
Estimating the Cost for Executing Business
Processes in the Cloud

Vincenzo Ferme, Ana Ivanchikj, Cesare Pautasso

Faculty of Informatics, USI Lugano, Switzerland

Abstract. Managing and running business processes in the Cloud chan-
ges how Workflow Management Systems (WfMSs) are deployed. Conse-
quently, when designing such WfMSs, there is a need of determining the
sweet spot in the performance vs. resource consumption trade-off. While
all Cloud providers agree on the pay-as-you-go resource consumption
model, every provider uses a different cost model to gain a competitive
edge. In this paper, we present a novel method for estimating the infras-
tructure costs of running business processes in the Cloud. The method
is based on the precise measurement of the resources required to run a
mix of business process in the Cloud, while accomplishing expected per-
formance requirements. To showcase the method we use the BenchFlow
framework to run experiments on a widely used open-source WfMS exe-
cuting custom workload with a varying number of simulated users. The
experiments are necessary to reliably measure WfMS’s performance and
resource consumption, which is then used to estimate the infrastructure
costs of executing such workload on four different Cloud providers.

Keywords: Cloud Resource Cost · Cloud BPM · Business Process Ex-
ecution · Performance Benchmarking · Workflow Management System

1 Introduction and Motivation

According to the recent trend of Cloud Business Process Management [16], users
may move the execution of their Business Processes (BPs) to the Cloud, by
deploying a Workflow Management System (WfMS) on rented Cloud infras-
tructure, a Cloud model known as Infrastructure as a Service (IaaS). A WfMS
deployed in the Cloud (i.e., a Cloud WfMS) can deliver elastic scalability in
response to dynamic workload changes, which is one of the main motivating
factors for moving to the Cloud. In the IaaS context, it is not only important
to determine the inherent performance of the WfMS executing the BPs, but
also to measure and analyse the corresponding resource consumption, so that
an expected level of performance can be guaranteed while keeping costs to the
minimum. The focus of this paper is not on optimizing the BP execution in the
Cloud, which has received its due attention [1,24]. Instead, we focus on analysing
Cloud WfMS’s performance [21,25] and resource consumption [11]. Both aspects
are relevant for estimating the infrastructure costs of running BPs in the Cloud.



Cloud providers introduce cost models [13] with different sizing of the avail-
able resources, granularity of the utilization period, and performance guaran-
tees [15]. In this paper, we present a novel method for estimating Cloud infras-
tructure costs based on precise measures of the resources (CPU, RAM, Database
(DB) Size) consumed to run a mix of realistic BPs with a variable number of
simulated users. Such measures are necessary for in-depth analysis of WfMS’s
efficiency in using Cloud resources and to map how well WfMSs can fit into
existing Cloud cost models. To show-case the proposed method, we apply it
on workloads executed on Camunda1, a wide-spread open-source WfMS with
numerous customers in different sectors. Previous experiments [25] with three
open-source BPMN2.0 WfMSs have indicated Camunda’s stable behaviour, both
in terms of performance and resource utilization, which makes it a good candi-
date for Cloud deployment, thus motivating us to use it as the System Under
Test (SUT) in this work. Then we map its resource utilization to the expected
cost of renting it on four different Cloud providers, i.e., Amazon EC2, Microsoft
Azure, Google Cloud and Springs.io, implementing five diverse cost models.

Given the inherent variability of the IaaS Cloud providers’ performance [23],
we run the experiments in a private Cloud, whose controlled environment makes
it possible to guarantee performance measurements’ reliability and replicabil-
ity [9], providing, what can be considered, a baseline for the results obtained in
the Cloud. Our assumption is that we have obtained sufficient information for
an initial estimation of Cloud costs, and for reducing the set of experiments one
would have to perform directly on the best matching Cloud instances.

The remainder of the paper is structured as follows. Sec. 2 explains the pro-
posed Cloud infrastructure cost estimation method, while Sec. 3 defines some
useful metrics to be used in the proposed method. Sec. 4 describes the performed
experiments in terms of their setup and the experiment environment, while Sec. 5
presents the results from the calculated metrics. Sec. 6 offers an in depth dis-
cussion and mapping of those results to the costs of running BPs on the Cloud.
Sec. 7 presents related work and Sec. 8 describes the threats to validity of the
proposed method. Sec. 9 concludes the paper.

2 Cloud Infrastructure Cost Estimation Method

Before estimating any costs, it is necessary to determine what influences them.
In the case of Cloud infrastructure, the direct influence comes from the Cloud
providers’ pricing policy which uses computing resources (e.g., CPU, RAM) to
distinguish among different pricing packages. When executing BPs in a Cloud
infrastructure, the necessary resources are determined by: a) the WfMSs in-
put, i.e., the complexity and size of the executed BPs as well as the number of
users and the frequency with which they instantiate the BPs, and b) the end
user’s execution performance requirements, e.g., reducing latency or improving
throughput might require higher computational resources.

1 https://camunda.org/

2

https://camunda.org/


Having this in mind, the cost estimation method we propose is comprised of
the following steps: 1) determine the mix of BPs, i.e., the workload mix you plan
to execute in the Cloud (Sec. 4.1.1), 2) determine the number of users and the
frequency in which they will start the business process instances (BPIs) (Sec.
4.1.2), 3) decide the execution performance requirements you are interested in
and how you can measure them (Sec. 3.1, Sec. 4.2.3), 4) run experiments in a
stable and noise protected environment using the input determined in steps one
and two (Sec. 4.2), 5) analyse experiments’ results to determine the resources
necessary to achieve the desired performance indicators (Sec. 5), 6) map the
necessary resources to the pricing packages of Cloud providers (Sec. 6), 7) se-
lect the Cloud providers’ offerings that minimise your costs while maximising
your resource usage efficiency (Sec. 6), and 8) test and analyse in detail the
narrowed selection of IaaS offerings. In the rest of the paper we will show-case
the applicability of the proposed method by using BenchFlow, a dedicated per-
formance framework [8], for running a set of realistic experiments on Camunda
and mapping the results to a selected set of Cloud IaaS providers.

3 Measurements and Metrics

Performance requirements have to be measurable. Thus, selecting and defin-
ing both performance metrics and resource consumption metrics is necessary
before applying the method described in Sec. 2. In this section we present a non-
exhaustive list of possible metrics to use during the experiments, derived from our
experience in benchmarking the performance of BPMN2.0 WfMSs [25]. In order
to obtain statistically relevant and reliable results, each experiment is comprised
of multiple trials. Thus, the raw data for the metrics are gathered separately for
each trial and then aggregated to compute experiment-level metrics.

3.1 Performance Metrics

When testing a WfMS, its performance can be evaluated at the BPI level or at
workload mix level. At BPI level we obtain as raw data from the DB used by the
WfMS, the duration of each BPI execution (D) in milliseconds (ms), which we
use to calculate the aggregated metrics among different trials of the experiment.
Such metrics include: 1) the weighted average of the duration - wavg(D), where
the weights are computed based on the number of executed BPIs in each trial;
2) the minimum, maximum duration - min(D),max(D) across trials; and 3) the
range of the quartiles of the duration - Q1(D), Q2(D), Q3(D) which is calculated
as the minimum, maximum value of the quartiles among the different trials. The
Q1, Q2 and Q3 quartiles show under which value does 25%, 50% and 75% of the
data fall [18, Chap.6].

The performance metrics that we evaluate at workload mix level based
on raw data from the DB are: 1) the number of BPIs - avg(N) executed during
the experiment; and 2) the throughput - avg(T ), i.e., the number of executed
BPIs per second (s). For each of these metrics we calculate the average among

3



the experiment trials with 95% confidence interval (ci), as well as the standard
deviation (sd). The ci is used to set up a range of likely values for the analysed
metric in which we can be 95% confident [18, Chap.8].

Based on data from Faban2, one of BenchFlow’s components [8], we addition-
ally calculate the weighted average of the requests sent by the users per second -
wavg(REQ/s) using the number of requests per trial as weights and the weighted
average response time - wavg(RT ) to the BP instantiation requests in millisec-
ond, where the weight is based on the number of BP instantiation requests in
the different trials.

3.2 Resource Consumption Metrics

The resource consumption metrics are particularly important for Cloud deploy-
ment due to the Cloud providers’ pricing models which uses them as billing
base, with CPU, RAM and Disk space being the most frequently used ones [13].
Since BenchFlow [8] uses Docker containers to deploy the WfMS, we obtain
the raw data regarding the resource utilisation from the Docker Stats API3.
CPU and RAM are continuous variables, thus we calculate the expected value
of their total usage per trial using the integral over time - avg(itg(CPU)),
avg(itg(RAM)) [18, Chap.4]. We apply the trapezoidal rule to approximate the
definite integral.

To analyse the WfMS’s resource allocation efficiency we use the weighted av-
erage of the efficiency of CPU and RAM usage - wavg(e(CPU)), wavg(e(RAM)).
The efficiency is computed as the ratio between the itg(CPU), itg(RAM) and
the product of the max(CPU), max(RAM) and the number of data points used
to calculate that integral, respectively for CPU and RAM. The weighting per
trial is based on the mentioned number of data points. This ratio has values
between 0 and 100%, with values closer to 100% indicating balanced and thus
efficient use of the CPU and RAM without significant changes over time. We also
compute the weighted average CPU, RAM - wavg(CPU), wavg(RAM) among
different trials in percentage (%) for the CPU and in MB for the RAM. The
weights are calculated based on the number of CPU, RAM data points per trial.

To observe the dynamics of the CPU/RAM change over time we provide
the maximum CPU, RAM - max(CPU), max(RAM) metric. Furthermore,
we present the range of the quartile - Q1(CPU), Q2(CPU), Q3(CPU) and
Q1(RAM), Q2(RAM), Q3(RAM) calculated as described in the BPI level per-
formance metrics.

The Disk space refers to the occupied space to store the execution data in
the DB of the WfMS. We obtain the raw data from the DB information schema
by adding the space occupied by the data to the space occupied by the DB
indexes used by the WfMS. This is feasible given that Camunda uses MySQL.
We calculate the average Disk space - avg(DS) among trials with 95% ci and
sd.
2 http://faban.org
3 https://docs.docker.com/engine/reference/api/docker_remote_api_v1.22/

#get-container-stats-based-on-resource-usage

4

http://faban.org
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.22/#get-container-stats-based-on-resource-usage
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.22/#get-container-stats-based-on-resource-usage


4 Experiments Definition

Setting up a performance experiment requires defining: 1) the workload, i.e., the
necessary input to the WfMS, and 2) the execution environment of the experi-
ments, i.e., the private Cloud infrastructure and the minimal resources required
to execute the workload [9]. This means defining the factors that influence the
resource consumption, and the infrastructure costs as mentioned in Sec. 2.

4.1 Workload Definition

The parameters of the workload (workload mix, load functions, and test data) are
generic and applicable to different SUTs. However, their specific characteristics
depend on SUT’s functionality, as well as the experiments’ goals. When the SUT
is the WfMS, the workload mix refers to the BP models to be executed in the
WfMS during the experiments, the load functions define the frequency of BP
instantiation and the distribution of executed control flow paths, while the test
data might be necessary to start a BPI or during its execution, depending on
the BP model characteristics [9].

4.1.1 The Workload Mix In practice, it is challenging to obtain BP models
from industry due to their confidentiality. Alternatively, using a workload mix
comprised of workflow patterns would result in very simple models, while the
synthesis of arbitrary models would not result in a realistic workload. Therefore,
we decided to reuse models included in the demonstrations and performance
benchmarking suites conducted by vendors, in particular Camunda4 and Activ-
iti5. In order to stay focused on the WfMS’s performance, we needed to adjust
vendor’s models by removing data flows and replacing any external interaction
elements (such as message events, pools, Web service tasks, user tasks) with con-
trol flow elements internal to the BPs. Within the original control flow structure,
Web service tasks and user tasks have been replaced with empty script tasks,
except for the scripts necessary to randomly determine the execution path fol-
lowing branching gateways. The duration of timer events has been arbitrarily set
to one minute. Message flows have been replaced with control flows to isolate the
impact of external interaction. In models where messages are used as boundary
events, they have been replaced with exclusive or inclusive gateways, depending
on whether an interrupting or non-interrupting boundary event had been used.
Furthermore, since loops introduce non-deterministic behaviour which can im-
pact the average duration of the BPI execution and the resources it uses, we
limit, using a counter, the number of iterations to a minimum of zero and a
maximum of two.

In real-world usage the WfMS deploys concurrently different BP models with
different level of complexity. Thus, we use a workload mix comprised of five re-
alistic models with different complexity and different set of used BPMN 2.0 con-
structs. The smallest BP model is presented in Fig. 9, while all the executable

4 https://github.com/camunda/camunda-consulting
5 http://www.slideshare.net/alfresco/introduction-to-activiti-bpm

5

https://github.com/camunda/camunda-consulting
http://www.slideshare.net/alfresco/introduction-to-activiti-bpm


camunda_additional_approval

Change necessary?

Amend
something

(Empty
Script)

Do the next
task

(Empty
Script)

Do some
approval
(Decision

Script)

Approved?

Do the
next task
(Empty
Script)

Counter
instantiation

no

ye
s

ye
s

no

Fig. 1. The smallest business process model in the workload mix

models part of the workload mix are available at http://benchflow.inf.usi.
ch/bpm2016 for reproducibility purposes. All models use what zur Muehlen and
Recker [20] call the BPMN Common Core constructs (i.e., normal flow, tasks,
start/end event and exclusive gateway), while pools have been deliberately omit-
ted to ensure executability of the models. In addition, some of the models also
use sub-processes, loops, timer events, terminate end events, inclusive, and par-
allel gateways. The smallest BP model has 21 elements (both nodes and edges)
as evident in Fig. 9, while the largest one has 84 elements, thus they are coherent
with findings of empirical studies on modeling practices [5]. Previous experiments
with running only individual models vs. running a mix of individual models have
revealed comparable execution results [25], thus we have decided to only run ex-
periments where the five models are uniformly represented in the workflow mix:
each model is used to instantiate approximately 20% of the BPIs.

4.1.2 The Load Functions With WfMS as SUT there are two types of
load functions: the load start and the load distribution functions [9]. Due to
the unavailability of execution logs for these particular models, in the load
distribution function we use random load distribution for the diverging paths
with equal probability of choosing among alternative paths. The load start
function, on the other hand, is defined by the load time (or steady state), the
ramp-up period, the number of users and the think time. We use 10 minutes of
load time and 30 seconds of ramp-up period. This means that all users become
gradually active within 30 seconds, while the BP instantiation requests are being
sent for 10 minutes. The load time decision is based on the fact that some
Cloud service providers charge a minimum of 10 minutes of Virtual Machine
(VM) usage with 1 minute increments thereafter. Furthermore, as described
by Skouradaki et al. in [25], such a short load time was appropriate to find
significant performance bottlenecks, thus making it suitable for realistic tests
that provide insight on the WfMS performance behaviour. The actual duration
of the experiment depends on the execution time of the started BPIs, and thus
might be longer than 10 minutes. Previous work [8] has shown that changing the
number of simulated users impacts the WfMS’s performance behaviour. Thus,
to reflect realistic usage of WfMSs by differently sized companies or companies
which are evaluating their growth strategy, we have decided to simulate 50, 500
and 1’000 users. The think time is the waiting time between a new request the
user issues to the SUT, and the time in which the response to the previous
request has been received. In this case, the requests refer to instantiation of

6

http://benchflow.inf.usi.ch/bpm2016
http://benchflow.inf.usi.ch/bpm2016


a new BPI. We use a think time of 1 second, which may or may not reflect
real-world workloads, but it serves the purpose of stressing the SUT.

4.2 Experiments Environment

To ensure reliability of the results and more vast exploration of the cost analysis
space, automation of the experiments’ execution is required. For that purpose
we have developed BenchFlow, a dedicated framework for benchmarking WfMSs
performance [8], which we use for running the experiments. It automates the
configuration and the deployment of the benchmarked WfMSs and its DB. Faban
is used to generate the workload.

4.2.1 Execution Environment Configuration To ensure reproducible ini-
tial conditions and minimal interferences, the WfMS, the DB and Faban, are all
deployed in Docker images [17] on dedicated servers using the Docker Engine
1.9.1 and Ubuntu 14.04.3 LTS (GNU/Linux 3.13.0-40-generic x86 64) as operat-
ing system. They interact through two networks of 10Gbit/s each, one dedicated
to the communication between the WfMS and the DB and the other one dedi-
cated to other interactions (e.g., issuing the load). The WfMS and the DB run on
exclusively dedicated servers. The WfMS on a server with 64 Cores (2 threads)
and a clock speed of 1’400MHz mounting 128GB of RAM and a magnetic disk
with 15’000 rpm. The DB on a server with 64 Cores (2 threads) and a clock
speed of 2’300MHz mounting 128GB of RAM and a SSD SATA disk. Faban’s
Load Drivers are placed on three servers: one with 64 Cores (2 threads) and a
clock speed of 2’300MHz mounting 128GB of RAM, the second with 48 Cores
(2 threads) and a clock speed of 2’000MHz mounting 128GB of RAM, and the
third with 12 Cores (1 thread) at 800MHz mounting 64GB of RAM. With this
resource allocation we have ensured and verified that the DB would not become
a performance bottleneck during the experiment.

4.2.2 Workflow Management System Configuration The experiments
are run on Camunda 7.4.0. placed in a Docker container with Ubuntu 14.04.01
as operating system and the Oracle Java Server 7u79 VM, run using the host
network to avoid performance overhead in the network communication [7]. Stan-
dalone deployment is used and the WfMS is configured in accordance with Ca-
munda’s web-site suggestions, using Camunda’s official Docker image6. MySQL
Community Server 5.7.10 is used as a DB and is installed on a separate Docker
container7. WfMS’s connection to the DB is through the MySQL Connector/J
5.1.33 with minimum 10 idle connections, maximum 100 connections and an
initial thread pool size of 10. The history is set at full level.

4.2.3 Experiments Setup: Resource Allocation Limits While the ex-
perimental testbed provides enough capacity to process the workload, deploying

6 https://hub.docker.com/r/camunda/camunda-bpm-platform/
7 https://hub.docker.com/_/mysql/

7

https://hub.docker.com/r/camunda/camunda-bpm-platform/
https://hub.docker.com/_/mysql/


99% 96% 95% 90% 89% 84% 88% 82% 84% 37%

max(CPU)

10 12 14 16 18 20 22 24 26 64

Number	of	CPU	cores

Experiment	execution	time Throughput BPI	duration

Fig. 2. Normalized performance over number of CPU cores with 500 Users

Table 1. Bounded and Unbounded resource limits

Users WfMS CPU WfMS RAM DB CPU DB RAM

B
50 6 Cores 1 GB 6 Cores 2 GB

500 16 Cores 2 GB 16 Cores 10 GB
1’000 24 Cores 2 GB 24 Cores 12 GB

U 50, 500, 1’000 64 Cores 128 GB 64 Cores 128 GB

the system in the Cloud requires precise definition of the resources (e.g., CPU,
RAM, Disk space) needed by the system to operate under the expected work-
load and in accordance with the expected performance behaviour. To do so, we
first run an unbounded resource experiment (U) using the full available
capacity (64 CPU cores and 128 GB RAM) for both the WfMS and the DB,
for each of the numbers of simulated users (50, 500, 1’000). The purpose is to
determine a baseline for WfMS’s performance under different workloads without
saturating the system, i.e., step three of the proposed cost estimation method:
determining the execution performance requirements (Sec. 2).

Since RAM usage was relatively stable during the U experiments, we set it
to the amount of GB closest (round half to even) to the maximum used during
the U experiments and then kept it as a fixed variable when searching for the
minimum CPU cores required for obtaining a comparable performance to the one
with unbounded resources. We run the experiments with the workload described
in Sec. 4.1.1 and in Sec. 4.1.2. We start from the minimum required CPU cores,
verified from the fact that the system is saturated with peaks of maximum CPU
usage which reach 99% of the available CPU. Then we gradually increment the
available CPU Cores and compare the WfMS’s performance results as well as
the number of requests per second and the response time to the ones from the
U experiments. We set the bound at the number of CPU Cores at which the
performance metrics start to converge towards the U experiments performance
results, while the maximum CPU usage is no more than 90% of the available
CPU. By doing so we provide a 10% buffer given the intrinsic variability of the
system behaviour and the low, but still present non-determinism of the choices of
executed paths in the workflow mix. For space reasons we only show the decision
graph (Fig. 2) for the experiments run with 500 users, but the same method has

8



been used with 50 and 1’000 users as well. The selected CPU and RAM limits
for the bounded resource experiment (B) are presented in Table 1.

5 Experiments Results and Discussion

Each of the experiments described in Sec. 4 is comprised of three trials. In each
trial, to consider only the steady state of the WfMS, we discard all data for the
first five BPIs of each model in the mix, since they have higher duration caused
by the warming up of the SUT. We report the results of the experiments in
Table 2 (performance metrics of Sec. 3.1) and Table 3 (resource consumption
metrics of Sec. 3.2). Results related to the resource utilization efficiency are
reported in Table 4. As evident from the tables, the method for identifying the
resource boundaries for the B experiments (see Sec. 4.2.3), allowed us to obtain
comparable performance between the B and the U executions. The same applies
for the resources utilization. In the B experiments we see an increased, but not
yet high CPU efficiency utilization, while for the RAM it is comparable to the
one experienced in the U experiments.

Table 2. Performance Metrics Results

Business Process Instance Level Metrics Workload Mix Level Metrics

Users
wavg(D)

[ms]
min(D)

[ms]
max(D)

[ms]
Q1(D)
[ms]

Q2(D)
[ms]

Q3(D)
[ms]

avg(N)
[bpi]

avg(T)
[bpi/s]

wavg(REQ/s)
wavg(RT)

[ms]

U
50 8’238.13 0 84’568 [1-1] [2-2] [3-3] 30’623±22 44.45±0.13 48.85 22.97

500 9’148.13 0 143’006 [1-1] [2-2] [3-3] 272’910±6’024 395.90±8.47 434.14 152.18
1’000 64’023.83 0 888’118 [1-1] [2-2] [3-3] 323’783±5’643 329.81±2.73 512.71 946.27

B
50 8’337.41 0 82’855 [1-1] [2-2] [3-3] 30’590±43 44.38±0.18 48.84 24.53

500 9’079.07 0 191’536 [1-1] [2-2] [3-3] 273’116±3’063 396.21±4.79 435.27 149.21
1’000 65’772.55 0 899’168 [1-1] [2-2] [3-3] 328’248±2’268 329.80±3.83 519.14 921.57

Table 3. Resource Consumption Metrics Results

Users
wavg(CPU)

[%]
max(CPU)

[%]
Q1(CPU)

[%]
Q2(CPU)

[%]
Q3(CPU)

[%]
avg(DS)

[MB]

U
50 1.61 23.45 [0.64-0.64] [1.00-1.10] [2.46-2.54] 840.08±27.68

500 10.41 36.81 [0.00-0.01] [14.13-14.27] [16.06-16.20] 7’012.21±150.97
1’000 8.92 38.51 [0.83-0.85] [3.80-4.45] [18.01-18.39] 8’505.81±236.15

B
50 9.06 98.73 [5.26-6.94] [6.33-8.31] [8.06-11.19] 836.92±14.01

500 33.00 94.17 [0.07-0.11] [43.63-45.61] [49.22-50.16] 7’305.91±164.49
1’000 21.41 84.29 [2.13-2.20] [8.82-10.98] [43.44-44.15] 8’962.10±170.36

wavg(RAM)
[MB]

max(RAM)
[MB]

Q1(RAM)
[MB]

Q2(RAM)
[MB]

Q3(RA)
[MB]

sd(avg(DS))

U
50 706.74 823.38 [638.38-652.39] [672.44-695.44] [793.72-806.34] 23.97

500 998.55 1’163.00 [871.87-878.01] [998.45-1027.59] [1’120.07-1’131.58] 130.74
1’000 1’100.73 1’199.59 [1’031.25-1’053.59] [1’131.85-1’172.45] [1’132.37-1’173.28] 204.51

B
50 720.07 870.58 [643.66-683.78] [679.18-716.48] [759.07-776.83] 12.13

500 998.97 1’157.24 [876.00-900.38] [1’000.98-1’011.42] [1’120.86-1’129.12] 142.45
1’000 1’100.46 1’189.20 [1’033.29-1’044.38] [1’150.02-1’165.71] [1’150.73-1’167.72] 147.53

Regarding the WfMS resource utilization, the disk utilization, as expected,
grows with the number of executed BPIs, as evident from the avg(N) and the

9



avg(DS) metrics. The RAM has a more stable utilization than the CPU, as
evident from the Q1, Q2, Q3 quartiles of the distribution of the weighted aver-
age utilization of the two resources. For the RAM the mentioned quartiles are
close to the maximum (max(RAM)) value. This means that the distribution

Table 4. Resource Utilisation Results

Users
avg(itg(CPU))

[%*s]
sd(avg(

itg(CPU)))
wavg(e(CPU))

[%]
avg(itg(RAM))

[MB*s]
sd(avg(

itg(RAM)))
wavg(e(RAM))

[MB]

U
50 1’149.12±14.51 12.56 7.16 508’873.29±4’274.71 3’702.01 86.89

500 9’397.68±252.41 218.59 29.13 902’479.20±26’337.98 22’809.36 86.81
1’000 11’343.29±243.09 210.52 23.41 1’400’305.12±35’146.50 30’437.76 92.95

B
50 6’502.40±947.91 820.92 10.41 519’663.08±15’952.49 13’815.26 83.66

500 29’014.12±549.12 475.56 36.31 878’879.99±7’452.63 6’454.17 86.49
1’000 26’902.98±128.00 110.85 26.56 1’384’193.35±25’070.42 21’711.62 95.43

of RAM usage during the experiment is comparable to the maximum amount
needed by Camunda to handle the constant load issued during the experiment.
The achieved efficiency of RAM utilization is greater with greater number of
users. In Table 4 we also report the efficiency of CPU utilization. It ranges from
10.41 to 36.31 over the B experiments, largely far from what can be consid-
ered a good efficiency. This is also evident from the CPU quartiles’ values, that
are distant from the max(CPU) values, meaning that the CPU utilization has
spikes leading to a very high maximum utilization, while the average utilization
is much lower. This behaviour is more evident with the B workload with 50
users, where Camunda experiences spikes of CPU utilization over 98% while the
average value is 10.41%. High efficiency in resource utilization is very relevant
in the Cloud context, since it enables the selection of cheaper resources that are
efficiently utilized. CPU spikes are particularly deleterious because they require
buying more resources that are not efficiently utilized. We have analysed the
CPU utilization during the entire load issued to the WfMS, and we have noticed
that the spikes occur when the load starts, and the system is warming up, thus
needing more resources to execute the requests. The CPU utilization then stabi-
lizes, but still shows some spikes during the entire execution time. Investigating
the reasons behind it requires more invasive techniques that go beyond the scope
of this paper. However, it is worth mentioning that the experienced spikes, other
than the warm up ones, are unexpected given the characteristics of the workload
mix, which regardless of some non deterministic choices, is expected to have a
constant resource demand under constant load.

Regarding the scalability in the number of users, we can see that Camunda,
using the default configuration, experiences a decrease in performance when the
number of users increases. This is evident from the wavg(D) metric that increases
marginally between 50 and 500 users, and significantly between 500 and 1’000
users. The main reason behind this behaviour is the increase in response time
(wavg(RT )) that leads to a reduced number of issued start requests per second
(wavg(REQ/s)). The identified scalability bottleneck clearly does not depend
on the unavailability of resources, since as evident from the CPU and RAM
quartiles metrics in Table 3, the WfMS had sufficient resources to handle the

10



issued workload. Moreover, we have also verified that the same was true for the
DB connected to the WfMS, and that the network was not saturated.

6 Cloud Providers Costs for Various Workloads

Now that we have determined the minimal necessary resources for executing
our workload, and analysed Camunda’s performance behaviour (see Sec. 5), we
can go on with mapping them to Cloud providers’ offerings. In the analysed
Cloud providers we include what Gartner defines as “leaders” in its 2015 Magic
Quadrant for Cloud IaaS report, i.e., Amazon EC2 and Microsoft Azure, as
well as the “visionary” Google Cloud, and the newcomer Springs.io. They all
use slightly different cost models, offering different flexibility both in renting
resources and in the time unit used for billing. The frequently used term “pay-
as-you-go” can be misleading on what is actually charged. Amazon8 and Azure9

offer “instances” with predefined allocated resources, billed per hour, in the case
of Amazon, and per minute, in the case of Azure. Google10, in addition to the
predefined instances, also enables customers to define their custom instance,
which although more flexible, is not entirely elastic given that the number of
CPUs (or virtualized CPUs) must be even, and the RAM memory per CPU
must be between 0.9GB and 6.5GB, while being a multiple of 256MB. Google
charges per minute for both types of instances, however, the minimal time that
can be charged is set to 10 minutes. Springs.io11, on the other hand, charges
by hour, but with less limitations on the selected resource bounds. It charges
for CPU speed which can be incremented in steps of 50MHz within the range
between 500MHz and 20’000MHz, while the RAM can be incremented in steps
of 128MB within the range between 256MB and 32’768MB.

The mapping of providers’ offerings to the resource requirements has been
mainly driven by the minimal WfMS’s CPU requirements as defined with the
bounded resource experiments. This means that the instances presented in Ta-
ble 5 offer at least the same CPU and RAM as used in the experiment. The prices
are on per hour basis, as per provider’s official websites12, for Linux operating
system and based on West US region. When multiple instances satisfied the min-
imal CPU requirement, the most economical one was selected. Since Springs.io
uses a concept of simulated core in MHz (core-MHz), core-2GHz of speed are
mapped to 1 CPU Core based on the processor used as per Springs.io’s docu-
mentation. This translates to a maximum of 10 CPU Cores given its limit in
maximum number of MHz available. The limit of 10 CPU Cores is not sufficient
computational power for running the workloads with 500 and 1’000 users. Thus,
Table 5 only contains Springs.io’s cost for 50 simulated users. The stated prices
do not include any additional charges for storage or data transfer, since we only
focus on the CPU and RAM needed by the WfMS.

8 https://aws.amazon.com/ec2/pricing/
9 https://azure.microsoft.com/en-us/pricing/details/virtual-machines

10 https://cloud.google.com/compute/pricing
11 http://springs.io/pricing-list/
12 The prices in Table 5 are from March 2016 and are subject to change.

11

https://aws.amazon.com/ec2/pricing/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines
https://cloud.google.com/compute/pricing
http://springs.io/pricing-list/


Table 5. Selected Cloud Providers’ Instances: Resources and Prices13

Cloud Provider Instance type CPU Memory (GB) Price (USD/hr)
5
0

U
se

rs

Actually used N/A 5.92 Cores 0.85 N/A
Amazon (Am) Compute Optimised - c4.2xlarge 8 Cores 15 0.419
Azure (Az) General purpose - basic tier - A4 8 Cores 14 0.376
Google Predefined (Gp) High-CPU - n1-highcpu-8 8 Cores 7.2 0.232
Google Custom (Gc) N/A 6 Cores 5.4 0.25827
Springs.io (S) N/A 12 GHz 1 0.107

5
0
0

U
se

rs

Actually used N/A 15.07 Cores 1.13 N/A
Amazon (Am) Compute Optimised - c4.4xlarge 16 Cores 30 0.838
Azure (Az) Compute Optimised - D5 v2 16 Cores 56 1.17
Google Predefined (Gp) High-CPU - n1-highcpu-16 16 Cores 14.4 0.464
Google Custom (Gc) N/A 16 Cores 14.4 0.68872
Springs.io (S) N/A N/A N/A N/A

1
’0

0
0

U
se

rs

Actually used N/A 20.23 Cores 1.16 8.75
Amazon (Am) Compute Optimised - c4.8xlarge 36 Cores 60 1.675
Azure (Az) Performance optimized compute - G5 32 Cores 448 8.69
Google Predefined (Gp) High-CPU - n1-highcpu-32 32 Cores 28.8 0.928
Google Custom (Gc) N/A 24 Cores 21.6 1.03308
Springs.io (S) N/A N/A N/A N/A

Am	Az	Gp	

Gc	S	 Am	 Az	Gp	 Gc	

Am	
Gp	

Gc	

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	
100%	

0	 0.2	 0.4	 0.6	 0.8	 1	 1.2	 1.4	 1.6	 1.8	 2	 2.2	 2.4	 2.6	 2.8	 3	

w
av
g(
e(
CP

U
))	
[%

]	

Price	($/hr)	50	users	 500	users	 1000	users	

Az	

8	 8.2	 8.4	 8.6	 8.8	
		

Fig. 3. CPU Usage Efficiency vs Cloud Provider Costs per Workload

Additionally, for each provider we have calculated the CPU usage efficiency
as a ratio between the actual used CPU during the experiments, mentioned in
Table 5, and the CPU in the provider’s instance. As was to be expected for the
smallest workload of 50 users, the most flexible provider, Springs.io, offers the
best price and the most efficient CPU usage, but it is interesting to see that the
custom instances of Google, which offer greater CPU usage efficiency, are less
expensive than the predefined instances of Amazon and Azure. The CPU usage
efficiency shown in Fig. 3 in relation to the Cloud provider costs for different
workload sizes, is also an indicator of how flexible the existing Cloud offerings
are. It is evident that for big workload with 1’000 concurrent users, only with the
Google custom instance the CPU is used efficiently, since the predefined instances
are not flexible enough and do not offer any instances which have between 16
and 32 CPU Cores. As the size of the workload doubles from 500 to 1’000 users,
so does the price of the best offer for the minimal required instances. On the
other hand, when going from 50 to 500 users, i.e., a ten-fold workload increase,
the price becomes three times higher. Thus, the increase in the best offered

13 The best offered price for each workload is marked in bold

12



price, marked in bold in Table 5, is not linear to the increase in the number
of users while keeping the workload mix fixed. The most significant spread of
costs is noticeable for the largest workload where Azure only offers one type of
instance, which is over eight times more expensive than competitors’ offerings
due to the high RAM and Disk space available, which are actually not needed
for the executed workload. For the 500 users workload, although the CPU usage
efficiency is equal among all the providers since they all offer instances with 16
CPU Cores, the ratio between the highest and the lowest price is 1.5 times. In
addition to CPU usage differences, from Table 5 it is evident that all analysed
Cloud providers, except for Springs.io, are not flexible with the available amount
of RAM, which for all workloads is much higher than the actually needed one.
If Springs.io increases the CPU it offers, it might be the case that its cost model
would be the most convenient one in the future, both in terms of resource usage
efficiency and in terms of costs.

Although the duration of our experiments is less than one hour and the
hardware is different from what is offered by Cloud providers, we expect similar
trends of CPU, RAM usage for longer running experiments in the Cloud. Thus,
we find the price per hour in relation to the efficiency of CPU usage calculated
based on the experiments, an appropriate indicator for selecting the most suitable
Cloud providers for further analysis directly on the selected providers.

7 Related Work

Cloud BPM - In the context of Cloud BPM, users pay for the sustained usage
of the Cloud BPM solution, or for renting the IaaS on which they install the
WfMS of interest. All Business Activity Monitoring (BAM) measures related
to “process instance times” [19] have been already applied in the literature to
improve the performance of BP and scientific workflows execution in the Cloud,
especially for what concerns the performance of service based and/or computa-
tionally intensive processes [14,24,1]. Janiesch et al. [6] rely on the BPI execution
time information to propose a BPM-aware scaling mechanism to scale the re-
sources available to services connected to the BPI, with the goal of improving
the turnaround time of executed BPs. The proposed scaling mechanism monitors
Cloud resources (mainly the CPU) and performance/Service Level Agreement
(SLA) measures, to optimize the execution of service-based BPs. It is evident
from the discussed literature that the recent trends towards Cloud WfMSs [4]
have introduced many challenges [2], such as the need of a comprehensive eval-
uation of WfMS’s and BP’s performance, to better quantify and evaluate the
effectiveness of moving the BP execution to the Cloud. To optimise time and cost
savings by moving to the Cloud, Han et al. [12] propose a Hybrid architecture
of Cloud BPM, where depending on activity’s computational-intensity and data
sensitivity, an optimisation algorithm determines the place of its execution, i.e.,
the Cloud or an on premises server. More recently, Gómez Sáez et al. [11] have
started evaluating the cost of running scientific workflows on different Cloud
providers using a similar cost model. However, they use a scientific WfMS and a

13



workload comprised of a single workflow and 10 simulated users, while we use a
more diverse workload mix and simulate a variable number of users. In addition
to latency, we compute more detailed metrics not only concerning the resource
consumption, but also the WfMS’s performance. Furthermore, we do not go into
analysing the different categories of instances offered by the Cloud providers, but
limit our analysis to the cheapest instance per provider that would be sufficient
to provide a sufficient amount of resources for the given workload.

WfMS Performance Benchmarking - In the performance benchmarking
area, we refer to the work on benchmarking as means to improve WfMS’s per-
formance, and the work on reporting WfMSs’ resource usage metrics. Weikum et
al. [10] propose a benchmark for comparing the performance of different commer-
cial WfMSs by measuring their throughput to study the impact of the database
component. They also derive some useful lessons learned for better character-
ization and improvement of the benchmarked WfMSs performance. Roller [22]
proposes a comprehensive study on an internally developed WfMS, with focus
on WfMS’s throughput. The author relies on benchmarking and proposes differ-
ent optimization and caching techniques to improve system’s performance. Most
of the remaining related work on WfMS performance benchmarking, refers to
performance benchmarking using black box approaches and considers WfMS’s
throughput and latency as performance metrics. Only few of them present per-
formance metrics in terms of resource consumption for executing BPs [21,25].

Brebner and Liu [3] analyse costs of using Cloud IaaS for a service applica-
tion. However, they only obtain data on the CPU resource consumption, later
used to map the consumption to the cost for different instance types offered by
the analysed Cloud providers. Our goal is not comparing the costs of different
Cloud providers for an arbitrary application. We target a specific middleware,
the WfMS, and investigate the relation between the diverse performance and
resource consumption of different workloads and the costs of deploying them
on different Clouds. To do so, we rely on performance benchmarking research
and technologies to benchmark the performance of the WfMS’s core components
and their intrinsic resource consumption as a system running processes. We rely
on BAM research and technologies, outside and inside the Cloud, to define the
relevant metrics for characterizing the performance, the resource consumption,
and consequently the cost of the WfMSs which are part of our study.

8 Threats to Validity

Construct Validity - We conduct our experiments on one WfMS in its default
configuration, since it is the first one utilized by practitioners to evaluate sys-
tem’s performance, a standalone deployment, a single workload mix and different
workloads. In the analysis, we only consider the WfMS resources, but a similar
approach can be followed for the corresponding DB. To reduce measurement
noise, we perform experiments using lightweight Docker containers that are not
deployed in a virtualized environment.

Internal Validity - The experiments we perform are inherently subject
to variability in obtained metrics value, due to the many factors impacting the

14



runtime of a software system. We mitigate this variability by performing multiple
trials for each of the experiments, and we verify the variance among trials in order
to provide reliable measures validated by descriptive statistics.

External Validity - The method we propose for estimating the cost of
executing the BPs on the Cloud by precisely measuring the resources needed
by the WfMS running them, is limited in generalizability by the performance
variability in a public Cloud and the different hardware on the Cloud instances
compared to the one we have used. Cloud prices and cost models are frequently
changed by competing Cloud providers. This may affect the obtained ranking.
We are aware of this limitation, and thus we propose the current method as only
the first step towards evaluating the cost of running BPs in the Cloud which
reduces the set of experiments to be performed directly on the Cloud.

9 Conclusion and Future Work

In this work we have introduced a novel method for estimating the costs of
running BPs in the Cloud. We have applied it by running experiments with
different workloads on Camunda, a widely used open-source BPMN 2.0 WfMS.

Considering the CPU and RAM bounds determined with the experiments
we have surveyed four Cloud providers for best fitting offers. A lack of flexibility
concerning resource size and granularity in the offerings has been noted, espe-
cially for the largest workload of 1’000 concurrent users, where predefined Cloud
instances are too big, while the offerings with real flexibility in terms of CPU
vs. RAM combinations include maximum CPU bounds that are too low.

Due to the extreme variability of public Cloud performance [23] and the
difference in hardware of the rented Cloud resources, our approach contributes
the necessary first step towards measuring the actual cost of executing BPs in
the Cloud, and limiting the number of Cloud instances to be involved in ac-
tual experiments in the Cloud. In the near future we aim to perform additional
experiments in the identified Cloud instances using Cloud benchmarking tech-
niques [3,23], so that we can validate our method Moreover, we plan to apply the
proposed method to other BPMN 2.0 WfMSs and to different deployment alter-
natives, in order to observe differences in resource utilization among the WfMSs,
which might lead to different Cloud providers being suitable for different WfMSs
subject to different workloads. Lastly, we plan to extend the workflow mix to
include Web service calls, events and human tasks to provide a more compre-
hensive evaluation of the resource needed by all WfMS components.

Acknowledgments This work is partially funded by the Swiss National Science

Foundation with the BenchFlow - A Benchmark for Workflow Management Systems

(Grant Nr. 145062) .

References

1. Alkhanak, E.N., Lee, S.P., Khan, S.U.R.: Cost-aware challenges for workflow
scheduling approaches in Cloud computing environments: Taxonomy and oppor-
tunities. Future Generation Computer Systems 50, 3–21 (2015)

15



2. Baeyens, T.: BPM in the Cloud, vol. 8094, pp. 10–16. Springer (2013)
3. Brebner, P., Liu, A.: Modeling cloud cost and performance. In: Proc. of Cloud

Computing and Virtualization Conference (CCV 2010), Singapore (2010)
4. Cantara, M.: The state of the bpm platform cloud market (id: G00209943) (2011),

https://www.gartner.com/doc/1520715/state-bpm-platform-cloud-market
5. Chinosi, M., Trombetta, A.: Bpmn: An introduction to the standard. Computer

Standards & Interfaces 34(1), 124–134 (2012)
6. Euting, S., et al.: Scalable business process execution in the Cloud. In: Proc. of

IC2E ’14. pp. 175–184 (March 2014)
7. Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance com-

parison of virtual machines and linux containers. Tech. rep., IBM (July 2014)
8. Ferme, V., et al.: A framework for benchmarking BPMN 2.0 workflow management

systems. In: Proc. of BPM ’15. pp. 251–259. Springer (2015)
9. Ferme, V., et al.: A container-centric methodology for benchmarking workflow

management systems. In: Proc. of CLOSER’16. Springer (2016)
10. Gillmann, M., et al.: Benchmarking and Configuration of Workflow Management

Systems. In: Proc. of CoopIS ’00. pp. 186–197 (2000)
11. Gómez Sáez, S., et al.: Performance and Cost Evaluation for the Migration of a

Scientific Workflow Infrastructure to the Cloud. In: Proc. of CLOSER 2015. pp.
1–10. SciTePress (May 2015)

12. Han, Y.B., Sun, J.Y., Wang, G.L., Li, H.F.: A cloud-based BPM architecture
with user-end distribution of non-compute-intensive activities and sensitive data.
Journal of Computer Science and Technology 25(6), 1157–1167 (2010)

13. Höfer, C., Karagiannis, G.: Cloud computing services: taxonomy and comparison.
Journal of Internet Services and Applications 2(2), 81–94 (2011)

14. Janiesch, C., et al.: Optimizing the performance of automated business processes
executed on virtualized infrastructure. In: Proc. of HICSS. pp. 3818–3826 (2014)

15. Lenk, A., et al.: What are you paying for? performance benchmarking for
infrastructure-as-a-service offerings. In: Proc. of CLOUD ’11. pp. 484–491 (2011)

16. Liu, X., Yuan, D., Zhang, G., Li, W., Cao, D., He, Q., Chen, J., Yang, Y.: The
design of Cloud workflow systems. Springer (2011)

17. Merkel, D.: Docker: Lightweight linux containers for consistent development and
deployment. Linux J. 2014(239) (Mar 2014)

18. Montgomery, D.C., Runger, G.C.: Applied Statistics and Probability for Engineers.
John Wiley and Sons (2003)

19. zur Muehlen, M., Shapiro, R.: Business process analytics. In: Handbook on Busi-
ness Process Management 2, pp. 137–157. Springer (2010)

20. Muehlen, M., Recker, J.: How much language is enough? theoretical and practical
use of the business process modeling notation. In: Proc. of CAiSE 2008. pp. 465–
479. Springer (2008)

21. Röck, C., et al.: Performance benchmarking of BPEL engines: A comparison frame-
work, status quo evaluation and challenges. In: Proc. of SEKE. pp. 31–34 (2014)

22. Roller, D.H.: Throughput Improvements for BPEL Engines: Implementation Tech-
niques and Measurements applied in SWoM. Ph.D. thesis, USTUTT (2013)

23. Schad, J., et al.: Runtime measurements in the cloud: observing, analyzing, and
reducing variance. Proceedings of the VLDB Endowment 3(1-2), 460–471 (2010)

24. Schulte, S., Janiesch, C., Venugopal, S., Weber, I., Hoenisch, P.: Elastic business
process management: State of the art and open challenges for BPM in the cloud.
Future Generation Computer Systems 46(0), 36–50 (2015)

25. Skouradaki, M., et al.: Micro-benchmarking BPMN 2.0 workflow management sys-
tems with workflow patterns. In: Proc. of CAiSE’16. Springer (2016)

16

https://www.gartner.com/doc/1520715/state-bpm-platform-cloud-market


Appendix - Workload Mix Models

Due to space limitations we include the five BPMN process models we used in the
experiments as part of this appendix. The executable models can be downloaded
from http://benchflow.inf.usi.ch/bpm2016.camunda_additional_approval

Change necessary?

Amend
something

(Empty
Script)

Do the next
task

(Empty
Script)

Do some
approval
(Decision

Script)

Approved?

Do the
next task
(Empty
Script)

Counter
instantiation

no

ye
s

ye
s

no

camunda_oopSignavio

Order
Received

Determine
Location

(Decision Script)
Exception
detected?

Escalation
(Empty
Script)

Order
amount?

Order Canceled

Approved?
Send Rejection

Email
(Empty Script)

Order
Rejected

Send Order to WH
(Empty Script)

Receive
Dispatch

Confirmation
(Empty
Script)

Control
Dispatch
(Empty
Script)

Send
Confirmation

Email
(Empty
Script) Order

Confirmed

Order Approval
(Decision Script)

>2
00

<=200no

ye
s

no

yes

camunda_invoice_collaboration

Scan Invoice
(Empty
Script)

Archive
Original
(Empty
Script)

Ask Approver
Assignment

(Empty Script)

Approve
Invoice

(Decision
Script)

Assign
Approver

(Empty
Script)

Invoice
Approved?

Prepare Bank
Transfer

(Empty Script)

Ask Invoice
Review
(Empty
Script)

Review
successful?

Review
Invoice

(Decision
Script)

Archive
Invoice
(Empty
Script)

no
ye

s

no

ye
s

17

http://benchflow.inf.usi.ch/bpm2016


activiti_modelSignavio

In-depth Analysis
Medical
Analysis
(Empty
Script)

Risk
Assessment

(Empty
Script)

Send Meeting
Request
(Empty
Script)

F2F Meeting
(Empty
Script)

Calculate
Score

(Empty
Script)

Preliminary
Judgement

(Empty Script)

Send Rejection
Email

(Empty Script)

Approve Loan
Application

(Decision Script)

Approved?

Update
Application With

Calculation
(Empty Script)

Final Evaluation
(Decision Script)

ye
s

not ok

ok

no

COUNTERPARTY

Counterparty
Requested

Review
Onboarding

Request
(Decision

Script)

Override
requested?

Review Override
Request

(Decision Script)

Tax
(Empty Script)

Missing Tax
Documents

(Decision Script) Goto tax?

Check Tax Rules
(Decision Script)

Override
requested?

Tax
approved?

Amend Tax Data
(Decision Script)

Override
requested?

High Risk
Country

(Empty Script)

Missing
Compliance
Documents

(Empty Script)

World Check
(Decision

Script) Goto
compliance?

Check Compliance
Rules

(Decision Script)

Override
requested?

Compliance
approved?

Amend Compliance
Data

(Decision Script)

Override
requested?

Start SSI
Review

(Empty Script)

Override
approved?

override rejected

Ready to
publish?

Publish
Counterparty
(Empty Script)

Cancel SSI Review
(Empty Script)

rejected

published

yes

no

ye
s

no

no

m
ay

be

no

ye
s

no

m
ay

be

noyes

yes

yes

no

yes

no

ye
s

no

no

ye
s

no

ye
s

yes

18


	Estimating the Cost for Executing Business Processes in the Cloud

