
JOpera: Autonomic Service Orchestration

Cesare Pautasso, Thomas Heinis, Gustavo Alonso
Department of Computer Science

ETH Zurich
8092 Zurich, Switzerland

{pautasso, heinist, alonso}@inf.ethz.ch

1 Introduction
The increasing interest in new software engineering technologies for application integration such as Service Ori-
ented Computing and Service Orchestration has resulted in a proliferation of workflow management systems as
the underlying representation and execution platform for service composition [7]. Workflow management sys-
tem are also being applied to new domains (e.g., virtual scientific laboratories [1], Grid computing [12], service
delivery and provisioning [6]). For these new applications, workflows are seen as the modeling metaphor behind
the notion of straight through processing and virtual organizations where a collection of existing heterogeneous
systems are composed into an integrated solution.

In all these settings workflow engines are at the core of a complex combination of applications and clustered
computers. As such, they have become rather difficult to deploy and configure, let alone tune to obtain maximum
performance. This problem is not unique to workflow and service composition engines but it is more difficult
to address in these settings because there is only a limited understanding of the execution procedures behind
a workflow engine. In this short paper we report on our ongoing work to design and develop an autonomic
workflow engine that can be used for large scale service composition. The challenge we face in doing this
is threefold. First, we need to design an execution procedure for service compositions that is amenable to
autonomic treatment. Second, this procedure needs to be realized in an architecture that supports the deployment
of different modules of the system across a computer cluster in order to achieve the desired level of performance.
Third, an autonomic controller and appropriate control policies need to be developed to automatically provision
the optimal amount of resources to the engine.

In what follows we provide a high level description of how we have accomplished these three goals and
give a brief account of the performance of the system. The implemented system is part of the JOpera project.
JOpera is an advanced SOA tool for Eclipse, which provides modeling, execution, monitoring and debugging
tools for workflow-based Web service orchestration. A more detailed presentation of the autonomic capabilities
of JOpera, including an extensive experimental evaluation of the approach can be found in [4, 11].

2 Web Service Orchestration with Workflows
In Service Oriented Architectures (SOA) workflow modeling languages have found a good application to define
an executable model of the flow of information between a set of services [7]. A workflow process defines the

Copyright 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1

interactions between a set of services by scripting (or orchestrating) the exchange of messages between them.
To simplify its integration and reuse, the resulting workflow is also typically published as a service.

As an example, we illustrate a small workflow for providing a value-added service out of the composition
of two basic ones. In particular, the workflow shows how a service providing stock prices converted in any
currency can be built out of the composition of two services: one returning stock prices in U.S. dollars and the
other one returning currency exchange rates between dollars and the requested currency.

The screenshot of Figure 1 shows how the workflow is developed using JOpera. The outline view on the
left contains the structure of the workflow in terms of its tasks and also lists the services to be composed. The
editors on the right show two graphs defining the control flow and data flow relationships between the tasks of
the workflow. The control flow graph (at the top) defines the order of execution of the tasks of the workflow.
Since the stock quote and currency exchange services are independent of each other, the tasks invoking them can
be executed in parallel. Once both of these tasks complete, the task computing the converted price is executed.
The data flow graph of the workflow (shown in the bottom editor) defines where the information required by
each service comes from. The result of the entire workflow, to be returned to its client, is produced by the
StockQuote service invocation task for the OriginalPrice and by the PriceConversion task for the ConvertePrice.
This task receives its input from the result of the invocation of both the StockQuote and the CurrencyExchange
service. These are invoked passing data (the Currency and the Symbol identifying the stock) provided by the
client as input of the whole workflow.

Figure 1: Defining a simple Web service orchestration in JOpera

2

In addition to the separate visualization of the control flow and data flow aspects of a workflow and the
use of control flow extraction algorithms to ensure the automatic reconciliation between the two, JOpera also
offers efficient means of binding each task of the workflow to the service to be invoked while executing it [9].
In this example, the tasks devoted to collecting information from the external providers of stock prices and cur-
rency rates are bound to a standard-compliant Web service (described using plain WSDL, accessed using SOAP
messages). With the price of additional complexity and overhead, this ensures the interoperability between the
workflow engine and the service provider and removes the need of developing customized adapters to make the
engine access external sources of information. For the third task, responsible for computing the converted price
by running a multiplication between the original price and the corresponding exchange rate, it should not be nec-
essary to pay the overhead of a remote SOAP call. In JOpera, the PriceConversion service can be implemented
using a so-called Java snippet, which is invoked with the overhead comparable to a local Java method call.

3 Stage-based Workflow Execution in JOpera
Running such a workflow process involves executing the tasks of the workflow in the correct order and passing
the data produced by one task to its successors. In the context of Web service orchestration, tasks are typically
bound to service invocations and their execution involves the exchange of messages between the engine and an
external service provider. Messages are also exchanged in the reverse direction, when clients of the workflow
engine want to initiate the execution of a new process instance. Upon receipt of such message, the engine
begins running a new process instance, analyzes its control flow structure and determines which tasks need to
be executed next. Then, for each active task, the engine selects the service to be invoked, fetches data from the
process variables to compose a message, which is then sent to the corresponding service provider. Once this
invocation completes, the state of the process needs to be updated with the results so that other tasks can access
them. Process execution continues until all tasks have been executed, or an explicit termination point in the
workflow has been reached.

Clearly, workflow engines are capable of running more than one instance of a workflow at the same time.
This feature is also very important in the context of Web service orchestration: once processes are published as
a Web service, clients can send messages to the engine for starting a new process at any time. Given the limited
amount of resources (i.e., CPU threads and memory) available to the engine, it becomes important to restructure
the execution of a workflow so that the engine can scale to run a large number of concurrent process instances.

In this regard, the simple solution of permanently assigning a thread to run each process instance suffers
from a number of limitations. The number of concurrent threads that are available in a virtual machine would
set a limit to the number of processes that can be run by the engine at a given time (a few hundred). Furthermore,
such threads would be underutilized as they would dedicate most of their time to I/O operations, i.e., sending
and receiving SOAP messages. Finally, assigning one thread to each process instance would limit the amount of
intra-process parallelism supported by the engine. In other words, even if the control flow structure of a process
defines a partial execution order over its tasks, this engine threading model would serialize the execution of all
tasks within a process.

One of the innovative design decisions of the JOpera engine lies in employing a threading model which
effectively decouples the process instances from the threads executing them. Apart from shifting the factor
limiting the maximum number of concurrent processes that can be executed from the number of threads to the
amount of available memory, this decision also makes it possible for the same engine architecture to scale out
from a centralized to a distributed configuration [10].

To do so, we have partitioned the execution of a process in two stages. The first involves the, so-called,
process navigation, i.e., making the control and data flow through the process instance by using a graph traversal
algorithm to determine which tasks of the process are to be executed next based on their dependencies to the
already completed tasks. The second stage – dispatching – involves the actual execution of the tasks, which

3

boils down to the synchronous or asynchronous exchange of messages with the provider of the Web service to
which the task has been bound.

In the architecture of JOpera, these two execution stages have been assigned to two different (and loosely
coupled) active components of the engine: the navigator and the dispatcher. The navigator runs processes,
the dispatcher runs tasks. As it can be seen from Figure 2 they communicate asynchronously using queues.
Whenever the navigator has determined that a new task is ready to be executed, the information required to
perform such execution is added to the task queue. The dispatcher takes tasks from such queue and performs
the corresponding Web service invocation. Once the invocation is complete, the dispatcher puts its results in the
event queue. The navigator collects them, updates the state of the corresponding process instance and continues
running it by sending the next tasks to be executed to the dispatcher.

Given an appropriate implementation of such task and event queues, the navigator and dispatcher compo-
nents can be run by threads which are distributed on different physical hosts, e.g., a cluster of computers [5].
To achieve a large task execution capacity dispatchers can be run by a large thread pool. Similarly, navigators
running different (and independent) process instances can also be replicated among a pool of threads.

Process
Navigator

Service

Self
Tuning

performance
measurements

reconfiguration
plan

actual
configuration

recovery
actions

reconfiguration
actions

Self
Healing

Self
Configuration

Service Service

Autonomic Controller

Workflow Engine

Process
Instances

Engine
Configuration

Process
Templates

Message Bus

Task
Dispatcher

Task Queue

Process Queue
+/-+/-

Management API

0

100

200

300

400

500

600

700

0

0

50

50

100

100

150

150

200

200

250

250

300

300

350

350

400

400

450

450

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300 350 400 450

P
ro

ce
ss

Q
u
e
u
e

L
e
n
g
th

Workload Peaks (500 concurrent processes)

Ta
sk

Q
u
e
u
e

L
e
n
g
th

E
n
g
in

e
C

o
n
fig

u
ra

tio
n

0

5

10

15

20

25

30

0 50 100 150 200 250 300 350 400 450

Processes

Tasks

Navigators
Dispatchers
Idle Nodes

Time [s]

Figure 2: Architecture of a self-managing workflow engine (left) and performance evaluation (right)

4

4 A Deployment Dilemma
Although such stage-based architecture delivers the necessary flexibility to adapt the number of dispatcher and
navigator components to the workload executed by the engine, it opens up another important problem, related
to the deployment and management of such system. The engine may face an unknown number of internal and
external clients that can define and run an unpredictable number of processes concurrently. Thus, the structure
of these processes and the number of their instances that will have to be executed in response to clients cannot
be determined a priori. This makes it difficult to choose between a centralized or a distributed solution for the
deployment of the system. Moreover, in case a distributed approach is chosen to provide the required level of
performance, the correct amount of resources must be provisioned and these must be managed and optimally
configured, in terms of how the resources are allocated to navigators and dispatchers.

To illustrate this problem, in Figure 3 we include an example showing the sensitivity of the system to its
configuration. In this example we started 1000 concurrent processes and measured their total execution time
using different configurations of the engine.

S
p
e
e
d
u
p

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Dispatchers

Number of Navigators

15 14 13 12 11 10 9 8 7 6 4 3 2 1 05

0

1

2

3

4

5

6

Sequential

Parallel

Control Flow

10 seconds

10 seconds

Task Duration

S
p
e
e
d
u
p

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Dispatchers

Number of Navigators

15 14 13 12 11 10 9 8 7 6 4 3 2 1 05

0

1

2

3

4

5

6

0 seconds

20 seconds

Task Duration

Parallel

Parallel

Control Flow

Figure 3: Speedup relative to the slowest configuration of four different workloads over all possible configura-
tions of the engine deployed on a cluster of 15 nodes

Tuning the engine by allocating the “right” amount of navigators and dispatchers can – in this example –
achieve a 5x speedup in the execution of the same workload. Still, the optimal configuration for one kind of
workload could turn out to be sub-optimal for a different load. In the example (Figure 3 right), we use two
workloads characterized by different task durations. Fast tasks can be consumed quickly by the dispatchers
and shift the load onto the navigators, which have to resume executing processes after having issued the tasks
which immediately complete. For short tasks duration, the highest speedup is found with a configuration which
allocates more resources to navigators. The opposite occurs with slow tasks, which keep the dispatchers busy
for a longer time. In Figure 3 left, we show that with tasks of the same duration, second order effects due to the
process control flow structure become apparent.

From this example, it is clear that it is not enough to base the deployment decisions on estimating the
performance of a certain configuration of the system by making assumptions about the properties of its work-
load [2]. Once these assumptions no longer hold, the system will be misconfigured and use the available re-
sources inefficiently. Instead of a static solution, we choose to follow a dynamic approach based on a closed
feed-back loop. As we are going to illustrate in the following section, we have extended the workflow engine
with self-management capabilities so that it can adjust its configuration on the fly based on measurements of its
performance under the actual workload.

5

To do so, we introduce an autonomic controller whose algorithms and policies do not make any assumption
about the structure of the processes to be executed. This controller can dynamically grow and shrink the size
of the system based on the number of processes that are currently active. Such self-managing engine can be
initially be deployed in a centralized configuration and gradually evolve as a distributed engine as its workload
gets larger. This avoids the problem of resource overprovisioning, where the workflow engine would have to be
dimensioned for peak capacity at all times.

Such a solution requires the engine to support dynamic reconfiguration. Clearly, stopping the entire engine
in order to migrate some of its components and to alter its configuration is not possible as it would affect the
availability of the processes that are published as a Web service through the engine. Instead, with our design, to
grow the size of the engine, i.e., to increase its process or task execution capacity, it is enough to provision an
additional thread for executing the navigator or dispatcher components. In case of overprovisioning, threads can
be relinquished and the size of the engine reduced accordingly.

5 Autonomic Deployment
The engine’s architecture has been designed to provides all of the necessary extension points to follow a “bolt
on” approach to achieve self-management [3]. A management API for monitoring the performance of the engine
and for applying reconfiguration actions is available. This interface can be used both for manual system admin-
istration tasks, as well as automatic self-management when the appropriate autonomic controller component is
added.

As opposed to measuring raw hardware metrics (e.g., CPU utilization) of the physical hosts running the
engine, in our approach we have chosen to observe how the workload affects the performance of the engine at a
higher level of abstraction. The workload for the engine can be defined as the number of active process instances
that are being executed. This can be measured as the workload affects both execution stages and influences the
length of the process queue serviced by navigators as well as the number of tasks to be invoked by dispatchers.
The execution of a large number of processes will generate a large number of tasks. Still, monitoring the queues
gives a precise picture of the performance of each stage. The amount of queued tasks depends on the degree of
parallelism within a process and will change for processes having different control flow structures. Additionally,
the size of the process queue will grow if several tasks complete their execution at the same time.

As shown in the lower part of Figure 2, this performance information is fed into the autonomic controller,
which processes it and reacts by applying the appropriate reconfiguration and recovery actions to the engine. The
controller is structured into three functional components: self-healing, self-tuning and self-configuration, which
interact asynchronously and share a common model of the engine’s configuration. As a first approximation, this
model includes information about the available resources of the cluster and their allocation state. The configu-
ration information is kept up to date by the self-healing component which periodically monitor its consistency
with respect to the actual configuration of the cluster. Once a mismatch occurs, the self-healing component
detects a failure in the engine, updates the configuration model and performs the appropriate recovery actions.
For example, tasks executing on a failed dispatcher have been lost and have to be requeued to be retried.

The goal of the self-tuning and self-configuration component is to work together in order to keep the engine
provisioned with the optimal amount of resources and ensure that the current configuration provides a good per-
formance. The self-tuning component periodically reads performance measurements (i.e., the size of the process
and task queues) from the engine and uses this information to detect imbalances in the current configuration.
Measuring the length of the event and task queues makes it easier to define high level policies to control the
engine’s configuration. Such policies map observed variables into a reconfiguration plan. For example, if the
task queue grows beyond a certain threshold, a dispatcher should be added to increase the rate of task execution.

This abstract plan (e.g., to add one dispatcher) is executed by the self-configuration component. Decoupling
planning from execution is important not only because it takes time to perform the actual reconfiguration, but

6

also because it allows the controller to choose the optimal resource targeted by the reconfiguration plan. While
a reconfiguration is taking place, the self-tuning component can continue to observe the system’s behavior and
possibly update the reconfiguration plan with new decisions based on more up-to-date information. At the
same time, the self-configuration component can choose the appropriate resource on which to apply the plan by
minimizing the distruption caused by the reconfiguration.

6 Evaluation
To evaluate the architecture of the engine and its autonomic capabilities we have performed a number of ex-
periments which (1) motivate the need for adding self-management capabilities to the engine (2) show that the
controller can indeed automatically reconfigure and heal the system [4] and (3) compare the performance of
different control policies [11].

Due to space limitations, in this section we only describe the results of a self-healing experiment. In addition
to adjusting the configuration in response to changes in the workload applied to the system, in this case, the
controller also reacts to external changes in the system configuration. The right side of Figure 2 shows a trace
of how the engine evolves, from the point of view of the controller. The top two graphs include measurements
of the performance of the engine in terms of the length of the task and process queues. The bottom graph shows
various snapshots of the configuration of the engine over time, defined as the number of nodes of the cluster that
have been allocated to run dispatchers and navigators.

Given the lack of benchmarks for autonomic workflow engines, we have performed a basic load test,
where the system is periodically hit by a peak of n messages that are handled by starting the execution of
the same number of processes in parallel. To simplify the analysis of the results, these processes have the
same structure and contain the same number of tasks. In the experiments, four peaks of 500 processes arrive at
t = 20s, 100s, 205s, 305s. The controller notices that the workload has increased by observing the evolution of
the process queue length. When such queue gets longer, it means that the engine needs to allocate more process
execution capacity. Thus, the controller allocates up to 5 navigators to service the process queue. Once the
processes begin execution, also the task queue gets filled up and, in the first part of the experiment, the controller
allocates up to 10 dispatchers to deliver the required task execution capacity.

While the second peak arrives, at t = 100s, the engine undergoes a maintenance operation. First, 5 nodes
are added to the pool of resources of the engine, then other 5 nodes are taken out of the pool for maintenance
(at t = 140). This manual node rotation is part of the normal maintenance of the system and should not disrupt
its operations. The controller immediately makes uses of the newly added resources by allocating 3 additional
dispatchers and 2 additional navigators. Still, once 5 nodes are taken out of the pool, the self-healing component
notices their disappearance and recovers the tasks and processes that were running on the failed nodes. Also, the
configuration of the remaining nodes is out of balance. This will be corrected before the next peak of processes
arrives. At t = 230 the newly added nodes fail and the engine continues running with only 10 nodes. Clearly its
performance has decreased as both task and process queues get increasingly longer. The controller tries to make
use of the remaning nodes and the system keeps running.

7 Conclusion
In the same way that using database engines provides considerable savings in terms of code to be developed
in large applications, workflow engines greatly simplify the orchestration problem in application integration
settings. Yet, for developers to be able to take advantage of such savings in coding, the performance of existing
workflow engines needs to be significantly improved.

In this paper we show how the processing capacity of a service composition engine based on the workflow
paradigm can be extended automatically in response to changes in the load. Although we have shown how

7

to apply it to JOpera, our approach is independent of the particular workflow engine, as its general principles
can be applied to any process execution engine for Web service orchestration (e.g., other implementations of
WS-BPEL [8]).

The solution described builds upon three important ideas: separating dispatching from navigation in the
process execution, implementing them as separate modules, and designing appropriate policies for determining
how many dispatchers and how many navigators are needed according to the current workload. The fact that
the system can dynamically adjust the number of navigation and dispatching modules it utilizes by itself is an
important property that frees up the developer and system administrator from having to worry about tuning and
deployment configurations.

Downloading JOpera

The latest release of JOpera for Eclipse, including several examples to get started, can be downloaded from
www.update.jopera.org. Additional publications and documentation can be found on www.jopera.org.

Acknowledgements
Part of this work is funded by the European projects: IST-FP6-004559 SODIUM (Service Oriented Development In a
Unified fraMework) and IST-FP6-15964 AEOLUS (Algorithmic Principles for Building Efficient Overlay Computers).

References
[1] G. Alonso, W. Bausch, C. Pautasso, M. Hallett, and A. Kahn. Dependable Computing in Virtual Laboratories. In

Proc. of the 17th International Conference on Data Engineering (ICDE2001), pages 235–242, Heidelberg, Germany,
2001.

[2] M. Gillmann, W. Wonner, and G. Weikum. Workflow Management with Service Quality Guarantees. In Proc. of the
ACM SIGMOD Conference, pages 228–239, Madison, Wisconsin, 2002.

[3] R. A. Golding and T. M. Wong. Walking toward moving goalpost: agile management for evolving systems. In First
Workshop on Hot Topics in Autonomic Computing, Dublin, Ireland, October 2006.

[4] T. Heinis, C. Pautasso, and G. Alonso. Design and Evaluation of an Autonomic Workflow Engine. In Proc. of the
2nd International Conference on Autonomic Computing, Seattle, WA, June 2005.

[5] L. jie Jin, F. Casati, M. Sayal, and M.-C. Shan. Load Balancing in Distributed Workflow Management System. In
G. Lamont, editor, Proc. of the ACM Symposium on Applied Computing, pages 522–530, Las Vegas, USA, 2001.

[6] R. Khalaf, A. Keller, and F. Leymann. Business Processes for Web Services: Principles and Applications. IBM
Systems Journal, 45(2):(to appear), 2006.

[7] F. Leymann, D. Roller, and M.-T. Schmidt. Web services and business process management. IBM Systems Journal,
41(2):198–211, 2002.

[8] OASIS. Web Services Business Process Execution Language (WSBPEL) 2.0, 2006.

[9] C. Pautasso and G. Alonso. From Web Service Composition to Megaprogramming. In Proc. of the 5th VLDB
Workshop on Technologies for E-Services (TES-04), pages 39–53, Toronto, Canada, August 2004.

[10] C. Pautasso and G. Alonso. JOpera: a Toolkit for Efficient Visual Composition of Web Services. International
Journal of Electronic Commerce (IJEC), 9(2):104–141,Winter 2004/2005.

[11] C. Pautasso, T. Heinis, and G. Alonso. Autonomic Execution of Service Compositions. In Proc. of the 3nd Interna-
tional Conference on Web Services, Orlando, FL, July 2005.

[12] J. Yu and R. Buyya. A Taxonomy of WorkflowManagement Systems for Grid Computing. Journal of Grid Comput-
ing, 2006 (to appear).

8

