
Mashup Development with HTML5

Saeed Aghaee
Faculty of Informatics, University of Lugano (USI)

via Buffi 13, 6900 Lugano, Switzerland
saeed.aghaee@usi.ch

Cesare Pautasso
Faculty of Informatics, University of Lugano (USI)

via Buffi 13, 6900 Lugano, Switzerland
c.pautasso@ieee.org

ABSTRACT
HTML5 is a new technology standard promising to empower
browsers to become a suitable platform for developing rich
Web applications. Whilst it is still considered an emerging
technology, in this paper we attempt to capture and explore
its impacts on mashup development. To do so, we start
with a mashup case study showcasing new HTML5 features.
We then move on to explore those aspects of mashup de-
velopment that are affected and will possibly be enabled by
HTML5 in the near future. These aspects are grouped into
two categories: short-term impacts, that can be harnessed
by mashup developers, and long-term impacts, that should
be considered by service/content providers.

Categories and Subject Descriptors
D.2 [SOFTWARE ENGINEERING]: Design—Method-
ologies; H.3 [INFORMATION STORAGE AND RE-
TRIEVAL]: Online Information Services—Web-based Ser-
vices

General Terms
Standardization, Design

Keywords
Mashup Development, HTML5, Mashup

1. INTRODUCTION
With the trend towards the Web as a platform, browsers
have turned into more than stand-alone applications for ac-
cessing the Web. As they are more and more used to run
Rich Internet Applications (RIAs) like mashups, they have
to ensure the efficient and reliable execution of client-side
scripts. Moreover, with the rise of mashups as situational
applications - applications that often (but not always) have a
short life-span, and are created for a specific group of users
with a unique set of needs- [16], browsers form the only

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Mashups’10, December 1, 2010, Ayia Napa, Cyprus
Copyright 2010 ACM 978-1-4503-0418-4/10/12 ...$10.00.

bridge between a situational mashup and its users, through
which the mashup can automatically access its user’s contex-
tual information. Finally, the client-side of a RIA running
on a browser usually communicates with a server, which, in
case of mashups, can be either the mashup server or the con-
tent/service providers. Browsers as the point of departure
for this communication and service/data delivery should ini-
tiate a faster and more secure connection.
HTML5 is an emerging technology standard1, geared to-
wards addressing these challenges [35, 5, 10, 15]. For this
reason, whereas HTML5 has not yet reached a formal com-
pletion of its standardization process, most recent browsers
already provide support for many of its most innovative fea-
tures. The purpose of this paper is, therefore, to discuss
how mashup development is likely to be affected by HTML5
in the context of a concrete example case study. We present
positive aspects and improved solutions as well as identify
which challenges of mashup development still remain open.
The rest of this paper is structured as follows. In the next
section we put the current work into context by providing
an overview of related work. In section 3, we describe a
scenario, in which a mobile mashup is built using the new
HTML5 features. Section 4 and 5 elaborate the contribu-
tion of this paper by highlighting, respectively, short-term
and long-term impacts of HTML5 features on mashup devel-
opment. We draw some conclusions and discuss remaining
challenges to incorporate HTML5 for mashups development
in section 6.

2. RELATED WORK
The majority of the research work towards fostering best
practices for mashup development contributes to a better
understanding of what a mashup is, and how it should be
developed. This spans data integration [33, 19], process
integration [32, 34], UI (User Interface) integration [4, 3,
37], context-awareness [2, 6], mashups in enterprise envi-
ronments [27, 22, 36, 13], and end-user programming [14,
26]. These efforts provide a foundation for creating tools,
technologies, and standards within the domain of mashup.
Mashup tools are targeted towards facilitating, formalizing,
and partially automating the mashup development process.
Examples are Yahoo Pipes2, IBM Mashup Center3, and In-
tel Mash Maker [7]. A good example for the purpose of
standardization is the Enterprise Mashup Markup Language

1http://dev.w3.org/html5/spec/
2http://pipes.yahoo.com/pipes/
3http://www-01.ibm.com/software/info/mashup-center/

(EMML), which was developed by the Mashup Open Al-
liance4 (MOA), and aims at enhancing mashup development
with portability and interoperability.
In addition to these emerging mashup technologies and stan-
dards, generic Web technologies and standards, that are
not intended primarily for mashup development, but might
have potentially significant impacts on it, are also evolv-
ing rapidly. For instance, Representational State Transfer
(REST) [28], Really Simple Syndication (RSS), and Atom
are popular Web standards that have been being increas-
ingly adopted for mashup development since its advent [16].
Hence, it is of importance to study and further assess the
possibility of using such standards and technologies in mashup
development. HTML5 is also another new important stan-
dard on the Web, which has been attracting attention in
the fields of mobile Web applications [8], and realtime ap-
plications [20]. To our best knowledge, however, it has not
yet been comprehensively studied in the context of mashups.
Looking at mashup development as a whole, therefore, the
goal of this work is to contribute a scientific and technical
discussion on how HTML5 can be possibly employed to en-
hance current best practices for mashup development.

3. CASE EXAMPLE
In this section, we will outline the main features of HTML5
by describing a scenario in which a mobile mashup is de-
veloped. The attempt was made to keep the example as
comprehensive and practical as possible so that insight can
be obtained into how HTML5 will affect mashup develop-
ment. Throughout this paper we shall refer to, or extend
this case example for the purpose of exemplification.

3.1 Tourist Assistant Mashup
One of the best ways for tourists to entertain themselves
is to attend the most popular events in the city they are
currently visiting. This, however, requires prior knowledge
about what kind of events will take place in the city. Hav-
ing such information in hand is, therefore, beneficial for the
tourists because they can make the most of their available
time. In this scenario, a data mashup comes so handy as
it can aggregate and effectively present required data from
different sources on the web.
In order to detail the requirements of the mashup, consider a
scenario where a tourist (we call him John) wants to acquire
information about the upcoming events in Lugano. John
is a software engineer, and can manage to build a mashup
to address his needs. While on vacation, he prefers to use
his handheld device that can connect to the Internet, and
therefore, the final mashup should be able to run on that
device. The primary types of information to be provided are
availability, location, time, and type of the upcoming events
taking place in Lugano. Moreover, some recent photos of the
events will be helpful when deciding which events to attend.
As for the required functionalities, since he is a newbie in
the city, an integrated GPS navigator that can lead him step
by step to the location of events seems essential. Figure 1
illustrates the architectural view of the mashup.
Using the new HTML5 GeoLocation API, the mashup can
extract the current location of the user in realtime. This is
mashed together with the Google Maps APIs5 to build up a

4http://www.openmashup.org/
5http://code.google.com/apis/maps/documentation/javascript/

Geolocation
API

Events
(Eventful API)

Eventful

Flickr
Server

Client

Images
(Flickr API)

city name

event name
+ city name

Google Maps APIs

Figure 1: Tourist Assistant Mashup Architecture

simple navigator. The mashup accesses EventFul APIs6 in
order to retrieve a list of future events filtered by the city
name (Lugano) obtained from HTML5 GeoLocation APIs.
The events, afterwards, will be geographically projected on
a Google Map widget as a set of markers. Markers on the
map are then filtered by selecting an event type (e.g movie,
music, etc). Selecting each event marker from the table, first
loads a list of relevant photos, obtained from Flickr APIs7,
on the balloon tied to the selected event marker, and second
shows directions from the current location of John to the
location of the event.

3.1.1 Enhanced Tourist Assistant Mashup

After a nice and fruitful vacation using this mashup, John
is now willing to share it with other people. Assuming that
so many tourists might be interested in using this mashup,
he decides to upgrade its functionality by adding an online
chat feature, so that people in the same city can discuss
the upcoming events. He has already developed an online
chat mashup using the HTML5WebSocket API, using which
users, in the same city, can chat with each other in their
own native language. The latter feature is delivered by the
Google Language API8, that detects the language of the
received message and translates it to the language selected
by the user.
To be able to chat with other users, a user should first reg-
ister into the WebSocket server using a unique ID. The ID
is chosen by the user and will be checked by the server for
uniqueness against all the existing IDs. If the user gets dis-
connected, his/her associated ID will be removed from the
server. Once the registration is accepted by the server, the
mashup should send the current location of its user to the

6http://api.evdb.com/
7http://www.flickr.com/services/api/
8http://code.google.com/apis/ajaxlanguage/documentation/

Lugano

Milan

46.0, 8.9: Hi, there!

John

Kate

Beth

46.0, 8.9: Hi, there!

Websocket
server

Figure 2: WebSocket-based Chatroom

server. This is because the server determines the chat rooms
based on the similarity of user’s locations.
When embedding the widget within the mashup makes use
of the HTML5 cross-window postMessage API. This feature
enables the chatroom widget to send a notification to the
parent mashup upon a new message is arrived. The notifi-
cation contains the geographical coordinations of the mes-
sage as well as its content. The geographical coordinations
of the sender location is obtained from GeoLocation APIs,
and will be attached to all outgoing messages. Thereby, each
message can be shown as a marker on the parent mashup
map widgets, with an info-window that displays the message
itself.

4. SHORT-TERM IMPACTS
In this section, we will show how HTML5 features can be im-
mediately employed by mashup developers, in a short-term
manner, to improve their productivity in existing scenarios
of mashup development. These scenarios include develop-
ment of mobile mashups, collaborative mashups, client-side
mashups, and server-side mashups.

4.1 Mobile Mashups
Within the last few years, new mobile devices such as smart
phones, tablets, and Personal Digital Assistants (PDAs) have
been growing ever more capable of handling larger and more
complex tasks. In a number of countries, advances in com-
munication technologies currently allow these devices to con-
nect to the Internet in the same way as Personal Computers
(PCs). Such dramatic improvements are expected to in-
crease the use of internet-enabled mobile devices as powerful
tools for surfing the Web to the extent of over 900% by 2014
[9]. From a usability perspective, however, the dynamic na-
ture of the Web environment along with the dynamically
changing geographical distribution of mobile users, result in
the long tail [1] of dramatically changing user needs. As a
consequence, mobile devices have become a demanding mar-
ket for situational applications.
One kind of these situational applications is called hybrid
apps, that run natively on mobile devices but take advan-
tage of Web APIs. Yet, hybrid apps cannot fully leverage
this market for two important reasons. First, these apps are
platform-dependent, meaning that each platform offers its
own Software Development Kit (SDK). Accordingly, users
of a particular platform, like Android, are limited to use
Android-specific apps, and therefore, will be deducted from
the benefits they can derive from interesting apps built for
a different platform such as Windows. Second, building hy-

brid apps requires programming skills, even though it builds
upon reusable Web APIs. As a result, the costs need to be
balanced against the ultimate benefits one is supposed to
gain from the intended app. This is, therefore, an important
hurdle that can discourage creation of many costly hybrid
apps, having short life-spans, but are useful for satisfying
instant needs.
On the other hand, mobile mashups- mashups that run on
mobile browsers -are viable alternative products for this
market [23]. Mobile mashups can be accessed from any
browsers on any platform. This especially enables porta-
bility across different mobile platforms. Similar to a hybrid
app, a mobile mashup combines reusable components from a
large pool of Web APIs. However, it can be possibly devel-
oped using emerging mashup end-user programming tools
such as Yahoo Pipes9, which requires much less effort as
opposed to hybrid apps.
Nevertheless, mobile computing possesses fundamental con-
straints that require adaptation by mobile situational ap-
plications [31, 12]. These constraints, however, have not
been visible for mobile browsers, and consequently for the
mashups running on these browsers. This was a consider-
able disadvantage of mobile mashups as opposed to native
hybrid apps. HTML5, which is currently being supported by
most of mobile browsers, is believed to make some of these
constraints accessible by browsers. To be specific, there
are three important mobile computing constraints that have
been made accessible by HTML5: variable location, inter-
mittent connectivity, and small size screen. In the following
three subsections, we discuss why and how mobile mashups
should be adapted to these constraints.

4.1.1 Location-based Mashups

It can be empirically ascertained that users expectations
from many mobile mashups are greatly affected by geograph-
ical location. For instance, in the example previously de-
scribed, users could expect the tourist assistant mashup to
realize, and react according to their location, i.e. showing
relevant events, and giving accurate directions. Thus, as
the demand of mobile users to use and integrate geospatial
data increases, the role of location awareness computing is
becoming more important for the future of mobile mashups.
HTML5 exposes access to all sources of information regard-
ing the location of the device, using its Geolocation API.
This new feature can fill the existing gap caused by lack
of location-aware application support in order to develop
location-based mashups. The comprehensiveness and effec-
tiveness of Geolocation APIs is supported by the fact that
a variety of available sources are automatically compared to
check the accuracy of the location [21]. These sources are IP
address, GPS, WI-FI with MAC address, GSM or GDMA,
and cell phone IDs. Additionally, mobile mashups are pro-
vided with such information in realtime, thus enabling an
immediate response. For instance, in the scenario example,
a realtime location change notification feature could facili-
tate development of the GPS navigator.

4.1.2 Offline Mashups

The advent of mobility has affected Internet usage scenar-
ios. In this context, challenges arise when users get dropped
from the Internet due to their mobility. For instance, In-
ternet connectivity may suffer while in places such as sub-
9http://iphone.pipes.yahoo.com/pipes/

way, airplane, and train. When the internet connection be-
comes temporarily unavailable, most of current mobile Web
applications will not be responsive even for tasks that do
not require connection to server. This is, therefore, a ma-
jor challenge promoting the continued use of offline hybrid
apps. However, HTML5 offline caching API is out to ad-
dress this challenge, by allowing users to keep interacting
with the (cached) web application while in an offline mode
[5].
In the context of mashup development, this feature presents
many opportunities. It allows mobile mashups to cache the
latest update received from the providers or mashup server.
As a result, mashups can work in offline mode by operating
on the latest data. In fact, this feature suits development of
many mashups, since the common practice in mashup devel-
opment is to fetch data once from the providers, integrate it,
and then present the integrated data to the user. The rest
of the user interaction mostly involves browsing the pre-
sented data which can be prefetched and cached locally, and
only occasionally requires to further connect to the server or
providers. For instance, in the case example, all the events
are fetched and presented to users once the mashup runs or
the current city of the user is changed. The rest of the user
interaction concerns with filtering and browsing the events
displayed on the map widget.
To enable offline mobile mashups, the best practice is to fre-
quently cache the data fetched from the providers, the latest
integrated data, and the Javascript operating, and present-
ing these data. It should be added that the data should be
stored in the local storage with the use of WebStorage API.
WebStorage API is a new feature that has also appeared
in HTML5. Currently, Google chrome offers 10MB of local
space capacity for Web storage.

4.1.3 Screen Portability

The Web browser as a programmable platform empowers de-
velopers to build mashup applications that are portable on
any Operating System (OS) platform. However, the unique
constraints of mobile computing [31] might cause a portabil-
ity problem between desktop mashups and mobile mashups,
or in a broader sense between mobile Web apps and desk-
top Web applications. One of these constraints is correlated
with the small screen and low resolution of mobile devices
compared to desktop computers. When it comes to mo-
bile Web browsers, this constraint gets highlighted, as the
majority of mashups are not visually optimized for mobile
browsing. Therefore, mashups currently either run well on
a mobile browser or a desktop browser.
CSS3 Media Queries makes it easier for mashup developers
to enable screen portability. They can easily create an al-
ternative CSS file for existing desktop mashups to also suit
mobile devices. In such a way, many desktop mashups can be
easily ported to mobile browsers and vice versa. Also, new
mashups can be built targeting both mobile and desktop
browsers as they use the CSS3 features to adapt themselves.
In reality, using screen portability for creating new mashups
is of importance as many mashups will be likely to run on
both mobile and desktop platforms. Considering the case
example, even though the target platform is a handheld de-
vice, the mashup is also likely to run on desktop computers
(e.g. in a hotel).

4.2 WebSocket-based Collaborative Mashups

An application that is deployed in a networked environment
like the Web, can potentially mediate the interaction among
it users [11]. The resulting application is called a collabora-
tive application [17] as its users collaboratively create and
manage content. Examples are many modern Web 2.0 ap-
plications ranging from collaborative editors to online chat
rooms.
Mashups can also expose a collaborative front-end. The het-
erogeneous back-end of mashup when accessed through a
collaborative front-end creates interesting use cases. For in-
stance, in the case example, the chatroom mashup provides
a collaborative front-end in which users, thanks to hetero-
geneous functionality aggregated within the mashup, can
communicate with each other in any languages. Further-
more, there are a number of domains that are growing in-
terests towards collaborative mashups. They include (but
not limited to) Collaborative Decision Making (CDM) [29],
emergency response [18], and e-learning [30].
From a technical point of view, the underlying model of a
collaborative mashup is based on realtime communication
among the involved participants, which is now significantly
facilitated by the HTML5 WebSocket API. This new feature
improves upon its predecessors in terms of development sim-
plicity [35], and communication speed and efficiency [20].
The simplicity and power of the WebSocket APIs can in-
duce the proliferation of collaborative mashups in the con-
sumer market. Likewise, collaborative mashups used within
industrial domains, can be largely enhanced by taking ad-
vantage of the high communication speed and efficiency that
the WebSocket API provides.

4.3 Client-side Mashups
Mashups are designed with two different architectures, de-
pending on where process and data integration takes place.
If it takes place on the server-side, the mashup is called a
server-side mashup. In this case, once the final result is pro-
duced on the server, it will be pushed to the client for the
sake of visualization. Alternatively, both integration and vi-
sualization tasks can be performed in client browser, which
results in a client-side mashup.
Despite the fact that client-side architecture has its disad-
vantages (less security, reliability, and performance), it can
still provide faster user experience, less load on the server
side, and easy development [25]. To do so, one important
feature that until recently has been missed for browser-based
clients is, indeed, multithreading. Multithreading is a tech-
nique that has been used by desktop and server-based appli-
cations to increase performance while performing concurrent
long-running tasks.
This feature allows developers to take advantage of mul-
tithreaded JavaScript support in browsers. HTML5 intro-
duces this feature as the WebWorker API. In the continuing
discussion, we will more deeply discuss how this new feature
can be utilized in efficient client-side mashup development.
The focus is specifically on client-side execution of Process
Integration (PI), Data Integration (DI), and data represen-
tation.

4.3.1 Process Integration

In mashup development, PI takes place in the application
level where the logic of the mashup resides. PI concerns
putting together external Web APIs and services in order to
perform a function. With the use of the WebWorker API,

PI can be executed in the background without interfering
with the UI. However, PI is more than a single background
process. In fact, an important component of PI is a compo-
sition model telling how the external services are integrated
to form a mashup logic. The true value of the WebWorker
API is thus revealed as it can enable lightweight, client-side
execution of process integration models. We identify and
explain the following characteristics of a composition model
for PI that benefit from the WebWorker API.

Orchestration. The WebWorker API enables two different
styles of orchestration. The first one is a sequential
style, in which PI worker runs from beginning to end
in a sequential manner. It means that the UI merely
invokes the PI worker, and may also wait for its final
response. The second one uses an event-based style
in which the PI worker is driven by UI intervention.
These interventions are in form of UI events triggered
by the user.

Initiation: Another characteristic concerns the way PI worker
is initiated. It can be invoked directly from the UI. Al-
ternatively, the initiation of a PI worker can be sched-
uled after a given delay or repeated with a certain fre-
quency.

Termination: The WebWorker API allows setting a time
out for a PI worker. In this sense, if the PI worker does
not finish its job in the set period of time, it will be
automatically terminated. This is important because
it allows to deal with unresponsive remote data sources
and services without blocking the mashup execution.

Subprocess. A composition model may also involve exe-
cution of sub processes. In this case, The WebWorker
API allows a subworker to perform a task on behalf of
another worker.

Dataflow. Data and message passing between the UI and
PI workers as well as among PI workers can be per-
formed by one of the following mechanisms:

• Flow-based: In this style the communication is per-
formed directly between UI, PI worker, and its sub-
worker through the use of postMessage API. This is,
in fact, the only official communication technique of-
fered by WebWorker API. A subworker can only use
postMessage API to communicate with its parent worker.
This restriction has been imposed according to concur-
rent design principles. As for the data, the postMes-
sage API can be used to send most JavaScript variable
types. Moreover, various type of formats such as JSON
and XML can be wrapped into string objects.

• Shared memory: Shared memory is another commu-
nication style, in which data to be communicated is
shared on a storage to where all the participants have
access. This style is not supported by WebWorker
APIs. Instead, we enable this through another new
HTML5 feature, which is called Web storage API. It
offers realtime notification of data manipulation to all
the browsing contexts that could access it (e.g. UI
thread, workers, and subworkers). Thereby, in con-
trast to postMessage, Webstorage can mediate the com-
munication between a subworker and the UI.

UI thread Worker Subworker

A: Flow-based
B: Shared memory

A

Client

A

B

REST, RSS,
SOAP

Server

Figure 3: Usage of WebWroker API in Client-side
Process Integration

4.3.2 Data Integration

Another usage of the WebWorker API in mashup develop-
ment is for performing more efficient client-side DI. Data can
be retrieved through Web APIs, RSS feeds, or Web scraping.
DI deals with operating on these data such as conversion,
transformation, filtering, and combining [24]. Depending on
the volume of data, these tasks might consume considerable
time and resources. Therefore, the best place to efficiently
perform DI on the client is through a spawned worker.

4.3.3 Data Representation and Visualization

After the data is integrated, the final step is to present the
resulting data to the user. The data is usually in a standard
format such as XML, JSON, or a custom defined format. In
neither case the data is readable by a human user. There-
fore, the data should be transformed to HTML so that it
can be rendered by the browsers to construct an informa-
tive visual representation. This task is usually performed
by a front-end JavaScript. If the volume of the data is large,
it becomes a long-running task that can possibly freeze the
UI. Therefore, using a worker for this purpose can poten-
tially improve the user experience of the mashup. The out-
come of the worker then can be easily placed inside a DIV
element.

4.4 Server-side Mashups
Data transmission between the mashup client and server is
normally done through client-side XMLHttpRequest (XHR)
calls. However, when dealing with realtime data, a better
communication way between the mashup client and server
could be over HTML5 WebSockts. The Ericsson Lab re-
port 10 indicates that WebSockets produce significantly less
overhead than current XHR over HTTP to the extent of
35% reduction in the data (in bytes) communicated between
the client and server. Replacing XHR with WebSockets

10https://labs.ericsson.com/developer-
community/blog/what-websocket-difference

for pulling realtime data from server, therefore, results in
mashups that run faster and consume less bandwidth.

5. LONG-TERM IMPACTS
Mashup developer and service/content provider are two im-
portant stakeholders in mashup development. In conjunc-
tion with mashup developers, we discussed different aspects
of mashup development that are affected by HTML5 fea-
tures. However, there still remains a number of enhance-
ments that are to affect service and content providers in the
future. Therefore, these aspects are counted as long-term
impacts of HTML5 on mashup development.

5.1 Point-to-Point UI Integration
The UI is an important component in most mashups, by
which users and the mashup interact with each other. Mashup
UI constitutes the front-end, by means of which users ac-
cess and exchange information with the back-end logic and
data. The back-end concerns with integration of data and
functionality rendered from third-part contents and services.
One interesting fact about mashup is that its front-end can
also be built by combining visual representation of contents.
Contents that provide a visual representation are called UI
components, chiefly exemplified by widgets. The act of in-
corporating UI components into a new front-end for mashup
is thus called UI integration.
One of the dimensions in the UI integration realm is corre-
lated with how UI components communicate with each other
[4]. From an architectural perspective, the style of commu-
nication can be either centralized or point to point (Figure
5). In a centralized communication style, the interaction of
components is mediated by the parent mashup. In doing
so, the mashup offers an eventbus, that uses a publish/sub-
scribe mechanism to handle events fired by the components.
When a point to point communication style is applied, the
interaction occurs directly between the components. This
style is specially useful when the interaction between the
components is not complex.
However, the direct communication between UI components
has not been technically feasible due to lack of support. To
be specific, current UI components are not built for point-
to-point communication. Even so, the direct communication
could be banned by Same Origin Policy (SOP), given the
fact that various UI components are generally from differ-
ent domains. Presently, the new HTML5 postMessage API
can bypass SOP by enabling direct communication between
contents from different origins. UI component providers can
then harness this in order to offer support for point-to-point
communication.
To explain and exemplify this possibility, consider a number
of UI components all included via iframes. Each UI compo-
nent encapsulates a set of events and methods. Events from
one component can be wired to methods offered by itself
or other components. The parent mashup is thus respon-
sible for configuring the components, once or repeatedly.
The configuration of a component tells how it is wired to
other components. Below is a simple configuration based on
JSON.

{ ”method ”: ” foo ” ,
”params ”: { ”p1 ”: ” va l1 ” , ”p2 ”: ” va l2 ”} ,

”invoke ”: [{

Eventbus

UI
Component

UI
Component

UI
Component

UI
Component

C
entralized

Point-to-point

Figure 4: Communication style in UI integration

”index ”: ”2 ” ,
”method ”: ” bar ” ,
”params ”: { ”p1 ”: ”p1 ” , ”p2 ”: ”p2 ”}}]

}

In the above JSON configuration, the event foo is associated
with method bar. The index parameter points to the target
iframe, which holds the corresponding UI component, and is
indexed by the parent mashup. The parameters of the event
are also mapped to the input parameters of the methods.
This defines a binding mechanism between UI components.

5.2 WebSocket-based Content Providers
In many cases a mashup that is built by composing RESTful
services needs to update itself as soon as the resource state
is changed by other clients. For instance, a mashup that
draws upon twitter REST APIs11 may need to get notified
as soon as a new tweet is posted. To this end, mashup need
to constantly send GET requests and check if the resource
state has been changed. It results in heavy traffic, hitting the
provider server, as well as reduction of mashup performance
due to wasted JavaScript execution for sending unnecessary
GET requests. This is especially an issue when RESTfull
service providers limit the number of requests per client.
Here we see another potential use for the WebSocket API
as a mechanism for enabling realtime communication with
content providers. The WebSocket API provides a generic
communication mechanism that makes it possible to trans-
form various representations of resources on the Web includ-
ing XML, JSON, and Atom. Therefore, WebSocket API can
be used to sent data to clients only when the resource state
has changed.

5.3 Pure Client-side Mashup Architecture
Current client-side mashup architecture usually includes a
mashup server through which all client requests to fetch
contents or services are routed. In fact, incorporation of a
server is required by the fact that the client can not directly
make XHR calls to content/service providers that reside in
a different domain. This is due SOP constraint imposed by
browsers.
The use of a server in client-side architecture can possibly
increase security vulnerability, and decrease performance.

11http://apiwiki.twitter.com/

HTML5 feature Short-term
impact

Long-term
Impact

Explanation

Geolocation API Location-based
(mobile)
Mashups

Track the current geographic location of the client and use it
as input to location-based mashups

WebSocket API Collaborative
Mashups &
server-side
mashups

WebSocket-
based content

providers

The WebSocket API provides simple development of faster and
more efficient collaborative and server-side mashups. It can
also be used as a realtime subscription method for the data

requiring periodic update.
postMessage API Point-to-

point UI
integration

postMessage API can be used to enable a direct
communication between UI components

WebWorker API Multithreaded
client-side
Mashups

Multithreaded Javascript support can speed up client-side data
integration and process integration operations

Cross-site XHR Pure
client-side
mashup

The use of cross-origin resource sharing by providers can result
in creation of pure client side mashup (client-side mashups

without a server)
Offline Caching

API
Offline mashups Empower users to work with the mashup when the connection

to its data source is dropped
CSS3 Media

Queries
Screen

portability
The mashup UI can adapt itself according to whether it runs

on desktop or mobile browsers

Table 1: HTML5 impacts on mashup development

The essence of the data received from the server can not
be determined until it is consumed by the client. This is
a potential vulnerability as the data may contain harmful
scripts that can give a malicious server full control of the
client system. Moreover, the use of a server as a proxy to
transform request/response on behalf of the client and con-
tent/service providers may reduce speed and performance.
This is because all the requests and responses should first
reach a server and then be forwarded by the server to either
the client or provider. Routing requests and responses still
requires programming which uses server-side languages and
scripts such as Java and PHP. Therefore, in the best case, a
mashup can be developed by three different languages (one
for server-side, and Javascript and HTML for client side pro-
gramming).
Put differently, excluding the server from the client-side
mashup architecture, in a way that client and providers di-
rectly communicate with each other, results in more security,
better performance, and less development effort. The cross-
site XHR in HTML5 can potentially enable a pure client-
side architecture. The prerequisite is that provider must
be able to handle cross-site HTTP requests, which, in turn,
requires Cross-Origin Resource Sharing (CORS) enabled in
the provider server. This not only enables the potential use
of a pure client-side architecture, but also allows providers
to build an access control mechanism to check the origin of
the incoming requests. It can possibly replace the use of
long developer keys to check the validity of the requests.

6. CONCLUSION
As summarized in Table 1, we outlined both the short-
term and long-term impacts of HTML5 features on the way
mashups are developed. The short-term impacts can be har-
nessed immediately by mashup developers to enhance the
development of mashups. Contrariwise, the long-term im-
pacts yet remain to be realized by service/content providers.

As a whole, HTML5 will provide a strong foundation for de-
velopment of various types of mashups including client-side
mashups, server-side mashups, mobile mashups, and collab-
orative mashups.
However, mashup development still requires HTML5 to con-
tinue following the path towards letting browsers know more
about the contextual information of the users, and further
providing mashups with such information in a streamlined
manner. We already discussed three forms of contextual in-
formation (location, connection status, and screen-size) that
are currently accessible using HTML5. However, the context
of the user can be characterized by more parameters such as
the client computational power that are not yet formally ac-
cessible by HTML5. Therefore, The more browser can make
such information visible to a mashup, the better the mashup
can respond and adopt.
Moreover, the main advantage of native hybrid apps over
mobile mashups is the privilege of having access to mobile
features like Bluetooth, and camera. Therefore, in order
to empower mobile mashup to compete with native hybrid
apps, HTML5 should allow browsers to have access to such
mobile features.

7. REFERENCES
[1] C. Anderson. The Long Tail: Why the Future of Business

Is Selling Less of More. Hyperion, 2006.
[2] F. Daniel and M. Matera. Mashing up context-aware web

applications: A component-based development approach. In
Proc. of the 9th international conference on Web
Information Systems Engineering (WISE 2008), pages
250–263, 2008.

[3] F. Daniel, S. Soi, S. Tranquillini, F. Casati, C. Heng, and
L. Yan. From people to services to ui: Distributed
orchestration of user interfaces. In Proc. of the 8th
International Conference on Business Process Management
(BPM 2010), volume 6336, pages 310–326, 2010.

[4] F. Daniel, J. Yu, B. Benatallah, F. Casati, M. Matera, and
R. Saint-Paul. Understanding ui integration: A survey of
problems, technologies, and opportunities. IEEE Internet

Computing, 11(3):59–66, 2007.
[5] M. David. HTML5: Designing Rich Internet Applications

(Visualizing the Web). Focal, 2010.
[6] C. Dorn, D. Schall, and S. Dustdar. Context-aware

adaptive service mashups. In Proc. of the 2009 IEEE
Asia-Pacific Services Computing Conference (APSCC
2009), pages 301–306, 2009.

[7] R. Ennals, E. Brewer, M. Garofalakis, M. Shadle, and
P. Gandhi. Intel mash maker: join the web. SIGMOD Rec.,
36:27–33, December 2007.

[8] M. Galpin. Creating mobile web applications with HTML5:
Part 1-5. http://www.ibm.com/developerworks/library/
x-html5mobile1/, May 2010.

[9] Gartner. Mobile web trends 2007 to 2011. Research report,
2007.

[10] D. Geary. Jsf 2 fu: HTML5 composite components: Part 1.
http://www.ibm.com/developerworks/java/library/
j-jsf2fu-1010/, Oct 2010.

[11] A. Girgensohn and A. Lee. Developing collaborative
applications on the world wide web. In Proc. of ACM
Conference on Human Factors in Computing Systems
(CHI 1998), pages 141–142, 1998.

[12] G. H. Forman and J. Zahorjan. The challenges of mobile
computing. Computer, 27:38–47, 1994.

[13] V. Hoyer, K. Stanoesvka-Slabeva, T. Janner, and
C. Schroth. Enterprise mashups: Design principles towards
the long tail of user needs. In Proc. of the 5th IEEE
International Conference on Service Computing (SCC
2008.), volume 2, pages 601 –602, July 2008.

[14] A. F. M. Huang, S. B. Huang, E. Y. F. Lee, and S. J. H.
Yang. Improving end-user programming with situational
mashups in web 2.0 environment. In Proc. of the 4th IEEE
International Symposium on Service-Oriented System
Engineering (SOSE 2008), pages 62–67, 2008.

[15] C. Jackson and H. J. Wang. Subspace: secure cross-domain
communication for web mashups. In Proc. of the 16th
international conference on World Wide Web (WWW
2007), pages 611–620, Banff, Alberta, Canada, 2007.

[16] A. Jhingran. Enterprise information mashups: integrating
information, simply. In Proc. of the 32th international
conference on Very Large Data Bases (VLDB 2006),
VLDB ’06, pages 3–4, 2006.

[17] A. Lee and A. Girgensohn. Developing collaborative
applications using the world wide web ”shell”. In Proc. of
ACM Conference extended abstracts on Human Factors in
Computing Systems (CHI 1997), pages 144–145, 1997.

[18] S. Liu, L. Palen, J. Sutton, A. Hughes, and S. Vieweg. In
search of the bigger picture: The emergent role of on-line
photo-sharing in times of disaster. In Proc. of the
Information Systems for Crisis Response and Management
Conference (ISCRAM 2008), 2008.

[19] G. D. Lorenzo, H. Hacid, H.-y. Paik, and B. Benatallah.
Data integration in mashups. SIGMOD Rec., 38(1):59–66,
2009.

[20] P. Lubbers and B. Albers. Harnessing the power of HTML5
web sockets to create scalable real-time applications
presentation. Web2.0 Expo SF, May 2010.

[21] P. Lubbers, B. Albers, and F. Salim. Pro HTML5
Programming: Powerful APIs for Richer Internet
Application Development. Apress, 2010.

[22] S. Makki and J. Sangtani. Data mashups and their
applications in enterprises. In Proc. of the 3th International
Conference on Internet and Web Applications and Services
(ICIW 2008), pages 445 –450, June 2008.

[23] E. M. Maximilien. Mobile mashups: Thoughts, directions,
and challenges. In Proc. of the 2th IEEE International
Conference on Semantic Computing (ICSC 2008), pages
597–600, 2008.

[24] E. M. Maximilien, A. Ranabahu, and K. Gomadam. An
online platform for web apis and service mashups. IEEE
Internet Computing, 12(5):32–43, 2008.

[25] J. Meng and J. Chen. A mashup model for distributed data
integration. In Proc. of the eth International Conference on
Management of e-Commerce and e-Government (ICMECG
2009), pages 168–171, 2009.

[26] T. Nestler. Towards a mashup-driven end-user
programming of soa-based applications. In Proc. of the
10th International Conference on Information Integration
and Web-based Applications & Services (iiWAS 2008),
iiWAS ’08, pages 551–554, 2008.

[27] M. Ogrinz. Mashup Patterns: Designs and Examples for
the Modern Enterprise. Addison-Wesley Professional, 1
edition, 2009.

[28] C. Pautasso, O. Zimmermann, and F. Leymann. Restful
web services vs. big web services: Making the right
architectural decision. In Proc. of the 17th International
Conference on World Wide Web (WWW 2008), pages
805–814, 2008.

[29] C. Rinner, C. Kfller, and S. Andrulis. The use of web 2.0
concepts to support deliberation in spatial decision-making.
Computers, Environment and Urban Systems, 32(5):386 –
395, 2008.

[30] C. Safran, D. Helic, and C. Gutl. E-Learning practices and
Web 2.0. In Proc. of the 10th International Conference of
Interactive computer aided learning (ICL 2007), page 8,
Villach Austria, 2007.

[31] M. Satyanarayanan. Fundamental challenges in mobile
computing. In Proc. of the 15th annual ACM symposium
on Principles of distributed computing (PODC 1996),
PODC ’96, pages 1–7, 1996.

[32] H. M. Sneed. Integrating legacy software into a service
oriented architecture. In Proc. of the 10th European
Conference on Software Maintenance and Reengineering
(CSMR 2006), pages 3–14, Washington, DC, USA, 2006.

[33] A. Thor, D. Aumueller, and E. Rahm. Data integration
support for mashups. In Proc. of the 6th International
Workshop on Information Integration on the Web (IIWEB
2007), pages 104–109, Rio de Janeiro, Brazil, April 2007.

[34] K. Xu, M. Song, and X. Zhang. Home appliance mashup
system based on web service. In Proc. of the 1th
International Conference on Service Sciences (ICSS 2010),
pages 94 –98, May 2010.

[35] A. Yadav. Deploying HTML5. CreateSpace, 2010.
[36] F. Yang. Enterprise mashup composite service in SOA user

profile use case realization. In Proc. of the IEEE Congress
on Services (SERVICES 2008), pages 97 –98, July 2008.

[37] J. Yu and B. Benatallah. A framework for rapid integration
of presentation components. In Proc. of the 16th
International Conference on World Wide Web (WWW
2007), May 2007.

