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ABSTRACT
The advent of Cloud computing platforms, and the growing
pervasiveness of Multicore processor architectures have re-
vealed the inadequateness of traditional programming mod-
els based on sequential computations, opening up many chal-
lenges for research on parallel programming models for build-
ing distributed, service-oriented systems. More in detail,
the dynamic nature of Cloud computing and its virtualized
infrastructure pose new challenges in term of application
design, deployment and dynamic reconfiguration. An appli-
cation developed to be delivered as a service in the Cloud
has to deal with poorly understood issues such as elasticity,
infinite scalability and portability across heterogeneous vir-
tualized environments. In this position paper we define the
problem of providing a novel parallel programming model
for building application services that can be transparently
deployed on multicore and cloud execution environments.
To this end, we introduce and motivate a research plan for
the definition of a novel programming framework for Web
service-based applications. Our vision called “Liquid Archi-
tecture” is based on a programming model inspired by core
ideas tied to the REST architectural style coupled with a
self-configuring runtime that allows transparent deployment
of Web services on a broad range of heterogeneous platforms,
from multicores to clouds.

Categories and Subject Descriptors
D.1.0 [Programming Techniques]: General

General Terms
Design, Performance, Languages

Keywords
REST, Web Services, Programming Models, Performance,
Liquid Architectures

1. INTRODUCTION AND MOTIVATION
RESTful Web services have emerged as a radically sim-

plified approach to design the plumbing of modern service
oriented architectures. The simplicity of the HTTP protocol
has been one of the winning features that have promoted this
success, while the careful design of the protocol has enabled
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the Web to scale and exponentially increase its size over the
past 20 years. However, it remains challenging to design,
build and operate RESTful Web services that can exibit the
same properties. Two technologies have recently appeared
that could play a relevant role in the future of service ori-
ented computing and require further research to determine
their impact on the next generation of Web services; those
technologies are clouds and multicores.

Cloud computing and multicore processor architectures
are two emerging classes of execution environments that are
rapidly becoming widely adopted for the deployment of Web
services, and thanks to their intrinsic parallelism, services
can be redesigned in order to exploit the available compu-
tational power. Nevertheless, both computing platforms re-
quire the software to correctly use a very large and poten-
tially heterogeneous pool of available execution resources.
For instance, in the near future multicore machines with
more than 64 cores will become mainstream [18]. On such
a computing platform, the correct usage of each core will
became a relevant issue not only affecting the overall per-
formance of the service, but also impacting its power con-
sumption. The same consideration is also valid on Cloud
computing platforms, where the correct usage of the avail-
able resources could result in reduced capital expenditure.
Moreover, the dynamic nature of Infrastructure as a ser-
vice (IaaS) cloud computing platforms, coupled with novel
cloud pay-as-you-go economic models can encourage the de-
velopment of applications capable of running on machines
characterized by different computational capacity and dif-
ferent cost. For example, we envision applications that will
be able to change their deployment configuration, or even
to migrate from one cloud provider to another, according to
specific economic models indicating in real time the cheapest
cloud provider to support the actual load of a Web service.

To deal with such important scenarios, we think that the
research and development of a novel programming paradigm
allowing to build services that can be transparently deployed
on both clouds and multicores could represent a challenging
research topic. In the following section we define in detail
the nature of this research, identifying the main challenges,
and defining the concept of liquid architecture to deal with
those challenges.

1.1 Research Challenges
Within the area of service oriented architectures, the de-

velopment of services able to exploit different computational
resources is a relatively new research area. The growing
availability of parallel processing units present in both large

WWW 2011 – Ph. D. Symposium March 28–April 1, 2011, Hyderabad, India

337



virtualized environments such as IaaS Clouds and modern
multicore machines represents an opportunity for the defi-
nition of a new class of Web service architectures, which we
call liquid architecture.

We define a liquid Web service as a software entity, capa-
ble of the following three properties:

1. Transparent deployment: the Web service has to be
deployable on any kind of computing platform, with
no need for any external reconfiguration effort. To
give an example, a Web service capable of transpar-
ent deployment has to be deployable on any kind of
multicore machine (from 1 core, up to the technologi-
cal limit which may approach hundreds of cores in the
foreseeable future), as well as on any kind of virtual-
ized Cloud computing infrastructure, like for instance
an Amazon E3 Virtual Cluster. The same applies on
hybrid deployment scenarios, i.e., Clouds composed of
virtualized multicore processors.

2. Infinite scalability: the transparent deployment has to
guarantee the optimal level of scalability for the Web
service, for the given computing platform. To give an
example, a Web service deployed on a 8 core machine
has to perform exactly 8 times better than it would
perform on the single core environment. The same
linear scalability has to be guaranteed on all possible
heterogeneous scenarios.

3. Very long life: since a service is supposed to be kept in
operation for a very long period, an architecture capa-
ble of the prior two properties should also be capable of
a self-organizing deployment mechanism, permitting to
its configuration to change during the service life cycle.
To give an example, such liquid Web services should
be able to adapt at runtime to the available comput-
ing power (if deployed on a cloud environment). If
deployed on a multicore processor, a liquid Web ser-
vice should be able to save energy by using only the
necessary amount of cores, leaving powered off all the
unused resources for future peaks of requests.

The design and development of Web services capable of the
above three properties represents to us a meaningful research
challenge, and the maturity of modern computing platforms
is a stimulus to our work.

2. RELATEDWORK
The idea of treating Clouds and Multicores as a single

computing environment has been introduced by David Went-
zlaff et al. within the contest of the Fos Operating Sys-
tem [22]. They propose the development of a modern Op-
erating System to target at the same time and in parallel
the two different computing platforms, using a well defined
service based architecture. Within Fos every OS function is
implemented as a Web service exposing OS kernel function-
alities. For instance, a process loaded in the Fos Operating
System will interact with a scheduler service, a malloc ser-
vice, a file I/O service, and so on. The adoption of such a ser-
vice oriented structure is of great interest, as it permits the
transparent deployment of the Operating System on both
Clouds and Multicores. Other examples of distributed Op-
erating Systems that have somehow tried to address similar
scenarios with peculiar solutions are Amoeba [15], Sprite [17]

and Clouds [11]. Unlike the case of a distributed OS, in our
scenario we are more interested in Web services instead of
general applications. Due to this reason, the Operating Sys-
tem approach seems to be too generic for our scenario, and
we think that the research challenges introduced in the prior
section could be targeted with an approach more focused to
the programming model level.

In the area of programming models and tools, plenty of
different solutions have been proposed across the last decades,
to build parallel and concurrent applications. Notable in
this area are some relevant programming paradigms from the
high performance computing field, like the Skeletal model [9]
and the Flow based model [14]. All of these models em-
brace a simple but very effective idea of parallelism: if you
have the need for scalable applications, at some points you
will have the need to isolate and replicate some portions
of your computation. We consider this aspect as relevant
for our approach, but despite of the power of such parallel
programming models, none of them has been designed ex-
plicitly targeting the Web service scenario. Many of them
have been designed for local (in-machine) concurrency, or to
exploit process/thread level parallelism, and this represents
a limit for distributing services over the Web.

Important efforts in the development of scalable systems
have also been done in the definition of concurrency models
more focused on the semantic of cooperating processes than
in the communication primitives. Belonging to this area
are well known models like the Actor Model [1], the Agent-
Oriented programming paradigm [5], the Active Object [12],
or the Partitioned global address space model [8]. All of
these concurrency paradigms offer interesting solutions to
the scalability problem, and some of them have shown how
general concepts can be efficiently implemented in real-world
applications. Good examples for this class are the Microsoft
CCR/DSS framework [10], Scala [16], and the X10 [7] pro-
gramming languages.

Out of the realm of parallel programming, relevant efforts
have been done through the development of frameworks and
instruments explicitly designed for Cloud computing plat-
forms [21]. Microsoft Azure is a relevant example in this
area. Thanks to its service oriented layer, the Azure plat-
form allows to deploy in the cloud complex data-intensive
applications [13], as well as any kind of Web service, includ-
ing third party components [6].

3. PROPOSED APPROACH
As introduced in Section 1, there is a lack of programming

abstractions and techniques which prevents Web services to
fully exploit both Clouds and Multicores. Also, none of the
solutions discussed in Section 2 seems to provide all of the
technological and conceptual tools needed for the develop-
ment of Web services capable of satisfying the requirements
enumerated in Section 1.1.

To address these limitations, we propose an approach based
on the definition of a novel programming paradigm explicitly
targeting the development of liquid Web services.

We structure our approach around three key elements: (1)
a service oriented programming model for the constrained
design of the liquid service, (2) a service oriented standard
library support for the implementation of Web services’ key
features (sharing of state, composition, and reflection), and
(3) a smart runtime support for the runtime self-adaptation
needed to implement the liquid deployment properties of
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the Web service. Taken all together, these three compo-
nents will contribute to the definition of a novel program-
ming paradigm for the development of liquid Web services.

3.1 Service Oriented Programming Model
To exploit the high parallelism level of both Clouds and

Multicores, Web services have to be programmed according
to a parallel programming model. Any other approach not
taking into account this need for an intrinsic parallel archi-
tecture of a Web services would result in not providing the
necessary flexibility to scale the service. Of the several par-
allel programming paradigms proposed until now, we see in
the Actor model [1] approach a good candidate solution for
our scenario.

The Actor model has shown its validity in programming
languages like Erlang [2] and Scala [16], demonstrating its
flexibility and scalability on large concurrent applications.
According to the Actor model, we propose to develop Web
services as composed of several entities cooperating through
messages. However, unlike the standard Actor model, we
propose a novel variation refining the communication mech-
anism employed.

The communication mechanism usually implemented with
Actors is based on message passing. While this simple ab-
straction is powerful and very expressive, we think that it
is too general, and we propose to change it with something
more constrained. To this end, we propose a novel imple-
mentation of the Actor model based on three main design
aspects. We call this variant of the notion of Actors Reac-
tors: RESTful actors.

In detail, in our programming model each Reactor is a
complete RESTful Web service. We provide all the program-
ming abstractions necessary to specify each Reactor’s busi-
ness logic, but we restrict the way Reactors communicate to
the REST uniform interface of HTTP verbs. According to
the REST architectural style each Reactor can be seen as
a resource which can be manipulated through state transfer
operations. We can call this programming model a service
oriented programming model where every Reactor is at the
same time a service provider and a service consumer.

Second, each Web service application has to define at least
one specific Reactor, called the Entry Reactor. This partic-
ular element will act as the Web service’s front-end, accept-
ing requests from external clients and providing responses
to their requests.

Finally, we can distinguish two general classes of Reactors:
managed and unmanaged. Managed Reactors are Reactors
whose business logic has been expressed within the applica-
tion, by the Web service programmer. Unmanaged Reactor
are proxies to external, third-party RESTful Web services
used as external components by managed Reactors to pro-
vide the final response.

The previous three fundamental design choices permit to
express any kind of Web service as a composition over a set
of concurrent entities (Reactors) that are accessible and can
be manipulated through their uniform interface.

To guarantee scalability, Reactors providing only pure
functional behaviors should be freely replicable by the run-
time. The scalability of more complex, stateful should be
guaranteed using a set of distributed shared memory func-
tionalities provided by the liquid services standard library
in form of services.

From an implementation perspective, we plan to experi-
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Figure 1: Compilation and adaptive deployment:
Reactors are defined in the JavaScript source code
with their RESTful interfaces. At runtime, the de-
ployment support instantiates one thread per Re-
actor if the deployment has to be performed on a
Multicore machine (1), or instantiates two different
processes on two different machines if on a Cloud
computing environment (2).

ment with the use of JavaScript as the main programming
language for our Reactor model. JavaScript is a rapidly ma-
turing language which is starting to appear also in server-
side deployments. We plan to leverage its extensibility fea-
tures by adding a number of built-in objects that will be used
at design time to specify the RESTful interfaces. In this
way, we will provide a programming environment based on
JavaScript where a Web service will be programmed as a set
of predefined JavaScript prototype objects (JavaScript Re-
actors), that will be compiled and executed as pure RESTful
Web services.

3.2 Liquid Runtime Support
We expect that the design of Web services as a set of con-

current Reactors will be of great help to achieve the envi-
sioned liquid properties at runtime. The runtime execution
support should implement three features: Reactors compi-
lation, Reactors communication, and Reactor deployment.

First, based on the JavaScript source code, the runtime
should be able to compile each Reactor as an independent
entity, with a global view on all the other Reactors, but ex-
ecuted on a separate JavaScript frame, and of course on a
separate thread or process. Also, in a multicore execution
environment, each standalone hardware thread or process
should be scheduled to run just within a fixed set of cores
or CPUs, to reduce contention, take advantage of locality
and optimize resources utilization. In a Cloud environment,
similar considerations should drive the placement of the Re-
actors within the appropriate virtual machine instances.

Second, the runtime should implement a late-binding mech-
anism to chose the optimal communication primitive to be
used to connect the Reactors, according to the specific de-
ployment the runtime is targeting (see Figure 1). For a
shared memory deployment (e.g., on a multicore machine),
we expect that it would be beneficial to implement Reac-
tors communications with very efficient zero-copy shared-
memory buffers rather than using the full HTTP/TCP/IP
stack. Changing the deployment context to the Cloud, the
communication mechanisms should be implemented through
the intra-Cloud communication middleware offered by the
cloud provider, or if none is available, through standard
HTTP. Considering a more advanced, hybrid scenario (e.g.
a cluster of distributed multicore machines), the runtime
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should be able to take similar decisions in order to let the
distributed Reactors communicate in the most efficient way.
The runtime should take special care of the Entry Reac-
tor and publish it on a standard HTTP server. Likewise
Unmanaged Reactors should be efficiently bound to their
external RESTful API providers.

Finally, the runtime should implement features for the real
time monitoring of available computing platforms, as well as
all the policies for the reconfiguration features required to
achieve dynamic adaptation driven by external (e.g. Cloud
variable pricing) or internal (e.g. Multicore power consump-
tion) factors.

Since the target language is JavaScript, the runtime will
be implemented with core communication libraries and Re-
actors objects written in high performance event-loop based
C++ code, and part of the runtime logic support written us-
ing standard JavaScript. We are currently evaluating Google
V8 1 as a possible hosting virtual machine that will be uti-
lized by the runtime to execute the JavaScript code, and
Node.js 2 as the evented I/O networking framework. The
JavaScript virtual machine will be embedded in the native
core of the runtime, who will take care of Reactor allocations
on different frames and their migration across the Cloud.

3.3 Liquid Services Standard Library
Every programming environment provides a set of reusable

functionalities in the form of a standard library. For exam-
ple, the standard library of the C language usually contains
all the functions that are present in every implementation
of the language. In our programming model we foresee the
need for two features: a shared memory and a service com-
position engine.

The shared memory is needed for scalability reasons. We
think that Reactors requiring to share great amounts of data
(for instance, a database connection), should have access to a
common high performance shared memory in which they can
store data that has to be delivered to many other Reactors.
This does not conflict with the constraint of ensuring that
all Reactors comply with the same uniform interface. In
fact, also the Reactor providing access to the shared memory
can use the basic GET/PUT/DELETE primitives shared by
the interfaces of all Reactors. In the same way the runtime
provides the optimal interconnection between the Reactors,
we expect the runtime to manage the implementation of the
shared memory with the most efficient technology within the
given deployment environment.

The second functionality is the service composition en-
gine, and is required to provide Reactors with a very effi-
cient reflection mechanism. Every Reactor will be allowed
to ask the service composition engine for the execution of an
orchestration over a subset of other Reactors. In this way,
every Reactor can“take control”of other Reactors, and coor-
dinate them for specific goals. Also, this component is very
important for unmanaged Reactors: the presence of a service
composition engine as a primitive entity in the framework
allows Reactors to consume not only simple third party Web
APIs, but also to compose them, and execute the composi-
tion.

From an implementation perspective, we plan to reuse
the following technologies to implement our standard li-

1http://code.google.com/p/v8/
2http://nodejs.org

brary: memcached3 as the shared memory component, and
JOpera4 as the service composition engine [19].

4. METHODOLOGY
The methodology that will be adopted for the develop-

ment of the programming framework is based on three main
milestones to be reached in parallel for all of the three key
components of the framework.

For each of component the first milestone is to define a
complete set of specifications and requirements. For this first
milestone, the runtime support will be defined in term of its
core mechanisms and functions. A complete set of C++ na-
tive objects will be defined and all the native interfaces to be
exposed to the JavaScript code will be identified. For what
concerns the programming model, we plan to identify the
complete set of methods and functionalities to be exposed
to the JavaScript level for the definition at design time of the
RESTful actors. For the standard library, nothing has to be
specified for this milestone as the two core components of
the library will be accessible to other actors using standard
HTTP verbs (this has allowed us to start with the develop-
ment of one of the components that will finally compose the
service oriented standard library).

The second milestone will require to have a running pro-
totype of the entire system, able to be deployed on differ-
ent shared memory machines, to implement, stress and test
the runtime support on multicores. This milestone will re-
quire to have a core set of native objects implementing high
performance communication and mechanisms for the local
shared-memory interaction of Reactors.

The third and final milestone will require to have a run-
ning prototype of the framework with a running version of
the liquid runtime deployment support deployable on a Mul-
ticore and on an Amazon virtualized cluster as well.

For each milestone we plan to validate our approach de-
veloping test-case and small benchmark applications and
comparing them with real world existing Web services. For
the second milestone we plan to develop a business process
execution engine entirely written in our framework, while
for the third milestone we plan to develop a complete Web
framework (like Lift5) to evaluate the behavior of the run-
time under very intensive data loads.

4.1 Results and Current Status of the Research
According to the three milestones identified above, we

have begun working on the definition the complete set of
specifications for the programming model and the runtime
support. In the meanwhile, we are also working on the de-
velopment of one of the two key components of the shared
memory standard library: the service composition engine.
In our preliminary work [3, 4, 20] we have explored and op-
timized the performance of a business process execution en-
gine on modern multicore machines. In particular, our work
has been focused on scalability optimizations of the engine
for different multicore machines. To this end, we have pro-
posed a self-configuration startup mechanism based on the
notion of hardware-awareness: the service composition en-
gine is able to identify certain characteristics of the hosting
hardware platform (e.g. number of cores, number of CPUs,

3http://memcached.org
4http://www.jopera.org
5http://www.liftweb.net
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number of caches, etc.) and according to those low level
information it is able to reconfigure its deployment policies,
for instance by changing how threads are scheduled by the
OS.

5. CONCLUSIONS AND FUTUREWORK
In this paper we have introduced the concept of liquid

Web service. Liquid Web services are software services capa-
ble of automatic deployment and self-configuration in order
to transparently target different computing platforms, from
multicores to clouds, from shared-memory architectures to
distributed-memory architectures.

We have proposed a novel programming paradigm based
on the notion of RESTful actors (called Reactors), and we
have motivated our decision to start with the development
of a programming framework that will implement that con-
cept. Reactors are autonomous software entities that coop-
erate concurrently within the application, but unlike tradi-
tional actors they communicate through a RESTful uniform
interface as opposed to message passing. Each Reactor is a
loosely coupled entity that can be independently migrated
and replicated depending on the performance needs of the
overall application, which is designed as a composition of
late-bound Reactors.

To support the Reactors model, we have depicted the main
characteristics that the runtime support will provide (com-
pilation, deployment, monitoring, adaptation), and we have
introduced some functionalities that have to be exposed to
every Reactor in the form of a standard library (shared mem-
ory, reflective composition).

During the course of the next few years we will work on
the development our framework as planned in Section 4,
with particular attention to the evaluation and validation
of each milestone for each component of our framework for
liquid service oriented architectures.
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