears in Invotra API (Figure 48). In this case, adding a new
user to the users’ collection is possible due to the POST operation of
the path users. However, it seems that the client is not allowed to
add new user memberships to a specific team. While, according to
the descriptions of the operations, it is possible to remove a user’s
membership of the team or update information about his team mem-
bership. Then, how can a team have new members? In this case, the
user object schema is having a teams property of array type. Thus,
adding a new member to a team is performed by means of the PUT
operation provided in the path: /users/{userId}.

GET/PUT/DEL (P1.v4). The main characteristic of this structure
is that it in addition to the GET and PUT methods it also exposes a
DELETE method on the collection items. This way, clients can not
only read and write the associated content but can also remove items
from the collection.

13

EuroPLoP’21, July 7-11, 2021, Graz, Austria

Size: 6 — Occurrence: 176 — Distinct Labels: 71

Figure 19: Enumerable Collection - GET/PUT/DEL Vari-
ant (P1.v4)

While in general, it can be useful to allow clients to remove items
from a collection, it is not clear whether an API should support
this for collections whose content can only be enumerated without
providing the means for the service to mint identifiers for new items.
Instead, new items can only be added by clients as long as they
provide the new item’s identifier.

While this can lead to crashes when multiple clients attempt
to invoke the PUT operation on the same item, we have observed
different semantics for the PUT and DELETE methods. For example,
some APIs use the DELETE method for something different: task
cancellation. In this case, we assume that the tasks being performed
within the server can be monitored by clients and when necessary
can be interrupted.

For a better understanding, we have extracted the content of the
description field of the DELETE method.

Looking at the descriptions of the delete method extracted from
the OpenAPI documents in Table 16 (Appendix B), it is clearly under-
standable that the DELETE operation is not always meant for clients
to delete an item from the collection.

More in detail, in the description D-40, the DELETE method is
allowing the client to delete a person from the list of followed people,
but no append operation is provided. An example of an API where
this fragment appears is in Figure 42. In this API this example, we
look at the fragment with labels sequence S=people,{poeple_id},in
which we can notice that the following operation is done through the
PUT method. In this case, when following a person, this new followed
person is not appended to a collection of followed people, but instead,
the followed person is updated through the PUT operation with the
information about a new follower.

Path segment | Method | Description
people GET List the followed people
GET Check if a person is followed
{people_id} | DELETE | Unfollow a person
PUT Follow a person

Table 6: Methods description of a fragment of Enumerable
Collection - GET/PUT/DEL Variant (P1.v4), extracted from
the OpenAPI description of TVmaze user API

e Enumerable Collection Design Smells

EuroPLoP’21, July 7-11, 2021, Graz, Austria

GET/POST (P1.s1).] Ambiguous POST As opposed to updating
the content of individual items of the previous variants, in this vari-
ant, the API makes it possible to fetch the current state of each item
with GET and invoke some arbitrary operation on each of them with
POST.

Size: 5 — Occurrence:77 — Distinct Labels: 22

Figure 20: Enumerable Collection - GET/POST Design
Smell (P1.s1)

Coming back to the OpenAPI descriptions of the APIs where
this variant of fragments appears, we extracted the content of the
summary and description fields for the POST method, which we list
in Table 15 (Appendix B). Based on the descriptions, we can detect
two main use cases for the POST methods on the collection items:

(1) Appending an item to the collection: in this case placing the
POST operation over the collection items can be seen as a common
mistake.

(2) Updating an attribute of an existing item: in this case the POST
is mistakenly used to perform the role of the PUT method.

GET/DEL (P1.s2). [_]Delete without Create

This smell provides access to a collection whose items can be read
and deleted, without offering clients the possibility to append new
items.

This smell only appears with 26 distinct labels. In Figure 5, we
can see that it appears 21 times out of 56 with labels represented
by the label instances. This same label appears only once with the
GET (P1.v1) variant. Other labels found in conjunction with this smell
(e.g., tasks, jobs) would indicate uses for providing access to server-
side resources which can only be monitored and eventually removed
by clients, which do not have any control over their lifecycle.

Size: 5 — Occurrence: 56 — Distinct Labels: 26

iStory
history

Figure 21: Enumerable Collection - GET/DEL Design
Smell (P1.s2)

4.2 Appendable Collection (P2)

Summary. Append new items by posting them in the container re-
source

Problem. How to offer clients the ability to add new items into the
collection?

Solution. Allow clients to use the POST method on the container
resource to append new items into the collection. The address of the
newly created items must be returned to the clients, since this pattern
does not feature the ability for clients to enumerate the content of
the collection.

P2.v1
P2.v2
P2.v3
P2.s2
P2.s1

account
annotations
annotationsets
assets

batch
bookings
buy
campaigns
cart
categorias
category
client
cluster
collections
comment
connections

courses

O ON O WO RO OoONONONO OO

datapointers

_
-

deployments
disease
distributions
documents
employee
entries

files
form_fields
hub

images
individuals

item

S N = o O W

—-
_

jobs
labels
media

messages

O H A O O R OO NO RO HNOORROKROREONOOORINOSR=OOOSO O O

objectstores
order
policy_keys
post
productos
products
provider

ONNN O OO R ONO OO H WO O OO N O ONOOCWHRKOOOOMMOOOOOOOO W W M

read

-
_

register
student
subscriptions
target

task

todo

token

5
wall_comments 0 0

o oo R, OO0 o0 o o o o
O O O N OO OO OO RO R OO0 UINOORMEKOOOO OO OO OO0 0RO 0000000 RO WO oo

—_
o
o R O = O Ul O N O NWRE OO R R R WO

S =R

(=}
=
v =
O N O O =2 OO0 O O O M O B HE O MO OO O OO0 00 0 0 00 MO OO0 OO0 00 U OO0 O M BMBOO OO O OC O OO

=N
o

Table 7: APPENDABLE COLLECTION (P2)- Labels foundin each
variant/smell

From OpenAPI Fragments to
API Pattern Primitives and Design Smells

Figure 22: Appendable Collection Overview

[Te} O o~ [ce] (=)} S

— - — — — o

(=] S S (=} (=] (=}

(o] N [aN] (o] N N
=2 p2sl 0 4 12 25
=* P2s2 2 4 8 |38
= P2v3 1 13 20 34 BOY
=2 P2v2 5 10 14 16 25 |
% P2vl 4 9 19 25

Table 8: Yearly distribution of the API specifications where
the APPENDABLE COLLECTION (P2) variants and smells ap-
pear

e Appendable Collection Variants

The common point between the variants of this primitive is that
they all only allow the client to append on a collection, and to perform
different operations on the items. Starting from the variant that
allows all of GET/PUT/DEL operations, until the one that only allows
reading the items. For this primitive, we have detected a design smell,
where the client is not allowed to perform any read operation, neither
of the collection nor on its items.

GET/PUT/DEL (P2.v1). This variant allows clients full control
over the items they have appended to the collection, as they can read,
update and delete them.

Size: 6 — Occurrence: 194 — Distinct Labels: 64

signin

Figure 23: Appendable Collection - GET/PUT/DEL Vari-
ant (P2.v1)

For understanding the reason for the absence of a read operation
on the collection, we extracted natural language descriptions of the
GET operation. We want to verify whether the designers mistakenly
considered that the GET operation on the item would serve also for

15

EuroPLoP’21, July 7-11, 2021, Graz, Austria

listing all the content of the collection. In Table 19, we list some of
the summaries and descriptions associated with the GET method.
We can see from the descriptions that the GET operation is indeed
used to retrieve specific elements from the collection.

Figure 45 shows and an example of use of this variant, where it is
combined with the GET/DEL (P2.v2) variant. In this case, the PUT
operation is used to update a sign in record.

GET/DEL (P2.v2). This variant only allows to read or delete indi-
vidual collection items. It occurred 145 times, however with only 43
distinct Labels Sequences.

A concrete usage example of this primitive is in Passman API
(visualized in Figure 46), an open-source developers API for Passman
extensions. In the case of this example, the GET/DEL (P2.v2) variant
is used in order to allow uploading and attaching a file to an item
by means of the POST operation in the /file path. The client is
also allowed to delete or get the content of a specific file, using,
respectively the DELETE and GET operations allowed in the path
/file/{file_id}. Another example is in Figure 45, where it is used
beside the GET/PUT/DEL (P2.v1) variant, allowing to to create a
team member (user) record, to retrieve the information associated
with a user’s account, and finally to delete a team member’s user
record.

Size: 5 — Occurrence: 145 — Distinct Labels: 43

Figure 24: Appendable Collection - GET/DEL Variant (P2.v2)

GET (P2.v3). This variant only allows the client to add elements to
the collection, and then read each one, but it does not provide the
ability to edit or remove items. Collections featuring this primitive
contain resources which are garbage collected on the server-side,
such as jobs, queries, or sessions. Another example is the append-
only shopping cart in which clients can only add items without ever
removing them.

Size: 4 — Occurrence:202 — Distinct Labels: 127

photos

Figure 25: Appendable Collection - GET Variant (P2.v3)

e Appendable Collection Design Smells

EuroPLoP’21, July 7-11, 2021, Graz, Austria

PUT/DEL (P2.s1). C_1Write-Only

Instead of a GET operation, this variant introduces a PUT. How-
ever,itdoesnotoccur asfrequently as the variants GET/DEL (P2.v2) and
GET/PUT/DEL (P2.v1).

We have analyzed the 50 occurrences to attempt to determine
how such a write-only API fragment would work since it appears it
is only possible to append new items, update or delete them. Indeed,
no occurrence supports the ability to enumerate the content of the
collection, nor it allows clients to read from its items.

Size: 5 — Occurrence:50 — Distinct Labels: 31

Figure 26: Appendable Collection - PUT/DEL Design
Smell (P2.s1)

DEL (P2.s2). 1 Write-Only

Same as PUT/DEL (P2.s1), this variant does not provide the client
the possibility of performing GET operations. Neither on the con-
tainers nor on the items. It only allows to append new items to the
collection and delete them.

Such unreadable, write-only collection can still be useful, for
example, to manage asynchronous jobs, or subscriptions or messages
submitted into the API which can be only canceled from the clients.
Since the collection cannot be enumerated, this works only if the
address of the newly created items is returned to the client who
created it using POST.

Nevertheless, we tag this variant as a smell, because of the strong
limitations imposed by offering a write-only collection.

Size: 4 — Occurrence:69 — Distinct Labels: 51

subscriptions

Figure 27: Appendable Collection - DEL Variant (P2.s2)

4.3 Collection (P3)

Also known as. Enumerable-Appendable Collection

Summary. Use the container resource to enumerate its content and
add new items.

Problem. How to make the collection items discoverable by clients?
How to let clients add items to the collection?

Solution. Group together related items under the same prefix. Allow
clients to enumerate the items within the collection by applying the
GET method to the container resource. Clients can use the POST
method on the same container resource to add new items.

16

e Collection Variants

We present different variants featuring different method combi-
nations on the collection item, starting from the one having four
methods, all the way to fragments with a single method attached to
the collection item.

In this primitive, we have detected two Design Smells (Figure 28),
both are related to the L] Create without Delete smell.

Even the simplest variants with only one operation on the item
to delete or update them would appear to lack the ability to directly
reading individual collection items. While this is the case, as opposed
to the previously discussed Appendable Collection smells, clients
can still fetch the content of the entire collection using the GET
operation provided by the container resource and then extract the
values for individual items from the result.

GET/PUT (P3.s2)

+PUT

/GET/PATCH/DEL (P3.v3)\,

' 1
: :
B ! [N T,
! 1+ PATCH
'

1
| : +GET

. ,

PUT (P3.s1)

Figure 28: Collection — Overview of Variants

/'GET/DEL (P3.v6)

y

2015
2016
2017
2019

N P3s2
N P3.s1
N P3.v7
N2 P3.v6
2 P3.v5
N°P3.v4
P33
'S'.és P3.v2

Sé P3.v1

S N © R Rk Rk N O O

Table 9: Yearly distribution of the API specifications where
the CoLLEcTION (P3) variants appear

From OpenAPI Fragments to
API Pattern Primitives and Design Smells

T % 0% X o2 o8 O%ow oy

£ 2 £ £ 2 2 £ £ ¢
accounts 0 6 1 2 1 0 2 0 6
actions 0 8 8] 0 0 0 0 0 0
apikeys 0 8 0 0 0 1 2 0 0
applications 2 6 0 0 0 2 0o 7 0
articles 0 31 1 0 2 2 0 0 0
audit_trails 0 0 0 0 0 0 0 0
authorizedcertificates 0 0 13 0 0 0 0 0 0
bookings 0 3 1 0 2 0 6 0 0
books 0 9 1 0 0 2 0 0 0
categories 1 8 1 0 0 2 0 1 0
change_logs 0 0 0 0 0 0o 0 0
cities 0 4 0 0 6 0 0 0 0
client 0 16 1 2 1 1 1 0 1
clusters 1 2 12 0 0 3 0 7 0
collaborators 0 0 0 0 0 10 0 0 0
comments 0 8 1 1 1 3 18 0 2
compositetypes 18 0 0 0 0 0 0 0 0
configs 0 2 0 0 0 0 0 0 10
contacts 0 14 0 0 0 0 0 0 1
credentials 0 0 0 0 1 0 16 0 0
domainmappings 0 0 13 0 0 0 0o 0 0
events 1 16 1 0 0 1 1 0 6
example_entities 3 11 0 0 0 0 0 0 0
group 0 9 0 1 0 1 0 0 10
images 1 1 0 0 0 14 0 0 2
ingressrules 0 0 13 0 0 0 0 0 0
invoices 2 9 0 0 0 1 0 0 1
item 1 9 2 1 1 1 0 0 0
members 0 5 0 0 0 4 6 0 1
messages 0 2 4 0 0 5 4 0 6
networks 1 0 0 0 0 9 0 0 0
node 0 3 2 0 1 3 0 0 0
note 0 8 2 0 0 0 0 0 0
notifications 0 6 0 1 1 0 0 0 1
order 0 11 1 2 1 4 2 2 8
patient_health_metric 0 0 0 0 0 0 0 0 9
payments 1 5 3 0 0 0 0 0 2
pets 0 1 1 0 0 4 0 0 12
policies 0 24 1 0 0 0 0 0 0
posts 0 12 1 1 0 3 0 0 2
products 3 23 4 0 1 1 0 1 1
projects 0 24 3 1 1 8 7 8 2
reward 0 0 0 0 0 0 0 0 10
reward_earning 0 0 0 0 0 0 o 0 9
roles 1 13 2 2 1 3 0 1 3
rollouts 0 0 0 0 0 0 0 0 10
rules 0 4 1 0 8 8 1 0 8
runs 0 1 2 0 0 0 6 0 0
service-profiles 0 0 0 0 0 6 0 6 0
services 1 10 0 0 0 2 1 0 0
sessions 0 0 4 0 0 7 0 0 2
subscriptions 0 9 1 0 0 8 0 0 1
tags 1 4 3 0 26 0 12 2 1
tasks 2 3 4 1 1 2 0 0 5
tracks 0 8 0 0 1 0 1 0 1
types 8 1 1 0 1 1 0 1 1
users 4 L 10 11 31 19 7 3 30
volumes 0 0 0 0 8 7 0 0 0

Table 10: CoLLECTION (P3) — Labels found in each variant/s-
mell

17

EuroPLoP’21, July 7-11, 2021, Graz, Austria

GET/PUT/DEL/PATCH (P3.v1). The firstvariantin this collection
is the one providing all of the GET, PATCH, PUT, and DELETE
operations.

Although this variant includes most HTTP verbs and thus is the
most expressive in terms of which operations clients can perform
on collection items, it is far from being the most frequently used
in practice. An example of use of this variant is in ID Vault API (
Figure 47), where it appears 6 times.

Size: 8 — Occurrence: 328 — Distinct Labels: 159

invoice

Figure 29: Collection - GET/PUT/DEL/PATCH Variant (P3.v1)

GET/PUT/DEL (P3.v2). Fragments of this variant combine both
the POST and GET operations on the collection. With more than one
thousand occurrences, this variant (Figure 30) is the most occurring
we have mined, not only within the variants of this collection but
also among all the fragments having more than 3 distinct methods
in their leaves. Several instances of this primitive can be found with
different labels in the Apacta API (Figure 9).

Size: 7 — Occurrence: 1123 — Distinct Labels: 574

things

Figure 30: Collection - GET/PUT/DEL Variant (P3.v2)

GET/DEL/PATCH (P3.v3). This variant uses a PATCH operation
instead of the PUT as in variant GET/PUT/DEL. Passman API(Figure 46)
is an example of API where this variant appears.

Size: 7 — Occurrence: 233 — Distinct Labels: 139

/ﬁa)_. /_g
appointments O .\@

Figure 31: Collection - GET/DEL/PATCH Variant (P3.v3)

EuroPLoP’21, July 7-11, 2021, Graz, Austria

GET (P3.v4). This is the simplest variant of this collection. The
client cannot perform any operation on the collection items, except
to read their content. We have found examples of account collections,
whose content cannot be modified by clients. Likewise, this is a com-
mon structure for long-running operations [15], which are started
with a POST request used to transfer the input of the computation,
while the status of the ongoing job and its result can be retrieved
from the corresponding item.

Size: 5 — Occurrence: 323 — Distinct Labels: 168
/ u .
0 G

Figure 32: Collection - GET Variant (P3.v4)

users

PUT/DEL (P3.v5). This variant makes the client unable to individ-
ually read each item of the collection. However, it is possible to list
them all, insert new items, delete or update them. Examples of such
collections with unreadable items would contain simple items whose
address indicating their identity and existence is sufficient to control
their lifecycle (e.g., using the PUT operation to control the video
or audio track playback). Likewise, to set the quantity of individual
order line items or remove them from the order altogether one does
not need to be able to retrieve any information about them. Also
because such information can be fetched when enumerating the
content of the entire collection.

Size: 6 — Occurrence: 169 — Distinct Labels: 84

user

Figure 33: Collection - PUT/DEL Variant (P3.v5)

GET/DEL (P3.v6). This variant only allows to read or delete indi-
vidual collection items. This is one of the most frequently found
variants, with a collection storing a wide variety of items. For ex-
ample, once blog posts, comments, or questions are published, they
cannot be updated but just removed. Likewise, it appears there is no
need to update the ingredients of a recipe.

18

Size: 5 — Occurrence: 345 — Distinct Labels: 187

3

Figure 34: Collection - GET/DEL Variant (P3.v6)

DEL (P3.v7). This is a simpler variant, where it is possible to the
client to list the elements of the collection and insert elements into
it. Once the items have been added, it is only possible to remove
them. In addition to bookings, this variant has been frequently used
for collections of blog post comments, product reviews, or favorite
bookmarks, whose content can be shown when retrieving the entire
collection, but for moderation purposes, it may be necessary to be
able to remove individual items.

Size: 5 — Occurrence: 201 — Distinct Labels: 87

{bogkirg T u
®
L

Figure 35: Collection - DEL Variant (P3.v7)

bookings .,

e Collection Smells

PUT-Only (P3.s1). (] Create without Delete

This smell provides only one operation to update individual items
of the collection, but lacks the affordance for deleting individual
items. This is used with collections of items whose state should be
controlled by clients, for example to configure or simply switch on
or off devices, gateways or services through a management APL

Size: 5 — Occurrence: 78 — Distinct Labels: 48
/ﬂy. @

L

Figure 36: Collection - PUT-Only D