
Programming for Dependability in a Service-based Grid

Win Bausch, Cesare Pautasso, Gustavo Alonso
Dept. of Computer Science

Swiss Federal Institute of Technology (ETHZ)
ETH Zentrum, 8092 Zürich, Switzerland
{bausch,pautasso,alonso}@inf.ethz.ch

Abstract

Service-based Grid infrastructures emphasize service compo-
sition rather than sharing of low level resources. The idea is to
build Grid applications out of computational services provided by
the different sites of the Grid. Recent developments in the area of
Web services have strengthened this idea by standardizing proce-
dures like service description, publication and invocation. What is
still missing is the infrastructure necessary to support the complete
life cycle of applications running on service based Grids, i.e., suit-
able programming paradigms, execution infrastructure, and the
ability to monitor and control such computations. Moreover, once
computations are made of composable services, dependability be-
comes a key issue that needs to be addressed by the infrastructure
as it cannot be addressed separately by each individual service.
To address these concerns, we have developed the BioOpera Grid
computing platform. BioOpera is a process support system for
dependable cluster computing that has been extended with addi-
tional functionality to provide adequate support for service-based
Grids. In this paper we describe how BioOpera can be used to
develop, execute, and administer highly dependable computations
over service-based Grids.

1. Introduction

Grid Systems are the infrastructure necessary for the
generic and large-scale inter-operation of a broad variety
of distributed computing resources. A common approach to
build such an infrastructure is to provide a world wide sin-
gle system image of all the resource involved (or to get as
close as one can to this ideal). This requires mechanisms for
sharing low level resources such as CPU cycles or data stor-
age space, mechanisms that are grouped into middleware
and development platforms like the Globus toolkit [15].

Useful as these platforms are, there are a few factors
that speak for alternative solutions. First, sharing of low
level resources is an attractive option only for experienced
grid users and programmers. The vast majority of scien-
tific users are overwhelmed by the complexities of develop-
ing and managing a computation running on such a Grid.
Second, it is not always the case that the owners of the dis-

tributed resources want to share or grant access to raw CPU
power or storage capacity. Offering concrete computational
services (e.g., searches on a specialized database or running
a proprietary algorithm over user supplied data) is a value
added proposition that may make more sense from a busi-
ness perspective (and of which there are already several in-
teresting examples: [12, 13]).

These and similar observations have led to computing
Grids where what is shared are not computational resources
but computational services. It has even been suggested
that only this approach will allow scientist to fully lever-
age the Grid as next generation computing platform [16].
In such service-based Grids, the emphasis is shifted from
resource management to service composition, a shift that
affects not only the infrastructure but also the programming
model used for building Grid applications.

Following this idea, in this paper we present BioOpera,
a process support system that addresses the entire life cy-
cle of software applications on service-based Grids. For
reasons of space, we ignore the problem of interoperabil-
ity and related standards such as Web services [22, 24, 32]
and OGSA [17]. Instead we focus on the core function-
ality of BioOpera. In the first place, BioOpera provides a
programming paradigm particularly suited for service com-
position. A paradigm that lends itself quite well to visual
composition, thereby greatly simplifying the development
of complex Grid applications by inexperienced users. In
the second place, BioOpera can be deployed in a variety of
configurations to adapt it to different types of Grids. It can
be used hierarchically (a BioOpera server invoking other
BioOpera servers), peer-to-peer (several BioOpera servers
invoking each other), or as execution engines that invoke
services located at remote sites that do not run BioOpera. In
the third place, BioOpera provides a comprehensive set of
user interfaces for monitoring and administration of service-
based Grid computations. These interfaces can be use di-
rectly by humans or as an Application Programming Inter-
face to build additional tools, e.g., for debugging. When
extended with support for Web services standards, all these
features provide a complete development and run time en-
vironment for service-based Grids.






We believe that all these features are per-se valuable con-
tributions as they contain generic mechanisms that can be
used in a wide range of settings. Our goal, however, is
even more ambitious. We are interested in providing an
autonomic Grid computing platform [23]. Computational
services are ideal for this purpose and several similar re-
search efforts are underway in the area of electronic com-
merce [20, 21]. BioOpera has been designed from the very
beginning with this type of autonomic behavior in mind. In
the paper we show how the programming paradigm sup-
ported by BioOpera, the architecture of the system, and the
different possible configurations can be used not only to de-
velop and run service-based Grid applications but also to
make them highly dependable. For instance, the experi-
ments discussed in the paper show how BioOpera uses up
to four different clusters to keep a computation alive with-
out requiring any manual intervention in spite of dynamic
changes in availability.

The paper is organized as follows: in Section 2 we in-
troduce our programming model based on service composi-
tion. Section 3 presents the extensions to the Architecture
of BioOpera relevant to grid computing. In section 4 we
show some results about an experimental grid computation
performed on clusters at four different locations. Section 5
briefly covers related work. Section 6 concludes the paper.

2. Service composition in the Grid

BioOpera [7] was originally a workflow engine used to
implement experiments in virtual laboratories [2]. It was
later extended to become a cluster computing platform for
coarse-grained applications [4]. Before discussing how it
has now been modified for Grid computing, we will de-
scribe the scenarios we have in mind for the new platform.

2.1. Service model

The service model we follow is similar to that used in
the context of Web services [22, 24] (Figure 1). The ba-
sic idea is for service providers (sites B, C and D in the
figure) to construct a series of computational services that
they make publicly available either to the world in general
or to a selected community of users. These services will be
the basic building blocks for that particular computational
Grid. There is no restriction on the nature of such services.
They may be an application running on a single computer
or fully-fledged Grid applications that involve several other
Grid sites. Composition of services should be possible and
transparent to the end user of the service.

We assume the services are described in a standard man-
ner (e.g., using the Web Services Description Language,
WSDL) and published in some repository shared by all
members of that Grid. We will refer to these repositories
as service catalogs. The catalogs might be centralized or
they might be replicated across all participants so that each
participant has its own local copy. In the current version

of BioOpera we follow the latter approach as we are at the
moment more interested in closed user communities. There
is nothing, however, that would prevent the design from be-
ing extended to use a centralized catalog. BioOpera sup-
ports two types of catalogs: public and private. The public
ones are made available to interested and authorized part-
ners. The private ones can only be used within the domain
that owns the catalog (e.g., a laboratory or a company).

The catalogs are part of the development environment
provided by BioOpera. Application developers can pick a
computational service from the catalog and drag and drop it
into the process that describes the application (see below).
Then they can use BioOpera to compile the process into an
executable and run as well as monitor the progress of the
Grid application using the BioOpera engine.

Grid Site B Grid Site C Grid Site D

Public Service
Catalog

1) publish
service

2) construct
catalogs

3) compose

Grid Application
4a) execute
4b) publish

as service

Grid Application

5) monitor

Status
Info

The GridGrid Site A

1) publish
services

1) publish
service

Private Service
Catalog

Figure 1. Service composition in the Grid

2.2. Programming model

To implement a Grid application in BioOpera, services
must be composed into a process. In this aspect, BioOpera
is not different from the growing number of cluster comput-
ing tools that use a similar approach [1, 10, 26, 29]. A pro-
cess describes a set of service invocations as well as the de-
pendencies between them. A process is a Directed Acyclic
Graph (DAG), the nodes of which describe the computa-
tional services that make up the computation, whereas the
edges represent either data or control flow dependencies be-
tween these services. BioOpera provides a visual program-
ming tool (Figure 2) for service composition using a com-
ponent library. For use with Grid services, this library has
been extended to include the public and private catalogs just
mentioned. Grid applications are therefore built by select-
ing services (and local computational components) from the
library and establishing the flow of data and control between
these components.

When the process is compiled, the result is a process tem-
plate. These templates are uploaded as new library com-
ponents and, if so desired, made available as a computa-






Figure 2. Visual programming tool

tional service to other Grid users. Unlike in other process
based systems, templates in BioOpera only represent data
and control flow. They do not contain information about the
location or methods of invocation related to each service.
These are determined at run time by the BioOpera sched-
uler by looking at the information available in the catalogs.
This feature is very important for dependability purposes
since it delays to the latest possible moment the decision of
where to run a job. Upon starting the execution of a pro-
cess, the process template is copied into a process instance.
The process instance incorporates runtime state information
concerning that particular execution. Instances of the same
or different templates may be run concurrently by the same
runtime environment.

2.3. Setting up services

Public and private services are set up in a very similar
fashion. We will limit ourselves to describe the procedure
only for public services. This procedure can be manual or
automatic. The manual approach is needed to incorporate
new library components that run in the local environment.
The process is automatic when incorporating processes as
components or importing into the catalog computational
services provided by other sites in the Grid.

The first step in setting up a service for use in a process is
to register the resources that provide the service. A resource
definition consists of an IP address identifying the Grid site
where that service can be found. BioOpera supports nesting
of resource definitions by allowing to use resource groups.
A resource group can be used, for instance, to identify sub-
clusters of a bigger cluster. It can also be used to identify
a set of single resources that provide the same service. Re-
source groups need to have a unique name, in analogy to
individual resources. The set of all resource definitions de-
scribes all possible service access points in that particular
Grid.

A service is made available by registering its service defi-

nition. This is done by uploading the service into a catalog.
A service description consists of (1) the service interface,
(2) a list of the resources that provide it, (3) the name of the
appropriate execution subsystem to use to control the appli-
cation implementing the service and (4) the service’s access
method.

The service interface is the list of the input and output
parameters for that service. The list of resources that pro-
vide the service is used by the BioOpera dispatcher to deter-
mine at run time where to invoke that service. If more than
one resource is eligible, BioOpera uses whatever load bal-
ancing policy is in place to select one. Also, note that this
list is maintained dynamically by the BioOpera engine. If
a resource fails or becomes unavailable, it will be removed
from the list. When it becomes available again, it is added
back to the list. This mechanism allows BioOpera to adapt
the execution to dynamic changes in the configuration of the
Grid.

The execution subsystem name identifies the BioOpera
runtime system interface to be used to start the service.
Through the execution subsystem mechanism, BioOpera
may start services using a variety of different execution plat-
forms (Sun Grid Engine [30], Condor [25], Portable Batch
System, [5], CORBA [27], RPC [28], Web services [32],
Condor-G [18]).

The access method encapsulates all information required
by the service execution platform itself to start the service.
For example, the access method for a Condor-G job may be
a script. Using a Condor-G execution subsystem, BioOpera
sends the script to a Condor submission node for execution.
Access methods may be parameterized by service input pa-
rameters, which will be provided at runtime and will be used
to complete the access method before calling a service.

3. BioOpera architecture

A description of BioOpera’s architecture can be found in
[4], in here we present only aspects relevant for this paper.

3.1. System components

As illustrated in Figure 3, BioOpera is designed as a
three tiered client-server system. The front tier contains
user interface tools for process design and monitoring. The
middle tier groups all components related to process enact-
ment support. The back tier incorporates the execution plat-
form for the computational services.

In the front tier, BioOpera provides a variety of client
tools, in an effort to offer appropriate support for different
Grid users. The Web Monitor may be used to build Science
Grid Portals [19] for specific applications and Grid com-
munities. The Process Design and Monitoring GUI may
be used by Grid programmers to design, develop, test and
optimize their Grid applications in an integrated, visual de-
velopment environment. Additionally, the Command Line
Client opens up the system for building extensions such as






Database EngineDatabase Engine Runtime KernelRuntime Kernel

Information and Event ServiceInformation and Event Service

Command Line
Client

Command Line
Client

Web MonitorWeb Monitor
GUI

(Process Design,
Monitoring)

GUI
(Process Design,

Monitoring)

API

Program
Execution

Client

Program
Execution

Client Condor
PBS, SGE,…

Condor
PBS, SGE,…

Legion,
Corba,
DCE,..

Legion,
Corba,
DCE,..

External ApplicationExternal Application

External ApplicationExternal Application

Execution Subsystems

Operating
System

Operating
System

Figure 3. BioOpera architecture

history mining tools, or for integrating calls to BioOpera
processes into other applications.

The middle tier components are the Information and
Event Service which provide a uniform point of access to
the rest of the system, the Runtime Kernel dedicated to pro-
cess execution, and a Database used to store process tem-
plates and instances as well as resource and service descrip-
tions. The database is used by the information service to
efficiently generate different views on the computation for
the various clients. It is also used to keep consistent copies
of the process instances and to guarantee their transparent
recovery in case of failures. The database allows BioOpera
to resume computations even after complete failures of all
the system components [2].

The back tier consists of various task execution plat-
forms. BioOpera provides mechanisms to run shell com-
mands and scripts in a cluster environment, to execute pro-
cesses on remote BioOpera systems and also supports a
variety of execution platforms. Different execution sub-
systems may be plugged into the kernel at the same time,
allowing processes to use computational services imple-
mented on different execution platforms. Adding support
for a new platform amounts to implementing a kernel plug-
in that maps basic job submission, job status notification
and load monitoring services to the specific mechanisms of
the platform.

3.2. Remote service invocation

For Grid computing purposes, the BioOpera kernel has
been extended with a remote process execution subsystem.
For the purposes of this paper, this subsystem implements
a protocol to start processes at a remote BioOpera server
and a scheduler interface to gather load information about
the remote site. With this subsystem, we can implement
hierarchical grids where a master BioOpera server uses the
computational services provided by other BioOpera servers.

Runtime KernelRuntime KernelDatabase EngineDatabase Engine

Information and Event ServiceInformation and Event Service

Runtime KernelRuntime KernelDatabase EngineDatabase Engine

Information and Event ServiceInformation and Event Service

BioOpera Installation

BioOpera Installation

Local
Execution
Platform

(LEP)

LEP subsystem

Grid Site B

Grid Site A

Remote Process Call
subsystem

Local
Execution
Platform

(LEP)

Service invocation Local job submission

Figure 4. Remote service invocation

We can also implement peer-to-peer settings where each en-
gine invokes computational services provided by the other
engines. We are currently in the process of implementing
additional subsystems and extending the existing ones, in-
cluding extensive support for SOAP, the Simple Object Ac-
cess Protocol [32].

Figure 4 shows how two BioOpera systems interact
through the remote service invocation mechanism. To start
a remote process, the local site A sends its name along with
the input data to the remote site B. In return, it receives a to-
ken identifying the process instance running on the remote
site. Whenever the remote process instance terminates, the
remote event service notifies the local execution subsystem.
In case of a successful termination, the result data from the
remote site is downloaded and the kernel may proceed with
the next task in the process. If the remote process fails, no
results need to be retrieved and the local kernel decides how
to handle the failure, either by failing the local process or by
retrying the call.

3.3. Scheduling remote services

In the current version of the system, load information is
propagated using a pull model: clients interested in a par-
ticular service query the providers about the load at their
site. To collect load information from a remote site, the
local runtime’s scheduler periodically queries the remote
site through the execution subsystem. This mode of opera-
tion can be combined with a push model by simply piggy-
backing load information onto job status notification mes-
sages. This would allow the local scheduler to make in-
formed choices concerning to which remote Grid site a job
should be sent to.

Currently, load information used by the remote process
execution subsystem consists of a real number in the range
from 0 to 1 indicating whether the remote site is willing to
accept more service invocations. The local scheduler will






submit jobs to the remote site until the index reaches its
maximum value. Using this relatively simple load index, we
assume that service providers are neither able nor willing to
expose the details of their computing environment to clients.
Each site may decide on its own how to calculate the load
index. In the current implementation, for instance, the load
index is proportional to the amount of jobs waiting on the
remote site to be executed. Sites that usually experience
high fluctuations in available computing power may prefer
to have more jobs waiting in the queue to optimally react to
sudden increases in available processing power. Sites with
a more predictable computing environment may desire to
keep the waiting queue as short as possible to allow clients
to optimally use alternative Grid resources.

The approach we use is a reasonable compromise be-
tween obtaining useful information and keeping the neces-
sary interfaces as simple as possible. Eventually, load in-
formation will be propagated using the notification mecha-
nisms available in SOAP and WSDL.

3.4. Handling of service failures

In an effort to improve dependability of Grid compu-
tations, BioOpera also provides fault tolerance guarantees
with respect to service failures. The local execution sub-
system detects such failures on repeated unsuccessful con-
nection attempts to the remote site. When that happens, we
assume that all jobs submitted to the unavailable site have
failed and the local scheduler will automatically reschedule
all of these jobs. In this way, BioOpera guarantees that the
computation adapts to changing service availability without
any work being lost at any time, except for possible dupli-
cated work done by remote jobs running at the time of the
failure. The assumption that all jobs at a failing site also
fail may not be appropriate in all cases. For instance, only
a site’s service access point may have failed, or a network
partition may have occurred, implying that the jobs running
on-site are still healthy, although it may be impossible to
check their progress.

There are two possible approaches to handling this situ-
ation: if the site detecting the failure has access to a failure
management infrastructure as proposed in [31], it may be
used to investigate the cause of the failure before deciding
how to react to it. If there is no such infrastructure, one can
adopt a speculative strategy, and resubmit the jobs running
at the failed site to an alternative location. Whenever the
failed site becomes available again, a termination protocol
needs to be run to identify redundant jobs and abort them.

4. Experiments

To test BioOpera as a computing platform for service-
based Grids, we have performed an extensive set of exper-
iments. In the following we present two of them. The first
experiment shows how BioOpera executes a parallel ap-
plication by sharing workload between redundant services

provided by different Grid sites. The second experiment
shows how BioOpera improves dependability of a compu-
tation despite service-level failures by exploiting service re-
dundancy.

4.1. Grid test application

To conduct our experiments, we use a hierarchical con-
figuration with a BioOpera server running a master process
that invokes subprocesses at a number of other BioOpera
servers. The computation involves a cross comparison of
the SwissProt [3] protein database, a typical large scale
Bioinformatics computation. In fact, this computation is
one of the reasons to extend BioOpera to support Grid com-
puting rather than just cluster computing. In the past Bio-
Opera has been used to successfully run the computation [8]
using a collection of medium size local clusters (amounting
to a total of 192 CPUs) [2]. The latest version of SwissProt
(v40.23) currently contains 110’236 entries, a cross com-
parison thus results in the order of 109 individual protein-
protein comparisons. At this size, our local cluster starts to
be insufficient to process the data, therefore we have been
setting up the same computation using the computational
services offered by clusters at other universities. Eventually,
each one of these clusters will host different computational
services and become part of a BioOpera based computa-
tional Grid. We also have plans to perform similar cross
comparisons on demand and provide such comparisons as
Web services implemented of top of BioOpera in its cluster
computing version (essentially implementing the services
currently available through a manual web interface and E-
mail [12]). Then we will use the Grid version of BioOpera
to create processes that combine the computational services
offered by the participating universities.

For the experiments, each of the BioOpera servers im-
plements and makes available a service that takes as input a
set of proteins, runs the cross comparison on that set, and re-
turns the matching sequences to the master BioOpera server.
The data is exchanged using SOAP over HTTP. To study
the ability of BioOpera to dynamically adapt to changes in
service availability, the same comparison service has been
implemented at the three sites. The process at the server
site creates the jobs to execute by partitioning the Swis-
sProt database and uses the computational services of the
other BioOpera servers to execute these jobs.

To provide enough flexibility for running experiments of
different duration, the partition sizes, as well as the frac-
tion of the input data to use for a run may be provided by
the user when starting the experiment. For both experimen-
tal runs, we chose these parameters so that the master site
would generate 300 partitions, each requiring in the order
of 10 minutes of CPU time to complete.

The Grid used for the experiments is described in Ta-
ble 1. It consists of 4 clusters at 3 different locations in
Switzerland and Canada. Each site runs its own BioOpera
server, which requires two nodes. The remaining nodes are
used for the computation. For the first experiment, we have






Table 1. Experimental Grid resources
Grid Site Location service type nodes CPU (Mhz) RAM (MB) OS
ETHZ Zurich, CH master 3 dual P-III (700) 512 LINUX V2.4.18
ETHZ Zurich, CH compare 12 dual P-III (1000) 1024 LINUX V2.4.17
EPFL Lausanne, CH compare 12 P-III (700) 128 LINUX V2.4.9
McGill Montreal, CA compare 12 P-III (1000) 512 LINUX V2.4.15

0

50

100

150

200

250

300

00:00 01:00 02:00

Waiting

0

10

20

30

Master@Zurich

Worker@Lausanne

Worker@Zurich

Waiting

0

10

20

00:00 01:00 02:00

Waiting

Active

Active

Active

Figure 5. Load sharing among 2 Grid sites

only been using the clusters located in Zurich and Lausanne.
The second experiment involves clusters in Zurich, Lau-
sanne and Montreal. Note that each one of these clusters
is managed by the local BioOpera server. Communication
between the sites only happens in terms of the service being
invoked through the BioOpera servers.

4.2. Load sharing among 2 Grid sites

The first experiment involves the master site as well as
two clusters. In this experiment, we test the behavior of
BioOpera as a Grid computing platform in a hierarchical
configuration. We were particularly interested in the effi-
cient distribution of jobs and an appropriate interactions be-
tween the BioOpera servers for invoking services, returning
results and propagating load information. The results of the
experiment are shown in Figure 5. The top part of the Fig-
ure shows the master, whereas the bottom part displays data
measured from the two workers. For each site, the bottom
curve displays the amount of jobs waiting in the scheduler
queue (waiting), while the top one shows the total amount
of jobs that are being processed by that site (or active jobs,
which include those waiting and those running). On the y

axis, the difference between the top and bottom curves rep-
resents the amount of jobs that have been submitted for ex-
ecution either to the remote Grid site (for the master), or to
the local execution platform (for the workers). The x-axis
denotes time, the experiment took 2 hours to complete.

The experiment starts with the master generating the
work partitions and inserting them into the scheduler’s
queue. Then it submits the jobs to the worker sites, using a
minimum load placement policy. As jobs finish and no site
failures occur, the amount of active jobs at the master site
continually decreases. The bottom graphs show that each
worker keeps its queue of waiting jobs at the desired length,
since the master sends more jobs whenever it detects that
the worker’s waiting job queue length drops below a given
threshold. At the master, this causes the amount of waiting
jobs to drop proportionally to the amount of active jobs. At
the worker sites, it makes the number of active jobs remain
relatively constant throughout the computation. Imbalance
may occur at the end of the computation, when the master
has distributed all the jobs to the workers. Here, unfortu-
nate placement decisions may have a negative impact on
the overall completion time of the computation. In extreme
cases, this effect may be reduced by forcing the master to
balance the load by manually aborting jobs allocated to one
site and putting them back into its scheduling queue. The
BioOpera tools for process monitoring make such operation
straightforward.

4.3. Adaptability to service failures

In the second experiment we wanted to text the ability
of BioOpera to adapt to changes in the availability of the
computational services used in a process. Of course, in pro-
cesses where there are no alternatives to a given service, the
failure of that service would halt the execution of the pro-
cess. In many settings, however, it is possible to provide
redundant services at different locations and let BioOpera
deal with the availability changes. For these experiment we
used three clusters in Zurich, Lausanne and Montreal.

The results of the experiment are shown in Figure 6.
During the experiment the clusters are subject to site fail-
ures, which were triggered by shutting down and restarting
the local BioOpera systems at the site. As in the previous
experiment, the top part of the figure shows the number of
waiting and active jobs for the master site. The lower graph
of the Figure shows the availability for each of the three
worker sites throughout the experiment. Time is again rep-
resented on the x-axis, the experiment took about 3 hours.






0

50

100

150

200

250

300

00:0000:00

00:00

01:0001:00

01:00

02:0002:00

02:00

03:00

03:00

Montreal

Lausanne

Zurich

J
o

b
s

A
v
a

ila
b

ility

Waiting
Active

Figure 6. Adaptability to service failures

At the very beginning of the run, none of the worker sites
is available. This is why all jobs are waiting in the master’s
scheduler queue: the Waiting and Active curves coincide.
Then the Montreal site becomes available, and the master
starts submitting jobs to it until the returned load informa-
tion indicates that the site is busy. During this phase the
amount of waiting jobs makes a sharp drop. After some
time, remote jobs finish, which causes also the Active curve
to drop. Again, since the master is supplying the workers
with new jobs whenever needed, the Waiting curve keeps
dropping. The first failure occurs at the Montreal site, which
goes off line at about 45 minutes into the computation. This
causes all active jobs that were allocated to Montreal to be
rescheduled by the master, as indicated by the Waiting jobs
curve joining again the Active curve. Since all services are
unavailable, no work is done. The computation picks up
again when the Lausanne site becomes available. As all
clusters gradually go online, the slope of the progress curves
increases. Toward the end of the computation, the master’s
job queue is empty, since all jobs have been submitted to
some of the workers. Workers failing at this point may
cause the queue to get filled again if the remaining workers
do not have enough capacity to process the failed site’s work
right away. Such condition can be observed three times at
the end of the computation.

The most important aspect of this experiment is that
there is no manual intervention whatsoever, thereby prov-
ing the ability of BioOpera to exhibit some basic autonomic
behavior. When combined with the already proven capabil-
ities of each individual BioOpera server to maintain persis-
tent state and recover computations even after total failures
[2], the result is an extremely reliable platform for service-
based Grid computing. Moreover, with these functional-
ity already in place and working, we are now in a position
to explore more sophisticated autonomic features that will
greatly help with long lived, complex Grid computations.
Examples thereof are quality of service guarantees for pro-
cesses, tools for helping administrators in planning system

outages, and load balancing and resource allocation policies
across computational services.

5. Related work

The use of high-level programming environments for
specifying Grid computations is advocated in [19] as en-
abling factor for doing science on the Grid. Several vi-
sual programming environments for developing Grid ap-
plications exist, e.g., Symphony [26], SCIRun [29]. They
mainly focus on simplifying distributed application devel-
opment and steering for non-expert users. GridFlow [9]
exploits high-level metainformation about a computation
to improve scheduling decisions at runtime. Much in the
same way that BioOpera provides support for distributed
computations that can be modeled as processes, AppLes
[11] or Nimrod/G [14] provide support for programming
and tuning special classes of applications for the Grid. The
GrADS [6] initiative aims at identifying generic techniques
for building dependable and performing Grid applications.
The Open Grid Services Architecture [17] leverages exist-
ing Web service standards to promote interoperability in the
Grid. Computational tasks as well as the Grid infrastruc-
ture itself are modeled as Web services. The OGSA speci-
fication addresses two dependability related issues in more
detail: upgradeability of individual services at runtime and
service instance lifetime management. Similar to OGSA,
BioOpera enables service upgradeability by dynamically re-
solving the endpoint for a call to a specific service at run-
time. Concerning lifetime management, OGSA uses a soft-
state approach to deal with failures of service clients. The
infrastructure does however not provide support for increas-
ing the fault tolerance of service clients themselves. In con-
trast, BioOpera gives recoverability guarantees concerning
every component involved in a computation. In that regard,
it can be seen as a complement to existing implementations
of the OGSA specification.

6. Conclusions

In this paper we have presented BioOpera, a Grid engine
that supports the complete life cycle of a Grid application.
BioOpera is particularly suited to service-based Grids. It
emphasizes composition and provides powerful graphical
tools for developing Grid applications. It also provides an
execution engine that can be used in a variety of configu-
rations to enact different forms of Grid computations. A
significant advantage of BioOpera is that it has been de-
signed for users who may not have an extensive expertise in
parallel and Grid computing. For instance, BioOpera is ca-
pable of dealing with many failures and changes in the Grid
configuration without requiring manual intervention. The
experiments described in the paper demonstrate this basic
autonomic behavior and open up exciting research oppor-
tunities that will yield more reliable, dependable, and user
friendly Grid engines.






Acknowledgments Part of this work is supported by
grants from the Hasler Foundation (DISC Project No.
1820) and the Swiss Federal Office for Education and Sci-
ence (ADAPT, BBW Project No. 02.0254 / EU IST-2001-
37126). We would also like to thank Prof. Mike Hallett
and Prof. Robert Kearney at McGill University, and Prof.
Andre Schiper at EPFL for allowing us to use their clusters.

References

[1] E. Akarsu, G. C. Fox, W. Furmanski, and T. Haupt. Webflow
- high-level programming environment and visual authoring
toolkit for high performance distributed computing. In Pro-
ceedings of Supercomputing’98, Orlando, FL, Nov. 1998.
ACM SIGARCH and IEEE. Syracuse University.

[2] G. Alonso, W. Bausch, C. Pautasso, M. Hallett, and
A. Kahn. Dependable Computing in Virtual Laboratories.
In Proc. of the 17th International Conference on Data Engi-
neering (ICDE2001), Heidelberg, Germany, 2001.

[3] A. Bairoch and R. Apweiler. The SWISS-PROT protein se-
quence data bank and its supplement EMBL. Nucleic Acids
Research, 27:49–54, 1999.

[4] W. Bausch, C. Pautasso, R. Schaeppi, and G. Alonso. Bio-
opera: Cluster-aware computing. In Proceedings of the
4th IEEE International Conference on Cluster Computing,
2002.

[5] A. Bayucan, R. Henderson, C. Lesiak, B. Mann, T. Proett,
and D. Tweten. Portable Batch System External Reference
Specification. MRJ Technology Solutions, May 1999.

[6] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Fos-
ter, D. Gannon, L. Johnsson, K. Kennedy, C. Kesselman,
J. Mellor-Crummey, D. Reed, L. Torczon, and R. Wol-
ski. The GrADS Project: Software Support for High-Level
Grid Application Development. International Journal of
High Performance Computing Applications, 15(4):327–344,
2001.

[7] BioOpera. Process Support for Bioinformatics.
www.inf.ethz.ch/department/IS/iks/project home pages/bio-
opera/.

[8] G. Cannarozzi, M. Hallett, J. Norberg, and X. Zhou. A
cross-comparison of a large gene dataset. Bioinformatics,
16:654–655, 2000.

[9] J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd. Gridflow:
Workflow management for grid computing. In Proceedings
of the 3rd IEEE International Symposium on Cluster Com-
puting and the Grid, Tokyo, Japan, 2003.

[10] H. Casanova and J. Dongarra. NetSolve: A Network Server
for Solving Computational Science Problems. In Proceed-
ings of the 1996 ACM/IEEE Supercomputing Conference,
1996. http://www.cs.utk.edu/netsolve.

[11] H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The
AppLeS Parameter Sweep Template: User-Level Middle-
ware for the Grid. In Proceedings of the Supercomputing,
2000.

[12] CBRG. Computational Biology Research Group.
http://cbrg.inf.ethz.ch/.

[13] Entigen. BioNavigator. http://www.bionavigator.com.
[14] R. B. et al. Nimrod/G: An architecture for a resource man-

agement and scheduling system in a global computational
grid. In Proc. 4th Int. Conf. on High Performance Comput-
ing in Asia-Pacific Region (HPC Asia 2000), Los Alamitos,
California, USA, 2000. IEEE CS Press.

[15] I. Foster and C. Kesselman. Globus: A metacomputing in-
frastructure toolkit. International Journal of Supercomput-
ing Applications, 11(2):115–128, 1997.

[16] I. Foster and C. Kesselman, editors. The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann, 1999.

[17] I. Foster, C. Kesselman, J.Nick, and S. Tuecke. The phys-
iology of the grid: An open grid services architecture
for distributed systems integration. Technical report, Ser-
vice Infrastructure Workgroup, Global Grid Forum, 2002.
http://www.globus.org/research/papers/ogsa.pdf.

[18] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke.
Condor-G: A Computation Management Agent for Multi-
Institutional Grids. Cluster Computing, 5:237–246, 2002.

[19] D. Gannon, R. Bramley, G. Fox, S. Smallen, A. Rossi,
R. Ananthakrishnan, F. Bertrand, K. Chiu, M. Far-
rellee, M. Govindaraju, S. Krishnan, L. Ramakrishnan,
Y. Simmhan, A. Slominski, Y. Ma, C. Olariu, and N. Rey-
Cenvaz. Programming the Grid: Distributed Software Com-
ponents, P2P and Grid Web Services for Scientific Applica-
tions. Cluster Computing, 5(3):325–336, 2002.

[20] M. Gillmann, J. Weienfels, G. Weikum, and A. Kraiss. Per-
formance and availability assessment for the configuration
of distributed workflow. In Proceedings of EDBT, 2000.

[21] M. Gillmann, W. Wonner, and G. Weikum. Workflow man-
agement with service quality guarantees. In Proceedings of
the ACM SIGMOD Conference, 2002.

[22] K. Gottschalk, S. Graham, H. Kreger, and S. J. Introduc-
tion to Web services architecture. IBM Systems Journal,
41(2):170–177, 2002.

[23] IBM. Autonomic Computing: IBM’s Perspective
on the State of Information Technology, 10 2001.
http://www.research.ibm.com/autonomic.

[24] T. Jeweel and D. Chappell. Java Web Services. O’Reilly,
2002.

[25] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor—a
hunter of idle workstations. In Proc. of the 8th Int’l Conf. on
Distributed Computing Systems, pages 104–111, 1988.

[26] M. Lorch and D. Kafura. Symphony - a java-based compo-
sition and manipulation framework for computational grids.
In Proceedings of the 2nd IEEE/ACM International Sympo-
sium on Cluster Computing and the Grid, 2002.

[27] Object Management Group (OMG). CORBA: Common Ob-
ject Request Broker Architecture. http://www.corba.org/.

[28] Open Group. DCE: Distributed Computing Environment.
http://www.opengroup.org/dce/.

[29] S. G. Parker and C. R. Johnson. SCIRun: A Scientific Pro-
gramming Environment for Computational Steering. In Pro-
ceedings of the 1995 ACM/IEEE Supercomputing Confer-
ence, 1995.

[30] SUN microsystems. Sun Grid Engine.
http://www.sun.com/software/gridware/.

[31] W. Vogels. World wide failures. In Proceedings of the ACM
SIGOPS European Workshop, Connemara, Ireland, Sept.
1996.

[32] W3C. Simple Object Access Protocol (SOAP) 1.1, 2000.
http://www.w3.org/TR/SOAP.







