
Autonomic Computing for Virtual Lab oratories

CesarePautasso1, Win Bausch2, Gustavo Alonso1

1 Department of Computer Science
Swiss Federal Institute of Technology (ETHZ)

ETH Zentrum, 8092 Z•urich, Switzerland
tel +41 01 632 0879 fax +41 01 632 1425

pautasso@inf.ethz.ch, alonso@inf.ethz.ch

2 AWK Group AG
Leutschenbachstrasse 45
8050 Z•urich, Switzerland

Tel. +41 44 305 97 63, Fax +41 44 305 95 19
win.bausch@awkgroup.ch

Abstract. Virtual laboratories can becharacterized by their long-lasting,
large-scalecomputations, where a collection of heterogeneoustools is in-
tegrated into data processingpipelines.Such virtual experiments are typ-
ically modeled as scienti�c work
o ws in order to guarantee their repro-
duceabilit y. In this chapter we present JOpera, one of the �rst autonomic
infrastructures for managing virtual laboratories. JOpera provides a so-
phisticated Eclipse-basedgraphical environment to design, monitor and
debug distributed computations at a high level of abstraction. The chap-
ter describes the architecture of the work
o w execution environment,
emphasizing its support for the integration of heterogeneoustools and
evaluating its autonomic capabilities, both in terms of reliable execution
(self-healing) and automatic performance optimization (self-tuning).

1 In tro duction

More and more scienti�c disciplines are switching from in vitr o to in silico re-
search where natural phenomenaare explored using a computer in a virtual
laboratory instead of being observed in the �eld. On the onehand, this is due to
the fact that the cost of storing observations has becomelower than the cost of
making them. On the other hand, scienti�c work
o w tools [15] { such as the one
described in this chapter { have been developed in order to make it easier for
scientist to processand analyzesuch observations by composing an increasingly
large number of basic analysis and simulation tools.

Although virtual laboratoriesaretypically associated with very largeamounts
of data, data processingis even more critical than data management due to the
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sheercomputational complexity involved. Given the heterogeneity and complex-
it y of the underlying distributed execution environments and the long duration
of the computations involved, it is not feasibleto manually managethe lifecycle
of such virtual experiments. Instead, a virtual laboratory infrastructure should
automate most tasks related to the reliable and reproduceableexecution of such
computations. Ideally, a virtual laboratory infrastructure should provide a team
of scientists with support for easily creating and e�cien tly running virtual ex-
periments. Additionally , virtual laboratories are rarely designedin a top-down
fashion. They typically emergefrom a collection of disconnectedpiecesof data
processingcode (e.g., written in For tran ) and glue scripts (e.g., in Perl [1])
that are developed and maintained by individual scientists. Such an ad-hoc ap-
proach leads to systems that are di�cult to modify and maintain, cannot be
easily sharedamong researchersand involvesrather primitiv e and unsystematic
methods for running, monitoring, and steering the computations.

Considering that all of these problems are a major source of ine�ciencies,
it becomesclear that an organized way to store and manage information and
meta-information about the entire lifecycle of a virtual experiment is critical
to its success.Thus, not only high level languagesand abstractions to de�ne
such computations are neededbut also e�cien t execution tools integrated with
user-friendly management and monitoring environments are required.

In this chapter we focus on how this functionalit y has been provided in
JOpera [16], an autonomic processsupport systemspeci�cally tailored for virtual
laboratories. The JOpera project has its roots in the BioOpera [5] project and it
has beendeveloped at the Information and Communications SystemsResearch
Group of ETH Zurich. JOpera extends the Eclipse platform with a graphical
environment where scientists can use a drag, drop and connect programming
metaphor to de�ne distributed computations out of reusablecomponents. The re-
sulting high-level models are then automatically compiled into Java bytecode so
that they canbe e�cien tly executedby the system.In caseof virtual laboratories
where a large number of computations are concurrently executed, JOpera can
distribute their execution acrossa cluster of computers in order to provide the
appropriate level of performance. Moreover, JOpera includes self-management
capabilities, where the distributed enginecan automatically determine its opti-
mal con�guration basedon its current workload. With this, the needfor manual
intervention and tuning the system'sperformanceis greatly reduced.

The rest of this chapter is organizedas follows. We discussin more detail the
problems of virtual laboratories by showing sometypical examplesin Section 2.
In order to addressthesechallenges,scienti�c work
o w toolssuch asJOperao�er
a solution basedon two aspects. The �rst one consistsof a languagetargeted
towards modeling virtual experiments at a high level of abstraction (Section 3).
The secondone { presented in Section 4 { lies in the middleware infrastructure
supporting the execution of such a language. An evaluation of the autonomic
capabilities of the systemis discussedin Section5 beforeconcluding the chapter
in Section 6.



2 Motiv ation

This section illustrates the issuesscientists running large scalevirtual experi-
ments needto cope with. Each examplerepresents a pattern frequently encoun-
tered in a virtual experiment. Each of thesepatterns hasdi�eren t characteristics
and requires a di�eren t type of support from the virtual laboratory infrastruc-
ture.

2.1 Structured computations

A structured computation involvesa setof applications that needsto beexecuted
in a speci�c order. These applications run on di�eren t operating systemsand
hardware platforms. They exchange data with each other through a number
of input and output mechanisms (e.g., command line input parameters, input
and output �les, web pagedownloads) This data is produced at di�eren t points
in time throughout the computation and may have to be converted between
di�eren t formats. Programming such application may prove to be too di�cult
for ordinary users,if appropriate high level programming tools are not available.

In addition to design-time support, run-time support is also important. For
instance,consideringa distributed environment, manually taking careof routing

Fig. 1. Microarray analysis pipeline: from raw samplesto correlated expression
patterns



data from task to task at the right time becomesdi�cult, time consumingand
error-prone. Thus, data transfers should be automated, not just to improve the
e�ciency of the virtual experiment, but also to collect important lineage and
data provenanceinformation. The goal is to automatically log all of the necessary
meta-data in order to support the correct interpretation of the results of a virtual
experiment, i.e., by tracing how this was generated.

An example of this structured computation pattern can be found in the
biosciencedomain. Microarray technology is a promising approach to �nd clues
concerning the function of speci�c genesin a cell's metabolism. The idea is to
expose the cell to an arti�cially created stimulus (also called condition) and
observe the cellular responsein terms of the level of activit y (or the expression
level) of somegenesover time. Development of appropriate computational models
aswell asinnovation in wet lab equipment havemadeit possibleto moveelements
of the microarray processingpipeline into virtual laboratories.

Such a virtual microarray experiment involves a range of data extraction,
transformation and correction stepsthat needto beperformedprior to a complex
statistical analysis of the data. Figure 1 provides a high-level overview of the
procedure, which is described in more detail in [3]. This microarray processing
pipeline was implemented with BioOpera by integrating existing, standalone,
publicly available software packageswritten in di�eren t programming languages
and maintained by di�eren t reseach groups [5].

2.2 Em barrassingly parallel computations

Whereas the main challenge of the Microarray analysis pipeline concerns the
speci�cation of the complex interactions between a large set of heterogeneous
tools, in this section we deal with the evolution of the execution environment
when running long-lived computations.

An embarrassingly parallel computation consistsof a set of tasks that can be
processedindependently of each other. This kind of computations are commonly
used in a virtual laboratory setting as, given enough execution capacity, their
execution time can be reducedby executing all tasks in parallel. However, when
such a pattern is implemented without appropriate support from the virtual lab-
oratory infrastructure, several challengesbecomeapparent. For instance,choices
needto be made concerningthe granularit y of the tasks, how to schedule tasks
to run on the available resources(e.g., whether several tasks can sharea single
processor),and �nally , how to handle the failure of individual tasks. Without
appropriate support, the onus for such chores lies on the user. Not surprisingly,
manually and painstakingly maintaining such computation becomesthe domi-
nant factor in the overall cost of performing such virtual experiments and does
not scaleto a large number of tasks running on a large number of computers.

An example of this kind of computation is a sequencealignment, a problem
that lies at the heart of comparative genomics.Given an unknown set of nucleo
or peptide sequences,the initial step into any inquiry concerningthe evolution,
structure, and function (e.g., [8,9,20]) of thesebiomoleculesconsistsof the cross-
comparison of each sequencein this set againstevery sequenceof a referencedata



set such asSwiss-Prot [6] - an All vs. All, if the two data setscoincide.Typically,
a singlecomparisonrequiressecondsof CPU time, dependingon the method that
is being usedand the length of the sequencesbeing compared,and that the total
number of pairwise sequencecomparisonsis in the order of billions. From this,
several yearsof CPU time are required to perform the whole experiment. Being
composedout of a number of pairwise sequencecomparisonsindependent of each
other, an All vs. All is embarrassingly easyto parallelize: each alignment can be
computed independently .

Ample details concerninga month-long lifecycle of running such a computa-
tion with BioOpera can be found in [4]. Throughout the computation, processor
availabilit y has beensubject to substantial unexpected and uncontrolled 
uctu-
ation. Without load balancing or job migration acrossmachines to compensate
for resourcefailures, utilization of the overall available computing resourcesis
bound to be suboptimal. Also, a failure of the node coordinating the computa-
tion halts the entire computation. Dealing with these issuesmanually is indeed
ine�cien t and time consuming.If a computation environment made out of hun-
dredsof hosts is considered,it is clear that all of the previously described aspects
of its execution should be controlled automatically.

2.3 Parameter-sw eep computations

This pattern represents a combination of the onesdiscussedin the previous two
sections.A parameter sweep computation [2] consistsof applying the sameal-
gorithm to all parameter value combinations in a prede�ned parameter space.
Sinceeach each parametercombination canbetypically processedindependently ,
parameter sweepsare embarassingly parallel and share the requirements for a
reliable and distributed executionenvironment. Concerningstructured computa-
tions, not only a complexcomputation is applied to each parameter combination
but also traceabilit y needsto be guaranteed (i.e., in order to correlate which re-
sults have beenproduced by which input parameter values).

An example parameter sweep application to which JOpera has been suc-
cessfully applied involved the simulation of protocols for wireless ad-hoc net-
works [21]. Communication partners in such networks are in motion with respect
to each other and may leave and join the network at any time. Additionally , the
network is infrastructureless. Unlike in mobile telephony, for instance, there is
no �xed infrastructure that keepstrack of nodes and routes data from sender
to receiver. Data is directly routed through the mobile nodesand routing paths
have to be recomputed as nodesmove in and out of transmission range.

The objective of the experiment described here is to comparethe simulated
behavior of a set of resourcereservation protocols under certain assumptions
like congestion, network latency or node population distribution. In order to
gain a complete understanding of the problem, this parameter spaceshould be
exploredin its entiret y. Although an individual simulation is on averagerelatively
short, on the order of 20 secondsof CPU time, the sizeof the parameter space
makes running the entire simulation challenging. Each simulation depends on
17 parameters, resulting in around 1.5 million independent simulations. Again,



parallel execution on a cluster of computers is mandatory to ensure that the
results are delivered in a reasonableamount of time.

2.4 Discussion

From the previous examplesit is clear that a virtual laboratory infrastructure
needsto cope with a variety of design-time and run-time problems. These in-
volve providing good abstractions to model the structure of computations that
are built by integrating heterogeneousscienti�c tools. However, modeling is not
enough, as computations need to be reliably and e�cien tly executed in a dis-
tributed (and failure-prone) environment. The main features of such a virtual
laboratory infrastructure can be categorizedas follows:

Mo deling An easyto use, intuitiv e programming environment should be pro-
vided so that scienti�c computations can be speci�ed at a high level of ab-
straction by fostering the reuseof existing tools.

In tegration Virtual laboratories must cope with heterogeneity, not only re-
garding data formats but alsoconcerningthe environments on which analysis
tools are executed.

Distribution Distribution is another property of virtual laboratories, as local
and remote (e.g., Web-based)data sourcesand tools have to be accessed.

Steering In addition to reporting their status and progress,long-running com-
putations require support for interacting with them in order to proactively
steer their execution.

Scalabilit y In this context, the notion of scalability needsto be extended to
encompassthe virtual laboratory infrastructure itself, which should scaleto
handle a very large number of virtual experiments.

Fault Tolerance Given that most of today's Grid and cluster environments
are failure prone, various failure maskingand exceptionhandling approaches
should be in place in order to minimize the number of troubleshooting ac-
tivities to be performed.

Combining all of these features and mechanisms with the appropriate self-
management strategiesyields an autonomic infrastructure for managing virtual
laboratories as we are going to describe in the following sections.

3 Mo deling Virtual Exp erimen ts with Pro cesses

A languagefor modeling virtual experiments should allow scientists to model all
aspects of a virtual laboratory (e.g., which tools to use, what are their depen-
dencies,how to invoke them, where the data should be stored) in a well-de�ned,
formalized way so that these experiments can not only be executed in a fully
automatic fashion but the management of related metadata is also automated.

Thus, the main challenge in designing such a language lies in keeping the
balancebetweentwo extremes.On the one hand, a risk lies in abstracting away



too many details { e.g., like the data 
o w, typically disregardedin many busi-
nessprocessmodeling languages{ that are of primary importance for modeling
executablescienti�c computations. On the other hand, a lower-bound is de�ned
by traditional scripting languages(e.g., Perl or Python ). Theselanguagescan
alsobe usedasthe glue to patch together and run virtual experiments. However,
they lack the necessaryabstractions to deal with issuessuch as reuseof scien-
ti�c tools and algorithms, scalable,reliable and persistent execution, simpli�ed
orchestration of distributed components, interactive monitoring and steering of
computations as well as tracking lineageand data provenancemeta-data.

In the following, we give an overview about the abstractions provided by
JOpera'slanguages(Processesand Programs)and how they �t together (Binding
and Flow).

3.1 Mo deling the 
o w with pro cesses

Processescanbeseenasan executableblueprint of a distributed application built
using a pipe-and-�lter architectural style [7]. Processesmodel computations asa
combination of heterogeneoustools which are to be executedasthe computation
goes through its various stages.Processescan be run onceover a certain input
dataset, or can also be applied over a range of input parameter values.

In JOpera, processesmodel the interactions between a set of programs. A
JOpera processconsists of a set of tasks linked by data and control 
o w de-
pendencies.Tasks represent each step of the computation to be carried out.
Executing a task involves the invocation of an external program or the call of
another sub-process.

Both the data and the control 
o w of a processcan be formally described
as a graph. The edgesof the control 
o w graph link the tasks of a processand
de�ne their partial order of execution. Theseedgescan be labeled with boolean
expressionsin order to selectupon which condition they are activated and thus
provide support for adding alternativ e or multiple branches, loops and synchro-
nization points in the control 
o w. The data 
o w edgeslink data parametersof
tasks declaring how information is transferred from one program to the next.
Processesalso have input and output parameters, so that it is possibleto pass
information to a processwhen starting it and retrieving its results when it is
completed. Data 
o w and control 
o w are related since tasks consuming data
cannot be started beforeall tasks producing the required data have successfully
completed their execution. Thus, when executing a process,JOpera analyzes
its structure and concurrently schedulesall tasks that are found to be indepen-
dent. If enoughcomputing resourcesare available, these tasks will be executed
concurrently .

Traditionally , work
o w management toolshaveuseda visual syntax to graph-
ically depict the 
o w linking the various scienti�c tools together into a process.
This is alsothe approach followedin JOperawith its JOperaVisual Composition
Language(JVCL). With it, both the control 
o w and data 
o w of a processcan
be speci�ed using a very simple, graph-basedvisual notation. Nevertheless,the



JOpera visual composition languagesupports advanced constructs (e.g., itera-
tion, streaming, re
ection, recursion, nesting, or dynamic late binding) without
resorting to ad-hoc (and di�cult to interpret) extensionsof the visual syntax.
We refer the reader to [18] for an in-depth presentation of the JVCL language.

3.2 Binding pro cesses with programs

The notion of binding in JOpera de�nes the 
exible relationship between pro-
cesses(i.e., the compositions) and programs (i.e., the components). Although
processesmodel how a virtual experiment is composedout of a set of programs,
the description of the programs themselves is kept { by design { separatefrom
the processes.This separationhasseveral advantages.It enhancesthe reusability
of the programs, which can be shared among di�eren t processes.Likewise, the
sameprocesscan be reusedby binding it with di�eren t programs.

More precisely, a binding de�nes what are the constraints to be satis�ed
by a program in order to be included in a process[19]. Such a binding can be
evaluated along the entire lifecycleof a process:at design-time(early binding), at
compilation-time, at deployment-time, at run-time (late and very late binding).

Given the goal of supporting an open and heterogeneousset of programs,
JOpera makes very little assumptionsabout the mechanisms that are used to
invoke their functionalit y. Instead JOpera providesa meta-library of component
typesthat can be usedto de�ne programs.Programswrap existing tools employ-
ing the most appropriate invocation mechanism both in terms of performance
but also development convenience[17]. Proof of the opennessof the JOpera ser-
vice meta-model is provided in Table 1 whereall currently supported component
types are listed. Depending on the relevant aspects that should be taken into
account when designinga virtual experiment, thesecomponents can be classi�ed
along the following dimensions:

Gran ularit y Both �ne-grained (e.g., Java snippets) and coarse-grained(e.g.,
Web services)programs are supported by JOpera within a single process.
Furthermore, the overheadof invoking each component type is proportional
to its granularit y. In other words, JOpera can leverage the standardized
(but relatively ine�cien t) SOAP protocol without being constrained by it.
If necessary, more e�cien t invocation mechanisms can still be selectedto
access�ne-grained programs.

Lo cal vs. Remote in vocation At run-time, programs can be separatedfrom
a processby an increasingly large distance. For example, Java methods are
invoked by a thread running within the same Java virtual machine where
the processis running. Legacy UNIX applications invoked through the lo-
cal operating system shell run in a separateoperating system processwith
respect to the one running the JOpera process.Additionally , programs can
represent the execution of an application on a remote host through a secure
shell connection and, going even further away, jobs submitted to a resource
management and scheduling system (e.g., Condor [14] or Globus [10]) to be
executedon a cluster of computers in a remote Grid environment.



Comp onen t T yp e Description

Local Computation
UNIX Application (UNIX) Execute a command line through the local oper-

ating system
Java Method (JAVA) Call a local Java method
Java Snippet (JAVA.SNIPPET) Embed a Java snippet into the process

Remote Computation
Java Remote
Method

(JAVA.RMI) Invoke a remote Java method

Web Service (SOAP) Web service call (using raw SOAP messages)
Web Service (WSIF) Web servicecall (using the WSIF framework [13])
SecureShell (SSH) Execute a remote command through a secureshell

connection

Data Transfer
Web Page (HTTP) Download (or upload) a page from a web site
SecureCopy (SCP) Transfer a �le with securecopy

Database
Database Query (SQL) Send any SQL statement to a JDBC compliant

database
Telegraph Query (TELEGRAPH) Subscribe to a telegraph stream described by an

SQL query

XML transformation
X-Path Query (XPATH) Query an XML document with X-Path
Style Sheet Trans-
formation

(XSLT) Transform an XML document with an XSL trans-
formation

Cluster/Grid computing
Globus [10] (GLOBUS) Submit a job to a grid managed by Globus
Condor [14] (CONDOR) Submit a job to a cluster managed by Condor

Internal
JOpera Echo (ECHO) Echo a messageback
JOpera Process (OPERA) Spawn another process
JOpera API (API) Call the API of JOpera

Human-oriented
Work
o w task (WF) Add a new activit y to a user's worklist

Table 1. Summary of the component typescurrently supported by JOpera



Data-driv en vs. Computation-orien ted In addition to computations, pro-
gramscan alsobe usedto managethe data that is required and producedby
other programs.Data-driv enprogramsareusedto model data transfers(e.g.,
�le-staging through securecopy or GridFTP), accessto persistent storage
(e.g., SQL databasequeries),and canplay the role of mediatorsand adapters
(e.g., Java snippets or XML data transformations written in XPath, XSLT,
or XQuery).

In teraction Style In addition to synchronous (RPC-style) interactions, where
a program models the complete invocation of an external tool, we have also
applied JOpera's meta-model to provide support for asynchronous interac-
tions, wherethe executionof a program involvesa one-way messageexchange
or the start (or termination) of an independently running application. In this
case,data exchangesbetweenthe processand the program can occur at any
time, i.e., when the program is started (input), after it has completed (out-
put) but also during its execution (streaming).

Mac hine-b ound vs. Human-orien ted Although most computational tools
are usually meant to be executedin non-interactive mode, parts of a process
may also explicitly include a task requiring someform of human interven-
tion, e.g., to validate partial results and steer the processaccordingly or take
somemanual corrective actions before the computation is carried on.

Data vs. Metadata Re
ection and introspection are also two important fea-
tures of JOpera's visual composition language.With these it becomespos-
sible, e.g., to control the execution of a processfrom another process,or to
dynamically discover properties about the execution environment and use
this information from within a process.For example, it is possible to dy-
namically detect how many resourcesare available and partition a dataset
accordingly or measurethe invocation time of a remoteWeb serviceto detect
whether a service-level agreement has beenviolated.

Additional component types can be easily added to JOpera by plugging a
service invocation adapter into the corresponding extension point, as we are
going to show in the next section.

4 An Autonomic Infrastructure for Virtual Lab oratories

The architecture of JOpera is composedof a set of Eclipse plug-ins (Figure 2).
Following Eclipse's designguidelines,we have separatedplug-ins responsible for
the user interface (UI) from plug-ins that work with the internal processdata
model. Along an orthogonal dimension, we have also separatedthe design-time
from the run-time functionalit y, sothat, if necessary, the systemcan be deployed
in a partial con�guration (e.g., where only the run-time monitoring featuresare
enabled). The compiler, which links the design-time to the run-time part has
been developed in its own plug-in. On the run-time side, the run-time kernel
provides the basic processexecution infrastructure used by the compiled code.
It is extendedby the serviceinvocation adapters plug-ins, which implement the
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Fig. 2. JOpera is built as a set of Eclipse plugins

mechanisms and provide support for the protocols used to invoke the various
kinds of components that weredescribed in the previoussection.Finally, the API
wrappers are usedto exposethe functionalit y of the kernel to clients supporting
a variety of protocols.

4.1 Design-time to ols

The JVCL model core plug-in contains the functionalit y usedat design-time to
managethe information about programs and processesdescribed in the JOpera
Visual Composition Language. This includes the abilit y of internalizing such
information loading it from an XML serialization. This plug-in also manages
an object-oriented in-memory model of the processesand programs which has
beenautomatically produced from the corresponding schemausing a generative
programming approach. Clients observing the model may use its event noti�-
cation facilities to be noti�ed when parts of the model are changed, e.g., to
perform someincremental validation or to update the information displayed by
the corresponding UI views. This way, after each modi�cation, the model is
checked incrementally for consistencywith respect to various consistencycrite-
ria. In casea violation is detected, a speci�c problem (or a warning) marker is
attached to the part of the model that triggered it. Such veri�cation happensin
the background, without user intervention so that errors and potential problems
are reported immediately. In an agile development environment, such immediate
feedback is nowadays taken for granted asit contributes to reducing the overhead
of the typical compose-compile-�x development cycle and it is very important
to decreasethe slope of the environment's learning curve.

The editor UI plug-in contains the user-interface code that presents the con-
tent of the currently open processesto the developer. We usetwo di�eren t kinds



Fig. 3. JOpera: Design-time Editor and Background Model Checker

Fig. 4. JOpera: Run-time ProcessMonitor and Debugger

of visual user interfacesto display and edit the structure of a process.List-based
forms are usedto choosethe servicesto be composedand to de�ne their interface
parameters.Additionally , the control 
o w and data 
o w graphs of the processes
are edited in a visual environment. Such visual editor is implemented by extend-
ing the Graphical Editing Framework (GEF) of Eclipse to usethe visual syntax
of the JVCL language. In addition to providing a new kind of editor, the UI
plug-in reusesthe existing Outline, Problems and Property views of Eclipse to
display the structure of the active composition, its current error and warning
markers and the attributes of its selectedgraph elements (Figure 3).
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4.2 Run-time to ols

Following a model-driven approach and by leveraging Eclipse's incremental re-
sourcebuilders, JOpera'sJVCLtoJava compiler plug-in incrementally recompiles
the modi�ed composition to Java executablecode whenever a processis saved.
This Java code is then oncemore compiled by Eclipse's integrated Java compiler
into bytecode. The latter is then automatically and transparently re-deployed
for executionby dynamically loading it into JOpera's run-time executionkernel.

At this point, a valid, compiled composition is ready to be executed.Unlike
most current model-driven environments, the progressof the execution can be
followed interactively in the same environment { and most important { using
the samevisual syntax that was used to de�ne it. Thus, not only JOpera fea-
tures a so-calledreversemodel transformation, where the original visual process
de�nition is extracted back from the compiled bytecode, but is also able to join
this with the current state of the execution. This way, the visual representation
is augmented at run-time with color-coded information representing the state of
the execution of each of the serviceinvocations (e.g., white for not yet executed,
yellow for active, blue for �nished, red representing a failure). Using the tools
provided by the debuggingUI plug-in (Figure 4), individual data parameterscan
be inspected,sothat { for example,in casea Web serviceis involved { the actual
SOAP requestand responsemessagescan be displayed for debuggingpurposes.
Similarly, in casea remote execution fails it is possible to distinguish whether
the remote host could not be reached from the actual failure of the execution.
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The persistent state of the executionand the navigation over the control 
o w
graph of the processare managedby the JOpera ProcessExecution Engine. Fig-
ure 5 shows its various interfaces,towards clients usedto accessthe functionalit y
of processesand towards the local or remote programs invoked from a process.
Processesare executedby the engine'srun-time kernel, which delegatesthe in-
teraction with di�eren t component typesto a set of serviceinvocation adapters.
Its API can be accessedusing a variety of means so that processesdeployed
in the kernel are automatically published, e.g., as Web and Grid services[12].
In this regard, JOpera can be seenas an open platform for heterogeneousser-
vice composition since it is possibleto extend the kinds of servicesthat can be
composedby adding user-de�ned serviceinvocation plug-ins.

In order to handle large workloads, the run-time kernel can be distributed
on a cluster of computers as shown in Figure 6. Processessubmitted by clients
for execution are stored into a central queueso that they can be scheduled for
execution on a node of the kernel having enoughfree capacity. As we are going
to discussin the next section, depending on the number and characteristics of
the processesto be executed,one node of the cluster may not provide su�cien t
execution capacity. In this case,additional nodescan be dynamically allocated
to the kernel by the autonomic managercomponent [11].

5 Evaluation

In this section we present someexperimental results on the autonomic capabili-
ties of JOpera. They validate the architecture of the system and show that it is
possible to automatically deal with a signi�can t set of failures and, in general,
changesin the execution environment (self-healing) but also react to changesin
the workload to be executed(self-con�guration).
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5.1 Self-Healing capabilities

Dealing with outages in the execution cluster In this experiment we
tested the system's abilit y to cope with changesin the resourceset allocated
to the execution of the All vs. All processusing a reduced input data set. The
workload consistedof 256independent jobs, each requiring an averageCPU time
of 4 minutes.

Figure 7 shows a trace of the experiment execution using the distributed
engine.The y-axis measuresboth the number of processorsin the cluster aswell
as the number of jobs (each job is allocated to one processor).The dashedline
represents the number of available processors.At time t, the Total line indicates
the number of jobs running in the cluster. The Rescheduled Jobs line indicates
how many jobs at a future point in time are going to be rescheduled due to a
failure of the node where they have beenrunning. Thus, the areaunder this line
represent the amount of CPU time lost due to failures.

In general,Figure 7 demonstratesthe abilit y of the kernel to adapt a running
computation to the set of available processors,which has shrunk and grown
many times throughout the experiment. The kernel is able to take advantage of
new machines by immediately scheduling jobs on them and to reschedule lost
jobs. Automatic rescheduling can be observed whenever a processorfails: the
availabilit y line drops since less processorsare available for the computation.
Upon such event, the kernel immediately retracts the jobs running on the failed
processorsto reschedule them on another node. In the graph, this is shown by
the Rescheduled Jobs line closely following the number of available processors.
Sincea copy of the input data usedby a task is stored persistently by the kernel
aspart of the state of the processexecution,lost jobs canberecoveredby sending
a copy of such input data to another processor.



Kernel recovery Recovery of the kernelensuresthat processexecutionresumes
in a consistent state after a failure hasinterrupted the kernel'snormal operation.
In order to determine the overheadof such recovery, we measuredthe time taken
by the various recovery steps:

1. Re-loading processinstance state information from persistent storage;
2. Navigating through them in order to determine what are the tasks to be

recovered;
3. Synchronizing the state of the tasks which are remotely executed.

The results of Figure 8 clearly indicate that the recovery times grow linearly
with the number of tasks that were active at the time of the failure. More
speci�cally , the most expensive operation is the loading of the instance data
from the database, which takes 5 milliseconds when there are no tasks to be
recovered, up to 50 secondswhen loading 40 processinstancescomposedof 100
tasks each. Since navigation is performed in main memory it is two orders of
magnitude faster: less than 0.4 secondsfor 4000 tasks. Synchronization with
the cluster nodes is the step presenting the most time variabilit y. This can be
explainedby the fact that when a recovering kernel attempts to contact a remote
node to �nd out about the state of the task being recovered,it blocks either until
the remote node responds or until the connection times out, which is the case
if the remote node has failed. In addition to this timeout penalty all jobs lost
due to node failures are automatically rescheduledadding to the duration of the
recovery procedure.
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Fig. 9. Impact of replicating the kernel over a cluster

5.2 Self-con�guration capabilities

Whereas the previous section described the self-healingcapabilities of the sys-
tem, wherethe kernel can survive failures of the underlying cluster environment,
in this section we explore how the kernel can automatically adapt its con�gu-
ration to optimally use the available resources.First, we show that the kernel
can be replicated in order to servicea given workload with better performance.
Second,we show that the kernel, through its autonomic manager,can automati-
cally determine a suitable degreeof replication for a given workload. To this end,
we have beenanalyzing the e�ect of a replication strategy where up to 7 copies
of the kernel are employed to run the parameter-sweepexperiment described in
Section2.3. The processusesfrom 200up to 1000concurrent tasks to computer
over an increasingly larger input dataset.

Figure 9 shows the results for the static replication strategy, where the num-
ber of replicas (x-axis) of the kernel has beenmanually con�gured to study the
e�ect of replication on the processturnaround time (y-axis). Overall, replication
has a bene�cial impact on turnaround time. The system scaleswell, as a 5-fold
increasein workload can be handled with constant time by a 7-fold increasein
the number of kernel replicas. Still, for smaller workloads, it is not necessary
to fully replicate the execution environment, as { due to Amdahl's law { the
speedup is limited, as it can be observed for the smallest workload (200 tasks),
where no improvement can be observed after 2 kernelshave beenused.
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With this, a trade-o� can be identi�ed betweenminimizing the turnaround
time of the processeswhile optimally using the available resources.Due to the
potential variabilit y of the workloads, especially if a virtual experiment hasbeen
madeaccessiblethrough a Web serviceinterface, it is important that the process
execution infrastructure is capable of automatically adjusting its con�guration
in responseto the current workload.

Self-con�guration can be achieved through an autonomic manager, which
automatically adapts the degreeof replication of the system to �t a speci�c
workload. This component consistsof 1) a basic resourcemanager,which keeps
track of the nodesthat canbeusedto run replicasof the kernel; 2) a performance
monitoring component that observesthe state of the systemat regular intervals,
detects imbalancesand usesthe 3) kernel recon�guration services,to modify the
number of replicas without disrupting normal system operation.

More precisely, the managerobservesthe aggregatenumber of tasks waiting
to be executedby each replica as well as the number of processeswaiting to be
executed in the central queue(Figure 6). This value gives an indication of the
backlog of the systemand if it exceedsa con�gurable threshold, a new replica is
addedto the system.Conversely, if this value falls below a threshold, the replica
with the least amount of work is disabled and shut down.

Figure 10 illustrates the manager'sdecisionsby indicating when a worker has
beenaddedor removed from the computation. The x-axis shows the turnaround
time, the y-axis the number of replicas involved in the computation (at least one



replica is kept active at all times) and the z-axis represents di�eren t workload
sizes,going from 200 tasks up to 1000tasks.

These results show the capability of the autonomic manager to adapt the
system to the workload without any human intervention. A limited amount of
replicas was used to execute small workloads, whereasan increasingly larger
number of replicas was used as the workload size increased.On the one hand,
clients bene�t from this adaptation as it keepsturnaround times low and stable
in spite of di�eren t workloads. On the other hand, the virtual laboratory infras-
tructure can automatically adjust the amount of resourcesdedicated to execute
the client's processes.

6 Conclusion

The paradigm shift from in-vitr o to in-silico research, observed in many scienti�c
disciplines,hasresulted in the challengeof building virtual laboratory platforms.
While early virtual laboratories consistedof a few applications integrated on the
user interface level (e.g. in a browser), today's virtual laboratory environments
evolved into a workbench supporting teams of scientists in specifying, running,
monitoring and evaluating virtual experiments. Crucial to the successof such
platforms is its abilit y to automate all aspects of a computation to the largest
degreein order to make large scalecomputations manageable.

To this end, in this chapter we have presented the JOpera system, which
brings autonomic computing techniquesto meet the requirements of virtual lab-
oratories. With it, all components (computing nodes,software tools, middleware
infrastructure) that deal with the speci�cation and the execution of a virtual
experiment can be integrated using an autonomic platform. This platform com-
bines appropriate mechanismsand strategies to 1) raise the level of abstraction
at which virtual experiments can be de�ned, executedand debugged;2) mask
the complexity of dealing with outagesin a distributed execution environment
and 3) automatically tune the system's con�guration for optimal performance.
All in all, thanks to its autonomic computing features, JOpera is a signi�can t
step towards the goal of providing scientists with an environment that lets them
concentrate on doing sciencewhile avoiding to deal with the computer science.
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