
Combining Quality Assurance and Model
Transformations in Business-Driven Development

Jana Koehler, Thomas Gschwind, Jochen Küster,
Cesare Pautasso, Ksenia Ryndina, Jussi Vanhatalo, Hagen V¨olzer

IBM Zurich Research Laboratory
8803 Rüschlikon, Switzerland

Abstract. Business-driven development is a methodology for developing IT so-
lutions that directly satisfy business requirements. At its core are business pro-
cesses, which are usually modeled by combining graphical and textual notations.
During business-driven development, business process models are taken to the IT
level, where they are implemented in a Service-Oriented Architecture. A major
challenge in business-driven development is the semantic gap between models
captured at the business and the IT level. Model transformations play a major
role in bridging this gap.
This paper presents a transformation framework for IBM WebSphere Business
Modeler that enables programmers to quickly develop in-place model transfor-
mations, which are then made available to users of this tool.They address various
user needs such as quickly correcting modeling errors, refining a process model,
or applying a number of refactoring operations. Transformations are combined
with quality assurance techniques, which help users to preserve or improve the
correctness of their business process models when applyingtransformations.

1 Introduction

Traditionally, the models of a business process and its implementation in an information
system are considered separate artefacts. A business process model, in the best case,
serves as documentation for the implemented system. However, as business process
models and their implementation evolve independently, they quickly become inconsis-
tent with each other.

Today, an increasing pressure from regulations combined with opportunities pro-
vided by new technologies such as those related to Service-Oriented Architecture [1]
require models to reflect the reality of the implemented business processes. Further-
more, implementations should be derived more directly frombusiness needs, which is
often referred to as business-driven development [2–4]. Consequently, modeling tools
increasingly address the transition from business to IT andvice versa. We observe two
major trends. On the one hand,quality assurancestrives to enable users to create busi-
ness process models of higher quality from which correct, executable code can be ob-
tained in a lean development process. On the other hand,model transformationsaim
at automating the transition across the semantic gap between business and IT. Both
trends reflect the need to make modeling a less heavy-weight activity with the vision of
moving towards moreagilemodeling tools where users can quickly respond to change

in processes and systems, where they obtain immediate feedback on the quality of the
models and receive help to build software from models in shorter iterations.

The need to constantly adapt and revise process models because of unforeseeable
changes leads to an increased interest in providing users with pre-implemented model
transformations that enhance the usability of the modelingtools and the productivity
of the user. For example, many of the business-level modeling tools available today
allow users to generate part of the implementation on the basis of the processes mod-
eled. This comprises the generation of Web service descriptions, usually represented in
the Web Service Description Language (WSDL) [5], and of the corresponding service
orchestrations represented in the Business Process Execution Language (BPEL) [6].
Many process modeling tools give a lot of freedom to businessanalysts, which may
even include the possibility to define their own extensions to the modeling language.
The interpretation of such extensions often lies with the user and is thus not accessible
to the modeling tool, making code generation difficult or even impossible. Moreover,
technical details that are required at the IT level are usually missing in models drawn
by business analysts.

To address this business-IT gap, modeling tools begin to constrain business users by
imposing a service-oriented and more technical modeling style so that technical details
must be added to the models in a refinement step. Frequently, however, business analysts
have difficulties in providing this kind of information. This requires a tool-supported
hand-shake between business and IT that is not yet very well understood. It seems that
this hand-shake comprises a continuum in which a business process model is refined
from ananalysis modelto a design modeland then further intoexecutable code. To
develop and provide the necessary refinement, refactoring,and abstraction operations
in a modeling tool, a model transformation framework is needed that is seamlessly
integrated into the modeling tool’s architecture.

In this paper, we discuss such a model transformation framework that we developed
for IBM WebSphere Business Modeler [7], an Eclipse-based commercial product for
business process modeling and analysis. In Section 2, we relate this framework to other
frameworks developed in the academic community and discussour requirements. In
Section 3, an example scenario is introduced and the challenges encountered during the
transition from a business process analysis model via a business process design model
to executable code are reviewed in more detail. Section 4 explains why linking model
transformations with quality assurance is essential for their success in a commercial en-
vironment and gives a short overview on our quality assurance techniques. In Section 5,
the transformation framework is described in more detail. An overview of a selected
set of model transformations that we implemented is given and shortly evaluated in
Section 6. Section 7 concludes the paper.

2 Approaches to Model Transformation

Model transformations are key to success of the Model DrivenArchitecture (MDA)
initiative [8] by the Object Management Group. Consequently, a considerable amount
of research is devoted to the area of model transformations.Different types of model
transformations are distinguished in the literature [9–11]: When the source and target

models belong to the same metamodel, one usually speaks ofendogenous transforma-
tions, otherwise ofexogenous transformations. The former is more relevant in our case,
because our transformations mostly address the transitionfrom the analysis to the de-
sign model of a business process, which we currently consider to be represented by the
same metamodel. Exogenous transformations are typically used when mapping models
across domains, e.g., when generating code from business process models. Endoge-
nous transformations can be further classified depending onwhether the source and
target models are physically the same or belong to a separatemodel.Out-placetrans-
formations produce a new target model, whereasin-placetransformations modify the
source model. Avertical transformation transforms abstract models into more refined
models or vice versa, whereas ahorizontaltransformation remains at the same abstrac-
tion level. Typical examples of vertical transformations are refinement and abstraction,
whereas refactoring is a semantics-preserving horizontaltransformation. Research has
also distinguisheddestructiveandnon-destructivetransformations [10]. A destructive
transformation can delete existing model elements, but a non-destructive transformation
can only add elements.

For our work, it is important that all types of transformations can be implemented
using the framework presented in Section 5. However, in-place transformations play a
major role, because they meet our requirements of volatility and rapid execution when
transforming models that share the same metamodel.Rapid executionis important to
provide immediate feedback to users about the results of a transformation.Volatility of
transformation results enables users to quickly undo (completely or partially) a trans-
formation that was incorrectly applied. Once users are satisfied with the result of a
transformation, they can persist the modified model. A transformation should beappli-
cable to an entire model or to a part thereof, as indicated by the current user selection.
Another requirement for our framework is itsextensibility with new transformations,
i.e., adding new transformations should be easy for developers. The framework should
also enablefull integration of the transformations with the modeling environment so
that choosing and running a transformation does not requiremore than a few mouse
clicks and users perceive transformations as being part of the normal editing flow. Fi-
nally, to facilitate a possible shipping of the framework ina future version of IBM Web-
Sphere Business Modeler, the product team emphasized the importance of architecting
a lightweightframework that does not significantly extend the tool’s codebase.

Several of the Eclipse-based transformation frameworks developed by the academic
community provide features that are relevant to our requirements. These are in particu-
lar approaches that provide the compilation of transformations and combine declarative
with imperative approaches. For example, Biermann et al. [12] present a transforma-
tion framework for defining and executing in-place transformations defined visually
by graph transformation rules. Transformation execution relies on an interpretation by
the AGG graph transformation tool [13] or compilation of therules into Java. The ATL
approach [14] allows developers of transformations to declaratively specify rules in tex-
tual form. In addition, it provides imperative constructs to specify the control flow of
rule executions. Rules are compiled into byte code for execution on a virtual machine.
Mens [15] describes a refactoring plug-in for the Fujaba environment which allows
users to interactively call refactorings such as pulling upa method. MATE [16], which

is implemented using the Fujaba tool, links model transformations with model analy-
sis to provide users with repair and beautifier operations for MATLAB, Simulink, and
Stateflow models. Furthermore, many frameworks provide debugging support specific
to transformations.

Our transformation framework does not provide a general solution in the sense of
those sophisticated frameworks developed by the academic community, such as for
example ATL [14], VIATRA [17], GreAT [18], ATOM3 [19], BOTL [20], Fujaba [21],
and SiTRA [22]. Our solution only focuses on transforming business process models
given in a specific metamodel used within a specific tool. As such, implementing or
using the QVT standard [23] was also not in our focus.

Our transformations are written by specialized developersand currently cannot be
composed by business users into larger composite transformations. A simple recording
feature that allows them to generate sequences of transformations that require no fur-
ther user input is nevertheless straightforward. However,providing business users with
composition support for iteration and branching as is available in other transformation
frameworks seems to require the exposure of transformationrules at the business level.
An interesting alternative would be the learning of transformations by observing a user
and generalizing her editing operations on a business process model. A first discussion
of such an approach has been described by Varró [24].

The example transformations that we discuss in this paper not only illustrate that
the entire spectrum of transformations is needed during business-driven development,
but also illustrate the necessity tocombine model transformations with quality assur-
ance. Assuring the quality of the model resulting from the transformation is especially
important when transforming models describing complex behavior, because errors such
as deadlocks can only occur in behavioral models, but not in static models such as
class diagrams. This means that the pre- and postconditionsof a transformation in-
volve a very elaborate model analysis, see Section 4. Formulating these conditions
declaratively in a transformation framework such as those mentioned above has not
yet been achieved, although it would have significant advantages, e.g., in document-
ing and analyzing transformation code, to study termination and confluence [25, 26],
or test transformations [27]. To obtain clarity whether thecombination of transforma-
tions with quality assurance would be possible in transformation frameworks, requires
further investigation.

3 A Refinement Scenario

An analysis model of a business process as captured by a business analyst is shown
in Fig. 1. The process model describes the (very simplified) handling of claims by an
insurance company. First, the claim needs to be recorded, followed by a subprocess dur-
ing which the coverage of the claim by the insurance policy ofthe customer is validated.
If the customer has no coverage, then she is simply notified ofthis fact. Otherwise, the
company continues to investigate whether the claim can be accepted. If the claim is
accepted, a subprocess to offer a benefit is entered, which leads to the final settlement
of the claim. If the claim is rejected, three activities takeplace in parallel: information
in the Customer Relationship Management system (CRM) is updated to inform the cus-

tomer about the rejection, the decision is documented, and the case is sent to product
development.

Fig. 1.Analysis model of a simplified claim-handling process in insurance.

Figure 1 only shows the control flow and omits many details of the process such
as the data that is involved or the organizations responsible for various activities in
the process. We notice that two decisionsCovered?andAccepted?lead to exclusive
choices in the process flow. If the claim is covered, but rejected, the process forks into a
parallel process fragment containing three activities. This control flow leads in total to
five branches in the process model, which consist of a mixtureof sequential and parallel
execution threads. Each branch ends individually with a single stop node. As soon as
one of these stop nodes is reached, the entire process will terminate immediately. This
can lead to problems for activities in the process that are executed in parallel as they
may not have completely finished when a stop node terminates the process. Although
this termination behavior was probably not intended by the business analysist drawing
the process model, it can often be observed in real-world process models where it is
caused by a modeling practice of not re-joining parallel branches [28].

In the implementing process, this modeling problem should be corrected. The BPEL
process must end with a single reply followed by a single stopnode to provide the result
of the process back to the invoking service. Figure 2 shows anexample of BPEL code
generated by automatically exporting the process model, i.e., by applying an exogenous
transformation from the business-process metamodel to theBPEL metamodel, which
we do not consider further in this paper.

Fig. 2. BPEL code using “link style” generated from the analysis model.

A link-based flow is used and the five process branches directly enter theClaimHan-
dlingReplyat the end of the process. The join condition that combines these five links
at the reply needs to be associated with the correct AND logicfor the three right links
combined with the XOR logic for the two left links. Automatically deriving the correct
join condition requires to analyze the control flow of the process model.

The BPEL code in Fig. 3 uses a block style with explicitswitchactvities for the two
exclusive decisions and aflow activity encapsulating the three parallel process steps
in case the claim is rejected. This notational variant makesthe BPEL flow logic more
readable. In this variant, an analysis of the process model is required that determines
the scope for theswitchandflowactivities of the process.

Fig. 3. BPEL code using “block style” generated from the analysis model.

Even in this very simplified example, both BPEL versions already show a slightly
changed process model at the IT level, which corrects the termination behavior of the
analysis model. Thus, the analysis model is no longer consistent with its implementa-
tion. Ideally, changes that have been applied during the business-to-IT transition should
be reflected at the analysis level. One possibility is to recompute the analysis model as
an abstract view on the BPEL code. However, this leads to two different process mod-
els, the one drawn by the business analyst and the other generated from the IT process,
which need to be synchronized again. For a general approach to model synchroniza-
tion see for example [29]. Another possibility is to use the analysis model as input to
a business-driven development process in which transformations are applied until a de-
sign model is obtained from which BPEL code can be directly generated [3]. In this
paper, we concentrate on this second scenario and investigate how a tool can support a
user in this activity.

We assume that the user wants to apply transformations to theanalysis model of the
business process in order to obtain a process design that reflects the desired BPEL block
structure. Ideally, the tool should inform the user that themodel contains sequential and
parallel branches that end in individual stop nodes. Then, it could either automatically
apply transformations to make the model structurally aligned to the future BPEL or
guide the user in applying the appropriate transformations. Figure 4 illustrates a first
possible model transformation that joins the parallel branches of the process model.

It takes the three stop nodes ending the branches in the parallel process fragment and
replaces them by a join followed by a single stop node.

invoke
Join stop nodes

on selection

Fig. 4. Joining multiple stop nodes.

In a second transformation, the newly introduced stop node is merged with the two
stop nodes ending the exclusive branches, see Fig. 5. A mergeis introduced, followed
by a single stop node. This yields the desired BPEL block structure, from which also
the correct join condition for link-style BPEL code can easily be computed.

...

...

...
...

invoke
Merge stop nodes

on selection

Fig. 5. Merging the remaining stop nodes.

If the user had applied a join to a larger selection of stop nodes, an incorrect process
model would result that does not terminate correctly. Ideally, a tool should warn or
prevent the user from applying transformations that lead toan incorrect model. In the
following section, we take a closer look at the structural analysis methods that we use
to ensure that users obtain feedback about the correctness of models resulting from a
transformation.

4 Ensuring the Quality of Business Process Models

Business process models were traditionally used mainly fordocumenting and commu-
nicating a business process. As they were used only by humans, lack of quality of a
model was tolerable to some extent. Today, with the proliferation of business process
management systems, many process models are executed by machines. Errors in those
models can incur substantial costs. A faithful and error-free model is also important

when one tries to obtain realistic business measures from a process model through sim-
ulation or analysis, which is also supported by many tools today.

Obtaining a faithful and error-free executable model can bea difficult and painful
task. Business process models can be quite complex, often comprising a hundred or
more activities with complex interactions between variousbusiness partners. Applying
transformations to such a complex model can easily give riseto additional errors when
done manually. It is thus important that a transformation framework can evaluate the
quality, in particular, the correctness of a model before a transformation is applied.
Furthermore, there should be something like a look-ahead: If applying a transformation
to a correct model yields an incorrect model, the user must bealerted of this issue.

Possible errors in business process models include control-flow and data-flow er-
rors. An example of a control-flow error is adeadlock, i.e., a situation where some part
of the process is waiting indefinitely for another part of theprocess. A data-flow error
occurs, e.g., when a piece of data is not available when needed. Many of these errors can
be avoided by applying a rigorous modeling discipline, i.e., by using correct modeling
patterns and by avoiding modeling anti-patterns [28].

Control-flow and data-flow errors can also be detected automatically by dedicated
analysis algorithms. Detection of deadlocks or a wider class of errors can be done using
techniques from the area of model checking which can be applied to business process
models [30, 31]. In the worst case, these techniques have to build the entire state space
of the process model, the size of which can be exponential in the size of the process
model, a problem that is widely known asstate-space explosion. To mitigate the state-
space explosion problem, we use a technique that is known from compiler theory: We
decompose the process model into a hierarchy ofsingle-entry-single-exit (SESE) frag-
ments[32].

Figure 6 shows a process model and its SESE fragments, which are indicated by
dashed boxes. Suppose that this model was derived from the model in Fig. 1 by applying
a stop node transformation to the four topmost stop nodes, which were combined by a
join, then followed by a second transformation that added a merge. The first of the two
transformations introduced a deadlock. For example, if theclaim is accepted, the join
in fragmentF waits in vain for the other three activities in fragmentF to finish.

F

Fig. 6.An erroneous process model and its decomposition into SESE fragments.

To check for control-flow errors in the overall process model, it is sufficient to check
each fragment in isolation, i.e., each error is local to someSESE fragment. For example,
the deadlock in Fig. 6 is local to fragmentF .

A SESE fragment is usually much smaller than the overall process. Its size is mea-
sured as the number of edges between its direct subfragments. As the decomposition
into SESE fragments can be computed in linear time and there are at most twice as
many fragments as there are atomic activities in the processmodel, the time used for
the control-flow analysis of all the fragments mainly depends on the size of the largest
fragment in the process. In a case study with more than 340 real-world business process
models which had an average size of 75 edges with the maximum being 342 edges, we
measured that the largest fragment of a process on average had size 25 with a maximum
of 82 [32].

As a second technique to mitigate the state-space explosionproblem, we use heuris-
tics that can be applied in linear time to sort out many of the error-free and a fair per-
centage of the erroneous fragments before any state-space generation is applied [32].
This is based on the observation that many error-free and some erroneous fragments in
practice have a simple structure that can easily be recognized. For example, the dead-
lock in fragmentF in Fig. 6 can be detected by recognizing that the fragment includes
a decision, but no merge [28, 32].

Modeling errors are reported to the user, who can then take steps to correct the
model by manually editing the model or applying automatic transformations. When
interleaving the analysis with model transformations, theuser can be warned that the
selected transformation is not applicable to the set of selected stop nodes without in-
troducing a deadlock into the model. The decomposition intoSESE fragments can also
be used to speed up an automatic computation of a correct stop-node merging based on
model-checking techniques.

5 In-Place Transformation Framework Architecture

IBM WebSphere Business Modeler is built on top of the Eclipseplatform, making it
relatively straightforward to plug in custom extensions providing advanced functional-
ity. Whereas a detailed discussion concerning the tool’s extension points would exceed
the scope of this paper, suffice it to say that the tool has beendesigned using the model-
view-controller pattern and that it is possible to manipulate the model elements using
the command pattern [33]. Unfortunately, the command pattern does not support easy
programmatic access of a model. For every change, a command object has to be set up
with the correct parameters, options and references to the model elements to be modi-
fied. With this approach, most of the transformation code would be dedicated to setting
up commands and pushing them onto the command execution stack, and the logic of
the transformation would become very hard to follow.

Thus, an abstraction layer is needed to enable programmaticaccess to the in-
memory model so that it can be modified with minimal amount of coding, but still
without breaking the model-view-controller design of the tool. In this way, the results
of a transformation become immediately visible to the user,whereas for the developer
the elements of a model are exposed in such a way that it becomes easy to implement
transformations using an ordinary programming language, i.e., Java in our case. In this

approach, transformations are natively executed because no interpretation is required
and the Eclipse infrastructure is reused to package and shiptransformation plug-ins as
extensions to the product.

The main purpose of our transformation framework is to provide such an abstrac-
tion layer. It supports the execution of automatic refactoring, refinement and abstraction
transformations, and enables their full integration with the existing modeling environ-
ment and the quality-assurance functionality. As shown in Fig. 7, the transformation
framework extends the IBM WebSphere Business Modeler environment, acting as a
container of plug-ins that package the actual transformation code so that the modeling
tool can be customized by activating and deactivating the appropriate transformation
plug-ins.

IBM WebSphere Business Modeler

Transformation Programming Interface

Editor
Selection
Access

Model
Editing

Commands

Model
Access

and
Traversal

Model
Element
Creation

and
Removal

Model
Analysis

Model
Element
Property
Editing

Transformation
Palette
Registry

In-place Transformation Framework
Quality

Assurance

A
gg

re
ga

te
 S

to
p

N
od

es

Problem/Warning
Marker Access

R
eo

rd
er

 B
ra

nc
he

s

R
ep

la
ce

 S
ub

P
ro

ce
ss

T
og

gl
e

F
or

k/
D

ec
is

io
n

C
yc

le
 R

em
ov

al

Control Flow
Analysis

Heuristics

SESE Fragments
Decomposition

In-place
Transformation

Plug-ins

...

Fig. 7.Architecture of the transformation framework.

The challenge of this approach lies in the design of the “transformation program-
ming interface” (TPI) visible to the developer. It is especially important to add methods
to the TPI that make the model efficiently accessible so that it can be traversed, ana-
lyzed, and modified by the transformation code.

Table 1 summarizes the main features of the TPI that help in the rapid develop-
ment of new transformations. Transformations may use the interface to edit models by
creating new elementsandremoving existing ones. Elementproperties can be directly
modified, e.g., to rename an element or to reposition an element in thediagram. Fur-
thermore, the programming interface has been designed to support different patterns
of model traversal. Simple transformationsare independently applied once to each tar-
get model element and thus do not require the transformationcode to deal with model
traversal issues.Complex transformationsmay require to filter the elements of a model
based on some criteria. In the simplest case, the filter checks the meta-model element
type, for example to distinguish stop nodes from start nodes. However, also non-trivial

conditions may be required, such as checking whether elements are connected or be-
long to a SESE fragment. In general, transformations maytraversemodel elements in
some specific order, for example, by drilling down the element containment structure
or by navigating through the predecessor/successors elements as linked by the control
flow. To support complex transformations that do not scan elements in a predefined or-
der, the framework offers a direct look-up of elements. Finally, transformations can be
registered with a palette or menu of macro-editing buttons displayed to the user, see
also Section 6.

Table 1.Excerpt of the Transformation Programming Interface.

TPI Feature Example

Creation of new model elements addStopNode()

addStartNode()

addTask()

addGateway(Type)

addControlEdge()

addDataEdge(Type)

Removal of existing model elementsremove(Element)
Editing of model element propertiesmove(Position)

rename(String)

Random access to model elementsfind(ElementID)
Access to selected model elementsselection.getEdges()

selection.getNodes()

selection.getStopNodes()

Traversal of related model elementsgetInBranch()
getOutBranch()

getPredecessor()

getSuccessor()

getParent()

getChildren()

Analysis of model elements isDisconnected()

isSESE(Fragment)

Transformation palette registrationregister(Transformation)
unregister(Transformation)

m

To illustrate how the TPI can be used, we show below how to implement the “stop
node aggregation” transformation mentioned in Section 1.

transformation aggregateSelectedStopNodes(gatewayType) (
predecessors = [];
nodes = TPI.selection.getStopNodes();
if (nodes.length > 1) (
foreach (node in nodes) (

predecessors.append(TPI.getPredecessor(node));
TPI.remove(node);

)
gateway = TPI.addGateway(gatewayType, predecessors.length);
stopNode = TPI.addStopNode();
TPI.addControlEdge(TPI.getOutBranch(gateway,0), stopNode);
i = 0;
foreach (pred in predecessors) (

TPI.addControlEdge(pred, TPI.getInBranch(gateway,i));
i++;

)))

This transformation is applied to a set of selected stop nodes and replaces them
with a join or merge depending on the user’s input, recall Figs. 4 and 5. As shown in
the pseudo-code, the transformation first ensures that morethan one stop node has been
selected. As additional precondition, the transformationcould check whether aggregat-
ing the selected nodes would not introduce an error, see the discussion in Section 4.
Then, the transformation iterates over all selected stop nodes, stores their predecessor
element for later use, and subsequently deletes the stop node. Then it adds either a join
or a merge to the model and links its outgoing branch with a newstop node. As a last
step, it connects each predecessor element to a different incoming branch of the newly
added join or merge.

6 Palette-Based Invocation of Transformations

Transformations can be made available to users through a menu or palette. One can
imagine that palettes are provided to users with transformations supporting certain de-
velopment methodologies or industry-specific requirements. Figure 8 shows a possible
design of such a palette-based user interface. Users can invoke transformations via a
menu or by clicking on the palette button showing a mnemonic picture of the trans-
formation. If no model elements are selected prior to invocation, a transformation is
applied to the entire model. An “undo” capability can easilybe provided to the user,
because transformations are executed as sequences of editor commands. The history of
transformed models could be maintained by using version management enhanced with
traceability at the model-element level.

Fig. 8. A palette of model transformations.

The palette above shows some of the model transformations that we implemented.
Most of these transformations can exist in a simple form without linking to quality
assurance and in a more sophisticated form that links to quality assurance to support
the user in correctly applying a transformation. In the upper row of the palette, we
find (from left to right) the transformationsautomatically reorder branches, replace
subprocess, andcycle removal. In the lower row, we find the transformationsjoin stop
nodes, merge stop nodes, toggle fork/decision, andassign data container. In addition to
these transformations, many others can be imagined.

Automatically reorder branchesis a horizontal, non-destructive, semantics-
preserving transformation that simply cleans up clutter inthe diagram, which can occur

when branches are connected to a join or merge. The transformation analyzes the graph-
ical layout and eliminates crossing branches.

Replace subprocessis a horizontal, destructive transformation that replacesa user-
selected subprocess by another user-selected subprocess.It prompts the user to select
the replacing subprocess from a list of subprocesses that the transformation obtains
from the workspace. In the current implementation, this transformation connects the
new subprocess only with control-flow edges.

Cycle removalis a vertical, destructive, semantics-preserving transformation that
takes a process model with unstructured cycles, i.e., backward edges added to the flow,
and produces a model with well-structured loops [34]. The transformation leads to a
model with a more technical flavor for many business users—therefore, we consider
it as a vertical transformation. Cycle removal relies on theSESE analysis described in
Section 4. It can happen that it returns an only partially transformed model. In particular,
cycles that spawn parallel branches often cannot be removed.

Join stop nodesandMerge stop nodesare horizontal and destructive transformations
already known to the reader. While Merge stop nodes is semantics-preserving, Join stop
nodes is not due to the semantics of these modeling elements.The two transformations
are implemented, but do not link to the quality assurance yet. Hence, it is under the full
responsibility of the user whether to apply the transformation.

Toggle fork/decisionis a horizontal, destructive transformation that simply flips a
selected fork into a decision and vice versa. This version isuseful during the editing
process, e.g., when correcting modeling errors. However, it can easily introduce control-
flow errors, as discussed in Section 4. A more sophisticated version would transform
process fragments of sequential branching behavior into fragments of parallel behavior
and vice versa, which requires a combination with quality assurance.

A very interesting challenge is the treatment of data flow in transformations. It can
be studied in theAssign data containertransformation, which is a vertical, destructive
transformation that takes a model with control flow and refines it into a model with data
flow. It can also be applied to models with mixed control and data flow. The transfor-
mation leads to a changed interface of model elements.

Several possible solutions exist for how a transformation can modify the interfaces
of activities, e.g., it can add only the newly required inputs/outputs or it can in addition
remove those inputs/outputs that are no longer needed. Existing data-flow edges can
be restored if the old and the new interface of a model elementshare the inputs and
outputs that are required by the data flow. Otherwise, data maps have to be inserted,
which will remain abstract in most cases, because the transformation cannot determine
what the exact mapping between mismatched data will be. These interface changes
usually affect the consistency of other process models thatshare the same model ele-
ments. The resolution of possible inconsistencies is a challenging problem, which may
not be amenable to a fully automatic solution and require other transformations to sup-
port the user. In addition, beautifier transformations relying on quality assurance may
be required to eliminate control and data flow edges that are no longer needed in the
transformed models.

At the moment of writing, it is too early to give a comprehensive evaluation of the
framework itself. Concerning the performance of the transformations, following an in-

place approach has shown its benefits in terms of the speed at which transformations are
executed. Users running transformations hardly notice thedifference between transfor-
mations and normal editing commands, because they see the result of the transformation
immediately without having the need to persist the transformed models.

In terms of usability, the transformations are easy to applyand significantly reduce
the editing effort for the user. Based on the example scenario in this paper, Fig. 9 shows
that model transformations reduce lengthy and error-pronemanual editing operations to
a few clicks. For example, manually performing the join and merge stop nodes transfor-
mations in the example scenario takes 42 mouse clicks. Automating the transformation
still requires the user to select the set of nodes (twice three clicks), but then the model is
updated with a single mouse click. The chart in Fig. 9 shows two more transformations,
assign data containerandreplace subprocess, in the context of the example scenario.

 3

 9

 3

 72

 4

 21

 4

 21

0 15 30 45 60 75

[mouse-clicks]

Replace
Subprocess

Assign Data
Container

Merge Stop Nodes

Join Stop Nodes
Manual
Automatic

Manual Automatic
Join 6s + 3 s + 1

Merge 6s + 3 s + 1

Assign 8e 3

Replace 2l + 5 3

s . . . No. of stop nodes
e . . . No. of edges
l . . . No. of links connected

to the process

Fig. 9.Usability evaluation of selected in-place model transformations.

7 Conclusion

Model transformations help significantly in addressing challenges in the business-IT
gap encountered during business-driven development, which aims at directly taking
business process models to the IT level. In this paper, we report on a transformation
framework that adds a lightweight infrastructure to IBM WebSphere Business Modeler
for the rapid development of model transformations. Using this framework, in-place
transformations are developed that are easily applicable by business users to automate
complicated editing steps. By linking them to quality-assurance capabilities provided
in modeling tools, the transformations can be made “intelligent” and help users to pre-
serve or re-establish the correctness of their models when going through a sequence
of refinement and refactoring operations. The set of transformations implemented sig-
nificantly increases user productivity as they raise the abstraction level of the model
editing palette from a “picture-drawing” tool to a level supporting real business-process
modeling.

Acknowledgement The work published in this article was partially conducted within
the EU project Super (www.ip-super.org) under the EU 6th Framework.

References

1. Newcomer, E., Lomow, G.: Understanding SOA with Web Services. Addison Wesley (2005)
2. Mitra, T.: Business-driven development. IBM developerWorks article,

http://www.ibm.com/developerworks/webservices/library/ws-bdd, IBM (2005)
3. Koehler, J., Hauser, R., Küster, J., Ryndina, K., Vanhatalo, J., Wahler, M.: The role of visual

modeling and model transformations in business-driven development. In: Proceedings of
the 5th International Workshop on Graph Transformation andVisual Modeling Techniques,
Elsevier (2006) 1–12

4. Brahe, S., Bordbar, B.: A Pattern-based Approach to Business Process Modeling and Imple-
mentation in Web Services. In: In Proceedings of Workshop Modeling the SOA - Business
perspective and model mapping, in conjunction with ICSOC. (2006)

5. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web services description lan-
guage (WSDL). http://www.w3.org/TR/wsdl (2001)

6. Jordan, D., et al.: Web services business process execution language (WSBPEL) 2.0.
htpp://www.oasis-open.org/committees/wsbpel/ (2007)

7. IBM: WebSphere Business Modeler. http://www.ibm.com/software/integration/wbimodeler
8. Object Management Group: Model driven architecture (2001) http://www.omg.org/mda.
9. Mens, T., van Gorp, P., Karsai, G., Varró, D.: Applying a model transformation taxonomy

to graph transformation technology. In Karsai, G., Taentzer, G., eds.: GraMot 2005, Inter-
national Workshop on Graph and Model Transformations. Volume 152 of ENTCS., Elsevier
(2006) 143–159

10. Mens, T., Gorp, P.V.: A Taxonomy of Model Transformation. Electr. Notes Theor. Comput.
Sci.152(2006) 125–142

11. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM
Systems Journal, special issue on Model-Driven Software Development45(3) (2006) 621–
645

12. Biermann, E., Ehrig, K., Köhler, C., Kuhns, G., Taentzer, G., Weiss, E.: Graphical Definition
of In-Place Transformations in the Eclipse Modeling Framework. In Nierstrasz, O., Whit-
tle, J., Harel, D., Reggio, G., eds.: Model Driven Engineering Languages and Systems, 9th
International Conference, MoDELS 2006. Volume 4199 of LNCS., Springer (2006) 425–439

13. Ermel, C., Rudolf, M., Taentzer, G.: The AGG-Approach: Language and Tool Environment.
In Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: Handbook of Graph Grammars
and Computing by Graph Transformation, volume 2: Applications, Languages and Tools,
World Scientific (1999) 551–603

14. Jouault, F., Kurtev, I.: Transforming Models with ATL. In Bruel, J.M., ed.: Satellite Events at
the MoDELS 2005 Conference, Revised Selected Papers. Volume 3844 of LNCS., Springer
(2005) 128–138

15. Mens, T.: On the use of graph transformations for model refactoring. In: 2005 Summer
School on Generative and Transformational Techniques in Software Engineering, Braga,
Portugal, Departamento Informatica, Universidade do Minho, Braga, Portugal, Technical
Report TR-CCTC/DI-35 (2005) 67–98

16. Stürmer, I., Kreuz, I., Schäfer, W., Schürr, A.: Enhanced simulink/stateflow model transfor-
mation: The mate approach. In: Proceedings of MathWorks Automotive Conference (MAC
2007), MathWorks (2007)

17. Balogh, A., Németh, A., Schmidt, A., Rath, I., Vágó, D., Varró, D., Pataricza, A.: The VIA-
TRA2 model transformation framework (2005) Presented at ECMDA 2005 – Tools Track.

18. Karsai, G., Agrawal, A., Shi, F., Sprinkle, J.: On the Useof Graph Transformation in the
Formal Specification of Model Interpreters. Journal of Universal Computer Science9(11)
(2003) 1296–1321

19. de Lara, J., Vangheluwe, H.:AToM
3: A Tool for Multi-Formalism and Meta-Modelling.

In Kutsche, R.D., Weber, H., eds.: Proceedings FundamentalApproaches to Software Engi-
neering (FASE 2002). Volume 2306 of LNCS., Springer-Verlag(April 2002) 174–188

20. Braun, P., Marschall, F.: BOTL - The Bidirectional Objekt Oriented Transformation Lan-
guage. Technical report, Fakultät für Informatik, Technische Universität München, Technical
Report TUM-I0307 (2003)

21. Nickel, U., Niere, J., Zündorf, A.: Tool demonstration: The FUJABA environment. In: Pro-
ceedings of the22nd International Conference on Software Engineering (ICSE),Limerick,
Ireland, ACM Press (2000) 742–745

22. Akehurst, D.H., Bordbar, B., Evans, M.J., Howells, W.G.J., McDonald-Maier, K.D.: SiTra:
Simple Transformations in Java. In Nierstrasz, O., Whittle, J., Harel, D., Reggio, G., eds.:
Model Driven Engineering Languages and Systems, 9th International Conference, MoDELS
2006. Volume 4199 of LNCS., Springer (2006) 351–364

23. Object Management Group (OMG): Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification. Final Adopted Specification ptc/05-11-01.
(November 2005)

24. Varró, D.: Model Transformation by Example. In Nierstrasz, O., Whittle, J., Harel, D.,
Reggio, G., eds.: Model Driven Engineering Languages and Systems, 9th International Con-
ference, MoDELS 2006. Volume 4199 of LNCS., Springer (2006)410–424

25. Küster, J.M.: Definition and validation of model transformations. Software and Systems
Modeling (SoSyM)5(3) (2006) 233–259

26. Varró, D., Varró-Gyapay, S., Ehrig, H., Prange, U., Taentzer, G.: Termination Analysis of
Model Transformations by Petri Nets. In Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L.,
Rozenberg, G., eds.: Graph Transformations, Third International Conference. Volume 4178
of LNCS., Springer (2006) 260–274

27. Küster, J.M., Abd-El-Razik, M.: Validation of Model Transformations - First Experiences
Using a White Box Approach. In: MoDELS Workshops. Volume 4364 of LNCS., Springer
(2006) 193–204

28. Koehler, J., Vanhatalo, J.: Process anti-patterns: Howto avoid the common traps of business
process modeling, part 1 modeling control flow, part 2 modeling data flow. IBM WebSphere
Developer Technical Journal10.2, 10.4(2007)

29. Giese, H., Wagner, R.: Incremental Model Synchronization with Triple Graph Grammars.
In Nierstrasz, O., Whittle, J., Harel, D., Reggio, G., eds.:Model Driven Engineering Lan-
guages and Systems, 9th International Conference, MoDELS 2006. Volume 4199 of LNCS.,
Springer (2006) 543–557

30. van der Aalst, W.M.P.: Workflow verification: Finding control-flow errors using Petri-net-
based techniques. In: Business Process Management, Models, Techniques, and Empirical
Studies, London, UK, Springer-Verlag (2000) 161–183

31. Mendling, J., Moser, M., Neumann, G., Verbeek, H.M.W., van Dongen, B.F., van der Aalst,
W.M.P.: Faulty EPCs in the SAP reference model. In: Proceedings of the 4th International
Conference Business Process Management (BPM 2006). Volume4102 of LNCS., Springer
(2006) 451–457

32. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and MoreFocused Control-Flow Analysis for
Business Process Models though SESE Decomposition. In: 5thInternational Conference on
Service-Oriented Computing (ICSOC), Vienna, Austria (September 2007) to appear.

33. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley (1994)

34. Koehler, J., Hauser, R., Sendall, S., Wahler, M.: Declarative techniques for model-driven
business process integration. IBM Systems Journal44(1) (2005) 47–65

