
Liquid Web Applications
Design and Implementation of the Decentralized Cross-Device Web

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Andrea Gallidabino

under the supervision of

Prof. Cesare Pautasso

June 2020

Dissertation Committee

Prof. Maristella Matera Politecnico di Milano, Italy
Prof. Tommi Mikkonen University of Helsinki, Finland
Prof. Marc Langheinrich Università della Svizzera italiana, Lugano, Switzerland
Prof. Michele Lanza Università della Svizzera italiana, Lugano, Switzerland

Dissertation accepted on 25 June 2020

Research Advisor PhD Program Director

Prof. Cesare Pautasso Prof. Dr. Walter Binder, Prof. Dr. Silvia Santini

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been submit-
ted previously, in whole or in part, to qualify for any other academic award; and
the content of the thesis is the result of work which has been carried out since
the official commencement date of the approved research program.

Andrea Gallidabino
Lugano, 25 June 2020

ii

Learn this lesson, that to be
self-contented is to be vile and
ignorant, and to aspire is better
than to be blindly and impotently
happy.

Edwin A. Abbott

iii

iv

Abstract

Web applications are traditionally designed having in mind a server-centric ar-
chitecture, whereby the whole persistent data, dynamic state and logic of the
application are stored and running on a Web server. The clients running in the
Web browsers traditionally render only pre-computed views fetched from the
server.

Nowadays this centralized approach does not fit well with the kind of interac-
tions that the users perform when they connect to a Web application. The users
can access the Web and fetch applications with much faster devices than the ones
we owned thirty years ago. Moreover the Web can now be accessed with devices
of any shape, size, and capability: ranging from desktop computers, to laptops,
tablets, and smartphones. Emerging smart and embedded devices in the Internet
of Things are also able to access the Web and interact with each other thanks to
new emerging Web standards, such as smart televisions, smart watches, or smart
cars. The diversity in the devices increased together with the average number of
Web-enabled devices owned by a single user. Today the average connected users
access the Web with multiple devices at the same time and expect that their appli-
cations, which are now deployed on all the devices they own, can be seamlessly
used on each one of them.

In this dissertation we discuss liquid Web applications: software that can be
deployed in a cross-device environment by exploiting the current HTML5 stan-
dards. In particular we design and implement decentralized liquid Web soft-
ware able to flow between different platforms. Like liquid adapts its shape to
its container, liquid Web applications adapt and can be deployed on all available
devices. The Web platform allows devices of different manufactures to commu-
nicate, deploy, and distribute liquid applications among them, even when they
do not share a common operating system. With liquid Web applications we seek
to overcome the current stagnation in the traditional design of solid Web appli-
cations in favor of an affordable cross-device solution.

We present the history and evolution of liquid applications and discuss why
the Web is the best platform for creating them. We show how to design liquid

v

vi

software by discussing how to deploy the state, logic, and User Interface (UI) of
any Web application on multiple devices. The design we present allows devel-
opers to create liquid Web applications able to seamlessly flow between multiple
devices following the attention of the users. We also present the Liquid.js for
Polymer framework, whose goal is to simplify the creation of liquid Web appli-
cations by helping developers to create their own Liquid User Experience (LUE).
Our contribution in the design of liquid software presented in this dissertation
is decoupled from the framework implementation and can be re-used to create
new liquid frameworks.

Acknowledgements

Many people have helped me finish this dissertation, to whom I would like to
warmly express my sincere gratitude and recognition.

I cannot start this section without being grateful to my advisor Prof. Cesare
Pautasso. He trusted my abilities and gave me the opportunity to work with him
and finish this dissertation in the best environment I could have ever imagined.
He taught me so many useful skills, some that go even beyond the scope of soft-
ware design. For this reason I recognize in him a great mentor that goes beyond
the educational system we live in. I will never thank you enough for helping me
throughout these years, for helping me sorting my chaotic ideas, and produce
the quality publications we worked on together. I am especially thankful for all
the time you committed to helping me writing and present my work.

I would like to thank Prof. Marc Langheinrich and Prof. Michele Lanza from
USI, Prof. Maristella Matera from Politecnico di Milano, and Prof. Tommi Mikko-
nen from University of Helsinki for their support. Their feedback helped me write
this dissertation.

I met so many competent people during this journey, many of whom I met
while travelling around the world. The list is long, and it would be impossible to
thank all of them, but I still carry their advices with me. All your inputs helped
me shape this dissertation.

A big thank-you to my colleagues Masiar Babazadeh, Vincenzo Ferme, Ana
Ivanchikj, and Vasileios Triglianos for creating the best environment in our of-
fice. We helped each other and we had so much fun. Especially I would like to
acknowledge the help of Masiar Babazadeh, who made me discover and love the
beauty of distributed Web applications during my master thesis, a love that I still
nurture in my heart today. Obviously I will not forget to mention the good time
we spent together the past years: drinking coffee and slaying monsters.

I would also like to extend my acknowledgements to all the people I met at
USI, students included. I learned so much from all of them, and they made me
become a better person.

I dedicate this dissertation to my family and my beloved, without their sup-

vii

viii

port I would not be the person I am today.
Finally, my last acknowledgements go to Antonov, Gigietto, Rinik, Robb, and

Sithar, the true heroes of my story.

Contents

Contents ix

List of Figures xv

List of Tables xxi

I Liquid Software 1

1 Introduction 3
1.1 Motivation . 3
1.2 Research Questions (RQs) . 6

1.2.1 RQ#1 - Liquid Software Design 6
1.2.2 RQ#2 - Beyond Centralized Deployments 7
1.2.3 RQ#3 - LUE Adaptation Among Devices 8
1.2.4 RQ#4 - Sharing Resources Among Devices 8
1.2.5 RQ#5 - Privacy and Security 9

1.3 Summary and Outline . 9
1.4 Contributions and Publication Overview 11

2 State of the Art 15
2.1 Liquid Software Metaphor . 17

2.1.1 Similar Metaphors . 20
2.2 Beyond the Liquid Metaphor . 22
2.3 Computer-Supported Collaborative Work (CSCW) 22

2.3.1 Cross-Device Interfaces . 22
2.3.2 Human-Computer Interactions (HCI) 24
2.3.3 Internet of Things (IoT) and Public Displays 25
2.3.4 Mashups . 26
2.3.5 Distributed State in the Web 27

ix

x Contents

2.3.6 Offload Computations in the Web 27
2.4 Industry Solutions . 29
2.5 Cloud . 30

3 Liquid Software Design 33
3.1 Design Considerations . 33

3.1.1 User Interface (UI) Adaptation 33
3.1.2 Data and State Synchronization 34
3.1.3 Client/Server Partitioning . 35
3.1.4 Security . 36

3.2 Design Space . 36
3.2.1 Topology . 38
3.2.2 Discovery . 41
3.2.3 Layering . 44
3.2.4 Granularity . 45
3.2.5 Client Deployment . 48
3.2.6 Liquid User Experience (LUE) 49
3.2.7 Data and State . 52
3.2.8 Privacy and Security . 53

3.3 Maturity . 54
3.3.1 Maturity Model Facets . 55
3.3.2 Controller Layer deployment 59
3.3.3 Communication channel . 60
3.3.4 Maturity Model . 61
3.3.5 Beyond Level 5 Framework 69

II Liquid Web Architectures 71

4 Liquid Data Layer and State Synchronization 73
4.1 Communication Channels . 73
4.2 Granularity . 75
4.3 Data Flow Direction . 78
4.4 Liquid Storage . 81

5 Liquid Logic Layer and Liquid WebWorkers 85
5.1 APIs . 86

5.1.1 Liquid WebWorker Pool (LWWPool) API 86
5.1.2 Liquid WebWorker (LWW) API 88

5.2 Design . 89

xi Contents

5.3 Features . 92
5.3.1 Micro-Benchmark . 92
5.3.2 Failure Handling . 93
5.3.3 Task Offloading Policies . 96

5.4 Scenarios . 98
5.4.1 Single User Scenario - Editors (Image Processing) 99
5.4.2 Single User Scenario - Public Displays 100
5.4.3 Multiple Users Scenario - Education/Teaching Programming101

6 Liquid View Layer and Liquid Media Queries 105
6.1 Automatic Component Style Adaptation 108
6.2 Component Deployment Redistribution 111

6.2.1 Redistribution step . 112
6.2.2 Cloning step . 116

6.3 Liquid UI Redistribution and Cloning Algorithms 117
6.3.1 Phase 1: Constraint-Checking and Priority Computation . 118
6.3.2 Phase 2: Migration and Cloning 120
6.3.3 Phase 3: Component Adaptation 122
6.3.4 Run-time Complexity . 123

III Framework Implementation 125

7 Liquid.js for Polymer 127
7.1 The Framework . 127

7.1.1 Granularity . 132
7.1.2 Topology and Code Deployment 132

7.2 Liquid Web Applications . 133
7.2.1 Liquid Components . 135
7.2.2 Liquid Properties . 138
7.2.3 Liquid Behaviors . 140
7.2.4 Liquid UI Wrapper . 142
7.2.5 Uniform Resource Identifiers (URIs) 142

7.3 Data Layer - Synchronization . 144
7.3.1 Strategies . 145
7.3.2 Features . 148
7.3.3 Configuration . 149

7.4 Logic Layer - Liquid WebWorkers . 150
7.4.1 Implementation . 150

xii Contents

7.4.2 Synchronous vs Asynchronous Data Transfer 150
7.5 View Layer - <liquid-style> Component 153

7.5.1 Design . 154
7.5.2 Decentralized Algorithm . 156
7.5.3 Impact . 159

7.6 Privacy and Security . 162
7.6.1 Privacy . 165
7.6.2 Security . 176
7.6.3 Limitations . 182

8 The Liquid.js API 183
8.1 Framework Configuration API . 183
8.2 Component Life-cycle API . 185
8.3 Liquid User Experience (LUE) API . 186
8.4 Device Discovery API . 187
8.5 Liquid WebWorker (LWW) API . 188
8.6 Local Persistence API . 189
8.7 Assets API . 190
8.8 Connection API and Event Bus . 191

9 Validation 193
9.1 Data Layer and Synchronization . 193

9.1.1 Evaluation of the Routing Table 193
9.1.2 Evaluation of the Yjs Synchronization 203
9.1.3 Discussion of the Results . 209

9.2 Logic Layer . 212
9.2.1 Test Scenario: Offloading Image Processing Tasks 212
9.2.2 Testbed Configuration . 212
9.2.3 Workloads . 212
9.2.4 Measurements . 213
9.2.5 Results . 213
9.2.6 Micro-Benchmark evaluation 217

9.3 View Layer . 220
9.3.1 Scenario 1: Second User Connects a Smartphone 222
9.3.2 Scenario 2: Dynamic Device-Role Change 222

9.4 Building Liquid Web Applications with Liquid.js 224
9.4.1 Converting Standard Polymer Components into Liquid Com-

ponents . 224
9.4.2 Multiple Properties with the Liquid Googlemap Component 230

xiii Contents

9.4.3 Liquid Containers with the Liquid Youtube Component . . 235
9.4.4 Liquid UI Wrappers and Position-Aware Primitives 240
9.4.5 Experiment: Creating Liquid Components on the Clients . 247

10 Conclusion 251
10.1 Summary . 251
10.2 Future Work . 254

Bibliography 257

Students 275

Web References 277

xiv Contents

Figures

1.1 Liquid software use-case scenarios. 5

3.1 Overview: the design space of liquid software. Mandatory arrows
indicate that a child feature is required; optional arrows indicate
that the child feature is optional; alternative arrows indicate that
only one child feature must be selected; or arrows indicate that at
least one child feature must be selected. 37

3.2 State replication topology alternatives. 41
3.3 Application source topology alternatives. 42
3.4 Layering alternatives . 46
3.5 Granularity alternatives . 47
3.6 Code deployment alternatives . 49
3.7 LUE primitives . 50
3.8 Model layer deployment levels . 57
3.9 Controller layer deployment levels (labeled as logic) 59
3.10 Communication channels . 61
3.11 Maturity model for Web architectures for centralized, decentral-

ized and distributed model layer deployments. The controller
layer is labeled as Logic. 62

4.1 Deployment view of a level 4 or 5 liquid Web application. 74
4.2 Liquid Web application granularity 75
4.3 Paired components state in component level granularity. 76
4.4 Granularity example. Components are in bold and properties are

stored inside components. 77
4.5 Data flow direction combinations for liquid properties. 79
4.6 Data flow direction annotations example. Annotations are in ital-

ics, components are in bold and properties are stored inside com-
ponents. This is example is the same as the one shown in Fig-
ure 4.4 but extended with the data flow direction annotations. . . 80

xv

xvi Figures

4.7 Level 4 liquid software architecture: storage deployment and flow
of the data across two Web browsers and the server. 83

5.1 The LWWs architecture. Arrows show the flow of a task and the ex-
change of messages between clients. Dotted lines indicate paired
relationships between LWW instances. 89

5.2 Local and remote execution sequence diagram. 91
5.3 Task offloading without failures. 93
5.4 LWW failure scenarion: disconnection. 94
5.5 LWW failure scenario: run-time error during the offloaded task

execution. The remote LWW is independently respawned but the
local device should decide how to recover the task execution. . . . 95

5.6 LWW failure scenario: timeout without disconnection and local
task re-execution race . 96

5.7 Image processing scenario with LWWs. 100
5.8 Public display scenario with LWWs. 101
5.9 Education scenario with LWWs. 102

6.1 View adaptation options: Figure 6.1a - no adaptation with static
definition of the appearance of the Web page; Figure 6.1b - respon-
sive view adaptation; Figure 6.1c - complementary view adaptation107

6.2 Style adaptation of the component described in Listing 6.1 when
up to four devices are connected to the application. 112

6.3 Redistribution of the component described in Listing 6.2 when it
is initially deployed on a laptop and then new devices connect. . . 115

6.4 Redistribution and cloning of the component described in List-
ing 6.3 when it is initially deployed on a laptop and then new
devices connect. 117

7.1 Liquid.js design decisions in the design space of liquid software
(see Figure 3.1). The Liquid.js features are highlighted with colors.129

7.2 Liquid.js simplified architecture . 131
7.3 Applications built on top of Liquid.js: stack view. 133
7.4 Liquid component structure and comparison with a real liquid

component. 134
7.5 Liquid component architecture. 136
7.6 Liquid.js runtime and storage deployment built based on the de-

sign of level 4 storage deployment shown in Figure 4.7. 138

xvii Figures

7.7 Liquid container behavior: behavior of the LUE primitives and liq-
uid data layer with or without importing the LiquidContainerBe-
havior. 141

7.8 Component view of the LiquidPeerConnection (LPC) component. 144
7.9 Default Liquid.js peer topologies example. 146
7.10 Component view of the implementation of liquid WebWorkers in-

side the Liquid.js for Polymer framework. 151
7.11 Asynchronous data transfer: the dashed lines represent the flow

of the data, the full lines represent the flow of task offloading . . . 152
7.12 Sequence diagram for asynchronous data transfer 153
7.13 Liquid.js: the liquid style elements are bundled with the Polymer

component inside each liquid component. The Liquid.js API, rep-
resented in the diagram as the liquid application, maintains and
keeps the shared state up to date. 156

7.14 Component view of the liquid-style component and how it is
connected to the liquid-style behavior and controller. The phase
1 algorithm (see Section 6.3.1) is encapsulated inside the liquid-style
behavior; the phase 2 algorithm (see Section 6.3.2) is encapsu-
lated inside the liquid-style controller, and the liquid-style

component is in charge of running the phase 3 algorithm (see Sec-
tion 6.3.3). 157

7.15 Sequence diagram of the initialization of the liquid-styles, liquid-style
behavior, and liquid-style controller. 158

7.16 Decentralized algorithm processing 159
7.17 Liquid media query debugger tool view. 160
7.18 Distribution of an application in Liquid.js. The Web server(s) owns

a master copy of the assets of the application. Initially, since no-
body, but the Web server(s) owns a copy of the assets, client 1
download the assets, afterwards any other client connecting to the
Web application can request the assets either to the Web server(s)
or client 1. 164

7.19 Extending the entities hierarchy of Liquid.js for designing Discre-
tionary Access Control (DAC). 166

7.20 Extended entity diagram in Liquid.js 168
7.21 Messages exchanged during room join 173
7.22 Liquid.js simplified architecture extended with the DAC model.

Highlighted components and interfaces are added or changed dur-
ing the extension. 174

7.23 P2P distribution of the permissions 176

xviii Figures

7.24 P2P issuing and checking actions . 177
7.25 Client handshake with server . 178
7.26 Joining a room . 179
7.27 Asset fetching . 181

9.1 Topologies used in the evaluation of the data layer of Liquid.js.
The number of hops is computed relatively to the peer p0. 195

9.2 Comparison between full-graph, minimal connection with and with-
out routing table,the topologies shown in Figure 9.1. For helping
with the comparison, the full-graph strategy is shown with a pro-
longed dashed line of the 1 hop values. 201

9.3 Linear topologies used in the Yjs synchronization evaluation. The
number of hops is computed relatively to the peer p0 204

9.4 Relative bandwidth comparison of the Yjs synchronization for the
linear topologies shown in Figure 9.3 compared with the full-graph
strategy. The evaluation is performed both with payloads of 270
KB and 5 MB. The full-graph strategy is displayed only for the av-
erage values of the 1 hop experiment, the line is then prolonged
in order to help with the comparison with other strategies. 206

9.5 Relative bandwidth comparison of the Yjs synchronization with an
image size of 270 KB for a topology with 9 peers with and without
routing table and message packaging. The values of the full-graph
strategy is displayed only for the 1 hop experiment and then the
line is prolonged in order to help with the comparison with other
strategies. 209

9.6 Average processing and communication time of the LWW offloaded
across different pairs of devices (L Laptop, T, Tablet, P Phone) . . 214

9.7 Boxplots of the total process execution time of the LWW offloaded
across different pairs of devices (L Laptop, T, Tablet, P Phone) . . 215

9.8 Boxplot of the benchmark scores for each device. 217
9.9 Boxplot of the benchmark execution times. 218
9.10 Liquid video player UI split into four components: video, video

controller, suggested videos, comments 220
9.11 When a second user connects to the application the video compo-

nent is migrated to the shared device and a new instance of the
video controller is deployed on the new user’s phone. 223

9.12 After the television device changes role configuration, the video
and comments components are swapped following different pri-
orities. 223

xix Figures

9.13 Standard Polymer component versus liquid component 226
9.14 <liquid-component-googlemap> on the Web browser 230
9.15 Multi-device deployment of <liquid-component-googlemap> com-

ponent: the map is cloned on both devices 232
9.16 Multi-device deployment of <liquid-component-googlemap> com-

ponent: the inputs are cloned on both devices 233
9.17 Multi-device deployment of <liquid-component-googlemap> com-

ponent: latitude, longitude, and zoom are not liquid 234
9.18 Multi-device deployment of <liquid-component-youtube> on two

tablets . 238
9.19 Multi-device deployment of <liquid-component-youtube> on a

tablet and a phone . 239
9.20 Debug liquid UI wrapper on top of <liquid-component-text> . . 240
9.21 Debug liquid UI wrapper on top of <liquid-component-googlemap>241
9.22 <liquid-space> and liquid-component-chat components . . 242
9.23 <liquid-space> position configuration 243
9.24 <liquid-space> and liquid UI wrapper 244
9.25 <liquid-component-chat> after cloning 245
9.26 <liquid-component-editor> . 247
9.27 Create an instance of the component on the client-side 248
9.28 Drag and drop cloning of my-online-component from device 1

(on the left) to device 2 (on the right). 249
9.29 my-online-component cloned and paired among two devices . . . 250

xx Figures

Tables

1.1 List of RQs. 7
1.2 List of publications related to this dissertation presented on con-

ferences or published on journals. 12
1.3 List of additional related publications. 13

3.1 Technologies positioned in the liquid software design space. 39
3.2 Maturity model: architectural configurations and quality attributes. 63

4.1 Storage mechanism chosen based on the sharing scope, compo-
nent scope, device deployment and persistency of a liquid property. 81

5.1 Liquid WebWorker Pool API . 87
5.2 Liquid WebWorker API . 88

6.1 Proposed media types and features for liquid media queries. . . . 109

8.1 Liquid.js API: framework configuration methods 184
8.2 Liquid.js API: component lifecycle and liquid storage methods . . 186
8.3 Liquid.js API: Liquid User Experience (LUE) 186
8.4 Liquid.js API: device discovery methods 188
8.5 Liquid.js API: worker offloading methods 189
8.6 Liquid.js API: local persistence methods 190
8.7 Liquid.js API: assets lifecycle methods (P2P) 191
8.8 Liquid.js API: device connection and event bus methods 192

9.1 Specification of the two devices used for the evaluation. 194
9.2 Experimental values measured on all peers ranging from p1 to

p9 based on the topologies shown in Figure 9.1. Peer p0 starts
the conversations across all peers. White rows represent peers
deployed on Computer 1, dark rows represent peers deployed on
Computer 2. 196

xxi

xxii Tables

9.3 Number of messages and data transferred for each peers in the
examples shown in Table 9.2 without the RT. The size of the mes-
sages exchanged only counts the payload of the synchronization
messages without considering the headers of the wrapper. The
wrapper contains the URI of the destination, the sender URI, times-
tamp and other metadata used by the LPC component, for a total
of on average 60 bytes. 199

9.4 Number of messages and data transferred for each peers in the
examples shown in Figure 9.1 when the RT is enabled in a paral-
lel execution environment. The size of the messages exchanged
only counts the payload of the synchronization messages without
considering the headers of the wrapper. The packaged message
header contains the URI of all destinations, the sender URI, times-
tamp and other metadata used by the LPC component, for a total
of on average 80 bytes plus 14 bytes for each destination after the
first one. 202

9.5 Specification of the two devices used for the Yjs synchronization
evaluation. 204

9.6 Experimental values measured depending on the distance (hops)
from peer p0 based on the topologies shown in Figure 9.3. Peer
p0 starts the conversations across all peers. 205

9.7 Experimental values measured depending on the distance (hops)
from peer p0 based on the topologies shown in Figure 9.1. Peer
p0 starts the conversations across all peers. 208

9.8 Average benchmark ranking and average processing. 218

Part I

Liquid Software

1

Chapter 1

Introduction

1.1 Motivation

The way users interact with their devices has radically changed in the last three
decades, and this is especially true when we investigate the way users interact
with the devices connected to the Web. Nowadays the number of Web-enabled
devices is growing fast [IoT18], while the price for connecting them to the Web is
in average cheaper and more affordable than it previously was [Wor14; Wor19].
Hardware is cheaper and the average user now owns more than three Web-
enabled devices [Glo17].

With the access to more powerful and capable devices, the majority of the
users access the Web with multiple devices simultaneously [Goo17a], using var-
ious type of appliances [Goo17b]: ranging from common desktop computers,
tablets, smartphones, and Internet of Things (IoT) devices, to more recent smart
televisions, cars, and cutting edge wearable devices [146].

Depending on the situation [101; 102] and on the devices in reach [43], the
users access the Web differently and prefer to use some devices more than others
to perform their activities [97]. E.g., when the users are in a office they interact
more with multiple desktops and laptops, while when they are at home they
usually interact more with tablets and smartphones.

We are currently living in the multiple device ownership era [174] [And15],
in which software applications that traditionally were meant to merely run on a
personal computer, now are expected to run on any kind of device, as it has been
already discussed by Dearman et al. in 2008 [48]. The way we interact with the
software has changed accordingly, and we recognize new usage patterns when
we run multi-device applications [145; 150; 91]. Surrounded by multiple de-
vices, the users assume they have the ability to access their applications from

3

4 1.1 Motivation

any device they own [100], and they assume the data is automatically available
on any device they decide to use, even when they decide to use them simultane-
ously [116].

However, these features are not automatically implemented in multi-device
applications and the presence and usage of multiple devices add several degrees
of complexity to the users that do not know how to use them, as well as to the
developers in charge of designing them. Application versioning consistency man-
agement [152] and cross-device state synchronization [180; 5] are two examples
of problems that arise from multi-device interactions.

From the users perspective, managing a set of devices as independent en-
tities from within the same application is confusing, nevertheless breaking this
boundary and transparently allow applications to run on a set of devices, gets
more complex as the number of connected devices increases [12]. The users
must be in control of the applications and they must be able to manage them on
any device.

From the developer perspective, traditional applications are not designed for
spanning the user experience on multiple devices [168]. Operating systems, vir-
tual machines, applications and even components within applications are de-
signed to be running on a single device and thus their user experience is designed
for single device usages only [30; 85]. E.g., the users install applications on a
device independently, and they manage the set of applications installed for each
one of them independently.

We need to overcome the boundaries of single device file systems and share
settings among devices if we want to truly create seamless multi-device user
experiences, and it is clear that the cost for managing multi-device applications
and ensuring that the devices can transparently run them simultaneously, grows
as the number of connected devices increases.

For this reason we introduce the concept of liquid software, a paradigm used
to explain how to design applications that may run seamlessly on a set of de-
vices, and that are able to adapt their behavior in accordance to their deployment
context. The Liquid User Experience (LUE) covers the following three scenar-
ios [Goo12] (see Figure 1.1):

• Sequential Use (Figure 1.1a) - a single user runs an application on dif-
ferent devices at different times. The application adapts to the different devices
capabilities while respecting the actual user’s needs in different usage contexts;

• Simultaneous Use (Figure 1.1b) - a single user interacts with an applica-
tion from several devices at the same time, e.g., the session is open and running
on multiple devices at same time. Different devices may show an adapted view
of the same User Interface (UI), or the system may have a distributed or cross-

5 1.1 Motivation

Smartphone
Owned by User 1

Computer
Owned by User 1

Mail application Mail application

User 1

Automatic synchronization
of the email

The user walks
home while writing
an email on
his smartphone

Once at home,
the user prefers to
finish writing the
email on the computer

(a) Sequential screening: writing an
email.

Smartphone
Owned by User 1

Computer
Owned by User 1

Controller for the
Video Viewer

Video Viewer

User 1

Automatic synchronization
of the video status (e.g., play/stop
and current video timestamp feedback)
in both directions

The user controls both
devices at the same time.
The smartphone can be used
to control the video loaded
on the computer.

(b) Simultaneous screening: watching
videos.

Computer
Owned by User 1

Computer
Owned by User 2

Text Editor Text Editor

User 1 User 2

Automatic synchronization
of the code in both directions

User 1 codes
together with
user 2 on a
collaborative editor

User 2 codes
together with
user 1 on a
collaborative editor

(c) Multi-user, multi-device collaboration: collaborative coding.

Figure 1.1. Liquid software use-case scenarios.

device [88] UI in which different devices play their own distinct roles;
• Collaborative Use (Figure 1.1c) - several users run the same application on

their devices and collaboratively work on the same data synchronized between
them. This collaboration can be either sequential or simultaneous [90; 128].

The scenarios share the same technical challenges in adapting the UI to dif-

6 1.2 Research Questions (RQs)

ferent devices and in synchronizing the data and state of the execution between
devices. The synchronization of the data and state across multiple-devices is fun-
damental in the implementation of liquid software [132], because the devices
and users need to be aware of the results of their actions previously or simulta-
neously done on other devices. This is essential for transferring the work from
one device to another, thus enabling seamless, real-time device usage.

A truly liquid software ecosystem should support heterogeneous devices
across native software ecosystem boundaries (e.g., across devices running differ-
ent Operating Systems (OSs)). This way, developers would be able to implement
an application only once, which could then adapt itself to run on various types
of devices [57]. A viable option in realizing such a vision is to leverage the Web
ecosystem, where applications are already deployed on demand and can adapt
and fit to the devices’ specifications with responsive Web design [125]. Proper-
ties such as openness and freedom from proprietary features make the Web a
natural choice over native applications that are bound to a particular operating
system, manufacturer, or vendor-specific ecosystem (e.g., vendor-specific smart-
phones) [134].

1.2 Research Questions (RQs)

The contributions brought by this dissertation to the field of cross-device Web
applications design seek to answer the five Research Questions (RQs) described
in Table 1.1.

1.2.1 RQ#1 - Liquid Software Design

How can we help Web developers design liquid software and the LUE?

Liquid Web applications are complex applications able to interact with multi-
ple devices simultaneously. The complexity of these interactions is transparently
hidden behind the LUE and requires real-time message passing and data synchro-
nization across all the connected devices in order to seamlessly move applications
among them. Liquid Web software can be designed following different quality
drivers and the design can be reflected into a multitude of different software
architectures depending on the design alternatives that are selected during the
design phase. What are the design alternatives related to liquid Web applica-
tions? What are the implications of such choices?

In this dissertation we list and discuss the design alternatives related to liquid
software and present past, present and envisioned technologies that can be used

7 1.2 Research Questions (RQs)

Table 1.1. List of RQs.

Research Question Chapter(s)

1 How can we help Web developers design liquid soft-
ware and the Liquid User Experience (LUE)?

Section 1.2.1
Section 3.2
Chapters 4, 5, 6

2 How can we abstract liquid Web applications away
from the current strongly centralized deployment ap-
proaches?

Section 1.2.2
Section 3.3
Chapters 4, 5, 6

3 How can we make the Distributed User Interfaces
(DUI) of a Web application automatically adapt to the
set of connected devices?

Section 1.2.3
Chapters 4, 5, 6

4 How can we take advantage of all resources provided
by the set of connected devices?

Section 1.2.4
Chapters 7, 8, 9

5 How can we design secure liquid Web applications?
How can we enhance privacy?

Section 1.2.5
Section 7.6

for developing it. Quality attributes and design decisions are discussed by pre-
senting both the advantages, drawbacks, and impact in the overall architecture
of the liquid application. We validate the proposed design decisions by applying
them in the implementation of our liquid software framework.

1.2.2 RQ#2 - Beyond Centralized Deployments

How can we abstract liquid Web applications away from the current strongly cen-
tralized deployment approaches?

The vast majority of existing Web applications implementing the LUE relies
on centralized architectures and deployments, however interactions of the users
happening on their own set of devices do not necessarily need to pass through a
Web server, in fact devices can communicate directly with each another with Peer-
to-Peer (P2P) channels. From the users’ perspective, they can preserve privacy
when messages are not sent to a Web server, since the users’ data and interactions
can be modelled to be synchronized independently from a centralized Web server
of Cloud Service outside of the user’s control. What are the trade-offs of this
approach?

In this dissertation we design liquid Web software with a decentralized archi-
tecture, shifting away from the more common centralized one. When possible,

8 1.2 Research Questions (RQs)

given the limitations of the current Web technology standards, the design deci-
sions are taken considering a distributed environment. The proposed prototype
reflects the decentralized nature of these design decisions.

1.2.3 RQ#3 - LUE Adaptation Among Devices

How can we make the DUI of a Web application automatically adapt to the set of
connected devices?

Developers of liquid software should provide to the users a mechanism for
populating the set of devices with parts of the liquid applications. For this reasons
we must provide to the developers the tools for developing automatic comple-
mentary views. In Web applications meant to have complementary views, the UI
can scatter and adapt across multiple devices (e.g., each device displays different
parts of the application). This allows the developers to have a certain degree of
control on how the application is migrated across the devices, instead of exclu-
sively allow the users decide how the deployment of the application will evolve
over time. A misuse of the manual LUE may lead to non-intuitive deployments
which contradict the developers’ expectations and intent.

In this dissertation we discuss how to deploy and adapt liquid software across
multiple devices by separating its internal representation into three intercon-
nected layers: • data layer - which defines the data and state of a liquid ap-
plciation; • logic layer - which defines the controlles of a liquid application;
• view layer - which defines the UI of a liquid application. For each individual
layer we present how it can be manually deployed across multiple Web-enabled
devices and then discuss how their deployment can be automated following the
design decisions of the developers, or the needs of the users when applicable.

1.2.4 RQ#4 - Sharing Resources Among Devices

How can we take advantage of all resources provided by the set of connected devices?

Any Web-enabled device has access to at least a screen, a data storage and a
Central Processing Unit (CPU) (in the case of small IoT devices, it is possible that
they lack a screen and have access to a limited data storage and CPUs). While
the LUE takes advantage of all the screens and the decentralized synchronization
can take advantage of all the provided data storage, we need to further develop
a mechanism for efficiently exploit the CPUs of all connected devices in the liq-
uid software environment. Without such a mechanism all the devices compute

9 1.3 Summary and Outline

the same operation multiple times, even if it would be better to compute the
operation only once on a single device and then broadcast the result.

In this dissertation we show how executable tasks can be shared across the
set of Web-enabled devices and how their result can be broadcasted back to all
participants in a liquid Web application.

1.2.5 RQ#5 - Privacy and Security

How can we design secure liquid Web applications? How can we enhance privacy?

As liquid Web applications can dynamically flow between multiple devices
owned by different users, it becomes important to consider the security and pri-
vacy implications of liquid software. In this dissertation we design decentralized
liquid software, where the data and the computations generated by the liquid
applications are moved from the Web servers towards the clients. As we shift
from traditional server-client to peer-to-peer architectures, we need to design
secure communications between the connected peers and ensure that the users
have control on the data stored in their Web browsers. For this reason we need to
design a distributed access control approach whose goal is to avoid that both the
data and the runtime state of rich component-based Web applications is stored
in devices not fully owned by their users and to prevent malicious users from
accessing them.

In this dissertation we design a secure and privacy-preserving architecture for
component-based liquid Web applications, and discuss how we build it on top
of our prototype. The design specifies a capability-based Discretionary Access
Control (DAC) model in which users can manage the flow of data migration
between devices owned by multiple users in collaborative scenarios.

1.3 Summary and Outline

This dissertation is divided in three parts and ten chapters:
• Part I - Liquid Software. In the first part of this dissertation we introduce

the liquid software paradigm and the reasons it is relevant today. The discussion
is divided into three chapters:
– Chapter 1 - Introduction. In the first chapter we present the technological im-
petus that influenced the definition of the liquid software paradigm. We present
the challenges derived from the paradigm and discuss what today’s liquid ap-
plications are lacking. We discuss the benefits that can be derived by evolving

10 1.3 Summary and Outline

the liquid software paradigm and then define the motivations behind this disser-
tation. This chapter also presents the RQs answered throughout the following
chapters, the related publications and contributions of this work.
– Chapter 2 - State of the Art. In this chapter we present the liquid software
paradigm, the meaning of the liquid metaphor, and then present other uses of
the metaphor in other fields. We present the history of liquid software, starting
from the inventors of the term and follow up the discussion with all the works
derived from their initial vision. We also explore the most related research areas
strongly bound to the liquid software paradigm and present their work. Finally
we present some existing liquid software and technologies and their impact in
the industry.
– Chapter 3 - Liquid Software Design. In this chapter we present the design
considerations and alternatives related to liquid software. We focus the discus-
sion on the Web platform and derive the maturity model of the current existing
liquid Web technologies. We also list the quality attributes, challenges, advan-
tages and drawbacks of multiple design decisions and their impact on the liquid
software design.

• Part II - Liquid Web Architectures. The second part of this dissertation
focuses on the design of liquid Web applications. We abstract and divide liquid
software into three interconnected layers and discuss how we can design them
in a liquid application. Each chapter discusses one of the three layers:
– Chapter 4 - Liquid Data Layer and State Synchronization. The data layer
holds both the data and state of an application. In this chapter we discuss how
we can deploy and automatically synchronize the data of liquid Web applications
across multiple devices. We present the set of technologies that can be used in
the design of the liquid data layer and discuss about multiple deployments of the
liquid storage.
– Chapter 5 - Liquid Logic Layer and Liquid WebWorkers. In this chapter
we discuss how the set of devices connected to a liquid application can offload
executable tasks among each other. By exchanging tasks, we allow the logic layer
to be deployed on any device participating in the liquid application. We design
the liquid logic layer by presenting the scenarios, challenges, technologies and
the possible design decisions that must be considered for deploying this layer
across multiple devices.
– Chapter 6 - Liquid View Layer and Liquid Media Queries. In this chapter
we discuss how we can automatically deploy UIs across multiple devices. We
present the current technologies used for creating Web UIs and the technological
gap that need to be filled in order to create a view layer that can span across
multiple devices. We discuss how we plan to update the current standards and

11 1.4 Contributions and Publication Overview

propose rules and algorithms that can automatically deploy the UI of a liquid
application on a set of devices.

• Part III - Framework Implementation. The third part of this dissertation
presents our implementation of a liquid software framework following the design
presented in the second part. This part is divided into three chapters:
– Chapter 7 - Liquid.js for Polymer. In this chapter we present our framework
that can be used to develop liquid Web applications that have transparent access
to the LUE. We present the framework abstractions and for each layer we discuss
its implementation. Furthermore we discuss privacy and security implications
derived by the framework.
– Chapter 8 - The Liquid.js Application Programming Interface (API). In this
chapter we present the Liquid.js API that developers can use to develop their own
liquid applications.
– Chapter 9 - Validation. In this chapter we evaluate the performance of the
liquid data layer and logic layer of our implementation. We then validate the
expressiveness of the liquid view layer and discuss how developers can create
their own Web application featuring the LUE primitives.
– Chapter 10 - Conclusions. The final chapter of this dissertation summarize
the answers to the RQs proposed in the first chapter. We finally discuss the limi-
tations of our framework and the possible future works that can follow this dis-
sertation.

1.4 Contributions and Publication Overview

The main contribution of this dissertation is the implementation of Liquid.js for
Polymer, our prototype framework that encapsulates all design decisions dis-
cussed throughout this dissertation. The design aspects and the actual imple-
mentation of the framework can be separated from one another and thus the
design of the liquid layers of an applications are discussed independently from
the framework. This dissertation gives to the cross-device research area the fol-
lowing contributions:

• The definition of the design space of liquid applications [60; 61];
• The definition of the maturity model of liquid software [68];
• The implementation of Liquid.js for Polymer and the exposed API that de-

velopers can exploit for creating their own liquid applications and the LUE [70];
• The design of the storage deployment for liquid Web applications [66];
• The design of liquid media query that extended Cascading Style Sheets 3

(CSS3) media queries [72; 73];

12 1.4 Contributions and Publication Overview

Table 1.2. List of publications related to this dissertation presented on confer-
ences or published on journals.

Publications

Andrea Gallidabino and Cesare Pautasso. Deploying Stateful Web
Components on Multiple Devices with Liquid.js for Polymer. Proceedings
of the International SIGSOFT Symposium on Component-Based Software
Engineering (CBSE16), pages 85-90, 2016, IEEE. [66]

20
16 Andrea Gallidabino, Cesare Pautasso, Ville Ilvonen, Tommi Mikkonen,

Kari Systä, Jari-Pekka Voutilainen and Antero Taivalsaari. On the Archi-
tecture of Liquid Software: Technology Alternatives and Design Space.
Proceedings of the Working IEEE/IFIP Conference on Software Architecture
(WICSA16), pages 122-127, 2016, IEEE. [60]

Andrea Gallidabino and Cesare Pautasso. Maturity Model for Liquid
Web Architectures. Proceedings of the International Conference on Web
Engineering (ICWE17), pages 206-224, 2017, Springer. [68]

20
17 Andrea Gallidabino, Cesare Pautasso, Ville Ilvonen, Tommi Mikkonen,

Kari Systä, Jari-Pekka Voutilainen and Antero Taivalsaari. Architecting
Liquid Software. In: Journal of Web Engineering (JWE), Volume 16.5&6
pages 433-470, 2017, River Publishers. [61]

Andrea Gallidabino and Cesare Pautasso. The Liquid User Experience
API. Proceedings of the The Web Conference 2018 Companion (TheWeb-
Conf2018 a.k.a. WWW18), pages 767-774, 2018. [70]
Andrea Gallidabino and Cesare Pautasso. Decentralized Computation
Offloading on the Edge with Liquid WebWorkers. Proceedings of the In-
ternational Conference On Web Engineering (ICWE18), pages 145-161,
2018, Springer. [69]20

18

Andrea Gallidabino and Cesare Pautasso. The Liquid WebWorker API
for Horizontal Offloading of Stateless Computations. In: Journal of Web
Engineering (JWE), Volume 17.6 pages 405-448, 2018, River Publish-
ers. [71]

20
19

Andrea Gallidabino and Cesare Pautasso. Multi-Device Adaptation
with Liquid Media Queries. Proceedings of the International Conference
On Web Engineering (ICWE19), pages 474-489, 2019, Springer. [72]

20
20

Andrea Gallidabino and Cesare Pautasso. Multi-Device Complemen-
tary View Adaptation with Liquid Media Queries. In: Journal of Web En-
gineering (JWE), Volume 18.8 pages 1-40, 2020, River Publishers. [73]

13 1.4 Contributions and Publication Overview

Table 1.3. List of additional related publications.

Publications

Andrea Gallidabino and Cesare Pautasso. The Liquid.js Framework
for Migrating and Cloning Stateful Web Components across Multiple
Devices. Proceedings of the International Conference on the World Wide
We Companion (WWW16), pages 555-558, 2016. Demonstration [67]

20
16

Andrea Gallidabino. Migrating and Pairing Recursive Stateful Compo-
nents Between Multiple Devices with Liquid.js for Polymer. Proceedings
of the International Conference on Web Engineering (ICWE16), pages 555-
558, 2016, Springer. Demonstration [63]

20
17

Andrea Gallidabino, Tommi Mikkonen, Niko Mäkitalo, Cesare Pau-
tasso, Kari Systä, and Antero Taivalsaari and Jari-Pekka Voutilainen.
Liquid Web Applications: ICWE2017 Tutorial. Proceedings of the In-
ternational Conference on Web Engineering (ICWE17), pages 269-271,
2017, Springer. Tutorial [62]

20
19

Andrea Gallidabino. Liquid Web Architectures. Proceedings of the In-
ternational Conference on Web Engineering (ICWE19), pages 560-565,
2019, Springer. Doctoral Symposium [64]

• The design of Liquid WebWorker (LWW) that wraps the Hypertext Markup
Language 5 (HTML5) WebWorker standard [69; 71];

• The Discretionary Access Control (DAC) model for private and secure liquid
Web applications.

Parts of this dissertation are derived from published peer-reviewed confer-
ence papers and journal articles. In Table 1.2 we list all publications published
on journals and conferences. In Table 1.3 we list the demonstrations, tutorial,
and doctoral symposium related to this dissertation.

14 1.4 Contributions and Publication Overview

Chapter 2

State of the Art

Liquid software cannot be summarized into a single specific technology, but it
can be described as a set of features (that can be mapped into multiple technolo-
gies) that need to be designed into applications that are executed on multiple,
heterogeneous computing devices [174]. Nowadays, the features we expect to
be implemented in liquid software, e.g., automatic transparent synchronization
on multiple devices, are not always supported by the majority of the existing
applications, and when an ecosystems provide said features, the users have to
explicitly turn them on.

Due to the decreasing in the price of the hardware, computers, smart-devices,
and displays are more affordable and as a consequence today’s life where a huge
amount of devices surround us [187]. The way we interact with these devices has
evolved in the past thirty years as we discover new ways of interacting with them
(e.g., with ubiquitous smart-devices [150] or pervasive public displays [24]). The
kind of interactions also depend on the environment in which they are installed:
e.g., users interact with laptops differently if they are in private environments
where only one or very few users interact with it (e.g., smart homes [10]), or if
they are in public locations with a huge amount of people [58], or if they are in
shared spaces where a group of selected people need to interact with each other
in order to achieve a common goal [155] (e.g., in offices [162]).

Weiser et al. predicted in 1991 [184], in the same period when laptops started
to be more affordable to the masses, that in our century computers would be
ubiquitous [185] and that their integration with our everyday lives would be so
seamless to be invisible to the human perception. Even if we can say that their
prediction was correct, we still have to achieve the invisible computing environ-
ment as they described in their work. Quoting Weiser et al.:

[184] “Technologies weave themselves into the fabric of everyday life

15

16

until they are indistinguishable from it.”

We believe that in order to achieve this goal at its full potential, we need to
increase our efforts and invest more time in studying the development of cross-
device applications [137] that aim to be so seamlessly integrated with the sur-
rounding world. We believe that we did not achieve the goal at is fullest potential,
because we spend more time designing distributed UIs [49], while we forget to
develop a solid backbone application that can support liquid features. The whole
application, as well as the UI, must be able to seamlessly flow in the invisible com-
puting environment, so that we can create smart environments (e.g., EasyLiving
from Microsoft [166]).

If we follow the history of computer evolution from 1991, the relationship be-
tween users and their computing devices has evolved from multiple users sharing
one expensive and large computer to the far opposite, in which multiple, cheap,
mobile and Web-connected devices are owned by a single user. Web browsers are
nowadays ubiquitous as they run on desktop computers, laptops, tablets, smart
phones, digital cameras, smart televisions, cars, and, with some limitations, even
kitchen refrigerators, watches and glasses.

The Web is the biggest and most accessible platform available today, as it al-
lows developers to share and distribute information and applications with any
device produced by any manufacturer. The newer and emerging HTML5 stan-
dards removed or soon will remove the remaining barriers that will allow de-
velopers to build any kind of application on the Web. Developers are steadily
creating more and more Web-based software instead of focusing solely on the
creation of binary platform-locked software [170]. The Web is not anymore just
a place for storing information, but it also a full-fledged platform for creating
software. No other platform can achieve the same level of world-wide distribu-
tion and portability. If a device can run a modern Web browser complying with
the HTML5 standard, then it can run any application developed for the Web [9].

Nowadays, while responsive Web applications are designed to adapt to the
different screen sizes and input/output capabilities of different devices, it is
still challenging to develop rich Web applications which can seamlessly migrate
across different user devices. For example, planning a trip on a large display
and following the directions for the trip guided by the phone Global Positioning
System (GPS); typing a short email by tapping on the phone screen but then as
the email text grows longer deciding to continue the work on a computer with
a real keyboard. As users begin to use multiple devices concurrently – for ex-
ample: to watch television while looking up information on their tablet, to play
games across multiple telephones, to share pictures taken with personal devices

17 2.1 Liquid Software Metaphor

and view them on a public display, to remotely control presentation slides from
a watch, or to confirm a credit card transaction entered on a desktop computer
using the fingerprint reader of the phone – only few Web applications fully take
advantage of all available devices and distribute their UI accordingly or allow
users to re-arrange different UI components at will.

Web developers and designers have successfully addressed the scalability
challenge to serve Web applications to millions of users [4] and to personal-
ize such applications to each user profile [20] (e.g., language, age, geographical
location, regulatory constraints, etc.) and adapt it to the capabilities of their
Web browsing device [125]. However, this has been under the assumption that
users connect to use the Web application using one device at a time. Stateful
Web applications which use cookies to establish a session with a particular Web
browser make it difficult for users to switch devices in the middle of a browsing
session [75]. Additionally, they may break when opening multiple tabs to run
them and sometime assume that users logging in from different devices at the
same time may indicate a security issue. In this dissertation we tackle these is-
sues and study liquid Web architectures in order to create software able to adapt
to a set of devices.

2.1 Liquid Software Metaphor

The term Liquid Software is derived from a metaphor: like a liquid adapts to
the shape of its container, liquid software adapts to take full advantage of every
device it is deployed on [174]. A liquid Web application [132] is able to flow
between multiple devices following the attention focus of its users [116].

Hartman et al. [84] were the first to use the liquid metaphor to describe their
new paradigm on active network in 1996. They envisioned that the source code
of liquid software should be independent from the operating system platform and
that applications must be able to support code that can be deployed on multiple
machines, e.g., code snippets are allowed to be seamlessly transferred between
devices. Location-independent code is the fundamental principle of liquid soft-
ware, which is strongly related to the concept of mobile code [55].

Hartman et al. presented Joust in 1999 [85], a Java platform that allows
mobile code [55] to be more maintainable, easier to update and to inject in
the devices connected to the system. The metaphor has evolved over the years
into the liquid software manifesto [174] presented in 2014 to emphasize specific
properties of the user experience, instead of focusing only on how mobile code
can be moved between devices in a active network [40]. Even if the metaphor

18 2.1 Liquid Software Metaphor

has evolved, it still focuses on the metaphorical adaptability property of a liquid
at its core. The liquid software manifesto takes into consideration the fact that
nowadays end users own multiple devices and that they wish to use all of them
together to run their applications.

Liquid software can: 1. adapt the UI to the set of devices being concurrently
used to run the application; 2. seamlessly migrate a running application across
devices; 3. synchronize the state of the application distributed across two or more
devices, effectively breaking down the continuity boundaries that exist between
devices in proximity both in physical space as well as in cyberspace [174].

According to the manifesto of Taivalsaari et al., software can be defined as
liquid if it fulfils the following six core requirements:

1. “In a truly liquid multi-device computing environment, the users shall be able
to effortlessly roam between all the computing devices that they have.” [174]
This requirement is fundamental for the liquid software paradigm: at any mo-
ment users can choose to change and operate any of their devices, in turn the
liquid software must be able to roam and deploy itself on the new machine with-
out making the users aware of all necessary underlying operations. The liquid
users do not care how the liquid software is implemented and should be able to
have access to the liquid features with as few configuration steps as possible.

2. “Roaming between multiple devices shall be as casual, fluid and hassle-free
as possible; all the aspects related to device maintenance and device management
shall be minimized or hidden from the users.” [174]
In theory, in the final evolution of the liquid software, the migration of an appli-
cation is so seamless that when the gaze of the users point to a different device,
the software is able to transparently roam from a device to another undetected.
However this hypothetical scenario can easily break the privacy of the users,
which would prefer to have some kind of control on the liquid software roaming.
The users must be in control of the liquid software and must be able to configure
it as they please, however once it is configured, the users do not need to know
how it works.

3. “The user’s applications and data shall be synchronized transparently be-
tween all the computing devices that the user has, insofar as the application and
data make sense for each device.” [174]
Roaming an application between multiple devices implies that the data and the
state of the application is copied and sent on multiple locations. The liquid soft-
ware should move between devices only the needed state required to operate
the application on another device. E.g., if the users wish to buy something on-
line on their smartphone, the device needs to access the credit card information
of the users, but does not need to access all the pictures stored on their desk-

19 2.1 Liquid Software Metaphor

top computer. As the user’s data roams between devices, liquid software needs
to synchronize the smallest quantity of data as possible, both for enhancing the
overall performance of the application and for enhancing the privacy of the user.

4. “Whenever applicable, roaming between multiple devices shall include the
transportation / synchronization of the full state of each application, so that the
users can seamlessly continue their previous activities on any device.” [174]

The synchronization process should be able to handle any payload size, ranging
from small data updates (Bytes) to the whole application state (MegaBytes). The
LUE is enhanced by responsive and real-time application, as the users can keep
working on their application without delay even if they suddenly change device.
Optimizing the real-time synchronization of big chunks of data is a real challenge,
which we cannot overcome when the upload bandwidth of a device is low or
limited. Liquid software must design new kind of interactions that allow the
users to operate the application even when some data is missing, while giving
them the perception that the whole state is already migrated to the device.

5. “Roaming between multiple devices shall not be limited to devices from a
single vendor ecosystem only ideally, any device from any vendor should be able to
run liquid software, assuming the device has a large enough screen, suitable input
mechanisms, and adequate computing power, connectivity mechanisms and storage
capacity.” [174]

Liquid software must be free to roam to any device. Manufacturers and vendors
always try to create their own locked ecosystems (e.g., Apple and Microsoft),
but a truly liquid environment has no bounds. For this reason we aim to build
liquid software on the Web, which can be accessed by the majority of all existing
devices.

6. “Finally, the user should remain in control of the liquidity of applications
and data. If the user wishes certain functionality or data to be accessible only on a
single device, the user should be able to define this in an intuitive, straightforward
fashion.” [174]

The users of liquid applications can decide which data is transferred to the de-
vices they do not trust and can prevent at any time them roam of the data to
certain devices. The users are in control of the data they produce.

In this dissertation we design liquid software which addresses all the six re-
quirements discussed in the liquid software manifesto and as a first step towards
achieving the liquid software vision, we also present the implementation of the
Liquid.js for Polymer framework.

20 2.1 Liquid Software Metaphor

2.1.1 Similar Metaphors

The liquid metaphor is not only used to address liquid software, but is also used
in different context. In 2011 Bonetta et al. use the liquid metaphor for defining
liquid Web services [23]. In their work they discuss liquid architectural styles
for creating Web services that can transparently scale when new resources are
required and can be executed on multiple heterogeneous platforms. The main
quality attributes of liquid Web services are deployability, composability, and scal-
ability. Their work on Web services has a similar approach as the one we discuss
in this dissertation, in fact the authors discuss fine-grained component-based ar-
chitectural styles which we believe is also a solid design decision for creating
liquid Web applications.

The liquid metaphor is also used by Babazadeh et al. in 2015 when they
coined the concept of Web liquid streams [18]. The framework they propose
can be used to deploy stream processing pipelines on volatile environments
composed by multiple heterogeneous devices and IoT sensors. The framework
they implemented orchestrates the creation and evolution of data streams that
can dynamically change at any time during the execution. The framework is
also in charge of creating Web Real-Time Communication (WebRTC) DataChan-
nel [Moz20a] and redistributing resources between the set of connected devices
even when it changes due to connections, disconnections, or failures. Upon fail-
ure the framework decides how to re-deploy the streams on the new environ-
ment, without losing data in the process. Their concept of Web liquid streams is
similar to the liquid software paradigm because they both deal with deployments
on volatile environment composed by multiple heterogeneous devices. However
Web liquid streams focus more on the resource distribution for the stream pro-
cessing and does not really give a solution for deploying the state and view of
the application in a distributed environment.

A similar metaphor is used in Fluid computing [22], which denotes the repli-
cation and real-time synchronization of application states on several devices. The
application state flows like a fluid between devices, similarly as we propose liquid
software does. The authors list three main application areas where fluid com-
puting is relevant: 1) multi-device applications, where several devices may be
temporarily coupled to behave as one single device (e.g., a mobile and a sta-
tionary device); 2) mitigation of the effects of unreliable connectivity, where ap-
plications on ubiquitous devices can exploit full or intermittent connectivity; 3)
collaboration, where multi-user applications enable several users to collaborate
on a shared document. Technically the platform associated with fluid computing
consists of middleware that replicates data on multiple devices, and achieves co-

21 2.1 Liquid Software Metaphor

ordination of these devices through synchronization. Each device has a replica
of the application state, allowing the device to operate autonomously; a special
synchronization protocol is used for keeping the replicas consistent. This ap-
proach is different from the liquid software paradigm which aims to minimize
the synchronized state of the application in order to enhance the privacy of the
users.

An other notable use of the liquid metaphor can be seen in liquid tem-
plates [Sho20] created by Shopify, which are used by many modern Web ap-
plications and frameworks. Liquid is a template engine meant to be easy and
flexible to use which can create Web pages meant to run on any Web browser.
The engine is non-evaling (it does not call the eval method) and templates can
be edited by the users. In order to guarantee security, those templates are not
evaluated on the Web server. While their goal is flexibility and security, the tem-
plating engine they propose is not close to the liquid software requirements we
discuss in this dissertation.

On the opposite side of the metaphorical spectrum we have Solid [124], a
project lead by Berners-Lee, the inventor of the World Wide Web. The name
solid is derived from social linked data, and can be used to create decentralized
social applications based on Linked Data. This project’s goals is to further de-
centralize the Web, a topic that Berners-Lee [16] is discussing in many of his
talks. For Berners-Lee the decentralized Web must be accessible by anyone from
anywhere without stealing data from the users. In his vision the users have true
ownership of the data they create and have freedom to choose where it is stored
and have full control on who can access it. Solid decouples the content from the
Web application, so that users can have control on the content even if they do not
own the application. Even if the metaphor is not the same, we believe that the
decentralization of the Web is important and required in the liquid software en-
vironment. Data privacy, portability, and deployability of the liquid applications
are also at the core of the liquid software paradigm.

22 2.2 Beyond the Liquid Metaphor

2.2 Beyond the Liquid Metaphor

While the term liquid software exists since 1996, it is not the only research area
that discusses cross-device application deployments. Brudy et al. [29] surveyed
more than 500 papers over 30 years of cross-device publications and noticed
a lack of unified taxonomy in the multi-device research. For this reason cross-
device deployments and cross-device interactions branched out in many different
areas that use different terms for discussing the same challenges even if we aim
at the same goal. This dissertation was primarily inspired by the liquid software
paradigm, but it relates to many other concepts. Liquid software is not a single
technology, rather a collection of features. In this section we discuss the main
areas and related work to this dissertation.

2.3 Computer-Supported Collaborative Work (CSCW)

From the UI perspective, the roots of liquid software can be traced back to
Computer-Supported Collaborative Work (CSCW) [80; 149], which focuses on
enabling collaboration between multiple users with the help of one or more com-
puting devices.

One of the many vision CSCW proposed in the past was presented by Stefik
et al. in 1989 [161], in which they envisioned multiple users working in a office
together with multiple devices. They discuss multiple scenarios in which users
interact with each other, but instead of using pens and papers they own and share
information through the devices they are using. These use-case scenarios are at
the core of the liquid software paradigm.

Grundy et al. [83] presented in 2002 a collaborative, multi-device,
component-based, thin client groupware system entirely based on Web technolo-
gies. The component-based allowed multiple users to perform activities together
both on Web browsers and on mobile devices. Unfortunately with the technolo-
gies available in their era they could only achieve asynchronous interactions be-
tween the users because of technological limitations.

2.3.1 Cross-Device Interfaces

The cross-device distributed UIs research area discusses similar challenges to the
CSCW, however it does not focus only on the multi-user use-case scenarios, but
rather discusses the distribution of the view layer of applications in general.

23 2.3 Computer-Supported Collaborative Work (CSCW)

XD-MVC [89] is a Web framework which can be used to develop decentralized
cross-device applications focused on automatic cross-device adaptation of the ap-
plication UI. The framework allows to easily decompose and migrate component-
based Web applications built with the Polymer framework. The migration is im-
plemented at the application level, but only the state is synchronized between
devices. From the developer point of view, migration is implemented by clip-
ping off child components from their parents, depending on which devices they
are deployed, simulating the roaming behavior expected by liquid software. XD-
MVC supports declarative adaptation of the view layer, as views and components
can be annotated with rules that describe how components are expected to be
shown across multiple devices. By interpreting up these rules, XD-MVC is able
to decide which parts of a view need to be clipped off depending on the config-
uration of the set of connected devices. Husmann et al. [93] also implement a
library that can be used to test if the UI of a cross-device application is visualized
correctly on a distributed environment.

Nebeling et al. [137] proposes new techniques for enhancing cross-device in-
teractions by creating a Graphical User Interface (GUI) builder designed to sup-
port interactive development of cross-device Web interfaces. The tool simulates a
multi-device environment where the developers can design the application with
an immediate feedback on what they are building.

Cross-device interfaces also deal with new ways for interacting with multiple
devices. Di Geronimo et al. introduce Ctat [44], a new paradigms for interacting
and sharing data between multiple mobile devices with intuitive gestures. With
Ctat the Web browser of a smartphone device can detect the tilt and tap gestures
performed by the users. In a cross-device environment the users can now tilt the
phone towards an other device and tap it on the corner in order to perform a
predefined action in the Web application.

Zorrilla et al. [194] propose to assign properties both to application compo-
nents and devices. The centralized server uses these properties to score the best
targets for the distribution, and then shows and hides the corresponding compo-
nents depending on which devices they are deployed on. Similarly to their work,
in this dissertation we use a rule-based approach for distributing Web application
across multiple devices.

In the distributed UIs field, Santosa et al. [169] made a field study on the
impact in the real world of the use of technologies enabling cross-device interac-
tions. Given the responses of experts in the field, they collect and compare nine
existing cloud-based data management software enabling cross-device collabo-
ration between users.

Differently from the approaches proposed in the cross-device UIs area, in our

24 2.3 Computer-Supported Collaborative Work (CSCW)

vision, design, and implementation of liquid software our goal is to be as decen-
trilzed as possible, without offloading any computation to the Web server. We
also design liquid software that deploys as few components as possible on each
of the available devices instead of deploying multiple copies of the application
where they are not required. We also avoid to use cloud-based approaches so
that the users can always be on control of their data.

In the literature we can also find several research topics that are similar to the
cross-device UIs area, but with a different label, such as adaptive multi-device
UIs [151] and DUI [115]. The majority of these researches focuses on native
vendor-locked implementations or on centralized approaches.

2.3.2 Human-Computer Interactions (HCI)

The wider Human-Computer Interactions (HCI) area, tightly connected to the
CSCW, describes a multitude of use-case scenarios for liquid software. Bellotti
et. al [12] shows in 1996 how people interact and collaborate with each other
in conjunction of their devices in a working environment. The survey proposed
by Elmqvist [49] discusses the state of the art of distributed UIs in the HCI area.
Elmqvist summarizes how it is possible to achieve migration of the UI and redi-
rection of inputs and outputs of a multi-device deployment. The concept of redi-
rection used by the authors is similar to the concept of forwarding inputs and
outputs in liquid software.

HCI also defines many interactions that are useful to the liquid software
paradigm. Ghiani et al. [76] distinguish how application can move from a device
to another by separating them in two categories: pull and push. An applica-
tion can be pulled by users from a device in their reach into their own device,
while a push interaction means that the users can send their applications to a tar-
get device. These two operations have different implications in term of privacy
and security. When an application is pulled by the users, they are requesting an
application deployed on another machine and thus they do not care about the
ownership of the state it stores, because they are not the owners. However the
users must be aware of the security of the operation, since when the pull an ap-
plication they must be aware that the software can be malicious. On the other
hand when users push an application they care about privacy because the appli-
cation they are pushing can contain data they created. Pull and push operations
are an important in the design of liquid software.

Esenther [50] builds in 2002 a framework for real-time collaborative co-
browser applications in the Web. The framework deploys a controller on the Web
server of the application and allows two-way communication for synchronizing

25 2.3 Computer-Supported Collaborative Work (CSCW)

the data between the devices in real-time.

2.3.3 Internet of Things (IoT) and Public Displays

Nowadays on average we own more than three Web-enabled devices per per-
son [Glo17], this number is expected to further increase in the next years,
foreseeing to reach the threshold of more than six devices per person in
2020 [Eva11]. Most existing Web applications are meant to run and be respon-
sive to the specifications of a single device. With the increase of the average
number of devices per user, there is a need to create applications able to run
across multiple devices instead of just a single one at a time. Fog computing [21;
45] on the Web of Things [82] or Mobile Cloud computing [105] are a few ex-
amples of the current trend attempting to virtualize the resources provided by
multiple surrounding devices in order to maximize resource usage and speedup
computations. Liquid software shares the same goal to virtualize the capabilities
of a set of heterogeneous devices in order to create a user experience in which
an application can seamlessly run on multiple devices.

The technological foundation of liquid software emerges from the evolution
IoT [6], the Web of Things [82], or more in general from the Programmable
World [172]. Pervasive computing [157] shows how microprocessors can be
embedded in all sorts of objects scattered around us. Today those things are not
isolated from each other anymore, because they became "smart", and they are
able to communicate with any similar object around them. The users and the
devices surrounding them make up a complex ecosystem [186] which requires
software to adapt to the set of available devices, for example whenever a smart
object enters or leaves the proximity of the user running a given software applica-
tion. Similarly, liquid software automatically flows between devices to adapt its
deployment configuration to take full advantage of the resources and capabilities
of multiple devices. Nowadays smart objects and devices are so common [182]
and advanced [32; 79], that users may also interact with some devices that they
do not directly own, but nevertheless they are allowed to share some informa-
tion with it in order to run applications across particular devices. For instance,
it is possible to find public displays [37] owned by cities [193] which may allow
users to interact with them directly or by pairing their mobile smart phones with
them. This way, users could for example take advantage of the large screen to
display a picture slide show. This is a relevant scenario for liquid software, as the
application should run across multiple devices to achieve the user’s goal. More
in general, the challenge we focus on in this section is how to enable devices
to share their available computing resources and how to design software which

26 2.3 Computer-Supported Collaborative Work (CSCW)

can seamlessly access them. However this new kind of interactions have a wide
range of implications [8] that must be addressed, e.g., how can we trust a public
display and how can we prevent data leakage [36]?

Mobile Computing [59] discusses the potential of creating powerful dis-
tributed systems made of mobile hardware that communicates through the Weeb.
A mobile computing system trades portability and social interactivity with many
distributed systems challenges such as dealing with device connectivity, discov-
ery, trust establishment and proximity detection. The study of context-aware
systems [160] allows us to understand how to create systems based on proximity-
awareness [39; 129].

2.3.4 Mashups

This dissertation is also inspired by the multi-device mashups approaches [47],
whereby Web applications are built out of the composition of reusable compo-
nents. In particular, the UI is decomposed into Widgets, which encapsulate self-
contained behavior and state [38]. Chudnovskyy et al. [35] presents a solution
to develop a (semi) automatic system that creates the inter-communicating mesh
between all the widgets embedded in a Web page. The same authors [34] discuss
in more details the challenges of inter-widget communication in widget-based
mashups and composite Web applications, in particular: awareness, the ability
of the user to know which widgets are connected; and control, the ability of the
user to change the mesh of connections among the widgets. Daniel et al. discuss
how to decomponse traditional Web applications into smaller reusable mashups
components [46].

In the solution we implement in this dissertation we take a similar ap-
proach by using the HTML5 Web components standard [Moz19a], which provides
reusable UI elements using standard Web technologies. With our approach we
can also decompose solid applications, by turning them into liquid components.

Likewise, in [77; 81] Gaedke et al. research similar compositional ap-
proaches, define the composition model and discuss the specification of Smart
Composition. Smart Composition [113] is a mashup tool that enables the devel-
opment of multi-screen mashups. Smart Composition applies WebComposition
to the simultaneous screening scenario. It is possible to roam from a device to
another and exchange data between devices, but it doesn’t provide solution for
sequential screening or collaborative scenarios.

27 2.3 Computer-Supported Collaborative Work (CSCW)

2.3.5 Distributed State in the Web

Liquid software requires data to be synchronized between a set of devices. Caste-
leyn et al. [33] discuss that the amount of state held by a complex Web application
accumulated during a normal usage session cannot be easily migrated to another
device. Likewise, it is also very challenging to synchronize such state among mul-
tiple Web browsers that access the same Web application concurrently on behalf
of the same (or different) users.

InterPlanetary File System (IPFS) [Pro20] is a distributed, P2P file system.
With IPFS it is possible to create distributed applications that process data files
which are shared and synchronized among all the connected peers.

Outside the Web browser, there exist many attempts to enable applications to
flow between mobile devices or mobile and desktop operating systems. One of
most notable examples are Continuity and Handoff by Apple. With continuity it
is possible to migrate a call from one device to another, while with Handoff it is
possible to roam from device to device while holding the work session that was
initially created, for example while composing an email. In the Apple implemen-
tation [148], devices discover one another via Bluetooth and the synchronization
mechanism of the application state is provided by the centralized iCloud back-
end.

Liquid applications in a simultaneous screening scenario require to deal with
replicated and synchronized data, which have been studied in the database com-
munity for many years [98]. On the Web, given the heterogeneity of the devices
(e.g, the amount of storage may vary) and their frequent disconnections (e.g.,
due to battery or network connectivity problems), some of the assumptions of
classical data replication mechanisms may need to be revisited.

2.3.6 Offload Computations in the Web

Web technologies have been evolving towards increased support for reliable mo-
bile decentralized and distributed systems. In the past decade an effort has been
made to improve and create new HTML5 standards [191] that can help with the
creation of complex mobile distributed systems able to reliably maintain data
synchronized between devices [147]. Thanks to novel standard protocols it is
also possible to interconnect any device by using any standard compliant Web
browser. Okamoto et al. [143] show how to create mobile Web distributed sys-
tems by exploiting the WebWorker HTML5 standard.

Web browsers allow any device to connect to a Web application, meaning
that users can connect all the devices they own to run a single liquid cross-device

28 2.3 Computer-Supported Collaborative Work (CSCW)

application. Whenever a device is connected to the liquid application, the re-
sources it provides are exploited by the software. This approach is similar to the
one of Volunteer Computing [3], where users willingly connect their own devices
to perform a global computation, and share data, storage or computing resources
among them.

Edge computing [164] focuses on optimizing data processing and storage by
shifting computations closer to the source of the data, as opposed to shipping a
copy of the data to large, centralized Cloud data centers [159]. The optimiza-
tion reduces bandwidth consumption and latency in the communication between
the edge devices, making it possible to reduce the overall processing time of
an operation. Fog computing [21; 122] takes edge computing to the extreme,
by making it possible to make all data processing computation within the IoT
ecosystem. Liquid software also incorporates such performance goals, in order
to seamlessly migrate applications among multiple user-owned devices without
relying on centralized Web servers. Similar concepts can also be found in the
ubiquitous computing [150] literature.

Traditionally large amounts of distributed computational resources was
found mainly within clusters of computers or Cloud data centers, however re-
cent trends show that also the Web, by employing Web browsers running across
many types of devices and WebWorkers as a programmatic abstraction for paral-
lel computations, can deliver a decentralized computation platform [42] as well.
While most existing computational offloading work focuses on shifting work-
loads vertically from mobile devices to the Cloud [45], in this dissertation we
study how to do so horizontally by using nearby devices. While these may not
be as powerful as a Cloud data center, they will remain under the full control of
their owners and enjoy a better proximity on the network.

Hirsch et al. [87] propose a technique for scheduling computation offloading
in grids composed by mobile devices. The scheduling logic of the system is able
to offload a set of heterogeneous jobs to any mobile device after an initial central-
ized decision-making phase. This is followed by the job stealing phase, in which
jobs are relocated to other devices in a decentralized manner. The scheduler con-
siders the battery status, the CPU performance and the up-time expectation of all
connected devices when it has to decide where to offload jobs. The CPU perfor-
mance is computed using a benchmark. While this approach shows promising re-
sults and it is able to increase the overall performance of computational-intensive
applications, in this dissertation we present a fully decentralized approach able
to operate inside a Web browser, where complete information about the devices
hardware and software configuration is not always accessible.

Loke et al. [120], propose a similar system allowing multi-layered job stealing

29 2.4 Industry Solutions

techniques also with a hybrid approach (both centralized and decentralized) for
offloading decisions. The decision depends on which devices are close to the
device that starts the computation and then tries to scatter the job between them.
Their approach is not based on a Web browser and relies on Bluetooth or WiFi
for inter-device communication.

2.4 Industry Solutions

Today, perhaps the most illustrative example of liquid software is the Handoff ca-
pability (also known as Continuity capability) in Apple’s iOS ecosystem [Gal14].
A typical Handoff use-case is a situation in which a person starts composing an
email on an iPhone but then decides to finish the e-mail on a personal computer
(Mac) that has a much larger screen and a physical keyboard. The participating
devices need to be registered in the iCloud service with the same user identity,
and the devices must be able to communicate over Bluetooth. When using Hand-
off, applications need to be written explicitly to take advantage of the Handoff
API; furthermore, the applications must be pre-installed across all devices. Most
of the built-in Apple applications are already compatible with Handoff, thus sup-
porting continuity across devices. Each device runs a specific version of the ap-
plication, and hence their UI is implicitly capable of adapting to take advantage
of the device capabilities (e.g., multi-touch, screen size and specific screen reso-
lution).

Another example of software that allows liquid-like user experiences on mo-
bile devices is Android Baton from Nextbit [Kar14]; Baton runs on the Android
ecosystem and provides features similar to Handoff. Thanks to the cloud backend
it allows the users to synchronize any files between all the registered devices. It
can also migrate the work the users are currently doing on a device to another
one without losing the view that they had in the previous device. Baton has the
same limitations as Apple Continuity: native Android apps need to be explicitly
developed using this proprietary API to support migration and synchronization
across devices.

Windows Continuum [Mic16] is a small physical device (box) that can be con-
nected to mobile devices running Windows 10. Once a mobile device is tethered
to the box, Continuum can then be attached with a cable to screens, keyboards
and mouses around the user using it. Any hardware attached to the Continuum
box is interfaced with the mobile device, making it possible to seamlessly migrate
from the mobile view on the device to a desktop-like experience on the attached
screen. With Continuum there is no need to use a cloud service for synchronizing

30 2.5 Cloud

data nor to have communication between multiple devices; the box itself reads
the data from the mobile devices and maps the view displayed on the phone
with a responsive desktop view that is displayed on the connected screen. From
the users’ point of view the work they are doing is migrated from the mobile
device to the screen. Google Chromecast [Goo20a] uses the same concepts as
the Windows Continuum; thanks to external hardware Chromecast can interface
multiple devices with a television, allowing migration of supported applications
into an external screen.

Opera Unite (now discontinued) [Ope09] was a Web browser extension
which allowed users to host social Web applications (e.g., photo sharing, social
wall) on their Web browser. The goal of these efforts was to enable safe social
networking whereby personal data would be exchanged directly between trusted
devices.

2.5 Cloud

Cloud computing systems, thin client environments and Web-based applications that
adhere to the Software as a Service (SaaS) principles [171; 25] naturally possess
many of the qualities required by Liquid Software. For instance, since in cloud-
based applications the majority of the data resides in the cloud, in principle all
the clients using the same application will stay in sync automatically. However,
in the absence of mechanisms that notify the clients of changes made by other
clients, in practice all the locally stored or cached client-side data will quickly go
out of sync. In desktop-based systems that utilize the Web browser as the client
environment, these problems are usually mitigated by explicitly reloading the
page containing the Web application. In mobile Web computing environments
such as Firefox OS [Moz12] (popular in 2012 and now discontinued) or Cloud-
berry [176] explicit use of notification mechanisms (e.g., push notifications) is
required at the application level if multiple clients are to be kept in sync.

Cloud-based systems such as Apple’s iCloud [App18] and Google
Sync [Goo20b] are already paving the way for automatically synchronized
devices. However, these systems are limited to devices supporting the same
native ecosystem. Furthermore, these systems do not yet provide seamless
experiences and transitions across devices. Ideally, when the users move from
one device or screen to another, the users should be able to continue doing
exactly what they were doing previously, e.g., continue playing the same game,
watching the same movie or listening to the same song on the other device. This
type of truly liquid usage of software applications is not generally supported yet,

31 2.5 Cloud

although such features may already be available at the application level. For
instance, the Spotify music player allows the user to shift the currently playing
music track from one device to another.

In the literature there are many other frameworks that enable the creation of
Web applications with some of the requirements originally described in the liquid
software manifesto [174]. For example PolyChrome [13] is a centralized Web
framework for building co-browsing applications, where the implemented views
can span on multiple surfaces deployed on multiple devices. The framework
defines and supports four predefined layouts: stitching, replication, nesting, and
overloading. The PolyChrome API makes a distinction between interactions and
events: interactions change the data of the application and are sent to the Web
server where the central state of the application is stored; events change the view
displayed on the devices and are directly exchanged between all paired devices.
Polychrome can create components out of legacy applications in order to create
views spanning across multiple devices. The design of Polychrome is strongly
centralized, which does not allows users to define which of their data is stored
on the Web server. In Chapter 3 we present more related liquid frameworks as
we discuss the design of liquid software.

32 2.5 Cloud

Chapter 3

Liquid Software Design

3.1 Design Considerations

The creation of the seamless user experience able to transparently flow from a
device to another requires to follow several design considerations. Consequently
the effort and complexity of the underlying implementation of liquid software
increases as the user experience needs to follow more principles. In this section
we discuss individual architectural considerations that entail a number of key
design decisions that form the design space of liquid software. From the design
considerations we derive the design dimensions that are later discussed in the
design space (more about it in Section 3.2).

The core design considerations important to liquid software are: • User In-
terface (UI) adaptation; • data and state synchronization; • client/server parti-
tioning; • security. All design considerations must be taken into consideration
by software developers during the design of their liquid software.

3.1.1 User Interface (UI) Adaptation

The core feature of liquid software is its ability to adapt to take advantage of
each and every device. The device usage of liquid software is the first design
dimension that developers must consider during the design of their liquid appli-
cations. Liquid software design can be different depending if the liquid software
runs sequentially or in parallel on the set of devices. The device usage dimension
does not distinguish between collaborative or single user scenarios.

The LUE of a liquid application needs to consider and must be able to detect
and operate with all different input methods provided by the devices. E.g., the
LUE must be able to operate with either a keyboard or a touch screen depending

33

34 3.1 Design Considerations

on the deployment. Depending on the nature of the device, it is possible that the
LUE must display only a subset of the data of the application, e.g., a small device
might show only the most meaningful data as opposed to a device with a larger
display. When multiple devices are available, the use of companion devices makes
responsiveness more challenging since the UI needs to adapt to a combination of
complementary devices. Thus, in general, the UIs of liquid applications should
be responsive and adapt to the set of devices where they currently run. The level
of adaptation of the LUE can be summarized with the UI adaptation design
dimension.

While traditional software, meant to run on a single device, expects that both
input and output channels operate on the same device, liquid software does not
have such restrictions. Liquid applications may allow multiple input channels as
well as multiple output channels from different devices. The users are free to use
any number of their devices as they please, making it possible to use the devices
as comfortably as possible, e.g., by using the keyboard attached to a computer
to type on the smartphone. The only assumption is that the liquid application
has been deployed on all devices. In the simplest case, this could be achieved
with basic input/output forwarding, without the need to actually migrate, fork
or clone the software. The kind of input/output interactions of liquid software
can be summarized with the LUE primitives design dimension.

3.1.2 Data and State Synchronization

When we talk about software able to dynamically change its deployment at run-
time it is important to distinguish between persistent application data and dy-
namic application state [55]. By persistent data we refer to the static content
(e.g., documents, images, media files) that the users store persistently across us-
age sessions, while dynamic state is the runtime information that the application
needs during its execution.

In existing designs, the persistent data is commonly stored locally on each de-
vice and can be synchronized using different cloud-based storage services [108].
Unfortunately, many of the cloud-based storage systems are limited to individual
applications, specific data types or certain native operating system ecosystems
(e.g., Apple’s iCloud [App18] or Google Sync [Goo20b]).

Liquid software is also concerned with the dynamic state of the application.
The runtime execution state can be captured at different levels of granularity
(another design dimension of the liquid software design space), from the val-
ues of relevant properties (e.g., storing UI configuration settings) or the entire
volatile memory storage of an application (e.g., the JavaScript (JS) Heap that

35 3.1 Design Considerations

contains all stored objects in a Web page). In traditional solid software appli-
cations, the state is not persisted after an application is turned off. In liquid
software, the seamless LUE requires to decide how the data is replicated and
where it is persisted, regarding the state it is important to identify which parts
are bound with the migration of the applications, and how it is synchronized
across the devices.

3.1.3 Client/Server Partitioning

The partitioning between the client and the server is a key design decision for liq-
uid architectures [126], especially when we consider to implement liquid appli-
cations with Web technologies, for this reason we introduce the layering design
dimension. Applications can be meant to run entirely on a backend server; the
client-side of the application can just display the UI and delegate the processing
of all the events to the server (e.g., Ruby on Rails [Rai16]). Similar ultra-thin
techniques exist on native liquid applications where a virtual desktop is offered
for remote use (e.g., in SunRay terminals [Ora16]). In contrast with the server-
centric view, the client-oriented approach focuses to run thicker clients. Orig-
inating from Asynchronous JavaScript And XML (AJAX) [65], we today have
single-page Web applications that use Backend as a Service (BaaS) APIs such as
Firebase [Goo20c] deployed on a central server, providing persistent storage and
notification services that are shared among all clients. In the realm of native
clients, the most obvious approach is to use reflection for transmitting the state
of a Java application from one virtual machine to another, as originally proposed
in the context of liquid software by Joust [85].

The development liquid applications can be both client- and server-centric
at the same time, as it is possible that applications are deployed both on thick
clients while partially depending on the logic deployed on the server-side. E.g.,
Vaadin framework [78] or Google Web Toolkit (GWT) [Goo16a] allow the devel-
opment of powerful UIs components, while the focal point for developers is on
the server side of their applications. In the context of liquid applications, the bal-
ance between centralization and decentralization can even change dynamically.
Different devices have different capabilities, and thus optimal configurations may
vary. Therefore, liquid software frameworks should offer capabilities for offload-
ing computation from clients to servers and vice versa. Since the capabilities of
computing devices may vary considerably, we anticipate a full range of archi-
tectural choices from ultra thin (all computations performed in server side) to
ultra thick (clients are completely self-contained) solutions. The different level
of centralization and decentralization can be summarized by the topology design

36 3.2 Design Space

dimension.

3.1.4 Security

The users should generally remain in full control over dynamic deployment and
transfer of applications and data. If certain functionality or data should be acces-
sible only on a specific device, the user should be able to define this in a simple,
intuitive fashion. E.g., in SunRay terminals the user’s session was secured with
a smartcard that the user had to enter in the terminal in order to open the ses-
sion [Ora16]. Similarly, when an application migrates to the devices owned by
foreign users, either belonging to other users or shared public devices, suitable
access control policies need to be established and enforced. While security as-
pects are often downplayed for software running on multiple devices belonging
to the same user, there is a need to assess and evaluate to which extent existing
security solutions can be applied to liquid software.

3.2 Design Space

A LUE can be implemented in a number of different ways. The design space of
liquid software arises from issues and choices in replicating and synchronizing
the software components and their state, and there can be various motivations
behind the design decisions. For instance, the users who switch the device in
the middle of a task do not appreciate if they have to restart their work from
scratch; rather, they expect continuity in the hand-off of the work between de-
vices, including seamless availability of their data [Gal14]. It is important to
discuss whether such synchronization relies on a centralized or a decentralized
architecture. In a centralized architecture all the software components and their
state are backed up in the cloud, and the devices synchronize their state via cen-
tralized servers. Alternatively, in a decentralized approach liquid software flows
directly between devices, leveraging P2P connectivity for direct state synchro-
nization across devices. The granularity of the software components that need
to be migrated also impacts the LUE, especially when deploying a liquid Web
application over multiple devices that are intended to be used at the same time.

To sketch the design space for liquid software, we will next discuss the rela-
tionships and dependencies between a number of design issues and alternatives
(see Figure 3.1). The design space model can be read from top to bottom follow-
ing the relationships between the various alternatives in the design space. Some
alternatives are exclusive (e.g., the different levels of granularity), while others

37 3.2 Design Space

Li
qu

id
 S

of
tw

ar
e

To
po

lo
gy

St
at

e
R

ep
lic

at
io

n
Ap

pl
ic

at
io

n
So

ur
ce

U
I A

da
pt

at
io

n
D

ev
ic

e
U

sa
ge

St
at

e
Id

en
tifi

ca
tio

n

C
lie

nt
 D

ep
lo

ym
en

t

D
is

co
ve

ry

Pr
im

iti
ve

s

Sy
nc

hr
on

is
at

io
n

La
ye

rin
g

G
ra

nu
la

rit
y

M
an

ua
l

Re
sp

on
siv

e
Co

m
pl

em
en

ta
ry

Pa
ra

lle
l

Se
qu

en
tia

l
Im

pl
ic

it
Ex

pl
ic

it

Fo
rw

ar
d

Fo
rk

M
ig

ra
tio

n
Cl

on
e

Ba
tc

h
Tr

ic
kl

e
O

S
VM

 /
Co

nt
ai

ne
r

Ap
pl

ic
at

io
n

Co
m

po
ne

nt
M

as
te

r-
sla

ve
M

ul
tip

le

m
as

te
rCe

nt
ra

liz
ed

De
ce

nt
ra

liz
ed

Hy
br

id

Si
ng

le

Re
po

sit
or

y
M

ul
tip

le

Re
po

sit
or

ie
s

Cl
ie

nt

Re
po

sit
or

ie
s

Pr
e-

in
st

al
le

d

O
n-

de
m

an
d

Ca
ch

ed

Ul
tra

Th

in
Th

in
Th

ic
k

Sm
ar

tc
ar

d

W
iF

i

Bl
ue

to
ot

h

Sh
ar

ed

UR
L

Q
R

co
de

O
r

Al
te

rn
at

ive

M
an

da
to

ry

O
pt

io
na

l
Co

nt
ac

t
Li

st

G
eo

lo
ca

tio
n

Figure 3.1. Overview: the design space of liquid software. Mandatory arrows
indicate that a child feature is required; optional arrows indicate that the child
feature is optional; alternative arrows indicate that only one child feature must
be selected; or arrows indicate that at least one child feature must be selected.

38 3.2 Design Space

can be selected together (e.g., which LUE primitives are supported). We also
indicate how the different alternatives constrain each other.

Table 3.1 characterizes and positions different technologies within the design
space. The goal is to provide proof-of-existence for each design space alternative
by citing concrete technology examples supporting it. However, we do not intend
to present a complete survey/review of existing technologies for liquid software.

3.2.1 Topology

The topology of a liquid architecture can be centralized, with a single, well-defined
host that maintains the master copy of the application state and an image of the
software to be deployed and run on each device. This centralized host is usually
available in the cloud, taking advantage of the high availability and virtually
unlimited capacity of data centers, potentially at the expense of the privacy of the
data that is no longer confined only to user-controlled devices. Liquid software
thus flows up and down from the cloud onto various user devices that are thereby
implicitly backed up and synchronized as long as a connection to the cloud is
available.

Alternatively, liquid software architectures can be designed with a decentral-
ized topology in which software, the state of the applications and their data are
exchanged directly between devices in a P2P fashion, leveraging local connectiv-
ity between devices. While P2P approaches can work by restricting the deploy-
ment of software onto specific devices that are under the user’s control, such a
multi-master approach (as opposed to centralized master-slave approach) makes
it more challenging to resolve synchronization conflicts since there is no single
master copy. Furthermore, while an individual device may have perfect Inter-
net connectivity, it is unlikely that all the user’s devices are always online at the
same time. Thus, special care must be taken to ensure successful migration and
synchronization of state across all paired devices. Conflict handling can become
especially problematic if a device has been used actively in offline mode for a
long time (e.g., during long intercontinental flights).

This basic topology decision, centralized versus decentralized design, can be
regarded as a fundamental dimension in the context of liquid software. Granted,
with a central server, it is easier to manage software as well as data content.
However, the decentralized alternative can offer significant benefits as well, since
only local connectivity is needed for migrating state from one device to another,
and the user’s data can be kept outside the reach of major cloud providers. Hybrid
approaches are possible too, with the cloud serving as an additional peer, e.g.,
for backup purposes; a similar approach was used in Nokia’s EDB system [108].

39 3.2 Design Space

Table 3.1. Technologies positioned in the liquid software design space.

Sun
R

ay
[O

ra16]

Joust
[85]

Fluid
C

om
puting

[22]

A
pple

C
ontinuity

[G
al14]

A
ndroid

B
aton

[K
ar14]

C
loudberry

[176]
C

loudbrow
ser
[173]

C
ontinuum
[M

ic16]

X
D

-M
V

C
[89]

Liquid.js
for

D
O

M
[179]

Liquid.js
for

Polym
er
[66]

1997 1999 2005 2014 2014 2014 2015 2015 2016 2016
Topology

Centralized Ø Ø Ø Ø
Decentralized Ø

Hybrid Ø Ø Ø Ø Ø
Application Source Topology

Single repository Ø Ø Ø Ø Ø Ø
Multiple repositories Ø Ø Ø

Client repositories Ø Ø
State Replication Topology

Master-slave Ø Ø Ø Ø
Multiple masters Ø Ø Ø Ø Ø Ø

Layering
Ultra Thin Client Ø Ø

Thin Client Ø
Thick Client Ø Ø Ø Ø Ø Ø Ø

Client Deployment
Preinstalled Ø Ø Ø Ø Ø
On-Demand Ø Ø Ø Ø

Cached Ø Ø Ø
Granularity

OS Ø Ø
VM/Container

Application Ø Ø Ø Ø Ø Ø

A
rc

hi
te

ct
u

re

Component Ø Ø Ø
State Identification

Implicit Ø Ø
Explicit Ø Ø Ø Ø Ø Ø Ø Ø

Synchronization
Trickle Ø Ø Ø Ø Ø Ø Ø Ø

St
at

e

Batch Ø Ø Ø Ø Ø
Device Usage

Sequential Ø Ø Ø Ø Ø Ø Ø
Parallel Ø Ø Ø Ø Ø Ø

UI Adaptation
Manual Ø Ø Ø Ø Ø

Responsive Ø Ø Ø Ø Ø
Complementary Ø Ø Ø Ø Ø

Primitives
Forwarding Ø Ø Ø Ø

Migration Ø Ø Ø Ø Ø
Forking Ø Ø Ø
Cloning Ø Ø Ø Ø Ø

Discovery
Shared URL Ø Ø Ø Ø Ø Ø

QR Code Ø Ø Ø
Bluetooth Ø Ø Ø

WiFi Ø Ø
SmartCard Ø

Contact List Ø

Li
qu

id
U

se
r

Ex
pe

ri
en

ce

Geolocation Ø

40 3.2 Design Space

3.2.1.1 State Replication Topology

In real-life implementations, the borderline between the two basic topologies is
not always clear. For instance in [106], implementation techniques forced the
design to use a centralized server for communication, while conceptually mi-
gration was handled in a distributed fashion. It should also be noted that the
sharing of the user’s data, synchronization of the application state, and applica-
tion deployment do not need to be organized according to the same topology; the
final architecture may be a mixture of centralization and decentralization. Thus,
we further distinguish state replication topology from application source topology.
More specifically, the state replication topology (see Figure 3.2) alternatives con-
sider:

• Master-slave (see Figure 3.2a): state replication is centralized. There is
one single master, such as the cloud or a Web server, which owns the master copy
of the state and makes sure that all connected clients (slaves) receive consistent
updates. Each time a client updates the state it must communicate with the
master; the master can drop the request or accept it; in the latter case the update
is propagated to all the other slaves. The master-slave approach can be burdening
for the node acting as a master because all the requests are managed by a single
node.

• Multiple masters (see Figure 3.2b): state replication is decentralized. All
the clients act as masters, which discard or accept state changes and propagate
them to the other clients that need to agree with them. In case of multiple mas-
ters, conflict resolution becomes more challenging as it requires the implemen-
tation of a suitable distributed consensus protocol [98].

3.2.1.2 Application Source Topology

In the area of application source topology (see Figure 3.3) we recognize the
following alternatives:

• Single Repository (see Figure 3.3a): the master copy of an application is
stored on a single node such as a server in the cloud or a Web server. The single
repository structure is the simplest to implement; whenever the liquid application
is requested, clients will look for it in this node. As new versions of the application
are released, it is sufficient to replace the master copy of the application with the
new one. Moreover, the single repository also stores the dependencies of the
application that can be retrieved together with the application.

• Multiple Repositories (see Figure 3.3b: the master copy of an application
is stored in multiple nodes, such as multiple Web servers. In the multiple repos-

41 3.2 Design Space

Master

Slave Slave

Slave

(a) Master-slave

Master

MasterMaster

(b) Multiple masters

Figure 3.2. State replication topology alternatives.

itory structure, the master copy of an application can be replicated and stored
on multiple nodes, and the application and its dependencies can be stored sep-
arately from one another. As new versions of the application are implemented,
they must be pushed/propagated to all the repositories (e.g., using a content
delivery network). In the case of full replication of the nodes, it is possible to
retrieve an application even if one the nodes fails, because another node can
provide the application on its behalf.

• Client Repositories (see Figure 3.3c: in this option the clients store the
application and can share it with the other clients. This solution can be imple-
mented in decentralized topologies if the clients are able to communicate with
each other through P2P communication [181]. In this alternative it is difficult
to manage versions of the application as they are pushed to clients, because two
clients could be running different application versions. In this case clients should
be able to recognize if they are using the same version of an application and up-
date the newer one if they are not.

The selection of topology depends also on the expected user experience be-
havior when dealing with temporary device outages and offline scenarios. When
the user is moving sequentially from one device to another, there might be sig-
nificant gaps between executions, e.g., if the target device is not online when the
previously used device has been switched off. A centralized topology can intro-
duce a store-and-forward functionality that allows migration in sequential usage
scenarios despite the temporary unavailability of some devices.

3.2.2 Discovery

An important aspect is to define how liquid software becomes aware of the set
of target devices on which it can run. The discovery mechanisms are concerned
with the existence of the devices, their location/proximity, their current reacha-
bility (online/offline) and their ownership. In centralized topologies, the registry

42 3.2 Design Space

Server

Dependencies

Application
Last
Version

21

Client

Request

Client

Client

Server

Server

Request
Application

Last Version Application

Request Dependencies: [1, 2]

Dependencies: [1, 2]

(a) Single repository – deployment and process views.

Server Entry Point

Server 1 Server 2

Server 3 Server 4

App.
Outdated
Version

App.
Last
Version

Dep.
1

Dep.
2

Client

Request

Client

Client

Entry Point

Entry Point

Server 1

Server 1

Server 2

Server 2

Server 3

Server 3

Server 4

Server 4

Request
Application

Forward Request

Last Version Application

Request Dependencies: [1]

Dependencies: [1]

Request Dependencies: [2]

Dependencies: [2]

(b) Multiple repositories – deployment and process views.

Client 2

Dependencies

Client 3

Dependencies

Application
Outdated
Version

21

Application
Last
Version

21

Client 1

Request

Client 1

Client 1

Client 3

Client 3

Client 2

Client 2

Request Application
and Dependencies

Last Version
Application and
Dependencies [1, 2]

(c) Client repositories – deployment and process views.

Figure 3.3. Application source topology alternatives.

43 3.2 Design Space

of devices is usually kept in the cloud. On the device side, several technologies
are readily available for discovery, including shared Uniform Resource Locators
(URLs), Quick Response (QR) codes, Bluetooth service discovery mechanisms, Wi-
Fi access point connectivity, and special purpose hardware such as smartcards.
Discovery can also be based on social interactions between the users, e.g., by em-
ploying contact lists that connect the devices that the user wants to use together.

Existence Discovery: identifying all the available devices is the minimum re-
quirement any liquid software system has to fulfill in order to enable a LUE. Many
techniques can be employed in order to make the liquid software system aware
of the available devices: by creating a Local Area Network (LAN) or Personal
Area Network (PAN) whenever access to the Internet is not necessary or possible
(e.g., Wi-Fi or Bluetooth); or by accessing the same Web server and communi-
cating through the Internet when a wider network is needed (e.g., shared link
or QR codes). In the former case the devices can be identified by their Media
Access Control (MAC) addresses, while the Internet Protocol (IP) address can be
used in the latter case. In either solution the user has to connect to a shared
network and know in advance the access point or the server’s URL. The less con-
figuration setup operations the user has to perform, the better. Some solutions,
such as scanning a QR code, hide the complexity of entering long URL addresses
from the user, while in the Wi-Fi scenario, the discovery can be transparent if
the application is configured to automatically connect to a default access point
whenever its Service Set Identifier (SSID) is detected.

Location Discovery: location discovery focuses on locating the relative posi-
tion of all the connected devices with respect to each other. The relative location
information is not a strict requirement but it can highly enhance a LUE. For in-
stance, by knowing the relative position of two devices, it is possible to know
the direction and distance between the two, making it possible to support spe-
cific gestures for migration, forking and cloning. A notorious example in this
area was the Microsoft Surface Table [Mic17] (nowadays discontinued) proto-
type that allowed phones to share pictures as they were placed on top of the table
display. A liquid software system built on top of popular LAN technologies such
as Wi-Fi or Bluetooth can easily compute the relative location of the connected
device by using fingerprinting algorithms [117]. A liquid software system built
on top of the Web can use more complex geolocation technologies such as GPS
that are more energy consuming compared to Received Signal Strength Indica-
tion (RSSI)-based approaches [104].

Ownership Discovery: ownership discovery focuses on assigning users to de-
vices. It is critical to ensure that only authorized software can run on a device
and that the users can control where their data is replicated to. Devices belonging

44 3.2 Design Space

to the same user can have a higher level of trust than devices temporarily paired
between different users. Some devices (e.g., public displays) may be shared
temporarily among multiple users (e.g., linked by a given social networking re-
lationship); for quite obvious reasons, no information should be automatically
replicated to such devices. Ownership discovery requires the users to authen-
ticate their identity on each device. This may happen in a number of different
ways: with a passcode, a user/password login prompt that is verified by a third
party, a shared secret among all devices (which can be propagated along using
QR codes), a smart card, or a combination thereof.

3.2.3 Layering

Today, the majority of Web applications include both server and client (end-user
device) layers. There are multiple ways to split the application between the
server and the client. Applications that perform the majority of their computa-
tion on the client side are known as thick client applications, or more commonly
rich client applications [33]. Applications in which the vast majority of compu-
tation occurs on the server side are known as thin client applications. There are
even extreme ultra thin approaches (e.g., SunRay [Ora16]), in which the primary
function of the end user device is to render pixels, only acting as a remote display
and terminal to access software that is otherwise run entirely on the server. In
thick client applications the majority of computations run on the client, and the
server’s role is usually limited primarily to data storage.

Naturally, there is a full spectrum of architectural alternatives between purely
thin and thick client architectures. In Figure 3.4, we enumerate different logi-
cal layers of a Web application designed according to the Model-View-Controller
(MVC) pattern [121]. While thin clients only run the view layer, thick clients
may run all the layers or only leave the Model to be handled by the server. The
maturity levels of the maturity model of liquid Web applications discussed in Sec-
tion 3.3 depend on the layering of a liquid application.

The typical criteria [45] and trade-offs for selecting between thin and thick
client architectures include the following:

• Computing power. While servers typically have more powerful CPUs and
more memory, these resources may be shared by several users. The more
limited (but potentially still substantial) resources available on clients are
usually dedicated to one user only.

• Battery and energy consumption. The users care about the length of the time
they can use their devices between charging. The less computation is done
in battery-operated client devices, the longer the batteries can generally be

45 3.2 Design Space

expected to last. However, since it is often network traffic that dominates
power consumption, overall battery life sometimes improves considerably
by performing more computation on the clients.

• Perceived performance. The users typically enjoy highly interactive applica-
tions. Frequent network requests may cause delays. To improve the per-
ceived performance of Web applications, technologies such as AJAX [65]
and single-page applications [131] have emerged.

• Required bandwidth. Available bandwidth is one of the key considerations
in driving and defining practical use cases for liquid software. The longer
it takes to migrate the execution from one device to another, the less ap-
pealing it will be to use the mechanisms supporting multi-device usage.

• Offline operation. Thin client applications are typically unusable if the net-
work connection is down, while thick client applications may continue their
execution even without active network connection.

• Direct hardware access. Thin client applications that run in a sandbox often
have limited access to the capabilities of the underlying local runtime en-
vironment. In contrast, thick client applications can usually directly utilize
local hardware resources such as cameras, sensors, Graphics Processing
Unit (GPU), and the file system.

• Engineering challenges. Applications whose computation and data are dis-
tributed between the client and the server are more difficult to develop and
maintain than applications that are deployed only on the client or on the
server [126].

In the context of liquid applications, the balance between server and client
execution can even change dynamically. Heterogeneous devices may have highly
divergent computing capabilities, input mechanisms and other resources, and
thus optimal configurations may vary. Therefore, liquid software frameworks
should offer capabilities for dynamically migrating computation from servers to
clients and vice versa.

3.2.4 Granularity

While the majority of use cases for liquid software are concerned with the mi-
gration of entire software applications, we have recognized a variety of use cases
that call for liquidity at different levels of granularity. In the following we show
which layer(s) of the software stack can be made responsible for migration and
synchronization (see Figure 3.5).

• Operating system level. The operating system and its underlying resources
such as the file system, communication middleware and UI follow the liquid soft-

46 3.2 Design Space

Model

Controller

View

Model

Controller

View

Model

Controller

View

Thin Thick

Server

Client

Figure 3.4. Layering alternatives

ware principles. Technically this means that operating processes can fork and mi-
grate across different devices, state synchronization is seamless and all the data
is automatically available to all devices. For the end user this means the liquidity
is not limited to specific applications and that all the applications are liquid by
default. Implementing liquid software at the OS level is the most comprehensive
but also the most complex approach since it needs to deal with hardware differ-
ences, security, resource consumption, live process migration, and various other
issues. One obvious limitation is that all devices participating in the LUE need to
run the same operating system.

• Virtual machine/Container level. Probably the most commonly used mech-
anism for migration today is to utilize Virtual Machines (VMs) that enable the
transfer of running applications between various computing devices. The tech-
nology is widely used in data centers, e.g., to bring applications and content
closer to the edge of the network, and consolidate multiple VMs to run on the
same physical resources to save energy. Like VMs, containers are widely used in
cloud systems, with the advantage of reduced footprint and more fine-grained
control on which parts of the system can be migrated. While limitations are also
similar between the two approaches above, in the context of containers prob-
lems related to bandwidth can be at least partially solved by carefully selecting
the parts of the system that must move.

• Application level. Moving a specific application as it is running is probably

47 3.2 Design Space

Host

Host Operating System

Virtual Machine Engine

Host

Host Operating System

Container Engine

Dependencies

Dependencies

Virtual Machine
Operating System

Virtual Machine
Operating System

Dependencies

Dependencies

Application Application

Application Application

Comp Comp Comp Comp

Comp Comp Comp Comp

Figure 3.5. Granularity alternatives

the most natural way to consider migration; application developers are com-
monly offered a framework that they can utilize for implementing state synchro-
nization at the application level. The framework may offer capabilities that the
developers can use to control which parts of the state and data are migrated.

• Component level. Migrating application components from one device to an-
other enables custom and flexible designs, where only parts of applications that
need to be present in the target device are transferred. This level of granularity
becomes especially interesting in companion scenarios in which multiple devices
are used at the same time. This can be an efficient way to implement the com-
plementary screening scenario in which different devices are used for presenting
different visual components and controls of the same application.

Design decisions related to granularity are heavily dependent on the capa-
bilities of target devices. For instance, with ultra thin clients only the visual
presentations (in the extreme case only "pixels") need to transferred to the tar-
get client. In contrast, a thick client typically requires at least application level
liquidity support.

48 3.2 Design Space

3.2.5 Client Deployment

There are numerous different ways to implement client software deployment
(see Figure 3.6) and installation. At one end of the spectrum there are prein-
stalled applications that are statically installed, similarly to the applications in
personal computers. This method is used for native applications in major mobile
platforms such as Android, iOS and Windows Phone. Even Web applications in
some platforms, such as Tizen [Lin16] and Firefox OS [Moz12] follow the same
paradigm: the applications are prepackaged, transferred to the device (often by
downloading them from an application store), and then installed in the tradi-
tional fashion. On many of the current native mobile platforms, a cloud service
(e.g., iCloud) will automatically (and entirely transparently from the user’s view-
point) install previously acquired applications when the user takes a new device
in use.

At the other end of the spectrum there are on-demand Web applications that
are run simply by pointing the Web browser or Web runtime to a specific URL.
These applications are typically downloaded on the fly for each execution, and
are only available in the presence of a network connection. In such systems code
deployment means nothing more than passing on the URL of the application
from one device to another, giving access to a server running on premises, in the
Cloud, or on a hub installed in the smart home of the end-user.

In Cloudberry HTML5 mobile phone platform [176], applications were run
by giving the URL to the Web engine; the application code was then cached us-
ing the HTML5 Application Cache [Moz19b]. The application cache would keep
the necessary files available so that dynamic code downloads were subsequently
needed only if some of the implementation components of the application ac-
tually changed. Nowadays the Application Cache is deprecated, but the new
HTML5 Service Workers [Moz20b] could be used instead.

Although the deployment mechanisms are technically independent of each
other, there are some logical connections. The following combinations can be
encountered commonly in real-life implementations (see Figure 3.6):

• Thin client, on-demand deployment (see Figure 3.6b). For thin client appli-
cations offline operation is not necessary and thus on-demand deployment is a
feasible option.

• Thin client, pre-installation(see Figure 3.6a). In thin clients the majority of
functionality resides on the server; application updates are also server-driven.
In many frameworks the client application is generated dynamically and may
change in response to changes on the server side.

• Thick client, on-demand deployment (see Figure 3.6b). One of the main

49 3.2 Design Space

Client

App

(a) Pre-installed

Server

Client App

(b) On-demand

Cache Server

Client
App
Copy

App

(c) Cached

Figure 3.6. Code deployment alternatives

benefits of thick client applications is the built-in support for offline use when
network connection is not available. In Web applications, this benefit can only
be achieved with Service Worker (or Application Cache for old deprecated appli-
cations).

• Thick client, pre-installation (see Figure 3.6a). This combination resembles
the traditional, native, installable binary applications. Obviously, offline use of
such applications is possible by default unless the application logic itself relies
on network connectivity.

In the extreme ultra thin systems there is no application installation to end
user devices at all. Rather, all the installations take place on the centralized
server. Conversely, in ultra thick designs, especially those leveraging P2P syn-
chronization, the server might not be needed at all since everything is managed
by the clients themselves.

3.2.6 Liquid User Experience (LUE)

True LUE consists of two parts: primitives that are to be supported, and adapta-
tion techniques that are applied when an application is moving from one device
to another, where the characteristics of the device are different. These will be
discussed next.

3.2.6.1 Primitives

From the user’s perspective, on an individual device liquid software acts just
like any other software. However, in order to create a seamless user experience

50 3.2 Design Space

Application

Device 1 Device 2

Starting
Configuration

Application

Application

Application

Application

Forwarding

Migration

Forking

Cloning

Changes

Application

Application
Changes

Inputs

Figure 3.7. LUE primitives

reflecting the mobility of software [55] from one device to another, a combination
of the following four primitives is used (see Figure 3.7):

• Forwarding: the ability to transparently forward the output and redirect
the input gathered on one device to the application remotely running on the
other device.

• Migration: the ability to partially or completely move the current instance
of the liquid application from one device to another effortlessly.

• Forking: the ability to partially or completely create a copy of the current
instance of the liquid application on a different device.

• Cloning: the ability to partially or completely create a copy of the current
instance of the liquid application on a different device (i.e., forking) while keeping
the two instances synchronized thereafter.

According to the liquid software Manifesto [174], the user is supposed to
remain in full control of where the software is running: forwarding, migration,
forking and cloning primitives allow the user to roam from a device to another.
The migration primitive is used mainly in sequential screening, enabling the sin-
gle user to move the liquid application among the user’s own devices. This es-
tablishes continuity in the use of the application across multiple devices; for ex-

51 3.2 Design Space

ample, when the user is watching a movie on the phone during a daily commute,
the movie will continue playing from the same position on the large screen TV
when the user arrives at home.

The forking and cloning primitives are more suited for parallel and collab-
orative screening scenarios, where the state of an application must be shared
among many users or devices. This establishes a complementary, companion-
ship role among multiple devices that are used at the same time. For example, a
user going through a checkout process on an e-commerce Website accessed via
the desktop Web browser may simultaneously use the secure fingerprint reader
of his smartphone to validate the ongoing credit card payment transaction.

3.2.6.2 User Interface (UI) Adaptation

There are three different possible alternatives for deciding how to perform the UI
adaptation to the set of devices that are used for running the application [116]:
manual, responsive, and complementary. With a manual approach, the users may
directly activate the LUE primitives to control how the UI is deployed onto de-
vices. From the developer’s perspective, the manual alternative requires the de-
velopment of N versions of the application, one for each device targeted by the
deployment. While this is a common practice for mobile smartphone platforms,
the costs of this approach for further growing the supported number of platforms
and device types could become prohibitively expensive.

In contrast, a responsive design is used for adapting the same application
software to the device’s features such as its screen size. It adjusts the UI by con-
sidering the different input and output capabilities of the target devices. For
example, a small device might show only the most meaningful data as opposed
to a larger device that would display the full contents. Existing mechanisms
and design practices such as responsive Web design [125] pave the way to auto-
matically treating this dimension, although still requiring careful attention and
consideration from the UI designers and application developers.

Overall, liquid software can fill all the available devices and provide not only
a responsive user experience (where the UI is adapted to each device’s capabili-
ties), but also a complementary user experience (where the capabilities of all the
devices are fully exploited by the application with a distributed UI).

It must be kept in mind that liquid software behavior is always to some extent
an illusion – a lot of technical grunt work is often needed under the hood in order
to maintain a seamless user experience and the users’ impression that software
is truly "flowing" across devices. For instance, in many cases the developer may
use pre-rendered bitmaps instead of constant repainting in order to create an

52 3.2 Design Space

impression of smooth application transfer. A significant part of the designers’
and developers’ work is concerned with maintaining such an experience.

3.2.7 Data and State

Liquid software systems deal with two kinds of data: 1. persistent user data and
2. ephemeral runtime application state. Persistent user data needs to be made
available across different devices and usage contexts. Likewise, the ephemeral,
dynamic state of running applications must be stored in a form that allows the
state to be effortlessly migrated or synchronized across devices, either fully or
partially. The state identification can happen implicitly, where all parts of the ap-
plication are addressed, or explicitly, where only relevant parts are synchronized.

Conflict handling and consistency. Different user experiences impose different
requirements on state synchronization. In sequential screening there are no con-
flicts, since there is only one active device at each time. In contrast, in parallel
and collaborative uses, there is the necessity to synchronize the state in real-time
and it may lead to conflicting updates to the same state. In general, if multiple
devices are active at the same time, conflicts between their states may become an
issue. Some of these problems need to be solved in the application level, but ide-
ally the underlying application or OS framework should guarantee the eventual
consistency in data synchronization.

At the implementation level, state synchronization can take place in two dif-
ferent ways: trickle and batch updates. In the former case, two or more devices
are kept in sync by incrementally forwarding the state changes as soon as they
occur. Alternatively, it is possible to buffer a larger set of changes, and migrate
them to other devices as a batch. For seamless real-time updates at the UI level,
the trickle approach is mandatory. However, since many devices partaking in
liquid software scenarios may be offline for prolonged periods of time, batch up-
dates typically need to be supported as well, so that previously recorded changes
can be "played back" on other devices as those devices become available online
again. An obvious challenge in buffering changes and transmitting them later
when connectivity is restored is that devices may be in inconsistent state and
require reconciliation [28].

No matter which approach is chosen, a procedure that synchronizes the entire
system is needed when initiating the execution of an application on new devices.
Depending on the mechanism that is used for launching new applications, this
can take place either using a central server or in a P2P fashion. In addition, con-
flict resolution between different devices requires a protocol for agreeing over the
common state. Depending on the situation, this may again happen via a central

53 3.2 Design Space

server or, e.g., by voting among the clients themselves. A simple but effective so-
lution chosen by Koskimies et al. [108]was to allow the latest change to override
any past conflicting changes in order to avoid any deadlocks or communication
overhead associated with voting.

The choice of the state synchronization alternative may also impact the way
how the developer controls the synchronization and how synchronized elements
of the data are identified. While the migration [26] or the synchronization [41]
of the state of an entire virtual machine can be done as a batch operation, the
trickle approach can also work with finer-grained abstractions, such as applica-
tions or individual components. To do so the developer should have mechanisms
to explicitly indicate which parts of the state should be moved to the new loca-
tion.

Federation of synchronization. An important consideration in liquid software
system development is the federation of devices that can partake in the migration
of data and state. In multi-device scenarios it is important to be able to carefully
manage access control rights and grant permissions depending on the ownership
of the device on which the software dynamically finds itself running on. We
identify two basic permissions controlling the direction of synchronization:

• Publishing: the ability to send/push data to paired devices.
• Subscribing: the ability to receive/pull data from paired devices.

These permissions are particularly useful in multi-user scenarios, to make sure
both parties agree to exchange data.

3.2.8 Privacy and Security

The success of computing platforms supporting liquid behavior is fundamentally
dependent on security. As summarized by Taivalsaari et al. [174], the ability of
liquid software to readily flow from device to device is both a blessing and a curse.
It is a blessing because it enables a new computing paradigm, virtualized but
personal computing environment that is independent of any specific computer
or device. However, the very mobility of liquid software is a curse because it can
open potentially huge security holes. The notion of the user’s entire computing
environment being accessible from any of the user’s devices can make the system
vulnerable from a security and privacy perspective. For instance, if even one
of the user’s devices is stolen, there is a possibility that his entire computing
environment could be compromised.

As a starting point for security and device federation, there are well-known
techniques for secure communications, device pairing and trust establishment,
user authentication and authorization that are needed for implementing secu-

54 3.3 Maturity

rity features for any liquid application. These techniques have been maturing
for years in the context of computer networks, the Web, cloud computing, and
mobile devices. These already existing mechanisms can largely be used to satisfy
the requirements for privacy, cohesion, authentication, authorization, and audit.

A basic principle defined by Taivalsaari et al. [174] is to keep the user in
full control of the liquidity of applications and data. This calls for a security
approach that is flexible yet simple and straightforward in layman terms, not
assuming special skills or a deep understanding from the end user’s part. For ex-
ample, the SunRay ultra thin network terminals [Ora16] provided a secure smart
card authentication system that would connect the client device to the remote
user session, making it appear truly as if the user’s earlier computing session had
instantly migrated to the present target terminal. More work is needed to inves-
tigate which authentication techniques and security practices can be accepted by
the end users in different usage scenarios.

3.3 Maturity

Liquid software does not directly depend only on the technology used to develop
it, rather it depends on how its development is planned during the development
process [136]. In order to understand how to create multi-device applications
we must be able to understand the driving quality attributes [142; 11], specifi-
cations [165], risks [51], and requirements [183] of liquid software beforehand.
By considering multi-device interactions and seamless migration between de-
vices we are adding new degrees of complexity to the applications if we compare
them with solid counterparts; therefore we must address new Web engineering
challenges in order to design and eventually deploy applications that can spawn
on multiple devices.

As multiple users can operate multiple devices at the same time, the architec-
ture of the applications needs to be redesigned with new requirements in mind.
The liquid software must take full advantage of the connected devices’ hardware,
computing power and communication resources. The primary quality drivers of
liquid Web software are compatibility, e.g., portability on different platforms,
and high reliability when running on cross-device environments [174]. More-
over the top most important quality attribute for the expected LUE is usability,
specifically learnability.

Web applications were traditionally developed following a thin client archi-
tecture whereby most of the logic and the entire persistent state of the application
would be executed and stored on a central Web server. They would offer only

55 3.3 Maturity

partial support for the LUE in terms of the ability of migrating the application
by simply sharing the URL pointing to the current state of the application and
adapting the UI by employing responsive Web design techniques [125].

As the Web technology platform has evolved with enhanced support for rich
and thick client architectures and for protocols beyond Hypertext Transfer Proto-
col (HTTP) to enable real-time push notifications and P2P (browser to browser)
connections, we revisit the architectural design space of contemporary Web ap-
plications to systematically study new deployment configurations and how these
impact the LUE.

We derive the maturity model of liquid Web applications to assess how dif-
ferent Web application architectures can provide support for the LUE for both
sequential and parallel screening scenarios:

• Sequential screening: users own more than one device, at any time they
may decide to continue their work using another device. The application and the
associated state seamlessly flow from one device to another;

• Parallel screening: users own multiple devices and deploy the software
on all of them. Users may decide to change the number of devices running the
liquid application as well as to move components of the application from one
device to another while keeping the state up to date.

Web developers can follow the maturity model to redesign, refactor and trans-
form their applications to provide enhanced level of support for liquid behaviors
defining the following LUE primitives:

• Forward: the ability of an application of redirecting the input/output of
one device to another;

• Migrate: the ability of moving a running application to another device;
• Fork: the ability of creating a perfect copy of an existing application on

another device.
• Clone: the ability of creating a perfect copy of an existing application on

another device, and keep the state of the original and the copy synchronized
thereafter.
Sequential screening can be achieved if an application defines either a migrate
or fork primitive, while parallel screening can be supported either with clone or
forwarding primitives.

3.3.1 Maturity Model Facets

The maturity model of liquid Web applications is based on multiple facets that
determine the degree of liquidity of a Web application both in terms of which LUE
primitives are enabled as well as how these can be implemented with different

56 3.3 Maturity

performance and privacy guarantees. Each architectural configuration presents
unique challenges and opportunities to deliver a liquid behavior under different
constraints. For example, while it is relatively easy to synchronize the state of
the application relying on a highly available, centralized master copy deployed
in the Cloud, some privacy and latency issues may warrant considering more
decentralized or distributed approaches to data management.

The maturity model is based on three orthogonal facets, each having three
levels:

• logic deployment (ultra-thin, thin, thick);
• state storage (centralized, decentralized and distributed);
• communication channel (HTTP, WebSockets and WebRTC).

In this section we provide a systematic discussion on the implications of the most
significant architectural configurations on whether and how liquid Web applica-
tions can be built under the corresponding architectural constraints. Additionally,
for each level, we survey existing Web development frameworks within the cor-
responding Web application architectures. As we are going to show, migration of
Web applications can be achieved with all configurations, while cloning requires
support for real-time synchronization that is only present in higher maturity lev-
els.

Web applications comply with the client-server architectural style, in which
persistent resources or services are provided by one server to multiple clients.
Without loss of generality, we further describe Web application architectures us-
ing the MVC pattern, one of the most used design patterns in Web applications
development [94]. In the MVC pattern Web applications are logically decom-
posed to manage separate concerns: data modeling and persistent storage, data
processing and business logic, and data input/output and user interaction.

• The Model Layer manages the persistent data of an application. The model
of a Web application also includes any of its assets such as Web Pages, images,
and scripts that need to be transferred to the clients. This layer requires some
kind of data storage able to represent, organize and collect information:
– in the server-side of an application it usually takes the form of a
database [DBE20] such as relational databases like Oracle [27] and MySQL [190],
document oriented databases like MongoDB [27], or Apache CouchDB [7], or
other schema-less databases like Redis [31];
– in the client-side usually the file system of the device is used as storage, but
due to the possibility of having clients running on heterogeneous devices and
implemented using different programming languages, data storages can highly
differ from client to client even in the same application. WebSQL [W3C10], In-
dexedDB [Moz19c], LocalStorage [Moz19d; Moz19e], and Cookies [15] are stan-

57 3.3 Maturity

Figure 3.8. Model layer deployment levels

dard implementations of data storage APIs available in HTML5-compliant Web
browsers.

• The Controller Layer consists of the logic of an application. The controller
layer is a bridge between the model and view layers, it manipulates data and
executes tasks received from either layer and forwards the results to the appro-
priate one. Depending on where the controller layer is deployed it can be imple-
mented using different programming languages. In the server-side PHP [190],
ASP.NET [Mic20], and JavaScript (using Node.js [177]) are the most used pro-
gramming languages, while in the client-side JavaScript is the main option.

• The View Layer is the graphical UI of an application, consisting of the
visual representation of the data and information retrieved from the model layer
and rendered into an interactive visualization.

Combining the client/server execution environment and the three MVC lay-
ers, we identify different deployment combinations. While the view layer is con-
strained to run on the client, both model and controller Layer can be deployed
on either side (or partitioned to run on both client and server). Additionally,
we distinguish three alternative communication channels and protocols (HTTP,
WebSockets and WebRTC) used to interconnect the layers of Web applications
running on different devices.

In the following sections we discuss more in detail each facet which will be
combined into the liquid Web application maturity model in Section 3.3.4.

3.3.1.1 Model Layer deployment

Model layer deployment describes where the persistent state of the Web appli-
cation is stored. We identify three levels based on whether data is logically cen-
tralized on the server or distributed towards the clients (see Figure 3.8):

58 3.3 Maturity

Level 1 - Centralized - The model is stored using any data management so-
lution that is solely deployed in the server-side. For scalability and availability
purposes, the actual storage can be implemented using multiple virtual servers
running in a Cloud data center. Conceptually, this is still a centralized solution
as data is never managed by the client. The advantage is that no matter what
client device is used to access it, the data will be readily available [167]. Users
thus trade off the convenience of accessing "their" data anywhere with the loss
of control over the actual location where it is stored and who else can access it.
As clients always need to remotely request data from the server, there are also
latency and availability implications to be considered. When multiple clients per-
form transactions to update shared resources, having a single master copy on the
server helps to ensure consistency.
Some real world examples of centralized model layer deployments use databases
created with MySQL, MySQL Cluster, or Cassandra [119].

Level 2 - Decentralized - The model layer is deployed both in the server and
client-side of the Web application. Information stored in the server database is
replicated or cached by the clients. Conversely, users may prefer to save the
primary copy of their data in their own clients and use the server as a secondary
backup.
Cookies are the simplest example of decentralized persistent storage on the Web.
Web application using any technology mentioned in level 1 (e.g. MySQL) in
combination with any HTML5 storage API (e.g. localstorage, WebSQL) falls in
this category. Apache CouchDB or PouchDB [Pou20] are databases that feature
client-side caching with automatic synchronization allowing offline availability
of the retrieved data.
Decentralized approaches enhance: – data privacy, even though data must still be
transmitted to the servers if there is not a direct communication channel between
clients; – availability during offline operation, assuming the data has been pre-
fetched by the client the Web application may still work while being disconnected
from the server; – enhanced perceived performance when hitting data cached on
the client.

Level 3 - Distributed - The model layer is distributed exclusively on the
client-side of the Web application. There is no need to use the server to retrieve
or store data, because clients completely own the state of the Web application.
This positively impacts data privacy because the information of the users always
remains on their devices and is never stored in a Web server outside of their
control (e.g., in the Cloud).
Distributed model layer deployment can be achieved in a modern Web browser
by using any combination of the storage APIs provided by the HTML5 standard,

59 3.3 Maturity

Figure 3.9. Controller layer deployment levels (labeled as logic)

namely the WebSQL, IndexedDB, and LocalStorage APIs. On top of these technolo-
gies, or even using the file system of the devices running the client of the Web
application it is possible to build distributed model layers able to automatically
synchronize between clients (e.g., [188]).

3.3.2 Controller Layer deployment

The Controller layer deployment determines where the Web application executes
tasks and whether it can offload its workload. We define three levels with respect
to the client thickness (see Figure 3.9):

Level 1 - Ultra-Thin Client - In this level the controller layer of an applica-
tion is deployed only on the server-side of the application. The only logic present
on the client is the logic needed to retrieve content from the server and to display
views when they are received from the server.
Primitive Web browsers that did not allow running scripts, such as JavaScript or
Java Applets can be seen as ultra-thin clients. Ultra thin clients always display
the view layer statically and cannot adapt it to the client’s device. Curling pages
on a terminal is also an example of ultra-thin Client, in which the forwarded raw
data is displayed. Web applications that do not require scripts to run in the client
fall in this category as well.

Level 2 - Thin Client - The logic of an application is deployed on both server
and client-side of the Web application. The server can offload part of the com-
putations to the connected clients. The most offloaded task in Web applications
is the creation of the views which is entrusted directly to the clients needing it,
however in thin clients any simple task can be offloaded to the clients.
Whenever the client is thin, it is possible to make views responsive to the client’s

60 3.3 Maturity

device. This allows the same applications to use a different look and feel in
devices with different hardware specifications.
AngularJS [Goo18], React [Fac20], or EmberJS [Til20] are some frameworks for
isomorphic Web applications written in JavaScript that require thin clients.

Level 3 - Thick Client - The logic of an application is entirely deployed on
the client-side of the Web application. A big portion of the application computa-
tions are offloaded to the clients. As in level 2 clients compute the views they dis-
play. Additionally they execute computationally-heavy application-specific tasks
that were not previously included in thin clients. The HTML5 WebWorker spec-
ification allows Web browser to run scripts in background, making it possible to
develop complex client-side applications [33].
Thick clients can be aware of other connected clients, making it possible to adapt
the view layer of the application on a set of devices instead of making it re-
sponsive to a single one. Complementary adaptive views can also automatically
evolve in real-time if the application is able to propagate to all devices the knowl-
edge of connections and disconnections of other clients.
Web 2.0 single-page applications generally require thick clients, any client de-
scribed in level 2 can become a thick client if the entire controller logic layer is
deployed in the client-side. Liquid Web applications featuring all the LUE primi-
tives require clients to be thick.

3.3.3 Communication channel

The communication channel facet is characterised by the direction of the commu-
nication between the client and the server and whether clients can communicate
directly. The levels shown in Figure 3.10 are inclusive, whereby a higher level
also includes all the features provided by the lower levels:

Level 1 - Client-Server Pull - Clients are always the origin of all request-
response interactions with the server. Clients request resources addressed by Uni-
form Resource Identifiers (URIs) and the server responds with the corresponding
representations if they exist. On the Web, this kind of communication is imple-
mented with the HTTP protocol.
Applications relying solely on the HTTP protocol cannot propagate state changes
or events occurring on the server back to the clients in real-time. They can only
simulate a quasi-real-time environment (with continuous polling). While the liq-
uid migrate primitive can be implemented with HTTP only, cloning or forwarding
cannot be implemented in level 1, because data synchronization in liquid appli-
cations requires real-time notifications.

61 3.3 Maturity

Figure 3.10. Communication channels

Level 2 - Client-Server Push - Similarly to the client-server pull level,
clients are still the origin of the interaction with the server. However in level
2, clients open a two-way communication channel. In this level the server is al-
lowed to propagate data and events to the connected clients immediately, mean-
ing that it is possible to efficiently create real-time Web applications. The stan-
dard Web protocol used for implementing client-server push is WebSocket. With
WebSocket it is possible to implement the liquid clone primitive since data syn-
chronization can happen in real-time. Liquid Web applications whose goal is to
implement all possible LUE primitives need to consider at least a level 2 commu-
nication channel in the design of their architectures.

Level 3 - Peer-to-Peer - With the advent of the WebRTC protocol it is now
possible to have P2P communication among Web browsers. Architectures imple-
menting level 3 communication channels still rely on the HTTP and WebSocket
protocols for peer discovery purposes. Level 3 communication channels allow
to lower the latency between clients, by potentially decreasing the number of
hops in the communication, instead of propagating data relying on the server
(client→ server→ client), in the best case it is possible to communicate directly
between clients (client→ client).

3.3.4 Maturity Model

Figure 3.11 shows the maturity model of liquid Web applications determined by
combining the deployment configuration of their MVC layers across the server-
side and client-side with the choice of the communication channels established
between them. We identify five levels: 1. Web 1.0 Applications 2. Rich Web
Applications 3. Real-time Web Applications 4. Hybrid Web Applications 5. Peer-

62 3.3 Maturity

Migrate / Fork
C

lie
nt

Model

Logic

View View

Logic

Model

Logic Logic

View View

Logic

Model

Logic Logic

View View

Logic

Model

Logic Logic

View View

Se
rv

er

Level 1
Web 1.0

Applications

Level 2
Rich Web

Applications

Level 3
Real time

Web Applications

Level 4
Hybrid

Web Applications

Logic

Logic Logic

View View

Model ModelC
lie

nt
Se

rv
er

Logic

Model

Logic Logic

View View

Model Model

Logic

Model

Logic Logic

View View

Model Model

Model

C
en

tr
al

is
ed

 M
od

el
 L

ay
er

D
ec

en
tr

al
is

ed

M
od

el
 L

ay
er

Clone / Forward

Liquid U
X

Logic Logic

View View

Discovery

Model Model

Level 5
Peer-to-Peer

Web Applications

C
lie

nt
Se

rv
er

D
is

tr
ib

ut
ed

 M
od

el
 L

ay
er

Figure 3.11. Maturity model for Web architectures for centralized, decentral-
ized and distributed model layer deployments. The controller layer is labeled
as Logic.

to-peer Web Applications
The diagram also shows in which level is possible to use the migrate/fork and

clone/forward LUE primitives. Migrate and fork are possible in all levels, while
clone and forward can only be achieved starting from level three.

Table 3.2 summarizes the different configurations per level as a combination
of the facets explained in Section 3.3.1. The table also describes how the config-
urations affect the following quality attributes:

• Latency or the proximity between two clients on the network:
– 2 hops means that whenever clients communicate to perform a LUE primitive,
the communication relies on an intermediary Web server (client → server →
client);

63 3.3 Maturity

Table 3.2. Maturity model: architectural configurations and quality attributes.

Configuration Quality Attributes
Deployment Channel Latency LUE primitives View Privacy

Level Logic Model Hops Migrate
Fork

Clone
Forward

Adaptation Model

1 Centralized Ultra-Thin Pull 2 A 7 Static 7

2c Centralized Ultra-Thin Pull 2 A 7 Responsive 7

2d Decentralized Thin Pull 2 A 7 Responsive 7

3c Centralized Ultra-Thin Push 2 A, S 3 Complementary 7

3d Decentralized Thin Push 2 A, S 3 Complementary 7

4c Centralized Ultra-Thin P2P 1 or 2 A, S 3 Complementary 7

4d Decentralized Thin P2P 1 or 2 A, S 3 Complementary 3*
5 Distributed Thick P2P 1 S 3 Complementary 3

– 1 hop means that clients – in the best case – can communicate directly with
each other.

• LUE primitives:
– Migrate/Fork can occur asynchronously (A) or synchronously (S). Asyn-
chronous migration and fork of an application happens between two clients that
cannot directly push the migrated state and logic to the target client, but they
have to be stored in a central storage first; Synchronous migration and fork of an
application can be implemented in systems in which clients can push migrated
or forked state and logic to other clients without the need to store it in a central
storage.
– Clone/Forward indicates in which configurations the liquid clone and forward
operations are possible 3or not possible 7.

• View Adaptation describes which level of the view layer adaptability is
possible to achieve in all configurations:
– Static means that the view does not dynamically adapt to the client hardware
device capabilities, but it is displayed exactly as it was determined by the server;
– Responsive means that the view locally adapts to the client.
– Complementary means that it is possible to manually or automatically adapt
the view to set of heterogeneous devices connected to the Web application.

• Privacy describes if the users have control on their data by ensuring that
it is exclusively stored in devices they own or trust: 3 means that users are in
control of their own data, 7 means that the data is stored in untrusted devices,
3* means that the data is stored in trusted devices, but is exchanged with or
relayed across untrusted devices (e.g., a Web server running in the Cloud).

64 3.3 Maturity

3.3.4.1 Level 0 - Solid Applications

All layers of a solid (or monolithic) application are deployed on the same ma-
chine, typically a standalone personal computing device, or a server to which
multiple dumb terminal devices are attached. This architecture configuration
predates the Web as intra-layer communication does not go through any Web
protocol, but only happens locally within the same host using, e.g., local proce-
dure calls or shared memory buffers.

Liquid migration can be achieved by the mean of input/output virtualization
of the clients, e.g., multiple users can access the operating system installed in the
server by different screens. This architecture allows users to save their data on
the server and access it from any screen. From the user perspective, switching
terminal device amounts to successfully migrating their work from one screen
to another. The virtualized client is therefore ultra-thin, where the view layer
running on the server forwards the UI input/output events and commands to
the terminals connected to it.

The concept of the first Sun Ray [Ora16] designed in 1997 can be considered
as an example level 0, solid application architecture. The concept is designed
to take advantage of stateless network computers whereby users authenticat-
ing with smart cards were instantaneously taken to their virtual desktops and
could access their applications and data centrally managed on the server from
anywhere.

3.3.4.2 Level 1 - Web 1.0 Applications

Level 1 Applications can be seen as the first generation of Web applications [17]
built using the HTTP protocol. The logic and model layer are deployed on the
server-side, while the view layers run client-side on Web browsers. In this level
the content provided by the Web servers is static and cannot be changed by the
clients. Web browsers retrieve content (e.g., Web pages written in Hypertext
Markup Language (HTML)) by sending HTTP requests to Web servers addressed
by URIs. Browsers display resources as they were sent from the server. The
view layer is completely static, since there is no definition of a technology able
to adapt the retrieved resources to different client rendering capabilities. At that
time Cascading Style Sheets (CSS) media queries did not yet exist while the
Extensible Stylesheet Language (XSL) did not provide any markup to adapt the
content of a Web page to the device displaying it.

Level 1 supports asynchronous liquid migration by uploading resources to
the server and then using their URL to retrieve the resource from another device.

65 3.3 Maturity

In this level cloning a liquid Web application is challenging to achieve, because
data synchronization does not happen in real-time, as clients can only resort to
continuous HTTP polling. Likewise, migration in level 1 does not happen in
real-time and requires the exchange or agreement on the URL addressing any
resource that needs to be migrated between clients, which do not need to be
available and connected at the same time.

This is the most basic architecture for implementing liquid applications that
only need the liquid migration primitive, it does not provide any kind of view
adaptation and cannot ensure data privacy (unless the Web server is owned and
operated by the same organization owning the client devices). Synchronization
between multiple clients can be achieved only by manually refreshing the Web
page after sharing URL via out-of-band channels, which does not fit with the
real-time expectations of the LUE.

3.3.4.3 Level 2 - Rich Web Applications

In Level 2 we consider rich Web applications [33] in which the controller layer
is deployed both in the server and client-side. Level 2 architectures are the first
ones able to have responsive views because the portion of the controller on the
client-side can compute different views and do so based on the underlying hard-
ware capabilities. Liquid migration is possible, but, like in level 1, shared URLs
are needed to address and retrieve the resources representing the state to be
shared among clients, since there is not a direct communication channel be-
tween clients. More in detail, after discovering the identifier of the resource
being migrated, the Web application on the browser is manually refreshed to
ensure the consistency of the displayed information with the model of the Web
application. Again, cloning is hindered by the lack of real-time communication
between clients attempting to immediately synchronize. The distance between
two clients is always equal to two hops.

Depending on how the model layer is deployed on the clients we distinguish
two different level 2 configurations: Level 2c - centralized - the model is de-
ployed only in the server-side; Level 2d - decentralized - part of the model is
stored in the client-side, in traditional Web applications it takes the form of Cook-
ies or cached data, in modern rich Web application it takes various forms (e.g.,
local storage, service workers, WebSQL databases) as described in Section 3.3.1.
Users of a liquid rich Web application can store their confidential data in their
devices, nevertheless during a migration of the liquid Web application its state
has to be transferred via the server, which may not be always owned or trusted
by the user of the Web application.

66 3.3 Maturity

The LUE in this level is similar to the one in level 1, with the addition of
support for a responsive view and the option of storing parts of the model locally
on the client.

3.3.4.4 Example Level 2 Frameworks

CrowdAdapt [141] is a centralized level 2 framework for creating responsive Web
pages. Web pages created with CrowdAdapt allow users to change the layout
of the Web page as they desire and thereafter migrate their creations on other
devices. In CrowdAdapt the controller layer provides the editing functionality
and the automatic detection of the hardware specification of the device running
the client. The users are able to choose between the layouts created by all the
users of the Web application that better fit their needs.

PageTailor [19] is a decentralized level 2 framework with concepts similar to
CrowdAdapt. Users can change the layout of Web pages using PageTailor and
then reuse these layouts on subsequent visits. In this case layouts are not shared
between multiple users as in CrowdAdapt.

3.3.4.5 Level 3 - Real-time Web Applications

The deployment of the view and controller layers are the same as in level 2,
however level 3 applications have access to client-server push communication
channels. This make it possible for Web applications to synchronize data among
clients and notify connections of new clients and detect disconnections of old
devices. The liquid clone operation is implementable in level 3 because data can
be synchronized in real-time between simultaneously connected devices. The
awareness of the connected clients to the Web application allows to distribute
the view layer among them. The complementary view implementable in level
3 Web applications increases the quality of the LUE. Liquid migration, liquid
cloning and complementary view control can happen at different granularity lev-
els: application level - the Web application is monolithic and all devices receive
all the assets and model of the whole application. Upon migration or cloning
the new clients have a perfect copy of the whole application whose state is kept
synchronized between them. Complementary view adaptation in this case can
be implemented through Web clipping by concealing part of a view on all but
one device. component level - in component-based Web applications clients re-
ceive only portions of the whole application. Liquid migration and cloning can
be done at component level, thus moving and keeping synchronized only part
of the application. In this granularity level complementary view development

67 3.3 Maturity

does not need clipping, because clients move or receive only the portions of the
application they need and do not have to locally hide the components displayed
on other devices.

The decentralized configuration of level 3 allows partial privacy on the data
created by the users, as it can be stored only on trusted devices. During liquid
migration or cloning on simultaneously connected devices there is no need to
store any information on the server. However data sent between clients is still
relayed through the WebSocket channels on the server, meaning that such data
must be encrypted in order to ensure privacy. In the case of liquid migration
on devices which are not simultaneously connected to the Web application, the
entire model has to pass through the Web server regardless.

3.3.4.6 Example Level 3 Frameworks

Smart Composition [113] is a centralized level 3 framework that allow the cre-
ation of component-based (called widgets) multi-screen Web applications. By
using a central cross-device communication service the infrastructure created by
SmartComposition is able to compose distributed view layers among devices and
keep the various components building the application synchronized.

Panelrama [192] is a centralized level 3 framework used to create distributed
UIs using the concept of panels, JavaScript objects defining pieces of UI and logic.
Panelrama provides an API to migrate and clone panels between devices and
automatically create the complementary distribution of the view layer among
the connected devices.

DireWolf [109] is a decentralized level 3 framework used to create multi-
device mashups Web applications. Clients are aware of the connected devices
in the application and can migrate widget-like components to any target device.
DireWolf offers the possibility to manage the device ownership, device informa-
tion and specification, the widget state, and the application state of the whole
application through its clients.

Liquid.js for DOM [179] is a decentralized level 3 framework based on Re-
act.js for component-based Web applications. By synchronizing virtual Docu-
ment Object Models (DOMs) between devices it is able to migrate and clone
logic and model layers among the connected clients. It does not offer automatic
cross-device complementary views. There also exists a level 4 Hybrid version of
Liquid.js for DOM offering peer-to-peer data synchronization between clients.

Bellucci et al. [14], Frosini et al. [54], and Raposo et al. [153] propose similar
frameworks in which is possible to distribute and synchronize the view layer of
the application on all connected devices.

68 3.3 Maturity

3.3.4.7 Level 4 - Hybrid Web Application

Level 4 augments level 3 with the ability for clients to communicate directly with
each other through P2P channels. The logic layer deployed in the client-side can
send messages to other clients either directly with a single hop or through the
server with two hops. Connected clients can send any kind of data between
each other, including the entire assets of the application. Similarly to level 3, it
is possible to have both asynchronous and synchronous migration and cloning
operations among connected clients. Through the P2P channels decentralized
hybrid Web applications can send confidential data directly among trusted clients
without relaying any message through the server, ensuring privacy if confidential
data does not need to be stored on the server.

3.3.4.8 Example Level 4 Frameworks

XD-MVC [89] is a decentralized level 4 framework for creating cross-device in-
terfaces and automatic complementary adaptation views applications. XD-MVC
implements migration at the application level and takes advantage of clipping
off parts of the view layer in order to simulate migration between devices. Views
can be annotated with rules about how they are expected to adapt to the set of
connected devices. Given these rules the view is able to dynamically and auto-
matically adapt to set of heterogeneous devices when a new client connects or
disconnects.

PolyChrome [13] is a centralized level 4 framework for creating co-browsing
applications with collaborative views spanning on multiple screens deployed on
multiple devices. PolyChrome complementary view adaptation supports stitch-
ing, replication, nesting, and overloading layouts. Data synchronization happens
both through P2P and WebSocket channels. The framework creates components
out of a legacy applications in order to be able to make a view span on multiple
devices.

3.3.4.9 Level 5 - Peer-to-peer Web Applications

Peer-to-peer [163] Web architectures are at the highest level of the maturity
model, the only one providing all quality attributes expected from liquid Web
applications. P2P Web applications allows connected clients to communicate
with each other directly. When peers are linked with a fully-connected mesh,
this amounts to the best case scenario with a latency of 1 hop. Indeed other
topologies are possible, like rings, in which N connected clients are up to N/2

69 3.3 Maturity

hops away, or stars, in which the hops number vary between 1 and 2, depending
on which peers are communicating.

Level 5 applications allow synchronous migration, since connected clients
can push the model and logic through the full-duplex P2P channel created with
WebRTC at any time. Since there is no longer a central server available at all
times asynchronous migration is not possible. Instead clients need to be online
simultaneously in order to proceed with the migration. Since clients sense and
propagate their availability across the peer to peer network, it is possible to have
complementary view adaptation.

Data privacy is ensured in P2P Web applications because users are in full
control of all devices storing and processing their data. Data is never stored in
any server or Cloud storage platform. Also, data migrated or zed with another
device is never sent through a Web server.

Level 5 Web applications allow strong mobility with direct model and logic
transfer and synchronization between peers, however this requires to a suitable
discovery method. WebRTC, for example, uses a signaling server to initiate and
establish the connection between clients. Clients first connect to the signaling
server and then receive information on how they can join the rest of the peers.
Once the topology is created and peers are connected, they are free to commu-
nicate among themselves and the signaling server is no longer involved.

3.3.4.10 Example Level 5 Frameworks

Liquid.js for Polymer [66] is a level 5 P2P framework which allows the creation of
distributed component-based Web application built on top of the Polymer frame-
work. Users instantiate any component provided by the Web application on their
devices and share them directly with other users. If a peer does not own the as-
sets of the component being sent to it, the peer will also receive the model of the
component that is going to be migrated. Liquid.js allows to define strategies for
creating different peer topologies.

3.3.5 Beyond Level 5 Framework

Each level’s architectural configuration impacts the possible LUE primitives. Most
of the existing liquid Web application development frameworks [13; 14; 19; 54;
66; 89; 109; 113; 141; 153; 179; 192; Ora16] we surveyed are categorised
by a level 3 (real-time) architecture, however we emphasize that higher level
architectures are possible and they should be considered to deliver all the quality
attributes that one would expect from a liquid Web application, in particular

70 3.3 Maturity

data privacy (with decentralized configurations) and a reduced latency between
devices that do not need to communicate with or through a remote Web server
all the time. We acknowledge that real-world liquid applications with multiple
client implementations may span multiple levels in the maturity model. For the
sake of simplicity and clarity we described the main five levels in the maturity
model instead of all possible combinations.

The choice of level and configuration should be implemented or which frame-
work to use are important architectural decisions. Upgrading an architecture
from a lower level to a higher one, or downgrading to lower levels fundamen-
tally impact the design of the Web application and are are likely to result in
significant development costs. Still, over the history of the Web, application ar-
chitectures have been gradually and steadily shifting towards the higher levels
of the maturity model.

As the number of devices connected to the Web and the average number
of devices owned by one user increases [Glo17], more frameworks will appear
positioned across all levels of the maturity model targeting the creation of liquid
Web application. An evaluation of the presented and future frameworks in terms
of performance, scalability, and usability would allow developers to assess which
framework is more suitable for executing liquid primitives in the sequential and
parallel scenarios.

HTML5 standards are quickly evolving every year and new specification drafts
are already defining new technologies that may be used to further extend and
improve the LUE provided by liquid applications. While we described five levels
in our maturity model, we do not exclude that in the future higher levels will
appear. For example, emerging technologies like Web Bluetooth (currently not
yet a World Wide Web Consortium (W3C) standard) [Web17] aims to bring Blue-
tooth support in Web browsers which may be used to define a new maturity level
in which there is no longer a need for a central server in order to perform client
discovery and device pairing.

We based our description on the MVC design pattern adopted by traditional
Web applications, however in the future it may become necessary to revisit the
fundamental architectural abstraction and design principles of Web applications
and study their interplay with a programmable world [172] of billions of hetero-
geneous interconnected devices.

Part II

Liquid Web Architectures

71

Chapter 4

Liquid Data Layer and State
Synchronization

The design of the data layer and communication channels of a liquid applica-
tion is essential for creating liquid Web applications featuring seamless migration
across multiple devices, because the applications’ data and state can flow only if
the underlying data layer allows the applications to migrate across the devices.
For this reason we start this part by discussing the design of the liquid data layer.

In this chapter we focus our discussion on how to design the data layer of
liquid Web applications positioned in the level 4 and 5 of the maturity model
presented in Section 3.3. The concepts presented in this chapter can also be
used for lower levels in the maturity model, but their design should be revisited
in order to accommodate the deployment of the other MVC layers.

4.1 Communication Channels

As we discussed in Section 3.3.3, the choice of the channels used in level 4 and
5 liquid Web applications is limited if we consider only the standard protocols
accessible in HTML5 compliant Web browsers. In Figure 4.1 we show the most
simple deployment of a level 5 liquid Web application:

• the clients can communicate with a signaling server through a WebSocket
channel, or through continuous long-polling HTTP requests. In the Web browsers
these HTTP requests can be natively implemented by creating multiple AJAX
requests that can be chained by using the XMLHttpRequest API [Moz19f], or by
chaining requests created with the newer HTML5 Fetch API [Moz19g]: with the
former, the developers must design the chain of requests with callbacks; with the
latter, developers can exploit the Promises paradigm [Moz20c].

73

74 4.1 Communication Channels

Web Browser 1

Signaling
Server

Web Browser 2

WebSocket
HTTP
AJAX

WebSocket
HTTP
AJAX

WebRTC DataChannel

Figure 4.1. Deployment view of a level 4 or 5 liquid Web application.

The top two most popular and downloaded WebSockets libraries, that can be
used for signaling servers implemented on top of a Node.js process [Ope20], are
ws [WS 20] and socket.io [Soc20]: – ws is a lightweight WebSockets protocol
implementation for the server-side that can create fast client-server communica-
tion channels. The library does not automatically provide any fallback in case
the standard WebSockets are not accessible or available on the Web browser.
Developers must therefore take care of the fallback implementation themselves.
– Socket.io is a collection of protocols that guarantees the two-way communi-
cation between the clients and the server. The library must be loaded both in
the client and in the server, and can transparently switch between communica-
tion protocols if the standard WebSockets are missing or unavailable in the Web
browser.

• clients can communicate with each other by using the WebRTC DataChan-
nels which can be created through the RTCDataChannel and the RTCPeerConnec-
tion interfaces in any modern Web browsers [Moz20a; Moz19h]. It is important
to note that WebRTC can create different communication channels suited for
streaming different kinds of data, e.g., binary, audio, video, or text; however,
for applications that do not need to stream audio, nor videos, the DataChan-
nels should be enough to synchronize the data and state across multiple Web
browsers. WebRTC is currently the only native implementation of a P2P commu-
nication channel protocol that can be used across Web browsers. At the time this
dissertation is written, the majority of the modern Web browsers have access
to the WebRTC DataChannels [Ale20], however not all implementations have
access to every feature described in the WebRTC specification. The developers
of a pure level 5 liquid Web application need to check if the features they plan
to use in their applications are available on all Web browsers. There are many
client-side libraries that help with the creation of WebRTC channels, however
only PeerJS [Mic19] is focused solely on DataChannels, all other libraries focus

75 4.2 Granularity

Browser

Component
Property

Application

Figure 4.2. Liquid Web application granularity

on the creation of audio and video streaming channels, but do not always allow
to create lightweight DataChannels. In case WebRTC channels are unavailable
or the users do not give permission to access them on the Web browsers, devel-
opers must implement a fallback mechanism and relay messages through a Web
server. The Socket.io P2P library [Tom20], similarly to Socket.io, is a collection of
protocols that can create WebRTC PeerConnections between Web browsers that
can also transparently switch to relaying messages through a Web server if the
WebRTC channels fail to be created. The WebTorrent [Fer20] protocol, built on
top of the WebRTC channels, can be used to speedup the synchronization perfor-
mance of big chunks of data if it is distributed among multiple Web browsers.

The data and state of a liquid Web application can also be synchronized across
multiple Web browsers by using non-standard protocols. InterPlanetary File Sys-
tem (IPFS) [Pro20] can be used to share data between Web browsers by lowering
the interoperability with clients that do not have access to IPFS.

4.2 Granularity

The granularity of a liquid Web application defines which parts of the liquid soft-
ware migrates across devices. In Figure 4.2 we show the possible granularity
levels that developers can consider when they design liquid Web applications us-
ing modern Web browsers. The more coarse-grained the liquid state is, the more
data needs to be synchronized across multiple devices. Developers that design
their liquid software with a Web browser granularity, need to address all the is-
sues concerning the migration of the whole Web browser environment (e.g, a
tab) from a device to another. The liquid software has to be able to spawn (or
simulate the spawning of) a new Web browser process in the target machine and
then populate and synchronize its data and state with a copy image of the source
Web browser tab. Fine-grained liquid states, e.g., at the property level, synchro-

76 4.2 Granularity

+ Year
+ Month
+ Day

Calendar

+ Hours
+ Minutes

KitchenClock

+ Day
+ Hour
+ Minutes
+ Seconds

WristWatch

(a) Constructors

+ Year
+ Month
+ Day

c1:Calendar

+ Day
+ Hour
+ Minutes
+ Seconds

w1:WristWatch

+ Hours
+ Minutes

k1:KitchenClock

(b) Instances

+ Year
+ Month
+ Day
+ Hour
+ Minutes
+ Seconds

c2:Calendar

+ Year
+ Month
+ Day
+ Hour
+ Minutes
+ Seconds

w2:WristWatch

paired

(c) Synchronized state between instances
of Calendar and WristWatch.

+ Day
+ Hour
+ Minutes
+ Seconds

w3:WristWatch

+ Day
+ Hour
+ Minutes
+ Seconds

k2:KitchenClock

paired

(d) Synchronized state between instances
of WristWatch and KitchenClock

Figure 4.3. Paired components state in component level granularity.

nize only smaller portions of an application across multiple devices, without the
need of being aware of the underlying Web browser process state and thus with-
out the need of synchronizing the whole application.

Coarse-grained liquid state layers (e.g., Web browser and application levels)
do not need to explicitly specify which parts of the application they migrate Sec-
tion 3.2.7, with the disadvantage that they synchronize more state across devices.
Fine-grained liquid data layers (e.g., component and property levels) decrease
the size of the data exchanged across devices, but with the drawback that the
developers and/or the user need to annotate which components or properties
are part of the liquid synchronized state. The property level is the pinnacle of
the fine-grained liquid state, in which two components can share and synchro-
nize the state of a single property and take advantage of it in different manners
(e.g., two components that have the same logic but with two different visual-
izations). The more fine-grained the liquid state becomes, the more annotations
are needed in order to further define it (see next Section 4.3) and the less data
is exchanged between clients. The less data the clients exchange, the more re-
sponsive the liquid software becomes by increasing the seamless execution of the
LUE primitives.

77 4.2 Granularity

Presenter ScreenPresenter Pad

Viewer Screen

Viewer Screen

Input Number

Screen View

Input Number

Screen View

Input Number

Screen View

Input Number

Screen View

(a) Component level granularity

Presenter ScreenPresenter Pad

Viewer Screen

Viewer Screen

Input Number Input Number

Screen View

Screen View

Screen View

(b) Property level granularity

Figure 4.4. Granularity example. Components are in bold and properties are
stored inside components.

At the component level it is important to note that whenever multiple com-
ponents are paired, the resulting synchronized state is equivalent to the union
of the two (or more) separated component states. In Figure 4.3 we show an
example of component instances created with different component constructors
(Figure 4.3a). The state of the unpaired instances are equivalent to the state de-
fined in the constructor (Figure 4.3b), however when the components are paired
the resulting state is union set of the two (Figure 4.3 and 4.3d). While this effect
is true for all granularity levels, it is impossible to notice it at the property level
because a property holds the smallest indivisible piece of state.

In Figure 4.4 we show an example on how the design of the liquid data layer
of a liquid Web application composed by three components can change with dif-
ferent granularity levels: • component level granularity is shown in Figure 4.4a;
• property level granularity is shown in Figure 4.4b. The liquid application is
meant to be used by a teacher who owns two devices (a smartphone and a com-
puter) and from a class of students with their own laptop. The three components
are: • Presenter pad component - meant to be deployed on the teacher’s smart-
phone. The teacher can write any number on the presenter pad component for
selecting the number of displayed slide. The number of the slide is stored in the
input number property.; • Presenter screen component - meant to be deployed on
the teacher’s computer. The presenter screen component contains the properties
input number and screen view. The component displays the current selected slide
depending on the value stored in input number and save a screenshot of the dis-
played slide in screen view; • Viewer screen component - meant to be deployed on
all students laptops. The viewer screen component displays the slide stored in
the screen view property on all laptops. In Figure 4.4a the components are paired

78 4.3 Data Flow Direction

as a whole, meaning that the data and state locally stored in any component is
the same on every component. If we analyze the expected requirements of the
components, we notice that the presenter pad component does not need to store
the value of the screen view property because it is never used. The same can
be said about the input number property in the view screen component, which is
never used. In the more fine-grained example shown in Figure 4.4b we see that
the liquid data layer is paired at the property level. The components do not need
to store and synchronize all the state contained in all other components, thus
they store only the values they need to fulfill the requirements. The presenter
pad component only stores the value of the input number property and the viewe
screen component stores the value of the screen view property.

4.3 Data Flow Direction

In the example we presented in Section 4.2 we showed that the granularity of the
liquid data layer effects the design of a liquid application, however the explicit
state identification must also address other issues that can be explained using
the example we presented in Figure 4.4. In the example the teachers expect to
be in control of the application, and they do not want the students to change
the slides they are displaying on the screen and on their computer. If a student
can find a way to change the value of the screen view property, the value of the
property would be automatically synchronized on the presenter screen, and then
broadcasted to all students’ laptop. While this could be a feature in an interactive
class [175], it is a security breach not in this specific example. In this example
the data is expected to flow from the presenter pad of the teacher, to the presenter
screen, and finally arrive at the viewer screen of the students. The opposite flow
of data is not allowed.

We introduce the data flow direction annotations for the explicit liquid data
layer that can be used both at component and property levels of an application.
The annotations consist of two permissions holding Boolean values which control
how the data and state can be changed, updated, and propagated across paired
components and properties. The permissions are:

• publish - defines if a component or a property is allowed to propagate its
own updated state to another paired component or property;

• subscribe - defines if a component or a property is allowed to accept up-
dates from another paired component or property.

The following discussion presents the publish and subscribe annotations at
the property level, however the same concepts can be applied at the component

79 4.3 Data Flow Direction

Component Component 2
Property 1

Publish = true
Subscribe = true

Property 2
Publish = true

Subscribe = false

Property 3
Publish = false

Subscribe = true

Property 4
Publish = false

Subscribe = false

Property 1
Publish = true

Subscribe = true

Property 2
Publish = false

Subscribe = true

Property 3
Publish = true

Subscribe = false

Property 4
Publish = false

Subscribe = false

(a) Liquid properties with matching annotated permissions

Component Component 2

Property 1
Publish = true

Property 2
Publish = false

Property 1
Subscribe = false

Property 2
Subscribe = true

(b) Liquid properties with mismatching annotated permissions

Figure 4.5. Data flow direction combinations for liquid properties.

level.

Figure 4.5a shows the four matching combinations of the two permissions:

• Property 1: both publish and subscribe annotations are true in both compo-
nents, thus property 1 can flow in both directions. Whenever the property on the
left is updated, the state is propagated to the property on the right and vice-versa;

• Property 2: the component on the left publishes property 2 and the com-
ponent on the right allows property 2 to subscribe to other properties. In this
scenario the data can flow only from the property defined in the first component
to the property of the second. If property 2 inside component 2 is updated from
outside (e.g., not from the transparent synchronization), is not propagated to the
property defined inside the first component and is automatically re-synchronized
to the previous value held by the the property on the left.

• Property 3: similarly to the example shown in property 2, the data can flow

80 4.3 Data Flow Direction

Presenter Screen
subscribe = true
publish = true

Presenter Pad
subscribe = false

publish = true

Viewer Screen
subscribe = true
publish = false

Viewer Screen
subscribe = true
publish = false

Input Number

Screen View

Input Number

Screen View

Input Number

Screen View

Input Number

Screen View

(a) Component level granularity

Presenter ScreenPresenter Pad

Viewer Screen

Viewer Screen

Screen View
subscribe = true
publish = false

Screen View
subscribe = true
publish = false

Input Number
subscribe = false

publish = true

Input Number
subscribe = true
publish = false

Screen View
subscribe = false

publish = true

(b) Property level granularity

Figure 4.6. Data flow direction annotations example. Annotations are in italics,
components are in bold and properties are stored inside components. This is
example is the same as the one shown in Figure 4.4 but extended with the data
flow direction annotations.

only in the opposite direction.
• Property 4: in this case data does not flow at all. Both properties can be

updated locally, but never propagate or accepts any update from the outside.
The publish and subscribe permissions are not only used to define the flow of

the data among components, but they also prevent malicious or glitchy compo-
nents to access data they should not. Figure 4.5b shows the two possible cases
in which permissions do not match: • the left component tries to publish the
updated value of Property 1, but the message is discarded because the paired
property inside component 2 did not subscribe to receive update notifications;
• similarly in the second case the property on the right expects to be able to sub-
scribe to property 2 inside the first component, but the property does not publish
any update when the property is changed.

This approach requires both communication end points on different devices,
potentially owned by different users, to agree that a property should be shared.
This is important because components run on a Web browser and permissions
can be unilaterally changed manually by malicious users.

These permissions make it possible to create common propagation patterns.
In Figure 4.6 we show the application described earlier in Section 4.2 extended
with the data flow direction annotations. Figure 4.6a shows the annotation at the
component level. Similarly to the example without annotations (Figure 4.4a), all
the components hold and synchronize the property values of the paired compo-
nents even if they do not need to access them. With the annotations the flow of
the data is limited and goes from the presenter pad, to the presenter screen and

81 4.4 Liquid Storage

Table 4.1. Storage mechanism chosen based on the sharing scope, component
scope, device deployment and persistency of a liquid property.

Granularity Component level Property level
Deployment One Device Many Devices One Device Many Devices

Persistent
Global Local Storage Server-side Local Storage Server-side
Shared Local Storage Server-side Local Storage Server-side
Local Local Storage

Session
Global Session Storage Server-side Session Storage Server-side
Shared Session Storage Server-side Session Storage Server-side
Local Session Storage

Volatile
Global Browser Memory Browser Memory Browser Memory Browser Memory
Shared Browser Memory Browser Memory Browser Memory Browser Memory
Local Browser Memory

Persistency Sharing
Scope

finally to the viewer screen. In case the students are able to hack into to the screen
view property and change the value stored locally, the value is discarded and it is
not synchronized inside the presenter screen component. In Figure 4.6b the same
concept is applied to the properties instead of the components. The resulting
data flow is identical to the flow described in the component level granularity.

4.4 Liquid Storage

In the previous section we discussed the data flow of a liquid application by
abstracting where the data and state is physically stored by claiming that the
data is stored locally either inside the components or by the properties. While
it is true that the value of a liquid property is always cached inside the liquid
component, at the same time it cannot be permanently stored inside it, because
components can move and change location as the user moves from a device to
another. Depending on the following four dimensions the developers can decide
where to store the data of their liquid Web applications:

• Granularity: (see Section 4.2) the component scope defines whether the
liquid data layer is synchronized between components or properties. The values
of the granularity can either be: – Component level; – Property level;

• Sharing Scope: the sharing scope of components or of properties is an an-
notation that defines if the components or properties of a liquid Web application
can be automatically paired by following a common sharing policy. The possible
values of the sharing scope annotation are:
– Global: a global component or property is automatically shared with all in-

82 4.4 Liquid Storage

stances of every component or property with matching identifiers (e.g., they
share the same constructor URI or name). Since those components and proper-
ties are automatically paired, it is not necessary to pair them explicitly when an-
notated. The state contained in a global component or property can be accessed
from any connected device running the application. We encourage developers to
minimize the usage of global components and properties as much as possible, in
order to avoid that big portions of data are synchronized across multiple devices.
In fact, this is exactly what we want to avoid with fine-grained component-based
liquid applications for increasing privacy and for saving bandwidth and storage
space;
– Shared: the components or properties with matching identifiers (e.g., they
share the same constructor URI or name) are automatically paired in the liquid
application;
– Local: the components or properties are never automatically synchronized
with other components or properties. Nevertheless components and proper-
ties can still be manually synchronized with other components at runtime (e.g.,
through the LUE API primitives).

• Device deployment: the device deployment defines if components and
properties can be paired across multiple devices. The possible values of the de-
ployment are:
– one device: a component or a property can be paired with other components
and properties which are deployed and instantiated on the same Web browser
(e.g., same tab or another tab);
– many devices: a component or a property can be shared with any component
or property, even if it is running on another Web browser (e.g., on the same or
different device).

• Persistency: the persistence defines for how long a property should be
stored. We distinguish the following values of persistency:
– Persistent: the state of a component or the value of a property is permanently
stored even if all instances of the liquid components containing it are closed or
all the devices connected to the application are shut down;
– Session: the state of the component or of the property is stored until the user
closes every Web browser running instances of the annotated components or
properties;
– Volatile: the value of the component or of the property is stored until at least
one instance of a component or property holding the value exist.

The composition of these four dimensions makes it possible to decide where
the state of a property should be stored within the liquid Web application. De-
pending on where the state is stored, the latency and bandwidth consumption of

83 4.4 Liquid Storage

Web Browser 1

Server

Components

Session
Storage

Web Browser 2

WebSocket
AJAX
HTTP

Local
Storage

Session
Storage

Local
Storage

Database

Browser
Memory

WebSocket
AJAX
HTTP

WebRTC DataChannel

Properties

Components

Browser
Memory

Properties

Figure 4.7. Level 4 liquid software architecture: storage deployment and flow
of the data across two Web browsers and the server.

the synchronization can be lowered as much as possible.
We identify four possible deployments of the liquid state:
• Browser Memory (JS Heap): the Web browser memory is the best place to

store volatile properties. Whenever the component is closed, the state of volatile
components or properties is lost.

• Local Storage [Moz19d] allows to store and efficiently synchronize the
state among all components and properties running on the same Web browser
(e.g., same tab). If the HTML5 LocalStorage API is not available on the Web
browser, the server-side solution is used instead.

• Session Storage [Moz19e]: unlike the local storage, the session storage
discards the state when a session ends. If the HTML5 SessionStorage API is not
available in the Web browser, the server-side solution is used instead.

• Server-side Storage: global components and properties potentially re-
quire all devices to access and synchronize their state. The perfect target for
storing the global state is the signaling server which is directly connected to all
devices running the application, and therefore to all instances of all liquid com-

84 4.4 Liquid Storage

ponents and properties. Moreover the server is the only component of the which
survives when all clients disconnect, and thus can safely store the state of per-
sistent global components and properties. The global state with a session persis-
tence policy are also retrieved from the liquid server, but synchronized directly
between devices. The server will discard their value once all sessions end on
all devices. When an application uses the signaling server for storing the global
state lowers the maturity of the whole liquid application from level 5 to 4.

In Table 4.1 we summarize where the state of components and properties
should be stored for each valid combination. Liquid components and properties
are mapped to the corresponding storage mechanism based on the four dimen-
sions discussed previously.

The liquid software should always try to minimize the usage of bandwidth
when the data is synchronized and should try to lower the latency when mi-
grating and loading the initial state of a component. In Figure 4.7 we show the
possible architecture of a level 4 liquid application (with either component or
property level granularity). The synchronization mechanism can be directly im-
plemented in the liquid components where the value of a property is cached.
Liquid components can directly exchange messages through WebRTC DataChan-
nels in a multi-device P2P mesh if the data channels are available, or by using
internal messages and events during single-device synchronization. The different
data storage we described can used to make data persistent. Synchronization is
carried out by the signaling server for global persistent properties, while shared
properties are synchronized using the P2P mesh built with WebRTC among all
devices.

Now that we presented the design of the liquid data layer, we can discuss the
design of the liquid logic layer in Chapter 5. The design is built on top of the P2P
communciation and synchronization and would not guarantee all liquid-related
quality attrbitues if the the devices are not able to send messages between each
other directly.

Chapter 5

Liquid Logic Layer and Liquid
WebWorkers

In this chapter we focus on the logic layer as we discuss how to speedup the
performance of liquid Web applications. Users interacting with multiple devices
may trigger data synchronization activities that will ensure a consistent view over
the state of a distributed liquid Web application. Having multiple, partially idle
devices also opens up the opportunity to exploit their computational resources to
speed up CPU-intensive tasks. In this chapter we focus on the business logic layer
of the application and show how we can transparently offload the execution of
CPU-intensive tasks among the active devices on which the application has been
deployed. As opposed to vertical offloading which takes advantage of remote
Cloud resources [111], here we introduce an horizontal offloading approach,
where only local devices are involved. In our proposed solution the horizontal
offloading is transparently handled by Liquid WebWorkers (LWWs), which take
care of transparently migrating jobs across devices. In this chapter we present
the design and API of LWWs.

Like standard HTML5 WebWorkers [Moz20d], also LWW are designed to per-
form background computations in a parallel thread of execution. Unlike standard
HTML5 WebWorkers, the work can potentially be transparently offloaded across
different devices. To do so, LWW use a simpler stateless programming model,
which helps developers identify the boundaries of the task to be offloaded. LWWs
receive discrete atomic jobs to be processed and produce the corresponding re-
sults all at once. The computational offloading is kept completely transparent
from the developer, who can use specific task placement policies to prioritize the
available devices according to different criteria.

85

86 5.1 APIs

5.1 APIs

LWW take care of executing tasks by invoking the corresponding HTML5 Web-
Worker [Moz20d]. LWWs are organized into a pool, whose goal is to manage
their life-cycle, transparently choose on which machine the tasks should be exe-
cuted, and reliably dispatch tasks towards the corresponding appropriate LWW,
which can be located either locally or remotely.

The Liquid WebWorker Pool (LWWPool) and the LWW expose their own API
that can be used by the developer for building multi-device liquid applications.
Operations inside the LWWPool are executed asynchronously because they re-
quire to communicate with remote devices or exchange messages between the
global JavaScript (JS) context and the worker. For this reason we decided to
deal with asynchronous operations with Promises [Moz20c], which may invoke
either a successful or a failing callback upon completion.

A rejected promise may return two types of error: either a communication
error or an execution error. In the first case a failure happens during the offloading
of a task from a device to another due to a problem in the sending process,
either because there is no connection linking the two devices, because the remote
machine is currently unavailable, or because a timeout triggered. The second
error type is thrown whenever there is a problem with a LWW instance, either
because the remote LWW is not yet instantiated or there was an internal error in
the LWW execution.

5.1.1 Liquid WebWorker Pool (LWWPool) API

Table 5.1 lists all methods exposed by the LWWPool API. The LWWPool can be
instantiated by passing the reference to a sendMessage function whose signature
must accept two parameters: deviceID and message. This function will be called
every time the LWWPool has to deliver a message to another device, it does not
matter to the pool how the payload is delivered, but the pool expects that the
function reliably delivers the whole message object to the device labeled as devi-
ceID.

The LWWPool API exposes the following eight methods:
• createWorker: instantiates a new LWW and automatically binds it to the

LWWPool. The pool may contain any number of workers, limited only by the Web
browser WebWorker limit and the available resources. WorkerNames are unique
(e.g., URI) if the pool is requested to create a worker with an already existing
name, then it will fail and return a rejected Promise. The script can be either a
glsurl pointing to a Web resource that can be fetched [Moz19g] with an HTTP

87 5.1 APIs

Table 5.1. Liquid WebWorker Pool API

Liquid WebWorker pool API

Constructor
LiquidWebWorkerPool(sendMessageFunction)

sendMessageFunction signature
sendMessage(deviceID, message)

Method name and parameters Return value
createWorker(workerName, scriptURI) Promise(workerInstance)
getWorkerList() Promise(workerNameList)
updatePairedDevice(deviceID, data) Promise(deviceID)
removePairedDevice(deviceID) Promise(deviceID)
callWorker(workerName, message) Promise(response)
_callWorker(workerName, message) Promise(response)
forwardMessage(message) Promise()
terminateWorker(workerName) Promise(workerName)

request, or it can be a String or a Blob [Moz19i] containing the actual script code.
Both parameters are required.

• getWorkerList: this method returns a JS object containing all the refer-
ences to the instantiated LWWs contained in the pool, indexed by the correspond-
ing workerNames.

• updatePairedDevice: this method updates the information about the
paired devices stored inside the pool. The deviceID is the same that will be passed
in the sendMessage function whenever it will be called. The data is stored in an
object that contains information about all devices. Depending on the policy rules
employed, this object may contain different information (in Section 5.3.3 we dis-
cuss policies).

• removePairedDevice: this method removes a paired device from the
stored list of paired devices. The LWWPool will take care of ensuring that any
task currently offloaded on the removed device will eventually complete either
with succeful or rejected promises. No new tasks will be assigned to the removed
device.

• callWorker: the function is used to submit a task into the pool, which will
be executed either locally or remotely. Once submitted, the pool decides where
the task will be executed, then it creates the corresponding promises and calls
the sendMessage function if the task is executed remotely, otherwise it will call
the _callWorker function.

88 5.1 APIs

Table 5.2. Liquid WebWorker API

Liquid WebWorker API

Constructor
LiquidWebWorker(LWWpool, workerName, scriptURI)

Method name and parameters Return value

callWorker(message) Promise(response)
_callWorker(message) Promise(response)
terminate() Promise(workerName)

• _callWorker: this method is used to submit a task into the pool for local
execution. This method directly pushes the task message into the correspond-
ing local LWW instance and waits for its asynchronous response by setting up a
promise object.

• forwardMessage: whenever a device receives a message sent from an-
other device after the sendMessage function is called, the LWWPool expects that
the message is forwarded from the middle-ware to the remote pool by calling the
forwardMessage function.

• terminateWorker: this method ends the life-cycle of a LWW instantiated
inside the pool. If the workerName is invalid or undefined, it returns an error.

5.1.2 Liquid WebWorker (LWW) API

Table 5.2 lists all methods exposed by the LWW API. If an invalid or undefined
LWWPool is passed as a parameter of the constructor, then the methods call-
Worker and _callWorker will behave equivalently and the LWW will never at-
tempt to offload the execution to any remote device. Without being connected
to a pool, the LWW cannot determine where the submitted tasks should be exe-
cuted. The LWW does not store information about paired devices, nor it knows
if it is paired to other LWWs as this information is managed by the associated
LWWPool.

Developers can call methods on the LWW instances without the need to proxy
their execution requests on the pool, since the LWW object itself exposes an API.
The LWW exposes three methods:

• callWorker: this method submits a task into the LWW, if the worker is
bound to a LWWPool then it will request the pool if the task should be executed
remotely or not, otherwise it will automatically call the _callWorker method.

• _callWorker: this method bypasses the LWWPool policies and executes the

89 5.2 Design

Task:
- worker #x

- inputs

Dispatcher

Execution
Promises

Policy

Device
Pairings

API

Middleware Middleware

Liquid WebWorker Pool

Messages

Dispatcher

Execution
Promises

LWW #2

LWW #3

LWW #4

LWW #5

LWW #1

LWW #2

LWW #6

LWW #7

LWW #1

Policy

Device
Pairings

API

Liquid WebWorker Pool

Device 2Device 1

Figure 5.1. The LWWs architecture. Arrows show the flow of a task and the
exchange of messages between clients. Dotted lines indicate paired relationships
between LWW instances.

tasks directly on the issued worker locally.
• terminate: this function will terminate the WebWorker instantiated in the

background, and safely delete all references pointing to the LWW instance. The
termination is immediate and does not wait for the end of the task execution.

5.2 Design

Figure 5.1 shows the main components of the LWWPool running across two
devices. Tasks can be submitted from either devices and the pool will decide
whether they will be executed using workers of the local pool, or they will be
offloaded to other devices. The middle-ware component in the diagram is out-
side the scope of the LWWPool and takes care to dispatch, receive and forward
messages in behalf of the LWWPool to other devices. The middle-ware can be
implemented with any technology or mechanism as discussed in Section 4.1.

In addition to the set of workers, the LWWPool stores references to the sub-
mitted and the currently executing tasks in the form of pending promises. It also
maintains information about the paired devices:

• pending promises: for all submitted tasks, the pool creates a promise
that waits for the worker to complete the computation and returns the results by
passing the response and its associated unique identifier. The promise contains

90 5.2 Design

the callback that must be fulfilled or rejected when the remote device or the
local worker responds. The payload of the response contains the identifier of the
corresponding promise, which can be easily retrieved from the corresponding
dictionary stored inside the LWWPool.

• paired devices: the pool keeps track of all paired devices. This informa-
tion contains the hardware specification of the devices, such as its type (e.g.,
desktop or phone) or any other information useful to the policy component for
taking task offloading decisions (e.g., processor specifications, battery levels, OS
versions).

The dispatcher component forwards tasks to the correct LWW and thus the
correct device (e.g., local or remote). The decision on where the execution of the
task will happen is controlled by the policy component, which uses data fed from
the device pairings storage in order to take a decision. Whenever the dispatcher
forwards a task, then it also saves the corresponding callback promise. When the
task offloaded to a remote device, the dispatcher does not send the task directly
to the remote endpoint, but it creates a new message and forwards it through
the pre-configured middle-ware (see Section 5.1.1). Each message contains in
its payload the corresponding promise identifier, the inputs of the task that need
to be executed, and the name of the worker that must be invoked on the remote
machine.

The dispatcher component can create new WebWorkers either by passing a
URI pointing to a script stored in a central server, or by passing the content of
the script as a String or as a Blob [Moz19i] Object that can be directly shared
between devices without the need to fetch it from a Web server. If necessary, the
dispatcher is able to instantiate the WebWorker script by converting the String to
a Blob Object.

LWW are designed to be used for stateless computation; in fact, paired work-
ers do not share or synchronize any data among each other. Likewise, every job
is treated as an independent computation. Nevertheless it is possible to simulate
stateful computations by submitting a task that would include as input the pre-
vious state of the worker, and then return the new state with the result so that
it can be stored and passed along with the next task. This way, each task of the
sequence can still be transparently sent to different devices.

The sequence diagram in Figure 5.2 illustrates the LWW call life-cycle and
how the components inside the LWWPool communicate during local and remote
execution. The assumption is that device1 and device2 have been paired and
workers w1 and w2 have been created on both devices. In the example a task
addressed to the worker named compiler is submitted by invoking the method
callWorker. The pool will determine where the task will be executed by invoking

91 5.2 Design

Device 1
Local

Device 2
Remote

Dispatcher Policy
LWWorker w1

name=’compiler’ Dispatcher
LWWorker w2

name=’compiler’

Dispatcher Policy LWWorker w1
name=’compiler’

Dispatcher LWWorker w2
name=’compiler’

Local Execution

callWorker
(’compiler’, msg)

_where
(’compiler’, msg)

"local"

_callWorker(’compiler’,msg)

response

response

Remote Execution

callWorker
(’compiler’, msg)

_where
(’compiler’, msg)

device2Id

sendMessage(’compiler’, msg)

_callWorker
(’compiler’, msg)

response

response

response

Figure 5.2. Local and remote execution sequence diagram.

the internal _where function of the the policy component. In the first case the
policy component chooses to execute the task locally. This results in the local call
to the corresponding LWW. The response is asynchronously computed within the
worker and passed as a parameter in the fulfilled promise. Internally, workers
use the standard HTML5 postMessage/onMessage API to exchange their input
and output data with the LWWPool. This way, from the perspective of the caller,
executing a task locally or remotely is indistinguishable.

In the next scenario the caller invokes the callWorker method a second time
and eventually receives a response inside the fulfilled promise, however inside
the pool the process sequence changes whenever the policy component chooses

92 5.3 Features

to execute the task remotely. In this case the pool first sends a message to the re-
mote device (by relaying the message through the middleware), the remote pool
executes the task on a remote LWW and eventually it will send back a response. If
no response is received within a given developer-configurable timeout, the LWW-
Pool will attempt to find another device and resubmit the task. If eventually no
more remote devices can be found, the task will be executed locally.

5.3 Features

The decision on where a task should be offloaded to, is taken based on different
criteria and following constraints established by the liquid Web application de-
velopers, users or device owner preferences. To do so, in this section we outline
a number of features that allow to enhance the flexibility and customizability of
our LWW prototype.

5.3.1 Micro-Benchmark

In order to be able to implement valid policy rules inside the LWWPool, we need
to predict what are the capabilities of each connected device. Running a macro-
benchmark [92] on all the devices before they are allowed to join the liquid Web
application would not rank the machines correctly. Macro-benchmarks test the
performance of a whole system, however liquid applications are sand-boxed in-
side the Web Browser, which does not give full access to the device resources. For
this reason we aim to assess only the resources accessible from the Web browser
tab that is running the application. Moreover a macro-benchmark is an invasive
process meant to be ran as stand-alone process in order to avoid interference
from other non-idle processes. This would prevent users from interacting with
their devices while the benchmark is running, which may take a long time to
complete.

In our scenarios we need to be able to predict the capabilities of a device for
as long as it connects to the liquid Web application. The amount of available
resources provided by the device may dynamically change at runtime, because
users can close or open new tabs while they are browsing the application. The
benchmark should be repeated over time to accurately track the amount of avail-
able resources.

We decided to follow a micro-benchmarking approach [103], which is suited
for mobile Web-enabled devices and allows us to test the performance of the ac-

93 5.3 Features

Device

Device

Device2

Device2

Offload Task

Worker
Execution

Response

Figure 5.3. Task offloading without failures.

tive Web browser tab from within the browser itself by exploiting HTML5 stan-
dard APIs.

The LWW pool runs a micro-benchmark on startup after the pool is instanti-
ated, then it keeps re-running the test at regular intervals. The interval time span
is configurable by the developers of the liquid application. The benchmark runs
in a dedicated background WebWorker and does not prevent the user from inter-
acting with the application while it is executing. The benchmark environment
is created with the library Benchmark.js [BD16] and the benchmark test-bed can
be customized by the developer of the application.

The result of the benchmark represents the average number of iteration per
cycle it was able to perform during the execution. We use this number to rank
our devices, making it possible to compare their performance. In Section 9.2 we
evaluate the performance of the micro benchmark.

5.3.2 Failure Handling

During the task offloading process, failures may happen. The most common fail-
ure in distributed systems derives from disconnection of the peers [158], however
failures may be generated also by faulty operations such as during task execu-
tions or faulty policy rules predictions [112].

In Figure 5.3 we show the expected sequence diagram of the offloading pro-
cess for LWWs with synchronous data transfer: 1. Device offloads the task to
Device2; 2. Devices2 receives the task; 3. Devices2 executes the task; 4. Devices2
submits the response to Device; 5. Device receives the response and make use of
it.

In this scenario we recognize that the offloading process may fail for three

94 5.3 Features

Device

Device

Device2

Device2

Device3

Device3

Disconnection

Offload Task

Worker
Execution

Response

(a) The device disconnects before the task
is offloaded.

Device

Device

Device2

Device2

Offload Task

Worker
Execution

Disconnect

Worker Execution

(b) The device disconnects after the task
is offloaded, but before the response.

Figure 5.4. LWW failure scenarion: disconnection.

reasons:
• Failed connectivity - the communication between the two devices is inter-

rupted during the offloading process;
• LWW failure - a run-time error during the execution of the offloaded task

occurs;
• Timeout - the task does not complete within a given amount of time and

the device does not send back a response.
In order to create a reliable system, in this section we propose a solution for

all three scenarios.
A peer can disconnect anytime throughout the whole task offloading pro-

cess, Figure 5.4 shows how the LWWPool recovers when a peer disconnects be-
fore the task has been completely sent to another device (see Figure 5.4a), and
how it recovers when the task has already been offloaded before the peer dis-
connects (see Figure 5.4b). In the first case (Figure 5.4a) it does not matter if
Device2 disconnects before the starting device has chosen where to offload the
task, after it choses the target or even during the task offloading process. Since
the task execution has not started yet, the disconnected device will be excluded
from the ranking of candidate devices and the second most-suitable device will
replace it as the new offloading target. In the second case (Figure 5.4b) it does
not matter if Device2 disconnects before, during, or after the Worker Execution
finished, in all three cases the starting device will immediately notice the discon-
nection and by default it will try to recover the execution by running the worker
locally. The LWWPool can be configured to retry the execution on the next most-
suitable device. If there are no other devices connected, the device will attempt

95 5.3 Features

Device

Device

Device2

Device2

Offload Task

Faulty Worker
Execution

Acknowledge Error

Spawn New
LWW

Figure 5.5. LWW failure scenario: run-time error during the offloaded task
execution. The remote LWW is independently respawned but the local device
should decide how to recover the task execution.

to run the execution locally.
Figure 5.5 shows how the LWWPool recovers when an error happens during

the offloaded task execution, which may crash the LWW. The LWWPool is able
to immidiately detect when a worker throws an execution error and reacts to it,
and as a consequence it sends a message to the source device by acknowledging
the failed task execution. The error response includes the reason of the crash and
will not interrupt the execution of the main liquid application process on Device2.
After the response has been sent, a new LWW will be spawned on Device2, which
will return to be available to service other task offloading requests. By default
the source device does not try to locally or remotely re-execute the failed task.
The decision is left to the developer of the application that must define which
recovery operation is executed by catching the error acknowledgement event
from the LWWPool rejected promise.

In the last scenario no task execution response is sent by Device2 back to the
starting device within a given amount of time even if there are no problems with
the connection (see Figure 5.6). This can happen because the LWWPool decided
to offload the task to a slow device, or because Device2 cannot complete the task
execution before a timeout occurs. Whenever the timeout triggers, the starting
device starts to execute the task locally. This creates a race between the local
and remote task execution: if the local task ends before Device2 has responded,
then the starting device notifies Device2 that it does not need its answer anymore,
when Device2 receives the message it will terminate and respawn the correspond-
ing LWW. If Device2 answers before the starting device finishes, then the opposite

96 5.3 Features

Device

Device

Device2

Device2

Offload Task

Long Worker
Execution

Timeout

Start Race Worker Execution

End Worker Execution

Interrupt Execution

Terminate and
Respawn LWW

(a) The starting device wins the race.

Device

Device

Device2

Device2

Offload Task

Long Worker
Execution

Timeout

Start Race Worker Execution

End Worker
Execution

Response

Terminate and Respawn LWW

(b) Device2 wins the race despite the
timeout.

Figure 5.6. LWW failure scenario: timeout without disconnection and local
task re-execution race

happens and the start device terminates and respawns the LWW.
Developers can set the default timeout as part of the LWW configuration and

also associate a different timeout with each task. If the timeout is set to zero, then
the LWWPool will always start a race between the local device and the remote
peer. In this case the LWW will attempt to compute tasks with the highest speed
among two devices, however it will also increase the energy consumption on
both devices.

5.3.3 Task Offloading Policies

Policies are needed for making the LWWPool able of automatically decide where
to execute tasks. This could be achieved by feeding the policy component with
predefined rules selected by the developers of the liquid Web application, e.g.,
trade-off between energy consumption vs. performance.

Policy rules can impact in the overall execution time of an application and
the developer needs to be able to enable or disable some rules depending on the
context of the application they are building.

• Battery status [86] - in the Web browser it is possible to gain access to the

97 5.3 Features

battery status of a device by using the HTML5 Battery Status API [Moz19j]. With
the API it is possible to detect whether a device is currently charging or how much
charge is left in its battery. The policy rule can exploit it to prioritize plugged-in
devices over battery-supported devices. Tasks would be offloaded to devices with
an higher charge level, which would decrease the energy consumption of devices
with a low battery level.

• Privacy or security constraints - the users of a liquid application can in-
teract with devices they do not directly own. Whenever the users interact with
shared or public devices, they have to be aware that they are connected to other
people’s devices. In any situation where the users interact with any device they
do not own, the developer should make sure that the users private data is not
sent to a stranger device. The policy rule can decide to send data only to the
devices they whitelisted, or to any device owned by a whitelisted user. Similarly,
the users should be protected from receiving tasks from devices they do not trust
(e.g., blacklisted devices).

• Device types - as a heuristic, when lacking additional information, the of-
floading decision can be based on expectations on the performance of a device
by knowing its device type, such as Desktop, Laptop, Tablet, Phone. The policy
rule would for example assume a desktop computer to be more powerful than a
smartphone. The liquid Web application can infer the type of device from within
a Web browser by checking the size of the screen or the user-agent of the de-
vice, which however may be changed by the users and would not give any direct
evidence about the performance of a device [178]. Precise information about
the underlying hardware is unfortunately hidden from within the Web browser.
Thus, classifying device by their type only may result in incorrect offloading deci-
sions and should be complemented with, e.g., a benchmark or some other statis-
tics over some probed task execution times as described in Section 5.3.1.

• Communication and computation time - the policy component should
consider the exchanged data size, the available bandwidth (both upload and
download for asymmetric bandwidth) and the latency between the devices into
the decision. This policy rule makes offloading decisions based on Equation 5.1,
where the Communicationt ime is defined in Equation 5.2.

Communicationt ime + Computationremote
t ime ≤ Computationlocal

t ime (5.1)

Communicationt ime = (Dataout
size/Bandwid thupload)+

(Datain
size/Bandwid thdownload) + (2 · Latenc yt ime)

(5.2)

98 5.4 Scenarios

While the Datain
size and the network parameters (Bandwidth and Latency) can

be measured before taking the offloading decision1, the Dataout
size and the

Computationt ime may only be estimated or learned based on the characteris-
tics of the LWW script and the history of its past executions.
The features we described in this section allow to simplify some of the
terms of the inequality. With the micro-benchmark results we can attempt
to predict beforehand which devices have the lower Computationremote

t ime and
Computationlocal

t ime . If the remote time is lower, then we can analyze what is
the communication cost of the offloading process.
Later in Section 7.4.2 we discuss our prototype of the LWW and introduce the
asynchronous data synchronization built in the middle-ware. The asynchronous
data transfer lowers the size of Datain

size and Dataout
size. In the best case scenario,

where all the data is already stored on the remote device, Datain
size and Dataout

size
become negligible as only a reference pointing to the data can be sent.

5.4 Scenarios

LWWs can be used to improve the performance of liquid Web applications in
simultaneous usage scenarios featuring the opportunity to offload local compu-
tations to remote devices owned by the same user or by multiple users (as long as
the users trust one another and are willing to share their CPU/energy resources).

Within the simultaneous use case scenario we distinguish two usage cate-
gories:

• Unrestricted - in this category the environment is composed only by de-
vices that volunteer to freely share computations with each other. All the devices
agree that they trust all other devices and they can offload computations freely.
The devices will also attempt to execute all offloaded tasks whenever they receive
them and promise to return valid results.

• Restricted - in this category the connected devices only offer limited access
and a lower degree of trust, in which they cannot always execute or exchange
tasks between each other. Devices can be restricted from executing or offloading
tasks for multiple reasons, e.g.:

1The Latenc y can be measured while the devices exchange the connection handshake.
The Bandwid thupload and Bandwid thdownload can be estimated only after some large mes-
sages are exchanged between the two peers as unfortunately the HTML5 Network Information
API [Moz19k] is not advanced enough to return the exact values for the upload and download
speed, but it can only describe the type of connection, e.g., WiFi, cellular.

99 5.4 Scenarios

– privacy - in order to guarantee data privacy in multi-users scenarios, the appli-
cation may restrict to offload tasks to devices owned by strangers. In thi case, the
offloading will take place only among devices of the same owner. When users
bring only one single device to run the collaborative application, this device can
be prevented to offload tasks to others devices, meaning it has to execute every
task locally;
– security - arbitrary LWWs migration and execution can be used to push malware
to the neighbour connected devices and they can be used to execute malicious
tasks on other users’ devices. LWW policies can be implemented in such a way
they limit the offload execution of certain tasks (identified by their names) and
thus prevent the execution of unknown tasks on unaware devices.
– application dependencies - restrictions can also be programmed to satisfy appli-
cation specific requirements or dependencies, e.g., in an IoT scenario only some
kind of devices can be entitled to receive offloaded tasks, because the tasks would
need to access some specific sensor attached to the device.
More in general, we distinguish between push or pull restrictions. A specific
device can be restricted from pushing tasks that need to be offloaded on other
connected devices, or a specific device can be blocked from pulling tasks which
have been offloaded from other devices. In the extreme case, it could be possible
that a device can only offload tasks to other devices without ever accepting to
run tasks offloaded from other devices (or vice-versa).

5.4.1 Single User Scenario - Editors (Image Processing)

LWWs can be used to speed up the process of applying computationally intensive
image filters on the pictures displayed in a multi-device Web application (see
Figure 5.7). In the example the liquid application is meant to operate on three
different devices: • a smartphone - which is used to take pictures through the
integrated camera sensor; • a tablet - which is used to browse the pictures and
is used to select which filters should be applied to the images; • a laptop or a
computer - which is used to display the pictures on a big screen.

The three devices run the same application simultaneously and they share the
pictures between each other, e.g., whenever a picture is taken on the smartphone,
it is transparently broadcasted to all other devices.

Without LWWs the tablet is in charge of computing and executing all possible
edit operations selected by the user, while the smartphone and the laptop would
be idle most of the time as they would only serve as input/output devices.

When LWWs are activated, the devices are able to offload computations
among one another. In this case the tablet does not have to be burdened with all

100 5.4 Scenarios

Application

LaptopTabletSmartphone

display picturesedit picture

apply filters

take picture

user

Figure 5.7. Image processing scenario with LWWs.

the image processing tasks, but also the smartphone and the laptop can partici-
pate with the goal of improving the overall response time of the image filtering
feature of the application. In this particular scenario all the devices are owned
by the same user and they are unrestricted, that means that any device can freely
accept all incoming offloading requests and it can forward them to any other
device. Offloading the filters to the laptop can save the battery energy of the
tablet.

5.4.2 Single User Scenario - Public Displays

In Figure 5.8 we show a scenario where a single user runs an application on
multiple devices, however not all of the devices are owned by the user. In this
case the user owns the smartphone, while the public display is owned by the city,
which deployed it outside of a train station. The display can be used by anyone by
scanning a QR-code printed on the frame of the screen so that the encoded URL is
opened on their device mobile Web browser. Once the phone is connected to the
screen, the user can search on the displayed map for any interesting place in the
city, or even compute the shortest path to a given location. While searching for a
building is not a complex operation, computing the shortest path may take some
time and, since the display should always be responsive to the user interaction,
the computation for the shortest path is offloaded to the smartphone. In this
use case scenario there is a clear trade-off between the execution time of the
algorithm and the bandwidth required to send the map to the smartphones. In

101 5.4 Scenarios

Public Display
Owned by the City

Smartphone
Owned by the user

Browse city map

Search places

Compute Direction

Browse city map

View directions

user

Figure 5.8. Public display scenario with LWWs.

the case that the display owners consider the execution time on the display more
costly than the bandwidth usage, then they will prefer to offload the execution
on the smartphones, even when the phone CPU is weaker than the one on the
smart display. They are likely to choose the asynchronous data synchronization
(discussed later in Section 7.4.2), as it will cache the map on the smartphones
and it will make it available on the devices for multiple consecutive computations
of the shortest route.

While users wait for the task completion, they can browse for other locations
or even queue up new computations on their smartphone. Once the requested
shortest path tasks are computed, the solutions are stored directly on the phone
and the user may display them at any time, even if the smartphone is not con-
nected to the public display anymore.

5.4.3 Multiple Users Scenario - Education/Teaching Programming

In this multi-user scenario we have two user categories: the students and the pro-
fessors. The professors run the application on their own computers, while the
students can access it with their laptops, or even with their tablets or smart-

102 5.4 Scenarios

Professor Computer

Student Computer Student Computer

Create question

Display questions and answers

Test student’s
edited answers

Answer question Answer question

Professor

Student Student

Figure 5.9. Education scenario with LWWs.

phones [175] (see Figure 5.9). The professors can create new questions at
any time, e.g., "transform the for-loop code into a while-loop code" or similar
programming-related questions. The students can see the questions and they
can answer by sending a piece of code to the professor. The professors can then
choose to display any received answer, they can edit the answers if they spot
some errors and then they can display the result of the code execution returned
by re-running the code. In order to display the result, the professors need to
execute the code, which may lead to three main problems:

• the execution never finishes or it takes too long to finish;

• the code is malicious and tries to block the professor’s computer;

• the code is malicious and attempts to corrupt the data contained in the
professor’s browser storage, e.g., it tries to display on the screen some private
data, or it tries to communicate with external websites;

Without LWWs the code submitted by students must be executed on the pro-
fessor device, with all the risks of executing buggy or malicious code that can
stop the application or disrupt the lesson taught by the professor. In this scenario,
LWWs are useful to offload the computation on the computer that originally sub-

103 5.4 Scenarios

mitted the answer. In this case the professor computer usage is restricted, be-
cause it does not accept any incoming execution request, but it always offloads
them to the students’ computers.

In the next chapter (Chapter 6) we finish the presentation of the design of
liquid software by discussing how to make the view layer of an application liquid.

104 5.4 Scenarios

Chapter 6

Liquid View Layer and Liquid Media
Queries

In this chapter we focus on the view layer as we discuss in detail liquid media
queries, an extension to standard CSS3 media queries [56] that allows the de-
velopers to create their own CSS style sheets that get be activated when their
Web applications are deployed across multiple devices. While as part of the LUE,
end users can control which UI components are deployed on each device (e.g.,
by swiping or drag and dropping), developers can use liquid media queries to
declaratively describe how their applications can automatically react to changes
in the execution environment.

The developers of liquid applications should be able to offer to the users an
automatic rule-based deployment mechanism for populating all of the users’ de-
vices with all the pieces of the application they are running, because a misuse
of the manual LUE primitives may lead to non-intuitive deployments which con-
tradict with the developer expectations and intent. For example, in the case of a
picture sharing application, it should be possible to constrain the component in
charge of taking and selecting pictures to smartphones, while the picture viewer
component should be deployed on a device with a larger display. This way, users
can select which picture to display from their personal smartphone photo library
and take advantage of a public device to have a shared slideshow.

Choosing the appearance of a Web application and deciding how it should
dynamically adapt to the devices it is deployed on, is a mandatory task during
the design of a Web2.0 application [144]. Responsive design is the commonly
followed best practice used to create UIs able to adapt to the devices’ specifi-
cations [125]. Responsive design requires developers to decide how the UI is
presented to the user and how it changes when deployed on different devices

105

106

with distinct input/output capabilities. The challenge of responsive Web design
is to be able to adapt any Web application to any kind of Web-enabled device,
ranging from small and weak smart objects, to the largest and more powerful
computers connected to big screens [99]. While in the past designing responsive
Web applications was difficult, nowadays we can easily design responsive Web
applications with CSS3 and HTML5, which are the current standard used for cre-
ating responsive Web UIs. Nevertheless, following the birth and evolution of the
IoT during the last decade [6], developers face new challenges that responsive
Web design cannot solve on its own. Responsive UIs are meant to adapt to a
single device at the time, however, as the number of devices owned by a user in-
creases [Glo17], developers need to develop Web applications which can adapt
their UI taking into account the whole set of multiple, heterogeneous connected
devices (see Figure 6.1).

In particular, the goal is to allow developers to create their own complemen-
tary view adaptations, in which the users can take advantage of all their simul-
taneously connected devices. A complex UI can be scattered and presented on
multiple devices, in such a way that its users can have immediate access to more
information in comparison to single-device usage scenarios [2]. In fact, with the
design of a complementary view, we have the opportunity to exploit companion
devices and use them to extend the screen size to display parts of the UI of an
application which would not normally fit the visible area of a single screen.

The multi-device adaptation needed for creating complementary views can
be decomposed in three essential sub-tasks:

• Adapt styles in a single device deployment: whenever the whole ap-
plication or a single component is deployed on a device, its UI needs to adapt.
The appearance of the deployed software changes because of the device hard-
ware specifications (e.g., the screen size), or because the user can interact with
the application using different kind of interactions more suitable to the device
hardware (e.g., swiping on a smartphone). Consequently some functionalities
can be enabled or disabled depending on the device capabilities (e.g., geoloca-
tion on location-aware devices). Considering nowadays Web applications, the
single device adaptation is already possible with the help of standard HTML5
and CSS3 [56].
CSS3 media types and features can be used to adapt the UI of an application
to multiple devices by associating a CSS style sheet with some expected device
characteristics. Standard media features consider qualities of the Web browser
and its environment (e.g., the screen size and resolution, the output media, and
the device orientation). If the media query matches what the device supports,
then the corresponding style sheet is activated.

107

Application
(Component 2)

Application
(Component 1)

Device 2

Application
(Component 1)

Application
(Component 2)

Device 1

Application
(Component 1)

Application
(Component 2)

(a) Static View / No Adaptation: the Web application is meant to fit on a single
device (Device 1) and when it is deployed on another one, it does not adapt. For
example, if the screen is smaller (Device 2) than the one it was originally designed
for, the user must scroll to see the entire application.

Device 2

App
(Comp 1) Ap

p
(C

om
p

2)

Device 1

Application
(Component 1)

Application
(Component 2)

(b) Responsive View Adaptation: the Web application can adapt to different device
capabilities.

Device 1 Device 2

Application
(Component 1)

Application
(Component

2)

(c) Complementary View Adaptation: multiple devices can be used concurrently to
run the Web application which scatters and adapts the UI across multiple devices.
In a complementary view, each device displays different components of the same
application.

Figure 6.1. View adaptation options: Figure 6.1a - no adaptation with static
definition of the appearance of the Web page; Figure 6.1b - responsive view
adaptation; Figure 6.1c - complementary view adaptation

108 6.1 Automatic Component Style Adaptation

Standard CSS3 media queries are at the foundation of responsive UIs that adapt
to a single device at the time.

• Adapt styles in a multi-device deployment: the latest CSS3 standard
lacks sufficient expressiveness to describe the UI adaptation in a multi-device en-
vironment. CSS does not yet define media types and features that can be used to
describe a multi-device deployment, therefore we cannot use it to describe multi-
device views that can change styles whenever the user is using multiple devices
simultaneously (e.g., react when the user connects a new device, or disconnects
a previously connected device). Nevertheless, CSS3 is a well-rooted tool in the
Web and we believe that its expressiveness for single device adaptations is very
powerful, therefore we decided to extend it. As we are going to show in the
next section, the concepts of style sheets, media features and media types can be
used also for adapting the UI of an application to multi-device deployments and
in Section 6.1 we define our own liquid media features and types. With the def-
inition of new CSS3 media types and features we can dynamically change the
styles of an application at runtime and react in real time to any change of the set
of connected devices.

• Automatically migrate components of an application between devices:
since our goal is to build fine-grained complementary view adaptations, we must
be able to deploy and migrate pieces of an application among the set of devices.
To do so, we need to define policies that can check the current deployment and
decide whether the components need to be migrated every time the set of con-
nected devices changes. The migration and deployment is not designed to be
part of the liquid media specification we propose and in this dissertation our
prototype (see Chapter 7) provides the actual migration mechanisms and LUE
primitives. The prototype uses the liquid media queries to infer the multi-device
deployment (in Section 6.2 we described how the prototype can infer it).

6.1 Automatic Component Style Adaptation

In order to implement the multi-device adaptation, first the application must be
aware of when it is deployed on multiple devices. Additionally, it should react
when the deployment configuration changes. Since standard CSS3 media queries
do not define media types and features that can be used to define multi-device
deployments, in this Section we introduce and describe new media types and
features suitable for liquid Web applications (see Table 6.1). They can be used by
the developers to define cross-device UI adaptations by declaratively constraining
on which devices the components should be deployed on, and by controlling

109 6.1 Automatic Component Style Adaptation

Table 6.1. Proposed media types and features for liquid media queries.

Name Description

Features
liquid Shortcut for min-liquid-devices: 2.
liquid-devices The number of connected devices.
liquid-users The number of connected users.
liquid-device-ownership Whether the device is private, shared or

public.
liquid-device-role The application-specific role of a device.
priority Redistribution feature (see Section 6.2.1)
clone Cloning feature (see Section 6.2.2).

Types
liquid-device-type The type of device(s) running the application.

which style sheets should be enabled depending on individual properties of the
set of devices connected to the application.

We define the following liquid media features and types (see Table 6.1):

liquid and liquid-devices - in parallel screening scenarios liquid applications
are deployed on multiple devices in parallel. Detecting whether the liquid appli-
cation is currently running on multiple devices is therefore required for the adap-
tation. The liquid feature refers to any deployment with at least two connected
devices, while the liquid-devices feature makes it possible to create different views
for specific numbers of connected devices. Similarly to CSS3 media queries, it is
also possible to define the minimum and maximum values for the liquid-devices
feature by setting the values for min-liquid-devices and max-liquid-devices (e.g.,
min-liquid-devices:3 can be used to dynamically change the view of the liquid
application when there are at least three connected devices).

liquid-users - in multi-user parallel scenarios the liquid application is de-
ployed across multiple devices and multiple users can interact with it at the
same time. The liquid-users media feature allows to adapt a UI depending on
the number of users connected to the application. The features min-liquid-users
and max-liquid-users can also be used for creating styles for single user ap-
plications (e.g., max-liquid-users: 1) and for multi-user applications (e.g.,
min-liquid-users: 2).

liquid-device-ownership - the types of access granted to the devices can be
either private, shared, or public. A private device is owned and used exclusively
by one single user. Shared devices are owned by one user, but they can be used

110 6.1 Automatic Component Style Adaptation

by another. Public devices (e.g., public displays [135]) can be used by both reg-
istered and authenticated users or by anonymous guests.

liquid-device-role - the device role is used to classify devices according to
application domain-specific features. Developers can declare which roles they
expect the devices used to deploy their application should play (e.g., controller,
console, or multimedia display). Users can assign one of the predefined roles to
their actual devices. To do so, the device-role property can be used to assign styles
to be activated on devices with the assigned role. When the developers decide
to use the liquid-device-role feature, the connected devices must be configured at
runtime and a role must be assigned to them. The role metadata associated with
the device can change at any time.

priority and clone - these two features are used by the liquid Web application
to infer the redistribution deployment of the components. The description and
possible values of these two features are discussed in Section 6.2.

liquid-device-type - the latest standard CSS3 media types only distinguish
between screen, print, and speech devices. Depending on the context of the ap-
plication, it can be useful to have a more fine-grained distinction of the kind of
screen devices connected, so that they can be assigned to perform certain kind
of tasks (e.g., desktop computers are used more for working in an office) [102],
while other devices are more convenient in certain social situations (e.g., smart-
phones as opposed to laptops are more convenient during meals) [97]. In the
current implementation of the prototype described in Chapter 7 liquid-device-type
can be set to Desktop, Laptop, Tablet, Phone.

Listing 6.1 shows an example of the definition of a Web component which de-
fines multiple liquid media queries. The component named component-example

contains a style tag with two CSS3 media queries. These queries both use the
liquid-device-type and min-liquid-devices features we have previously de-
fined:

• the first liquid media query liquid-devices:2 activates the style it encap-
sulates only when the set of connected devices consist of exactly two devices.
Whenever there are two connected devices, the background color of the compo-
nent is changed to red (see Figure 6.2);

• the second liquid media query min-liquid-devices:3 reacts whenever there
are three or more devices connected. As soon as a third device connects, the
background color of the component is changed to blue, if more devices connect
the color does not further change and remains blue (see Figure 6.2).

111 6.2 Component Deployment Redistribution

Listing 6.1. Component defining a style containing two liquid media queries.
1 <component-example>

2 <style>

3 @media (liquid-devices: 2) {

4 :root {

5 background-color: red;

6 }

7 }

8 @media (min-liquid-devices: 3) {

9 :root {

10 background-color: blue;

11 }

12 }

13 </style>

14 <template> <!-- Component HTML --> </template>

15 <script> /* Component logic */ </script>

16 </component-example>

6.2 Component Deployment Redistribution

In the previous section we introduced the media features and types that are
needed to describe the multi-device environment, in this section we describe
the policies that can be used to control the deployment of components among
the set of connected devices. It is important to note that the deployment is not
static, since the environment can change at runtime (e.g., devices can connect
and disconnect while the liquid Web application is running). Whenever there
is a change in the set of connected devices, a new deployment configuration is
computed and the components are migrated across the devices accordingly.

Different policies can be used to decide where components will be migrated
and the decision on how the components are redistributed across the devices
is left to the developers of the Web application. The developer can choose the
policy of the redistribution considering the following two different assumptions:

• Redistribution only - the application does not create new instances of a
component during the redistribution, meaning that the number of instantiated
components of the UI of the application remains constant;

• Redistribution and cloning - the redistribution of the UI allows to spawn
new clones of existing components. In this case a given component can have
additional instances spawned on suitable devices. When such devices disconnect,
the cloned components are not migrated to other still connected devices, unless

112 6.2 Component Deployment Redistribution

Device #1
<component-
example>

background-color
white

Device #1
<component-
example>

background-color
red

Device #1
<component-
example>

background-color
blue

Device #1
<component-
example>

background-color
blue

Device #2

Device #2

Device #2

Device #3

Device #3 Device #4

Figure 6.2. Style adaptation of the component described in Listing 6.1 when
up to four devices are connected to the application.

it was the last instance in the set of devices.
The choice between the two assumptions is application specific and depends

on how the developers expect the application to be used. The redistribution only
assumption is more suitable for single-user applications running on a limited se-
lection of devices, while cloning can be used for multi-user applications in which a
certain component should be displayed on multiple screens, e.g., on each device
of a specific type or on some device of each distinct user.

6.2.1 Redistribution step

How can developers control the target devices on which components should be
deployed on? Developers can use the liquid media features and types we de-

113 6.2 Component Deployment Redistribution

scribed earlier. Whenever the developers define a liquid media query inside a
component, the liquid application can assume that the developers are hinting
that the component should be deployed on a device with matching features and
types, if it is already available in the set of connected devices, or migrated on it
if it becomes available while the application is running.

The decision on how to redistribute the components can be based on the
following policies:

• Exact match: this policy decides to move a component to any device that
matches all the constraints defined by all the liquid media queries defined in the
component. If there is no such device, then the migration does not occur.

• Maximize device-component constraint affinity: each component can
define multiple liquid media queries and it is possible that the developer chooses
to create alternative media queries that cannot be accepted at the same time
(e.g., in the example presented in Listing 6.1, it is impossible that both liquid
media queries can be matched, because they hold exclusive values). The rea-
son for the developers to design such liquid media queries is for adapting the
same component to alternative deployment configurations. When the compo-
nent media queries target different devices, it would be possible to migrate the
component to any of those devices if they are available. If more than one such
device is available, this policy migrates the component to the device that matches
the most liquid media queries defined in the component, instead of migrating it
only when all queries are exactly matched.

• Priority-based: the priority-based policy can control which device be-
comes the target of a migration when multiple devices match the same liquid
media query. With this approach the developers associate a priority score to their
liquid media queries. This policy moves the components to the device that ac-
cepts at least one liquid media query defined in the component, and in case there
are more devices that accept the same query, then the component is moved to the
one that has the highest priority. Listing 6.2 shows how the developers can define
the priority of a liquid media query by assigning a value to the priority feature.
In the example, the first liquid media query defines a style that should be acti-
vated with higher priority in respect to the second liquid media query. Figure 6.3
shows how the component defined in Listing 6.2 is moved to different devices
when new targets become available. The component is initially deployed on a
laptop, if a new phone or tablet connects, since the component defines at least
one matching liquid media query, it migrates to either one of them and changes
the background color accordingly. When both phone and tablet connect, then
the component is moved to the phone and the background color is set to blue,
because the priority defined in the liquid media query that matches the phone is

114 6.2 Component Deployment Redistribution

Listing 6.2. Liquid media queries including the priority feature.
1 @media (liquid-device-type: phone) and

2 (priority:2) {

3 :root {

4 background-color: red;

5 }

6 }

7 @media (liquid-device-type: tablet) and

8 (priority:1) {

9 :root {

10 background-color: blue;

11 }

12 }

higher than the one of the tablet.
• Minimum number of components per device: all the policies explained

before do not always take full advantage of all connected devices, because mul-
tiple components can be migrated to a single device matching multiple liquid
media queries, instead of scattering them among all available devices. This pol-
icy is primarily meant to work in conjunction with the previous policies as it
always tries to instantiate at least one component per device, if there are enough
components to be scattered in the set of connected devices.

• Minimize migration cost: if the set of devices changes often, it is possi-
ble that the redistribution moves many components around in a short amount of
time. The result is that components may flicker between devices and thus hin-
der the usability of the liquid application. This policy minimizes the number of
migrations when there is a change in the set of connected devices by ensuring
the stability of the configuration (e.g., components are only migrated if the de-
vice on which they are running on is disconnected or if more suitable devices are
connected, but are not shuffled between existing devices). Developers can also
configure the policy to specify an upper limit to the number of migrations that
can be performed during each adaptation.

The redistribution step deals with three possible outcomes and some of the
policies we presented are more suitable than others depending on the scenario:

• #components < #devices: when there are more devices than compo-
nents, some of the devices will not be selected as targets of the migration. In
this scenario the exact match policy is useful to select the best device to deploy
the components given a huge selection of different devices. Together with the

115 6.2 Component Deployment Redistribution

Laptop

<component-
example-priority>

background-color
white

Laptop

Laptop

Tablet

Phone

<component-
example-priority>

background-color
red

<component-
example-priority>

background-color
blue

Laptop Tablet Phone

<component-
example-priority>

background-color
blue

Figure 6.3. Redistribution of the component described in Listing 6.2 when it
is initially deployed on a laptop and then new devices connect.

minimum number of components per device policy, the redistribution can target
the best subset of devices desired by the developers.

• #components > #devices: in this scenario the component instances out-
number the devices, therefore multiple components are co-located on the same
device. The maximize device-component affinity and the priority-based policies
can be used to select the best configuration of devices for running the applica-
tion when a small selection of devices is available. Again the minimum number of
components per device policy can be used to avoid that the application is deployed
on a single device when there are no matching devices available.

• #components == #devices: in this scenario the minimum number of com-
ponents per device policy will instantiate a component on each device, taking full
advantage of the set of connected devices. Given the small selection of devices,
the priority-based policy is well suited for this scenario, since the components
with the highest priority value are selected to be moved to the best matching
devices first. In this specific scenario, when the developers choose to use the
minimum number of components per device policy and the set of devices changes,
it is possible that the redistribution completely changes the deployment of the ap-
plication, which is not good in terms of user usability. In this case the minimize

116 6.2 Component Deployment Redistribution

Listing 6.3. Liquid media query including the clone feature
1 @media (liquid-device-type: phone) and

2 (clone:*-phone) {

3 :root {

4 background-color: red;

5 }

6 }

migration cost policy can be used.

6.2.2 Cloning step

The cloning step is independent from the redistribution process and it happens
after the redistribution ends.

When multiple instances of the same component need to be deployed on
multiple devices, developers must define an additional feature labeled clone

within the liquid media queries. The clone feature enables multiple instances
of the source component to be cloned across multiple devices instead of just
migrating it on one of them.

In Listing 6.3 we show a liquid media query that defines the clone fea-
ture. In this particular case the component will be instantiated on all con-
nected phone devices. The clone feature accepts values in the form of N −
f eature, where N is a positive non-zero integer or the symbol ∗, and f eature ∈
{user, device, phone, tablet, desktop, laptop, shared, public, private, role =
X }. The value N specifies the maximum number of instances of the source com-
ponent which should be cloned across the set of available devices which match
the liquid media query constraints in relation to the chosen f eature. Their com-
bination allows to write cloning rules such as:

• 1-user: the component is cloned at most once per user, picking any of their
available devices;

• 1-device: the component is cloned at most once per device type;
• 2-tablet: up to two component instances are cloned among all available

tablets;
• *-public: the component is cloned once on each available public device.
• *-role=dashboard: the component is cloned once on each devices playing

the dashboard role;
The clone feature works in conjunction with the other features and types of

the liquid media queries, therefore a device matches the cloning feature only if

117 6.3 Liquid UI Redistribution and Cloning Algorithms

Laptop

<component-
example-clone>

background-color
white

Laptop

Laptop

Tablet

Phone

Laptop Phone

<component-
example-clone>

background-color
red

<component-
example-clone>

background-color
white

<component-
example-clone>

background-color
red

Phone

<component-
example-clone>

background-color
red

Figure 6.4. Redistribution and cloning of the component described in List-
ing 6.3 when it is initially deployed on a laptop and then new devices connect.

it also matches the whole liquid media query.

In Figure 6.4 we show how the redistribution and cloning of the component
described in Listing 6.3 happens. The component is initially deployed on a laptop
and is not migrated, nor cloned when the tablet connects, because the liquid
media query does not match with the tablet. When a phone connects, then the
component is migrated and if additional phones connect, then the component is
also cloned on those devices.

6.3 Liquid UI Redistribution and Cloning Algorithms

The UI adaptation algorithm operates on three distinct phases: constraint-
checking and priority computation, redistribution and cloning, and local component
adaptation. The algorithm first decides which devices are suitable for displaying
a component encapsulating the liquid media queries, then it migrates and clones
the component on the highest priority device and activates the corresponding
style sheet as soon as the component is instantiated on the target device.

118 6.3 Liquid UI Redistribution and Cloning Algorithms

6.3.1 Phase 1: Constraint-Checking and Priority Computation

The constraint-checking phase decides if there is a suitable device in the pool of
connected devices that satisfies the liquid media query expressions encapsulated
inside the components.

Algorithm 6.3.1 computes the matrix of valid target devices in which at least
one liquid media expression is accepted. The matrix has size #components ×
#devices. Each element represents with a positive integer the highest priority
value of all the accepted liquid media queries encapsulated in the component, or
zero if there are no accepted queries.

The matrix shown in Equation 6.1 is the priorityMatrix produced by Algo-
rithm 6.3.1 during the example scenario we present later in Figure 9.11, when
both UserA and UserB are connected. There are four instantiated components
and seven devices connected to the application. cvideo’s liquid media queries
(see Section 9.3) are accepted by device dlaptop, dt v. At least one query of pri-
ority 2 was accepted by device dlaptop and at least one query of priority 4 was
accepted by devices dt v. dphone1 accepts at least one query encapsulated in com-
ponents cvideoCont rol ler , csug gestedV ideo, the first one with priority 2 and the latter
with priority 1.

dphone1 dphone2 dphone3 dtablet dlaptop1 dlaptop2 dt v

cvideo 0 0 0 0 2 2 4
cvideoCont rol ler 2 2 2 0 0 0 0
csug gestedV ideo 1 1 1 3 0 0 0

ccomments 0 0 0 0 1 1 0

(6.1)

dphone1 dphone2 dphone3 dtablet dlaptop1 dlaptop2 dt v

cvideo 0 0 0 0 2 2 4
cvideoCont rol ler 2 2 2 0 0 0 0
csug gestedV ideo 1 1 1 3 0 0 0

ccomments 0 0 0 0 1 1 0

(6.2)

Algorithm 6.3.1 also computes the cloneMatrix shown in Equation 6.2, which
has a similar structure to the priorityMatrix, but stores only the information about
the components that define at least one clone rule in the attributes of the liquid-
style elements they encapsulate.

Algorithm 6.3.1 runs whenever one of the following events occurs:
• A component is created or deleted from a device - creating or deleting a

119 6.3 Liquid UI Redistribution and Cloning Algorithms

Data: Input: priori t yMat rix , cloneMatrix
Data: Shared global state:

components, devices, users, deviceCon f i gurations
Data: Event
if Event == component c created then

Add a new row in the priorityMatrix;
forall d ∈ devices do

forall liquid-style in the created component do
Check if the device accepts the liquid-style and save the
highest priority in priori t yMat rix[c][d] and in
cloneMatrix[c][d];

end
end

else if Event == component deleted then
Remove the corresponding component row from the priorityMatrix;

else if Event == device d configuration changed then
forall c ∈ components do

forall liquid-style in the component do
Check if the device accepts the liquid-style and save the
highest priority in priori t yMat rix[c][d] and in
cloneMatrix[c][d];

end
end

else if Event == device connected ‖ Event == device disconnected ‖ Event
== user connected ‖ Event == user disconnected then

forall c ∈ components do
forall d ∈ devices do

forall liquid-style in the component do
Check if the device accepts the liquid-style and save the
highest priority in priori t yMat rix[c][d] and in
cloneMatrix[c][d];

end
end

end
Result: updated priori t yMat rix and cloneMatrix

Algorithm 6.3.1: Incremental constraint-checking and priority computa-
tion

component does not affect the acceptance of the liquid media queries of any other
components. When a new component is created (or removed), a row is added

120 6.3 Liquid UI Redistribution and Cloning Algorithms

(or removed) to the priorityMatrix and the algorithm recomputes the highest
priority scores. If a created component defines a liquid media query with the
clone attribute, then the highest priority value between the clone styles is also
stored in the cloneMatrix.

• The meta-configuration of a device is changed - when the device type,
ownership, and role change, the priority values of the corresponding column are
updated for both matrices.

• A device joins or leaves the current session - these events affect the
devices, min-devices, and max-devices features of the liquid media queries, which
triggers the recomputation of the whole priorityMatrix and cloneMatrix.

• A user connects or disconnects from the application; Changes to the
users, min-users, and max-users features also require a complete recomputation
of the priorityMatrix and cloneMatrix.

6.3.2 Phase 2: Migration and Cloning

The migration and cloning phase uses the previously computed priorityMatrix
and cloneMatrix to determine on which devices each component should be mi-
grated or cloned on. The algorithm prepares a migration plan where each com-
ponent is assigned to a given target device. The choice follows the minimum
number of components per device policy so that the number of components run-
ning on each device is minimized, making it possible to spread the liquid Web
application across as many devices as possible. If the component instances out-
number the available devices, some of the components will be co-located on the
same device. Equation 6.3 shows the resulting migrationPlan computed under
the constraints of the liquid media queries of the scenario depicted in Figure 9.11
(the constraints are presented in Section 9.3). cvideo is migrated to dt v with the
highest priority, ccomments is migrated to dlaptop with the lowest. Once the migra-
tionPlan is ready, the liquid application can redeploy the components across the
set of devices accordingly.

migrationPlan= [{cvideo, dt v}, {csug gestedV ideo, dphone1},
{cvideoCont rol ler , dtablet}, {ccomments, dlaptop2}]

(6.3)

After the migration step is complete, the cloning routine can start. This pro-
cess exploits the cloneMatrix computed in phase 1 and the clone rules associated
to the components that need to be cloned. All the devices that were not used in
the previous migration step are flagged as candidates for running a cloned com-
ponent. The candidates are grouped and prioritized following the clone rules,

121 6.3 Liquid UI Redistribution and Cloning Algorithms

Data: priori t yMat rix
Data: Shared global state: components, devices
componentOrderedTar gets← {};
migrationPlan← {};
for component ∈ components do

componentOrderedTar gets[component]← {};
highestPriori t y ← 0;
tar gets← [];
for device ∈ devices do

priori t y ← priori t yMat rix[component][device];
if priori t y > highestPriori t y then

highestPriori t y ← priori t y;
migrationPlan[component]← device;

end
tar gets.push({device : device, priori t y : priori t y});

end
orderedTar gets← sort(tar gets) by priori t y , decreasing order;
componentOrderedTar gets[component].tar gets←
orderedTar gets;

componentOrderedTar gets[component].highestPriori t y ←
highestPriori t y;

end
migrationPlan← {};
sor tedPriori t y ← sort(componentOrderedTar gets) by
highestPriori t y , decreasing order;

for component ∈ sor tedPriori t y do
deviceIndex ← 0;
do

unique← t rue;
tempTar getDevice←
sor tedPriori t y[component].tar gets[deviceIndex];

for d ∈ migrationPlan do
if tempTar getDevice = migrationPlan[d] then

unique← f alse;
end

end
while unique == t rue;
migrationPlan[component]←
sor tedPriori t y[component].tar gets[deviceIndex];

end
Result: migrationPlan

Algorithm 6.3.2: The redistribution algorithm for computing the
migrationPlan. the algorithm encapsulates the priority-based and the
minimum number of components per device policies.

122 6.3 Liquid UI Redistribution and Cloning Algorithms

the device that contains the source component that needs to be cloned is never
considered as a possible target of the cloning, and every component which can
be cloned is associated with the list of target devices. Similarly to the previous
step, the algorithm prepares a clone plan that is used by the liquid application
for cloning the components. Equation 6.4 shows the output clonePlan computed
with the matrix shown in Equation 6.2 under the constraints of the liquid me-
dia queries of the scenario depicted in Figure 9.11 (see Section 9.3 for the con-
straints).

clonePlan= [{cvideoCont rol ler , dphone3}] (6.4)

Algorithm 6.3.2 computes the migration plan by implementing the priority-
based and minimum number of components per device policies. If multiple liquid
media queries have the same priority and multiple components can be migrated
to the same connected devices, the priority is resolved based on which component
was instantiated first in the liquid application. However it is encouraged that
the developers give different priorities to their liquid media queries, instead of
relying on the time when components are instantiated. While it can be easy
to predict when a component is instantiated on a single device environment, it
is not trivial to determine beforehand when a component is instantiated if the
application is deployed on multiple devices.

The first for-loop in the algorithm orders the priority scores for each com-
ponent, then, starting from the one with the highest priority, it builds the
migrationPlan. In this version of the algorithm, the outcome does not consider
the overall migration cost in terms of the number of migrations to be performed
or the time required to migrate a given component instance. Minimizing such
cost would become important when the algorithm is applied to an input config-
uration of components already instantiated across multiple devices.

6.3.3 Phase 3: Component Adaptation

The component adaptation phase happens once the migration and cloning is com-
plete. Each device checks for each instantiated component which liquid media
queries are accepted and activates the associated style sheets. The standard CSS
mechanisms for dealing with overlapping selectors take over.

123 6.3 Liquid UI Redistribution and Cloning Algorithms

6.3.4 Run-time Complexity

The complexity of the algorithm we discussed in Section 6.3 depends on three
factors: the number of devices (D), the number of the components (C), and
the number liquid-style elements (S). In the worst case, the run-time complex-
ity of Algorithm 6.3.1 is O (D ∗ C ∗ S). However, the actual run-time complexity
depends on the event that triggered the incremental version of the algorithm:
• O (D ∗ S) for newly created components; • O (C) for deleted components;
• O (C ∗S) for changed device configurations; • O (D ∗C ∗S) for all other events.
The run-time complexity of the migration and cloning phase is O (C ∗ D2), and
the adaptation algorithm explained in Section 6.3.3 has complexity O (S).

The execution for Algorithm 6.3.1 can be decentralized as the responsibility
for computing the priorityMatrix columns can be offloaded on each device, as-
suming that they all have access to the component liquid style definitions. Each
device takes care of updating their columns whenever an event occurs and stores
the result in the application shared state, which is automatically synchronized
among all devices. We discuss the design of the decentralized algorithm in our
prototype in Section 7.5.2.

124 6.3 Liquid UI Redistribution and Cloning Algorithms

Part III

Framework Implementation

125

Chapter 7

Liquid.js for Polymer

The design of the majority of the Web applications does not yet take into con-
sideration the scenario in which the users access their applications with all the
Web-enabled devices they possess [Goo12]. Those devices may be used sequen-
tially, where the work made on a device needs to be transferred to another as
the users continue to use the application, or simultaneously, where the multi-
ple users collaborate using multople devices. Traditional Web 1.0 applications,
which do not use sessions, make it possible to transfer applications across devices
by sharing the link to the page currently opened by the users. As soon as sessions
are introduced (e.g., when the users need to be authenticated) more effort is re-
quired to make the application flow between different Web browsers. Modern
Web applications, which keep a significant amount of state on the client, make it
even more complex for developers to achieve the LUE as their architecture was
not designed to withstand the interactions of the same user using multiple Web
browsers on different devices, possibly at the same time.

The goal of the Liquid.js for Polymer framework is to help developers build
Web applications that can take full advantage of all devices owned by their users
by transparently creating an environment suitable for creating the LUE [132]
described in Chapter 3.

7.1 The Framework

The Liquid.js for Polymer framework (referred as just Liquid.js from now on) tar-
gets the development of Web applications that require support for sequential and
simultaneous screening across multiple devices owned by the same user, and can
be generalized to collaborative scenarios involving multiple devices owned by
multiple users. The framework enables the creation of transparently decentral-

127

128 7.1 The Framework

ized Web applications that need to operate on a shared decentralized state that
can be deployed across multiple heterogeneous devices. Liquid.js can be used to
create level 5 liquid Web applications (as discussed in Section 3.3.4.10).

The idea behind the Liquid.js framework is to give to developers the tools to
easily create applications transparently running on multiple heterogeneous de-
vices. As previously discussed in earlier sections, there are three different uses
cases of the Liquid.js framework: • sequential screening: one user owns two or
more different devices, on which the application runs at different times; • simul-
taneous screening: one user owns two or more different devices, on which the
application runs at the same time shows different components of the same appli-
cation deployed on each device); • collaboration: two or more users collaborate
using the same application running on all of their devices either sequentially or
simultaneously.

The assumption is that applications are developed using the Web Components
standard [W3C14], which provides the necessary level of granularity to structure
the application UI and its state into modular, reusable and composable units that
can be independently deployed across multiple devices. While for the sequen-
tial usage scenarios it is sufficient to make the whole Web application liquid, a
fine-grained component-based approach is particularly suitable for simultaneous
usage scenarios. This way, developer may control the deployment configuration
of each part of the application or the UI and best decide how to empower the
users to rearrange and lay out the Web application across all available devices.
Figure 7.1 shows the positioning of the Liquid.js design decisions on the design
space of liquid software presented in Section 3.1.

We assume that components are built with the Polymer framework [The18a],
developed by Google. Liquid.js is compatible with any of the Polymer compo-
nents that can be found on the catalogue of Web components [Web20] (main-
tained by the Polymer community) as well as with any Polymer component built
by any Web developer that complies with Polymer v1.x rules. Liquid.js trans-
parently takes care of the state synchronization by using Yjs [139], a connector
for concurrency control and conflict resolution framework that takes care of syn-
chronizing the state across multiple devices through messages that are then sent
over both WebSockets and WebRTC P2P connections.

Developers using Liquid.js need to inject the liquid behavior [Pol18] into all
the Polymer components they expect to have liquid features, in such a way that
they can later be dynamically migrated to run on other devices. E.g., the liq-
uid behavior gives to a stateful Web component the ability to be dynamically
deployed, migrated, forked, and cloned on any Web browser-enabled devices
importing the Liquid.js API.

129 7.1 The Framework

Li
qu

id
 S

of
tw

ar
e

To
po

lo
gy

St
at

e
R

ep
lic

at
io

n
Ap

pl
ic

at
io

n
So

ur
ce

U
I A

da
pt

at
io

n
D

ev
ic

e
U

sa
ge

St
at

e
Id

en
tifi

ca
tio

n

C
lie

nt
 D

ep
lo

ym
en

t

D
is

co
ve

ry

Pr
im

iti
ve

s

Sy
nc

hr
on

is
at

io
n

La
ye

rin
g

G
ra

nu
la

rit
y

M
an

ua
l

Re
sp

on
siv

e
Co

m
pl

em
en

ta
ry

Pa
ra

lle
l

Se
qu

en
tia

l
Im

pl
ic

it

Fo
rw

ar
d

Fo
rk

M
ig

ra
tio

n
Cl

on
e

Ba
tc

h
Tr

ic
kl

e
O

S
VM

 /
Co

nt
ai

ne
r

Ap
pl

ic
at

io
n

Co
m

po
ne

nt
M

as
te

r-
sla

ve
M

ul
tip

le

m
as

te
rCe

nt
ra

liz
ed

De
ce

nt
ra

liz
ed

Hy
br

id

Si
ng

le

Re
po

sit
or

y
M

ul
tip

le

Re
po

sit
or

ie
s

Cl
ie

nt

Re
po

sit
or

ie
s

Pr
e-

in
st

al
le

d

O
n-

de
m

an
d

Ca
ch

ed

Ul
tra

Th

in
Th

in
Th

ic
k

Sm
ar

tc
ar

d

W
iF

i

Bl
ue

to
ot

h

Sh
ar

ed

UR
L

Q
R

co
de

O
r

Al
te

rn
at

ive

M
an

da
to

ry

O
pt

io
na

l

Ex
pl

ic
it

Co
nt

ac
t

Li
st

G
eo

lo
ca

tio
n

Figure 7.1. Liquid.js design decisions in the design space of liquid software
(see Figure 3.1). The Liquid.js features are highlighted with colors.

130 7.1 The Framework

To do so, the state of a Web component can be annotated following the Liq-
uid.js conventions. Developers can choose which components are liquid and they
can explicitly define which properties should be shared with other components
upon migration. Liquid.js reads the annotated components and transparently
manages the asset deployment, state migration and synchronization across com-
ponents running on different devices. Polymer components that import the liq-
uid behavior are called liquid components and any Polymer property that needs
to be synchronized and is annotated as liquid is called a liquid property. Liquid
properties can strictly be defined only inside liquid components. A liquid com-
ponent can be instantiated on any device running a modern Web browser that is
connected to the liquid Web application discovery server.

Liquid.js allows users to instantiate any component provided by the Web ap-
plication on any of their devices, furthermore it allows users to migrate those
components directly across any other device. Whenever a component moves
across devices, if the target does not yet own the assets of the component, it
will request them from the source so that they can be dynamically loaded on the
new device. To do so, Liquid.js supports both a centralized and decentralized ap-
proach to distribute and deploy the assets of a Web application. Like any other
traditional Web application, the server of the liquid application (see Figure 7.2)
stores all the assets of the application (e.g., the HTML, CSS, and JS files con-
taining the definition of liquid components). As assets are downloaded by the
clients connected to the application, Liquid.js no longer relies only on the central
Web server. Since clients own a copy of the assets they can help the server by
sending the assets to new clients connecting to the application. Clients can dis-
tribute assets to their neighbouring devices through P2P channels created with
the WebRTC Peer Connection and DataChannel APIs. Creating a fully distributed
architecture from the very beginning is impossible with current Web technolo-
gies, because users connecting from their Web browsers do not yet own a public
IP address, thus they need to connect to a Web server in any case for discovery
purposes. Therefore the server of the liquid application takes care of the dis-
covery of the clients by implementing a Signaling Server which can also be used
for relaying messages between the devices that cannot create a direct WebRTC
connection between them.

Liquid.js internally identifies liquid properties, liquid components and de-
vices with unique Uniform Resource Identifiers (URIs). The framework applies
an identifier to each device upon connection and it assigns an identifier to liquid
components and their properties whenever they are instantiated. These iden-
tifiers can be used as URIs within the framework whenever there is the need
to refer to them, e.g., in order to migrate a liquid component from a device to

131 7.1 The Framework

Client-side

Liquid API

Liquid Behavior

Local Storage
PouchDB

y-liquid
Connector

Liquid
Styles

Server-side

Deployment
Server

Websocket
Server

Signaling
Server

Assets

Temporary
Storage

HTTP
Client

Websocket
Client

WebRTC
Peer

Liquid Peer
Connection Strategy

Liquid
Style

Controller

Liquid
UI Wrapper

Liquid Components

Liquid
WebWorker

Pool

Liquid
WebWorkers

Figure 7.2. Liquid.js simplified architecture

another the source componentURI and the target deviceURI have to be known.
Liquid.js URIs follow the liquid URI scheme and are de-referenceable through
the framework and not by using the HTTP protocol. URIs simplify the design of
the API as the same methods can be applied both to components deployed on
the device issuing the command as well as to remote components.

The liquid behavior transparently communicates directly with the core com-
ponents of the library, the liquid API component, and the y-liquid connector com-
ponent (see Figure 7.2). The latter defines the implementation of a connector for

132 7.1 The Framework

the Yjs framework [139] which takes care of synchronizing data structures be-
tween devices. Whenever the state of the component’s liquid properties change,
Yjs and the y-liquid connector create and send synchronization messages which
are automatically delivered to other paired devices.

The existing behavior of any component built without using Liquid.js (legacy
Polymer components) is untouched, even if the component is later redesigned to
import the liquid behavior. When the component imports the liquid behavior, it
still have full access to any W3C HTML5 API or any third party imported library
defined in the main JS environment. Liquid.js wraps the solid Polymer compo-
nents and sets up proxy traps and object observers on the annotated Polymer
properties. This approach allows to separate concerns between the liquid behav-
ior and the actual component behavior without requiring developers to change
the code they already own. Instead, they only need to explicitly annotate as liq-
uid the properties whose values should be migrated or kept synchronized across
devices.

7.1.1 Granularity

The client of Liquid.js is thick. Liquid Web applications developed in Liquid.js
are component-based and all components can be shared between the set of de-
vices. The client is responsible for transparently creating the P2P mesh among
the clients; moreover, it hides the complexity of data and state synchronization
by hiding the protocol used and by taking care of data consistency among the de-
vices. This approach allows Liquid.js to migrate only small pieces of an applica-
tion instead of migrating the entire application. By migrating liquid components
it is possible to migrate only parts of the UI from a device to another without
loading the entire application on all devices.

While the liquid data layer is designed at the component level granularity,
Liquid.js also allows to synchronize the state at the property level Section 4.2.

7.1.2 Topology and Code Deployment

The topology of Liquid.js aims to be distributed, or when necessary, as decentral-
ized as possible. Initially the master copy of the assets of an application reside
in a Web server (which can be replicated following the multiple repository ap-
proach. Whenever clients request pieces of an application in the form of liquid
components (on-demand), they may decide to cache any asset inside the storage
of their Web browser. Afterwards any client can request any other to send their
own copy of the application. This approach allows Liquid.js to take advantage

133 7.2 Liquid Web Applications

Device

Browser

Web Application

Liquid.js for Polymer
(Liquid.js API)

Liquid
Components

- Metadata
- Events

- Components
 - Data

OS

Device

Browser

Web Application

Liquid.js for Polymer
(Liquid.js API)

Liquid
Components

OS

Figure 7.3. Applications built on top of Liquid.js: stack view.

of both multiple repositories and client repository as the source of the application
(as discussed in Section 3.2.1.2). The hybrid application deployment is a mix of
the multiple repositories and client repositories topologies shown in Figure 3.3b
and 3.3b. The exchange of assets happen through a P2P mesh that is established
dynamically at runtime. The P2P channels are created using the WebRTC RTC-
DataChannel API implemented using the Peer.js library [Mic19].

7.2 Liquid Web Applications

Liquid Web applications developed with Liquid.js depend on the Liquid.js API
that all liquid applications need to import into their Web page. Liquid.js can
run on any modern Web browser that follows the HTML5 standard (e.g., Google
Chrome, Mozila Firefox) [Ale19]. Figure 7.3 shows the stack diagram of a liq-
uid Web application built on top of Liquid.js. Liquid components run on top of
the Liquid.js API, which acts like a middle-ware in the communication between
clients and takes care of sending metadata information, events, components, data
and state.

Liquid.js provides developers with the following abstractions (Figure 7.4a):
• liquid component: a piece of executable code defined by both JavaScript

(JS) and HTML. The liquid component encapsulates both the state of the compo-
nent and the liquid behavior, which is the core module that provides the Liquid
API to the component.

• liquid property: the liquid property is the smallest indivisible piece of
state contained in a liquid component. The liquid property is defined by a name,
a value, and a set of annotations. The state of a liquid component is defined by
all liquid properties it contains.

134 7.2 Liquid Web Applications

Component

[UI Wrapper]

Property Property

(a) Liquid component structure: a component contains an optional liquid UI wrapper
and any number of liquid properties. In the diagram the component has two liquid
properties.

(b) Sample liquid component labeled webcam. The top black bar of the component is
the liquid UI wrapper, which can be used to control the LUE. In this example we show
the debug UI wrapper provided by Liquid.js. The component defines two properties:
the first one stores the webcam video feed (left); the second stores a snapshot of video
(right). The user can take new snapshots by using the three buttons displayed on
the bottom of the component.

Figure 7.4. Liquid component structure and comparison with a real liquid
component.

• liquid UI wrapper: the liquid UI wrapper is an optional UI element that
surrounds a liquid component. The wrapper enhanche the LUE and enables the
LUE primitives by providing support for the interactions of the users with Liq-
uid.js. The framework provides the debug and the default UI wrappers that
help users to migrate, fork, clone, and delete components. The wrapper can also
show to the user the feedback of the available set of connected devices. The de-

135 7.2 Liquid Web Applications

velopers of liquid components can choose to use their own liquid UI wrappers,
that can be implemented with the liquid API (see Chapter 8).

In Figure 7.4b we show the example of a liquid component created on top of
Liquid.js. The webcam component takes screenshots from the device’s webcam
and share them with all other paired instances of the same component. The
component defines two liquid properties: • the first contains the video feed of the
webcam; • the second stores the screenshot of a frame that can be shared with all
other webcam components. The buttons on the bottom of the component are part
of the component and can be used to activate/deactivate the webcam, capture
a screenshot of the webcam feed, and delete the current taken screenshot. The
liquid UI wrapper shown in the example is the debug wrapper bundled with
Liquid.js, and is displayed as the dark bar above the component. The wrapper
include buttons and icons than can enhance the LUE from the perspective of the
users of the liquid application, if the developers did not built their own ad-hoc
wrapper. The debug UI wrapper give access to the following features from left
to right: • The phone icon gives feedback on the status of the connection with
the signaling server: if the icon is red (e.g., as shown in the figure) the Web
browser is currently disconnected with the signaling server, otherwise the icon
is green; • The four-arrows icon allows the users to call the clone LUE primitive
with a drag-and-drop gesture. When the users drag the component, an overlay
appears displaying a set of icons which represent the set of connected devices; the
users can drop the component on any of the icons and migrate the component
on the target device. We discuss a more advanced drag-and-drop UI wrapper
later in Section 9.4.4; • The label shows the name of the wrapped component
(e.g., webcam); • The drop-down menu can be used to select a device in the list
of all connected devices, once the device is selected the users can use the next
to buttons for accessing the fork and migrate LUE primitives; • The copy button
can be used to fork the component on the selected device; • The cut button can
be used to migrate the component on the selected device; • The close button can
be used to delete the component.

7.2.1 Liquid Components

The liquid component is a piece of mobile code [40] which encapsulates a set
of behaviors, methods and properties (coded in JavaScript (JS)) and the UI
(written using both HTML and CSS). Whenever a liquid component needs to
be instantiated, it is dynamically loaded in the page through the HTML imports
API [W3C16].

We take a component-based approach because our goal is to have fine-grained

136 7.2 Liquid Web Applications

Liquid Behavior

y-liquid
Connector

Liquid
Styles

properties
and

permissions
cache

Proxy
Traps

Property
Mapping

Default Polymer
Component

HTML and CSS

Methods

Properties

Liquid Worker Behavior

Liquid Container Behavior

Liquid Style Behavior

Liquid Bus Behavior

Liquid UI
Wrapper

Figure 7.5. Liquid component architecture.

control over which parts of the Web applications should run on each device. The
decomposition allows fine-grained control over the dynamic deployment config-
uration of the Web application as components are instantiated and migrated from
a device to another in response of the user commands. By decomposing the UI
into components we ca also reduce the size of the state that is tied to each com-
ponent. Thus, the detection of changes in the state of the application and their
propagation across other devices on which the corresponding components have
been cloned can be more efficient. While many Web applications are built fol-
lowing the model-view-controller pattern [110], here we are concerned not only
about the synchronization of the data model of the application, but also about
the state of individual UI components, which needs to be properly migrated and
synchronized when such components begin to flow across multiple devices.

Liquid components on top of Polymer specifically follow the Polymer syn-
tax [The18a; The18b]. Thanks to the Web components standard the instances
of a liquid component are isolated from each other, making it possible to ef-
fectively decompose and build applications with multiple instances of the same
component, while also making it possible to explicitly describe which part of the
component state needs to be synchronized.

Figure 7.5 shows the architecture of a liquid component. A liquid component
is defined by two main parts: • the default Polymer component composed by the
set of methods, properties and HTML and CSS elements designed and built by
the developers of the liquid Web application; • the liquid behavior imported in
the Polymer component, which manages the replication and synchronization of
its state, the UI wrapper interactions, and the activation and deactivation of the
liquid styles (the implementation of the liquid styles are discussed in Section 7.5).

137 7.2 Liquid Web Applications

Listing 7.1. Liquid.js: how to import the LiquidBehavior into a Polymer com-
ponent and annotation of a liquid property.
1 <dom-module id="liquid-component-example">

2 <template>

3 <!-- HTML here -->

4 </template>

5 <script>

6 Polymer({

7 is: 'liquid-component-example',
8 behaviors: [LiquidBehavior], // Importing the behavior

9 properties: {

10 exampleProperty: {liquid: true} // Property annotation

11 },

12 });

13 </script>

14 </dom-module>

Liquid.js takes care of propagating and synchronizing changes of the state for
each component instance at the property level across multiple devices. The de-
veloper of the component does not need to worry about how many instances are
running or keep track of the set of devices that are connected to the application
since the framework does it on behalf of the developers. The communication
with the other liquid components is also managed transparently from the devel-
oper perspective through the y-liquid connector built with the Yjs library.

Liquid.js annotations define which components should manifest the LUE and
which parts of the state of an instantiated component are meant to be shared
among other components. This process is accomplished simply by importing the
LiquidBehavior class inside the definition of a component and by explicitly defin-
ing which properties are liquid (see Listing 7.1). Once the developers add their
own annotations, Liquid.js will transparently manage the deployment of the ap-
plication as well as the state and data synchronization of a liquid component. At
line 8 of Listing 7.1 we show how to import the behavior into a component. A
component can import any number of behaviors and they are sequentially im-
ported following the array order. Liquid.js defines multiple behaviors other than
the LiquidBehavior Section 7.2.3, but it should always be loaded before all other
behaviors because they are not standalone and always require the core LiquidBe-
havior. A component importing the liquid behavior can be instantiated, migrated,
forked, cloned and deleted by the Liquid.js API, however if no liquid property is
defined, no state is synchronized across the devices. At line 10 we show how to

138 7.2 Liquid Web Applications

Web Browser 1

Liquid Server

Liquid Component

Session
Storage

Web Browser 2

WebSocket

Local
Storage

Session
Storage

Local
Storage

Database

Browser
Memory

WebSocket

WebRTC DataChannel

Web Component

Liquid
Behaviour

Liquid Component

Browser
Memory

Web Component

Liquid
Behaviour

Figure 7.6. Liquid.js runtime and storage deployment built based on the design
of level 4 storage deployment shown in Figure 4.7.

annotate a liquid property. Defining a property as l iquid : t rue is enough to de-
fine make it liquid and synchronized with all properties it is paired to, however
in Section 7.2.2 we present more annotations.

The liquid behavior is able to detect updates to each property through a set
of proxy traps created by the liquid behavior for each Polymer property defined
as liquid. Proxy traps are created when the component is instantiated with the
HTML5 Proxy API [Moz20e] and they can intercept changes to the value of a
property and forward them to the y-liquid connector, which then propagates the
updates to all paired properties.

7.2.2 Liquid Properties

The liquid state of a liquid Web application is decomposed and stored into liquid
components and their state is separated into a set of liquid properties. A property
is identified by its name and can store the value of any JavaScript Object Notation
(JSON)-serializable JS data type.

139 7.2 Liquid Web Applications

Listing 7.2. Liquid.js: annotations of a liquid property with the default values.
1 properties: {

2 exampleProperty: {

3 type: Object,

4 value: { function(){ return {} } }, // default value

5 liquid: {

6 scope: "local",

7 persistency: "volatile",

8 permissions: {

9 publish: true,

10 subscribe: true

11 }

12 }

13 }

14 }

While each liquid component instance always holds the current value of a liq-
uid property, the Liquid.js framework may choose to replicate, store and manage
the liquid state outside of the liquid component as we discussed in Section 4.4.
In Figure 7.6 we show the storage deployment of Liquid.js. Values of liquid prop-
erties are automatically synchronized among paired component instances, ac-
cording to the permissions associated to each property.

Listing 7.2 shows all possible annotations of a liquid property. The behavior of
the annotations follows the description discussed in Chapter 4. The annotations
can have the following values:

• scope - line 6 - default: "local" - possible values: "local", "shared", "global";
• persistency - line 7 - default: "volatile" - possible values: "volatile", "ses-

sion", "persistent";
• publish - line 9 - default: true - possible values: false, true;
• subscribe - line 10 - default: true - possible values: false, true;

It is not necessary to define all annotations, in fact any missing annotation or
set to the undefined value are automatically set to the default value. If the per-
missions annotation (line 8) is missing or undefined, then both subscribe and
publish annotations are set to true. In the example shown in Section 7.2.2 we
showed that a liquid property can be defined as l iquid : t rue, in this case the
liquid behavior assigns all default annotations to the liquid property.

While it is not necessary, it is better to define the type of the property as
specified by the Polymer syntax (see line 4). The liquid behavior sets up different
proxy traps and different callback events inside the y-liquid connector depending

140 7.2 Liquid Web Applications

on the type of the property. Polymer makes sure that the type of the property
does not change at runtime and avoids to change the value of the property if it is
not of the defined type. When the type is not defined in the component, Liquid.js
tries to infer the type of the property from the default value if it is present (e.g.,
by using the value defined in the Polymer value property as seen in line 4), or by
setting it as an Object if both type and default value are not specified.

7.2.3 Liquid Behaviors

Liquid.js defines multiple behaviors that can be imported into any Polymer com-
ponent that add new features to the already existing liquid components. Liquid
components can import any number of the liquid behaviors explained below as
none exclude the usage of the other. All the behaviors require the core LiquidBe-
havior which must be imported before they are loaded.

• Liquid Worker Behavior - the LiquidWorkerBehavior allows the develop-
ers to bind a LWW to a liquid component (the description of the implementation
in Liquid.js of the LWWs is discussed in Section 7.4). LWWs bound to a liq-
uid component are instantiated and paired automatically on any device as soon
as the component is instantiated on a device. Components moving to a device
that do not have the source of the LWW script also bring a Blob containing the
LWW script. This behavior also allow to directly access the LWW without pass-
ing through the global LWWPool instantiated in the Liquid.js API. This means that
the developers can use the LWWs without the need of calling any method on the
LWWPool and without the need of instantiating the workers themselves. The Liq-
uidWorkerBehavior takes care of the full lifecycle of the LWW. This behavior also
allow to use access the asynchronous data transfer feature of the LWWs (more
about it in Section 7.4.2).

• Liquid Container Behavior - the LiquidContainerBehavior allows the de-
velopers to define liquid components that can contain liquid components. By
default the liquid state of a liquid component is defined only by the definition
of its own liquid properties, if the component contains an instance of another
liquid component, the container does not have access to its liquid properties.
This means that when a LUE primitive is called on a liquid component that does
not import the LiquidContainerBehavior it will not synchronize the state of the
contained liquid component. When a component imports the container behav-
ior, then the state of all liquid properties of every component instantiated inside
the container are moved together with the container’s state. Figure 7.7 shows
how the state moves with the container component when the liquid component
imports or does not import the container behavior. In both cases the container

141 7.2 Liquid Web Applications

Liquid Component

Liquid Component

Liquid Property
Default value: “Default”

Current value: “Updated”

Liquid Property
Default value: “Default”

Current value: “Updated”

Liquid Component

Liquid Component

Liquid Property
Default value: “Default”
Current value: “Default”

Liquid Property
Default value: “Default”

Current value: “Updated”

Migrate
Fork

Clone

(a) The container behavior is not imported: the value of any liquid property of a leaf
component is not synchronized when a LUE primitive is called.

Liquid Component
imports

LiquidContainerBehavior

Liquid Component

Liquid Property
Default value: “Default”

Current value: “Updated”

Liquid Property
Default value: “Default”

Current value: “Updated”

Liquid Component
imports

LiquidContainerBehavior

Liquid Component

Liquid Property
Default value: “Default”

Current value: “Updated”

Liquid Property
Default value: “Default”

Current value: “Updated”

Migrate
Fork

Clone

(b) The container behavior is imported: the value of any liquid property of a leaf
component is synchronized when a LUE primitive is called.

Figure 7.7. Liquid container behavior: behavior of the LUE primitives and
liquid data layer with or without importing the LiquidContainerBehavior.

defines a property and contains a liquid component that defines a liquid prop-
erty of its own. Both liquid properties hold the value "Updated" before the LUE
primitive is called. After the LUE primitive is called the synchronized state is dif-
ferent: – when the container behavior is not imported (Figure 7.7a), the state
of the component inside the container is not synchronized across devices and
is set to the default value "Default"; – when the container behavior is imported
(Figure 7.7b), the state of the component inside the container is synchronized
across devices and holds the value "Updated".
The container behavior also allows to dynamically create at runtime liquid com-

142 7.2 Liquid Web Applications

ponent instances inside the liquid container. Normally the HTML inside a liq-
uid component cannot be the target of LUE primitive (because of the shadow
DOM [Moz19l]). The container behavior is not automatically imported in the
components contained in a container, therefore all subordinated components
must import the container behavior.

• Liquid Style Behavior - the LiquidStyleBehavior allows the developers to
use the liquid media queries defined in the liquid style components as discussed
in Chapter 6. The implementation of the liquid style component is discussed later
in Section 7.5. The style behavior automatically searches for all liquid style com-
ponents defined in the liquid component and registers. The behavior is in charge
of activating or deactivating the CSS inside of the component when needed.

• Liquid Bus Behavior - the LiquidBusBehavior allows the developers to pair
properties with devices that cannot access the liquid Web application through
a Web browser and thus do not have access to the Liquid.js API and the We-
bRTC protocols (e.g, lightweight Web-enabled IoT devices that can connect to
the signaling server, but cannot communicate to the devices directly). When the
behavior is imported the developers can annotate their liquid properties with
an additional annotation iot : t rue. Whenever the annotation is detected on a
property, the behavior eavesdrops the proxy traps and propagates the changes
directly to the signaling server which then relay the changes to the correct IoT
device. Similarly the behavior can also receive updates from the IoT devices
relied through the signaling server and update the liquid properties [52].

7.2.4 Liquid UI Wrapper

Developers can create their own liquid UI wrappers by creating a separated Poly-
mer component. The UI wrapper does not import the LiquidBehavior as a normal
liquid component, but instead imports the LiquidUIBehavior, since the wrapper
is not a liquid component itself. The behavior transparently registers itself to
the liquid behavior of the wrapped component as soon as it is loaded and al-
lows the developers to access the liquid component from within the UI wrapper
component by using the keyword this [Moz20f] in the component’s script.

7.2.5 Uniform Resource Identifiers (URIs)

The design of Liquid.js is based on a hierarchical scheme of three resources: • de-
vices; • components contained in a device; • properties contained in a compo-
nent. As the resources follow a hierarchical scheme we defined a unambiguous

143 7.2 Liquid Web Applications

Listing 7.3. Liquid.js: URIs represented as a JSON objects.
1 let propertyURI = {

2 device: ":device",

3 component: ":component",

4 property: ":property"

5 }

naming scheme to identify them in the scope of the liquid Web application. Liq-
uid.js identifies resources by using Uniform Resource Identifiers (URIs) that can
be used anywhere in the Liquid.js API (more about the Liquid.js API in Chap-
ter 8). The URIs follow the naming scheme defined in Equation 7.1. Anywhere
in the code of a liquid Web application when a URI is required, the developers
can decide to pass the URI targeting a resource in three different ways:

• as a String - the String must be formatted following the syntax defined
in Equation 7.1 (e.g., "/:device/:component/:property");

• as a JSON object - any URI can be represented as JSON object as shown
in Listing 7.3;

• as a direct reference to the liquid component object (only for component
URIs, not available for devices and properties) - if the developers stored the direct
reference to a component, they can decide to use the reference instead of passing
a URI.

/ : device/ : component/ : proper t y (7.1)

Developers are allowed to use wildcards (*) whenever they write a URI point-
ing to a liquid property. E.g., in Equation 7.2 we show the URI that resolves as
all liquid properties named "text" contained in all components instantiated on any
device.

/ ∗ / ∗ /tex t (7.2)

Moreover developers are allowed to write [:componentTypeNames] (sur-
rounded by brackets) whenever they write a liquid property URI. E.g., in Equa-
tion 7.3 we show the URI that resolves as all liquid properties named "image"
inside the liquid components of type ’webcam’ instantiated on any device.

/ ∗ /[webcam]/image (7.3)

Following this approach it is possible to point to liquid properties deployed
across multiple devices. E.g., in Equation 7.4 we show how to invoke the API

144 7.3 Data Layer - Synchronization

Request
Handler

Property
Pairings

Routing
Table

Topology
Strategy

Full GraphMinimal
Connection

Pair Property
Handler

Bandwidth Test
Handler

Ping Test
Handler

y-message
Handler

Y-liquid
Emitters

Message
Package
Handler

Message
Sender

Relay Message
Handler

Strategy
Message
Handler

Routing
Tabler

Handler

Figure 7.8. Component view of the LiquidPeerConnection (LPC) component.

method pairProperty passing two liquid properties URIs. In the example the liq-
uid property named "image" contained in component "c1" instantiated in device
"d1", is paired with all other registered image properties in the liquid Web appli-
cation (even if they are deployed on another device).

pairProper t y(′/d1/c1/image′, ′/ ∗ / ∗ /image′) (7.4)

7.3 Data Layer - Synchronization

Liquid.js is designed to transparently create and dynamically manage the topol-
ogy network of all the connected peers in a distributed environment. The Liquid-
PeerConnection (LPC) component (see Figure 7.8) [123] manages all incoming
messages, both from the signaling server and the peers, and the outgoing mes-
sages by deciding which communication channel should be used (e.g., WebSock-
ets or WebRTC). The LiquidPeerConnection (LPC) can create different kinds of
topologies depending on a topology strategy. Developers can create their ad-hoc
strategies by implementing a new class following the provided strategy interface
definition (see Section 7.3.1), or they can use the two default strategies provided
by the Liquid.js framework: • full-graph strategy; • minimal connections (span-
ning tree). Throughout this section we explain the design and features of the
LPC and how it manage the liquid data layer of the applications built on top of
Liquid.js.

145 7.3 Data Layer - Synchronization

7.3.1 Strategies

The strategies can be used by the LPC to create different peer topologies. The
developers can chose their own strategies by changing the appropriate configu-
ration option in the signaling server of the application. The strategies cannot be
changed at runtime and all LPC components in all connected peers must adhere
to the same strategy. LPC strategies are decentralized and do not store any kind
of data on the signaling server. LPC components deployed on multiple peers can
communicate with special messages that synchronize their internal state contain-
ing their local knowledge of the topology among each other independently from
the deployment of the liquid application and without the users’ awareness.

Strategies can be employed for overcoming different limits of the devices
composing the mesh, e.g., limited bandwidth or limited storage. As the number
of devices connected to the liquid Web application increases, so does the number
of messages exchanged between peers for synchronizing the state among all of
them. For large number of devices, creating a P2P mesh that broadcasts heavy
synchronization messages can become unsustainable if the devices cannot keep
with the growth in the bandwidth consumption. Peers with a low bandwidth
cannot keep the pace of the synchronization and would slowly decrease the re-
sponsiveness of the whole LUE. For this reason we created two default strategies
and created a strategy interface that can be used to create custom ad-hoc topolo-
gies.

Depending on the quality and stability of the network, the developers can
create strategies that take proactive routing decisions, e.g., the routing of the Op-
timized Link State Routing (OLSR) protocol [1] can be used in stable networks in
which peers seldom disconnect to pre-compute the best path connecting all pairs
of peers. However, for more volatile networks with unstable peers, the OLSR
protocol may become inefficient, since the peers’ disconnection would trigger
the protocol to recompute all best paths The reactive protocol Better Approach
To Mobile Adhoc Networking (B.A.T.M.A.N.) [96] can be used for networks that
can have a fast evolution, since every peer does not have the knowledge of the
whole topology, but only knows about the next best neighbours to reach a given
target peer. When a peer disconnects, the B.A.T.M.A.N. protocol does not need to
constantly update the state of the topology inside all other peers, which reduces
the overhead as compared to the OLSR approach.

The devices connected to a Liquid.js application usually create a volatile en-
vironment in which devices do not always have a stable connectivity due to their
mobile nature. For this reason two default strategies are implemented in Liq-
uid.js: a reactive and a proactive strategy. Developers can choose which one to

146 7.3 Data Layer - Synchronization

PeerPeer

Peer Peer

Peer Peer

(a) Full graph

PeerPeer

Peer Peer

Peer Peer

(b) Minimal connections

Figure 7.9. Default Liquid.js peer topologies example.

use in the configuration file of the Web application. The strategies developed in
Liquid.js also have access to features that can be found in a Multipoint Control
Unit (MCU) [189], e.g., message relaying through another peer or message pack-
aging. The advantage of MCUs is that they can coordinate the distribution of the
messages among the peers with a single outgoing connection to another peer, in-
stead of connecting to the each connected device. Creating a single connection,
instead of a full-graph mesh, reduces the overall bandwidth used by the device
when it needs to broadcast messages to all other peers.

Moreover by creating a strategy interface, we also allow the developers to
create new strategies based on more recent and advanced technologies once
they become powerful and stable enough to be used. E.g., the WebBluetooth
API [Web17] can be used to create topologies that depend on the relative posi-
tion of the devices, and optimize the connections by creating channels between
devices that are physically close to each other.

The two default strategies provided by Liquid.js are:
• Full graph strategy Figure 7.9a - this strategy creates a full mesh of peers

interconnected with each other. The LPC component reacts as soon as a new
peer connects and takes care of creating the appropriate communication channel
with it (e.g., WebSockets or WebRTC). Messages exchanged through the peers in
the full graph strategy are always sent directly to the target, without relaying
messages through any other peer.

• Minimum connection strategy Figure 7.9b - as opposed to the full graph,
this strategy minimizes the total number of communication channels among the
peers by building a spanning tree of the full graph mesh. Whenever a new device
connects to the liquid application, the LPC does not destroy any of the existing
communication channels and create a direct communication channel connecting

147 7.3 Data Layer - Synchronization

it to the peer that detects the connection first, in such a way that the new peer is
available as soon as possible in the topology. Messages exchanged among peers
in this strategy sometimes relay through the other connected peers.

Custom strategies implemented in Liquid.js must define the following three
methods of the strategy interface:

• choosePath(destinationPeerURI) - this method computes the next hop to
reach a destination. A hop can either be the actual destination peer that needs
to receive a message, or it can be another peer that is used to relay the message
towards the destination. This is the method where the developers can chose to re-
actively or a pro-actively route the message towards the target peer, since in here
they must decide which path the message takes to reach the final destination.
E.g., the full-graph strategy always returns the target destination, because the
strategy creates a direct connection between every single peer. The minimal
connection strategy can either broadcast the message to all peers it is connected
to (and eventually the message will arrive to the destination), or more efficiently
it can exploit the knowledge stored in the routing table in the LPC to return the
next peer towards the destination. The implementation of the routing table is
discussed in Section 7.3.2.3.

• incomingMessage(message) - this method can be used to receive special
messages sent from other LPC components. The purpose of the message is for
coordinating the local state of the strategy and can have any payload in JSON
format. The strategy can send messages to other LPC components deployed on
a remote device by sending a special message of type type="StrategyMessage" by
calling the method sendMessage accessible from within the scope of the strategy.
This special type of message is recognized by the LPC and it is automatically
forwarded in the strategy through this method. E.g., this method is used for
by the minimal connection strategy in order to discover any pre-existing path to
reach a given destination.

• ondisconnect(peerURI) - this method is triggered when the LPC receive
a disconnection notification. This can help the strategy to dynamically adjust
the internal state of the topology. E.g., this event is not used in the full-graph
strategy, because once a peer it is disconencted it will never be the destination of
any further message. In the minimal connection strategy, ondisconnect allows to
trigger a reconnect procedure in order to preserve the current topology state. The
strategy attempts to reconnect to the missing peer until a new call of choosePath is
invoked, or until a timeout is triggered, in both cases if the peer did not respond,
the strategy connects to another peer if the spanning tree topology is broken.

148 7.3 Data Layer - Synchronization

7.3.2 Features

The LPC component also implements multiple features that are used by the
strategies or can be used by custom strategies for improving the overall topology
performance.

7.3.2.1 Ping

The ping test component can be used to computing the ping between peers. The
strategies can invoke the ping test at anytime and the ping can be affected by
the load of the network, as the messages can be queued by the relaying peers.
Custom strategies are encouraged to avoid running multiple ping test concur-
rently, since they could congestion the network and thus return skewed results.
The ping values are computed in [mill iseconds] and are computed by measuring
the time it takes for a special custom message to reach a destination peer and
backwards (Round Trip Time (RTT)).

7.3.2.2 Bandwidth

The bandwidth test component can be used to compute two values: the upload
and download speed. The bandwidth test measures the span of time required for
a message with a payload of 10MB to reach a peer and then measure the time
for the message to come back to the initial peer. The test then divides the size
of the message by the elapsed time it took to transmit the payload through the
connection channel. The times are approximated to the millisecond and are com-
puted with the internal clocks of each peer. As a result, the clock drift between
the different peers and the results may not be symmetric. As this dissertation is
being written, the WebRTC Statistics draft [Moz19m] is being updated and the
API [Moz19m] written and could be used handle these measurements natively
without the need of the bandwidth test component.

The bandwidth test measurements implementation is similar to the ping mea-
surement, but the messages have a specific payload size of 10MB which allow to
more precisely measure the bandwidth speed. The size of the ping message is
so small that it cannot be used for measure the bandwidth. The tests returns a
value representing the speed with [megab y tes/second] unit.

7.3.2.3 Routing Table (RT)

The Routing Table (RT) is a feature that can be enabled or disabled in the LPC
configuration (see Section 7.3.3). When it is enabled, the RT component trans-

149 7.3 Data Layer - Synchronization

parently manage and create a table stored inside the LPC which contains the
information about the next hop needed for reaching all peers in the topology.
The RT is formatted as a JS Map(), where the key represents the destination
peer URI and the value represents the next hop URI. Whenever a peer connects
or disconnects, the RT component broadcasts a special lightweight probe mes-
sage asking its neighbours how to reach the others peers in the topology. Once
all probing messages receive an answer, the local RT is updated and can be used
by the strategies.

The full-graph strategy does not benefits from the RT, which actually creates
unnecessary probe messages between the peers. However, as discussed in Sec-
tion 7.3.1, the minimum connection strategy can benefit from the RT feature.
Instead of creating the probing inside the strategy, we provide this useful feature
natively in the LPC, so that custom strategies can use it.

7.3.2.4 Packaging Broadcast Messages

The packaging broadcast messages is a feature that can be enabled or disabled in
the LPC configuration (see Section 7.3.3). Packaging messages allows the LPC
component to send less data when it needs to broadcast a message to all peers
in a topology. Instead of sending an individual message to each connected peer,
the LPC sends a special packaged message only to its neighbours, which then are
instructed to forward it to the next hop until everyone received the broadcasted
information. The special packaged messages contain and array of destinations
that is computed and updated by the RT handler. Enabling the packaging feature
automatically enables the RT.

The full-graph strategy does not benefit from the packaging feature, which
in turn only increases the size of the messages exchanged by wrapping them in
a package that is not forwarded to any other hop. The minimum connection
strategy can benefit from this feature, because with the packages it decreases the
total number of messages exchanged between peers, making it possible to lower
the total bandwidth cost of the operation.

7.3.3 Configuration

The LPC component can be configured by defining the LPC property in the Liq-
uid.js API configuration object. Listing 7.4 shows an example of the LPC config-
uration flags and their default values.

150 7.4 Logic Layer - Liquid WebWorkers

Listing 7.4. Liquid.js: configuration flags of the LPC.
1 const config = {

2 lpc: {

3 strategy: 'full_graph', // other possible values: "

minimum_connection" or "custom_strategy"

4 useRoutingTable: false, // other possible values: true

5 packageBroadcastMessages: false, //other possible values: true

6 custom: {/* ... */} // other custom flags that can be used by

custom strategies

7 }

8 }

7.4 Logic Layer - Liquid WebWorkers

Liquid.js implements the liquid logic layer exploiting the Liquid WebWorker
(LWW) described in Chapter 5.

7.4.1 Implementation

Figure 7.10 illustrates a simplified component view of Liquid.js extended with
the LWWPool. The LWWPool is managed by the framework itself, hidden behind
its own API. The framework manages inter-device communication through the
LiquidPeerConnection component described in Section 7.3. Developers who wish
to use the LWW offload feature from outside the scope of a liquid component can
invoke the callWorker method exposed by the Liquid.js API. The Liquid.js frame-
work also allows to automatically create workers on other machines whenever
the updatePairedDevice method is called, which guarantees that a copy of each
LWW can be found on all paired devices.

7.4.2 Synchronous vs Asynchronous Data Transfer

In Section 5.2 we described that the messages exchanged between devices also
contain the corresponding input data that has to be passed to the LWW in order
to complete the task. In our prototype we deploy the LWWPool on top of the
Liquid.js framework, which already transparently and automatically synchronize
the state of liquid properties between devices.

If the data used inside the LWWPool is stored in a liquid property, then we do
not have to send it together with the task offloading message, because the state
is already synchronized and available on the target the devices. In Figure 7.11

151 7.4 Logic Layer - Liquid WebWorkers

Liquid WebWorker Pool

LWW #2
LWW #3

LWW #1
Liquid.js API

Liquid Peer Connection
Handler

Liquid
C

om
ponent

Device 1

Liquid WebWorker Pool

LWW #2
LWW #1

Liquid.js API

Liquid Peer Connection
Handler Liquid

C
om

ponent

Device 2

Task:
- worker #x

- inputs

Figure 7.10. Component view of the implementation of liquid WebWorkers
inside the Liquid.js for Polymer framework.

we show that we can abstract and separate the flow of data and the task offload-
ing with two different channels. Data is synchronized between all paired liquid
components, while tasks offloading messages are exchanged between the LWW-
Pools. Whenever the data should be loaded or saved in liquid property, then
the LWWPool is allowed to interact with the liquid components directly. To take
advantage of this feature, the developer of the application must call the LWW
from inside the liquid component, which transparently will allow the LWWPool
to access the data and update it. The task input and result will be automatically
synchronized among all paired devices.

In Figure 7.12 we show how we extended the protocol between the two de-
vices with the asynchronous data transfer. In the synchronous version discussed
in Chapter 5 the payload of the message (msg) contains all the data needed by
the LWW to execute the task, now that we rely on the data synchronization of
Liquid.js, msg* contains only the data that is not stored and synced by Liquid.js.
For the rest of the data that has to be consistently synchronized between the de-
vices, we pass the liquid property URIs referencing the location of the input/out-
put data. Since data is synchronized asynchronously with respect to the task
offloading, we cannot guarantee that when the remote device receives the task
offloading request, it also already holds the latest version of the corresponding

152 7.4 Logic Layer - Liquid WebWorkers

Device1 Device2

Liquid Properties

Peer Connection

Liquid API

Liquid Components

Liquid WebWorker Pool

Liquid Properties

Peer Connection

Liquid API

Liquid Components

Liquid WebWorker Pool

data synchronization

task offload

Figure 7.11. Asynchronous data transfer: the dashed lines represent the flow
of the data, the full lines represent the flow of task offloading

input data. For this reason, whenever the device offloads a task, it also needs
to specify which version of the liquid property the remote device needs to use
in order to begin the task execution. If there is at least one liquidPropertyURI,
then the LWWPool will load the state of the liquid property and pass it to the
WebWorker. Once the execution finishes, the remote device immediately notifies
the other device that it finished executing the task. The message includes the
URI and the new version of the updated liquid property. If any liquid property
changed during the execution, these will also be automatically synchronized to
make the task execution result accessible across all paired devices. Again, the
task completion notification and its output propagation happen asynchronously.

What are the advantages of this approach? In the first place messages ex-
changed between the devices while performing the task offloading are smaller
as they carry a reference to the data vs. the actual data, meaning that communi-
cation between the two LWWPools is faster. Additionally, developers can access
to two distinct events: executionEnd and dataSynchronized, these two events can
help the developers to report the current status of the application to the user, or
they can be used to queue new executions as soon as they are finished. Never-
theless if the data resulting from the offloaded computation has to be sent to the
original device, this will require to wait until the liquid properties values have
been synchronized. Since Liquid.js data synchronization was developed using
the Yjs [139] library, only incremental changes are sent, which results in less
data to be sent. More in detail, whenever a JS object property is modified, only
the changed property is synchronized, while in the synchronous mode, a copy of

153 7.5 View Layer - <liquid-style> Component

Device1

Device1

Device2
Peer Connection

Device2
Peer Connection

Device2
Liquid API

Device2
Liquid API

Device2
LWW Pool

Device2
LWW Pool

Device2
Liquid Components

Device2
Liquid Components

callWorker(name, msg*, liquidPropertyURIs, version)

getProp(liquidPropertyURIs, version)

properties

Execute Task

done(version+1)

setProp(data, liquidPropertyURIs, version+1)

done(version+1)

done(version+1)

sync(version+1)

sync(version+1)

sync(version+1)

Figure 7.12. Sequence diagram for asynchronous data transfer

the whole object needs to be transferred. Additionally, repeated task executions
over the same input data can be offloaded without repeatedly transferring the
same data along with each offloading request.

7.5 View Layer - <liquid-style> Component

Standard CSS3 media queries do not allow developers to define new types, fea-
tures, nor they support customizing existing ones [W3C19] as we discussed them
in Chapter 6. The solution we designed for extending the standard media queries
is to create a new Web component called liquid-style.

The liquid-style element shown in Listing 7.5 allows developers to write their
own liquid media queries and encapsulate a standard CSS style sheet that is
activated when the media query expression is accepted by the device. The
liquid-style component allows developers to assign values to its attributes (e.g.,
device-role) that can be mapped to the previously defined liquid media types
and features by adding the liquid- prefix (e.g., liquid-device-role). De-
velopers can define their own liquid media queries by assigning values to the
corresponding attributes, as shown in Listing 7.6 and 7.7.

In the first example, the liquid media query expression contains both the
liquid feature and the liquid-device-type. Inside the liquid-style component
it is not necessary to explicitly set the liquid attribute to true, since it is the
default value for the liquid-style element. The liquid-device-type value is
mapped to the device-type attribute.

The second media query expression contains the liquid media features

154 7.5 View Layer - <liquid-style> Component

Listing 7.5. Liquid-style element and all available attributes.
1 <liquid-style

2 liquid // Default:"true"

3 devices="" // Default: ""

4 min-devices="" max-devices="" // Default: ""

5 users="" // Default: ""

6 min-users="" max-users="" // Default: ""

7 device-ownership="" // Default: ""

8 device-role="" // Default: ""

9 device-type="" // Default: ""

10 priority="" // Default: "1"

11 clone="" // Default: ""

12 css-media="" // Default: ""

13 > <!-- CSS Stylesheet --> </liquid-style>

Listing 7.6. Liquid media query expression mapped to the corresponding liquid-
style attributes.
1 @media liquid and (liquid-device-type:phone) {

2 body { flex-direction: row; }

3 }

4 <!-- Maps to --->

5 <liquid-style device-type="phone">

6 body { flex-direction: row; }

7 </liquid-style>

liquid-device-role and min-liquid-users, which map directly to the
device-role and min-users attributes. Furthermore the expression also defines
the standard CSS3 media feature min-height, which in the liquid-style element
must be written into the css-media attribute.

7.5.1 Design

The automatic complementary view adaptation is achieved through the liquid
media query expressions that both define when styles should be enabled on a de-
vice and constrain where the components should be migrated if any device with
the appropriate features connects to the application. The liquid-style com-
ponent is designed to be attached directly to a liquid-component and bundled
with a standard Polymer component. Our current implementation of the redis-
tribution process follows both the priority-based and the minimum number of

155 7.5 View Layer - <liquid-style> Component

Listing 7.7. Liquid media query expression including standard CSS media
features mapped to the corresponding liquid-style attributes.
1 @media liquid and

2 (liquid-device-role:controller) and

3 (min-liquid-users:3) and

4 (min-height:900px) {

5 :root { background-color: red; }

6 }

7 <!-- Maps to --->

8 <liquid-style device-role="controller"

9 min-users="3"

10 css-media="min-height:900px">

11 :root { background-color: red; }

12 </liquid-style>

components per device policies (as discussed in Section 6.2.1).
Liquid.js implements the two LUE primitives that are needed for the redis-

tribution and cloning of the components. The migrate primitive allows compo-
nents to be moved from a source device to another, while the clone primitive
can be used to copy components and keep them synchronized across multiple
devices. Furthermore Liquid.js transparently and automatically creates a syn-
chronized shared state between all connected devices. The shared state contains
all the information about the current deployment configuration, such as the num-
ber of users connected and the information linked to their set of devices, such as
number, ownership, type, and role. The devices can synchronize this information
by sending direct messages in a P2P mesh without requiring to relay messages
through a Web server.

Figure 7.13 shows how the liquid components are built on top of the liquid
application, meaning that each component has access to the Liquid.js API and
therefore has direct access to the LUE primitives migrate and clone. Each liquid
component can define multiple liquid styles and the framework automatically
extracts the liquid media query expressions from within every instantiated com-
ponent and shares them with all other connected devices, so that each device
can check whether it would satisfy the liquid media queries or not. Whenever a
query is accepted on a device, that device becomes a possible target for the migra-
tion of the corresponding component. When multiple devices become a possible
target for the same liquid component, Liquid.js selects the target following the
priority-based policy.

Since all the information of the connected devices is stored in the shared state

156 7.5 View Layer - <liquid-style> Component

Browser

Liquid Application Shared State

Client

Browser

Liquid Application

Client

Liquid

Component

Liquid

Component

Liquid

Component
P

o
ly

m
e

r

C
o

m
p

o
n

e
n

t

(H
T

M
L

 +
 C

S
S

)

L
iq

u
id

 S
ty

le
s

Liquid

Component

P
o

ly
m

e
r

C
o

m
p

o
n

e
n

t

(H
T

M
L

 +
 C

S
S

)

L
iq

u
id

 S
ty

le
s

P
o

ly
m

e
r

C
o

m
p

o
n

e
n

t

(H
T

M
L

 +
 C

S
S

)

L
iq

u
id

 S
ty

le
s

P
o

ly
m

e
r

C
o

m
p

o
n

e
n

t

(H
T

M
L

 +
 C

S
S

)

L
iq

u
id

 S
ty

le
s

Figure 7.13. Liquid.js: the liquid style elements are bundled with the Polymer
component inside each liquid component. The Liquid.js API, represented in
the diagram as the liquid application, maintains and keeps the shared state up
to date.

of the clients, each device is able to compute new deployments and perform the
migration and cloning of the components.

7.5.2 Decentralized Algorithm

The algorithm we proposed in Section 6.3 can run on a Web server, however our
goal is to keep the computations of the liquid application closer to the devices of
the users. The reason for our choice is twofold: 1. we allow the liquid application
to be adaptive even if the Web server goes offline; 2. we enhance privacy because
it is not necessary to store on the Web server any information about the users’
devices.

In Figure 7.14 we show the architecture we designed to decentralize the re-
distribution and cloning algorithm. We introduce two new components:

• liquid-style controller: the controller is in charge to observe any
change in the shared state. It interacts directly with the framework API and
monitors all events occurring in the set of connected devices (e.g., it monitors
for new connected devices). When an event is triggered, it propagates the event
to all liquid components that load the liquid-style behavior.

• liquid-style behavior: the behavior gathers information from all instan-
tiated liquid-styles and broadcasts messages received from the controller to
the liquid-styles. New liquid-styles register to the behavior as soon as
they are instantiated. The instantiated liquid-styles can enable and disable
styles properly only if the behavior is loaded inside the liquid component.

157 7.5 View Layer - <liquid-style> Component

<liquid-style>

Phase 3
Algorithm

<liquid-style>

Phase 3
Algorithm

<liquid-style>

Phase 3
Algorithm

LiquidStyle
Behavior

Phase 1
Algorithm

<liquid-component-example>

Liquid Style
Controller

Phase 2
Algorithm

Liquid.js
API

Device - Web Browser

Figure 7.14. Component view of the liquid-style component and how it
is connected to the liquid-style behavior and controller. The phase 1 algo-
rithm (see Section 6.3.1) is encapsulated inside the liquid-style behavior; the
phase 2 algorithm (see Section 6.3.2) is encapsulated inside the liquid-style
controller, and the liquid-style component is in charge of running the phase
3 algorithm (see Section 6.3.3).

In Figure 7.15 we show how the controller, the behavior and the
liquid-styles interact during initialization. Immediately after the liquid com-
ponent is loaded, the behavior starts running and awaits for the registration of
new liquid-styles. Once all the liquid-styles are loaded, the behavior notifies
the controller that the liquid component is ready. The controller immediately cre-
ates a new row in the priorityMatrix and cloneMatrix in the shared state, and
then subscribes to it. Liquid.js automatically and transparently synchronizes the
state without blocking any device. After the subscription, the controller retrieves
the last version of the deployment configuration and pushes it into the behav-
ior. The behavior notifies all liquid-styles which then will check if there is
a match between the liquid media queries and the current deployment config-
uration. If there is a match, the style it encapsulates is enabled, otherwise it
is disabled. Once all components in a liquid Web application are loaded, it is
possible to compute the redistribution and cloning of the deployment.

The decentralized execution of the algorithm is shown in Figure 7.16 and
is initially triggered by the actions of the user, e.g., the user connects with

158 7.5 View Layer - <liquid-style> Component

Liquid Style Behavior

Liquid Style Behavior

<liquid-style>

<liquid-style>

Liquid Style Controller

Liquid Style Controller

Liquid.js API

Liquid.js API

load()

load()

register()

ack

ready(id)

subscribeState(’priorityMatrixRow’, id)

subscribeState(’cloneMatrixRow’, id)

getDeploymentConfiguration()

current_deployment_configuration

current_deployment_configuration

updateStyle(current_deployment_configuration)

alt

enableStyle()

disableStyle()

Figure 7.15. Sequence diagram of the initialization of the liquid-styles,
liquid-style behavior, and liquid-style controller.

a new device, or changes a device role. When the deployment configura-
tion is changed, Liquid.js catches the event and updates the shared state be-
tween the devices accordingly. Once the synchronization finishes all con-
nected devices react and propagate the new deployment configuration to the
liquid-style controllers. The controllers then send the new configuration to
all liquid-style behaviors which previously registered to them. The behav-
iors recompute the priorityMatrix and cloneMatrix. The phase 1 algorithm
described in Section 6.3.1 is ran by the behavior, but instead of computing the
whole priorityMatrix and cloneMatrix as we previously presented, the be-
havior computes only the rows associated to their own liquid component. The
rows of the two matrices are then sent back to the controller which takes care of
updating the shared state.

Phase 2 starts when all the rows in the matrices are updated. In order to
prevent that multiple devices redistribute the same components multiple times,
we need to run the algorithm described in Section 6.3.2 one single time. The
most powerful device is selected by the Liquid.js framework [71] and it computes
both the migrationPlan and the clonePlan inside the controller component.
The controller then starts the redistribution and cloning phase by calling the
corresponding LUE primitives in the Liquid.js API.

159 7.5 View Layer - <liquid-style> Component

Controller Device Multiple
Connected

Devices

<liquid-style> <liquid-style-behavior> Liquid Style Controller Liquid.js API user Liquid.js API

<liquid-style> <liquid-style-behavior> Liquid Style Controller Liquid.js API

user

Liquid.js API

event

Phase 1

updateSharedState()

changedState(new_configuration)

recomputeRows
(new_configuration)

priorityRow
cloneMatrixRow, id

updateState(
’priorityMatrixRow’, id)

updateState(’cloneMatrixRow’, id)

updateSharedState()

Phase 2

recomputePlans
(priorityMatrix, cloneMatrix)

migrateComponents
(migratePlan)

cloneComponents
(clonePlan)

Phase 3

propagate(new_configuration)

propagate(new_configuration)

updateStyle(new_configuration)

Figure 7.16. Decentralized algorithm processing

Finally phase 3 starts when the components are migrated and cloned. The
API propagates to the controller all events triggered by the migration, which are
then furthermore propagated to the behaviors. The behaviors broadcast the new
deployment configuration to all liquid-styles, which then run the phase 3
algorithm described in Section 6.3.3.

7.5.3 Impact

In this section we discuss the impact of the liquid media queries on the design of
liquid Web applications. In this section we designed the multi-device adaptation
targeting the needs of the developers, whose goal is to create software that can
take advantage of multiple devices with the goal of increasing the overall usabil-
ity of the application. Ultimately, however, the effect of the liquid media queries
will be experienced by the user that interacts with the liquid Web application.

160 7.5 View Layer - <liquid-style> Component

DeviceID: 567423789043

Device Info

Type: Desktop
Browser: Chrome
OS: Mac OS
Role: undefined
Ownership: undefined
Benchmark Score: 3400.25

Instantiated Components

Video

Video Controller

Liquid-style

Liquid-style

Liquid-style

DeviceID: 567423789044

Device Info

Type: Phone
Browser: Chrome
OS: Android
Role: undefined
Ownership: undefined
Benchmark Score: 1233.12

Instantiated Components

Video Controller

Liquid-style

DeviceID: 567423789045

Device Info

Type: Phone
Browser: Chrome
OS: Android
Role: undefined
Ownership: undefined
Benchmark Score: 1064.75

Instantiated Components

Video Controller

Liquid-style

Liquid-style

Comments

Liquid-style

Suggested Video

Liquid-style

Liquid-style

Figure 7.17. Liquid media query debugger tool view.

7.5.3.1 Developers

The multi-device adaptation introduces a new level of complexity that the de-
velopers have to face during the design process of their applications. When the
developers decide to shift from a single device deployment to a multi-device one,
they do not only have to deal with the responsive design of the application, but
they are also required to determine how and when components must be mi-
grated across different set of devices. The decision of performing a migration
can be driven by technological constraints (e.g., a component requires a sensor
that only found on some devices), and/or driven by social interactions [102]
and context [145]. Taking into consideration these aspects can be difficult for
the developers, and in some cases it can be hard to predict the impact of their
multi-device adaptation on all possible sets of users devices. In fact the number
of possible combinations of devices owned by the users can grow very fast.

Since so many new facets need to be taken into consideration during the
design process, developers would greatly benefit from testing and debugging
tools [107], helping to simulate the deployment and observe the behavior of
liquid Web applications in a virtual multi-device environment.

In Figure 7.17 we show a view of our debugger tool for liquid styles. By using

161 7.5 View Layer - <liquid-style> Component

the tool the developers can monitor at runtime the evolution of the deployment
information stored in the shared state of the application. The debugger visualizes
all information about the connected devices, their meta-information (e.g., iden-
tifiers, types, roles, . . .), the instantiated components deployed on the devices
and their instantiated liquid-styles. Moreover the tool shows which compo-
nents are cloned across the devices by connecting two components with an arrow.
Since the view is updated in realtime, any time the set of devices is affected by
a new event, the view updates and displays the new deployment after the redis-
tribution and cloning process finishes executing. Currently the developers can
also read and directly edit the style-sheet encapsulated inside the liquid-style

components.
In the future we plan to add the following features:
• Edit liquid media queries: the developers can edit the media queries at

run time (e.g., change the value of a liquid media feature or type).
• Add or remove liquid-styles at runtime: even if it is already possible

to add or remove liquid-style components at runtime thanks to the design
of the liquid-style behavior, the UI of the debugger tool does not yet allow
developers to create new styles on the fly.

• Edit device metadata: the developers can alter the metadata associated
to the connected devices (e.g., type, role). Currently the developers can alter the
metadata only from within the corresponding device, however altering the data
in the debugger tool is faster and will immediately give back a feedback to the
developers about the overall state of the deployment.

• Add and remove virtual devices: the developers can create virtual devices
and connect them to the application even if they do not physically own them.
This feature would allow the developers to simulate deployments that otherwise
they could not test.

7.5.3.2 Users

From the perspective of the users, the concerns are different. The users care
about their own satisfaction and engagement while they use the displayed UI,
and generally they can disagree with the automatic adaptation rules set by de-
velopers. In our current approach, the developers are in full control of the liquid
media queries and the algorithm does not consider the user needs and opinions
when it computes the redistribution.

Still, we believe that the users should remain in control of the deployment of
the application on their own devices, and that they should be able to override any
decision taken by the algorithm at any time. This can be done in many forms:

162 7.6 Privacy and Security

• Edit liquid media queries: the users are allowed to directly edit the val-
ues of the liquid media features and types, however editing these values requires
some knowledge of the media queries that the majority of the users do not neces-
sarily have. The users may also add or remove constraint instead of just editing
the values.

• Ask for permission when a new redistribution is computed: the users
can prevent scheduled migrations as they need to give permission to the algo-
rithm before applying the migration plan. Asking for permission would also pre-
vent that components are migrated to devices the user does not own, hence en-
hancing privacy.

• Pin components: the users can decide that some components should never
be migrated, because they are satisfied with the current deployment of a com-
ponent on a particular device. In this case the users should be able to pin the
components to the devices, and the algorithm should exclude those components
from the redistribution process, unless the device instantiating the component
disconnects.

• Switch from automatic to manual controls: the users can prevent any
further recomputation of the redistribution and switch to manual controllers.
This is already feasible in Liquid.js.

• Memorize usage patterns: the redistribution algorithm can learn from the
users their favourite deployment patterns, e.g., if the users move a component
multiple times to the same target device, the application in the future can au-
tomatically deploy the component to the corresponding device when it becomes
available.

7.6 Privacy and Security

As liquid Web applications run across multiple devices owned by different users,
it becomes important to study their security [118] and privacy [114] implica-
tions so that users remain in control of their data and their devices [127]. As
traditional Web applications rely on data stores mostly deployed in the Cloud,
one option for achieving seamless migration and synchronization of liquid Web
applications across multiple devices would also be to rely on centralized data
stores, which would mostly run outside of the control of the users, thus trading
off the privacy of user’s data against the convenience of having a highly available
and reliable storage service in the Cloud [134].

We propose instead to follow a decentralized approach both for the migra-
tion and for the synchronization, since the state of a running Web application is

163 7.6 Privacy and Security

directly migrated to another device using the WebRTC P2P protocol. This way,
there is no data leaked outside the set of devices owned by the users as the Web
application flows between them. When multiple users are involved, it becomes
important to establish trust between them and their devices on which the liquid
Web application will be deployed. To do so we take advantage once more of the
existing WebRTC protocol and discuss how the signaling server can be extended
to secure device discovery and pairing.

Liquid Web applications provide support for the following three use case sce-
narios [132]: • Sequential screening: a user owns multiple devices and starts
working on one of them, eventually he decides to move the work on another
(more comfortable) device. The application and the associated runtime state
has to be seamlessly migrated to the other device following the user’s atten-
tion focus. • Parallel screening: a user owns multiple devices on which the
liquid application is deployed. The user may decide at any moment to change
the number of the devices he is using to run the liquid application as well as
to move components of the application from a device to another while keeping
their state fully synchronized. • Collaborative screening: either a sequential
screening or parallel screening scenario in which devices are owned by multiple
users. State synchronization become more challenging as multiple users interact
with the application concurrently and it becomes important to limit the move-
ment and control the location of the application’s code, its runtime state and the
user’s data. While in the first two scenarios the focus of the DAC system deals
with the discovery and pairing of the devices and in the creation of the methods
and infrastructures able to make an application liquid, in collaborative scenarios
we also have to address data privacy and security.

• Privacy: as users produce their own data working with their applications,
they want that it can be accessed, viewed, and modified only by the people they
trust. Multi-user liquid Web applications need to be designed in such a way that
the users can protect themselves from spreading their data to other un-trusted
users;

• Security: devices are physically separated from one another and data is
exchanged through standard Web protocols. We need to prevent attacks from
malicious users and prevent propagation of malicious behaviours if applications
are hacked.

We discuss the design of a capability-based security model in order to create
a DAC [130] enabling data protection and privacy, in which users can manage
the permissions able to prevent data flowing from their personal devices to the
devices of un-trusted users. Likewise, users need to limit and control which liquid
Web application components gets dynamically deployed on their devices coming

164 7.6 Privacy and Security

Server Client 1 Client 2

Application
Source

App. Copy
from Server

App. Copy
from Client 1

App.
Copy

App.
Copy

Figure 7.18. Distribution of an application in Liquid.js. The Web server(s)
owns a master copy of the assets of the application. Initially, since nobody,
but the Web server(s) owns a copy of the assets, client 1 download the assets,
afterwards any other client connecting to the Web application can request the
assets either to the Web server(s) or client 1.

from other users’ devices.
Shifting to a decentralized or distributed paradigm, from a strongly central-

ized architecture, changes the way we are using the Web, implying that we also
need to build new mechanisms for enforcing privacy and security in our decen-
tralized Web application architectures. Trying to partially reduce the size of the
workload of the central server and moving data from the server to the client,
such as in Edge computing [164], has important privacy implications.

In typical distributed systems DAC models are already used for privatizing
data [133]. Policies can be defined between users permitting interactions with
each other. This simpler model does not require explicit representations of hier-
archical user organizations, such as in Role-Based Access Control systems [138],
hence users directly and dynamically decide what actions other specific users can
perform on their data.

Within the IoT application domain, capability-based security models [74]
have already been considered for dynamic evolving systems. In the fast changing
and short living individual environment of the IoT, there is the need of creating
manageable rules that quickly allow accessing data by different entities in the
system. As the environment quickly evolves also the access control rules must
evolve with the same speed, making the capability-based security model a suit-
able model for such systems.

In the liquid software domain, security and privacy for decentralized and dis-
tributed environments is currently mostly unexplored [60]. Moreover Liquid.js
starts its life cycle with a centralized topology: the assets of an application are
stored in a Web server or on multiple replicated Web servers, however it tries
to be as decentralized as possible after the first client receives the assets of the
application (in the form of JS files and liquid components defined in HTML5).
Once the first client downloads the application, it is able to distribute it to other
clients through P2P channels created with the WebRTC PeerConnection and Dat-

165 7.6 Privacy and Security

aChannel APIs [95] (see Figure 7.18). It is currently impossible to create a fully
distributed environment in this kind of architecture, because clients connecting
from their Web browser do not yet own a public IP address allowing others to
connect back to them. For this reason a Signaling Server used both for discovery
and for relaying messages between the peers containing the information on how
they can create a direct WebRTC connection [181].

The clients in Liquid.js are thick and they are entrusted with a big portion of
the logic of the Web application in order to shift the workload generated by the
clients to be processed by the clients themselves instead of the central Web server.
Clients can also be used as storage for both the assets and data of the application.
While the topology described in Figure 7.18 and the ability of storing data directly
on the clients does not generate any problem whenever all clients are owned by a
single user, they do present several points of attack for malicious users whenever
we are in a collaborative environment with liquid Web applications running on
multiple devices shared between different users. For example whenever client1
sends the assets of the application to client2, we must guarantee the integrity
of the files by ensuring that the user of client1 does not change the content of
the assets themselves. Moreover users need to decide which users are trusted
(e.g., whitelisted) and which are not trusted (e.g., blacklisted) to access their
data by, for example, synchronizing with the current runtime state of their liquid
components.

7.6.1 Privacy

Privacy for liquid Web applications running on the devices owned by a single
user can be achieved following the proximity and locality principles [114] by
ensuring that the data simply does not leave the user’s devices. When devices
owned by different users or when devices shared by multiple users come into
play, then a privacy-oriented access control system is required to ensure only
authorized users can run liquid components on their devices and thus access the
corresponding data. In this section we present our design for a DAC system and
show how it was integrated with Liquid.js.

7.6.1.1 Design

The DAC model is based on the following entities: • User (Individual): the
person connected to the application; • Data (Resource): sensible data owned
by users; • Action: executable method in an application; • Permission: policy
describing which actions a user has permit to execute.

166 7.6 Privacy and Security

Device
Component
Property

(a) Hierarchical diagram of the entities in Liquid.js. Liquid properties represent the
runtime state of a liquid component and components can only be instantiated to run
on a device.

User
Device

Component

Permission
Action

Property

Room

(b) Liquid.js extended with DAC model. Users own multiple devices, devices can
contain a set of instantiated components, and each component contains a set of
properties. Permissions can be granted to the users in order to allow them to in-
teract with components and their properties using certain actions. Devices can join
and leave rooms created by users allowing a subset of their devices to run certain
components.

Figure 7.19. Extending the entities hierarchy of Liquid.js for designing Discre-
tionary Access Control (DAC).

Figure 7.19 shows how we extend the Liquid.js framework with additional
concepts for collaborative scenarios featuring discretionary access control. The
data entity in DAC is associated with the Component entity in Liquid.js. The Liq-
uid component encapsulates portions of data inside the Liquid properties. Even
though Liquid properties are the smallest fragment of data in the application they
are always bundled with the component encapsulating them, and the encapsu-
lation cannot be broken. The component defines also the purpose of the Liquid
properties, connecting them and making them inseparable whenever they are
stored. This connection between sibling Liquid property makes the Liquid com-
ponent itself the best target for representing Data in this design.

The Action entity in the DAC model is described inside the Permission entity.
Liquid.js defines an API at the component and property level, granting the user
the ability to interact with Liquid components. In the current version of Liquid.js

167 7.6 Privacy and Security

users are allowed to create, migrate, fork, clone, and pair any component in the
system even though they were created by different users and reside on different
devices:

• Create: creates an instance of a component on a device. Since the data
contained in a component does not exist yet before creation, the creation of a
component does not have any privacy implications. However the system protects
the creation of unwanted components by imposing that only the owners of a
device can create a fresh component on it. When the command is not issued by
a owner of the device, then the owners must accept it manually.

• Migrate: moves a component (including its runtime state) to another de-
vice, at the end of the operation the original device does not keep a copy of
the component. Migration requires that the owners know the identity of the
receivers, and migrated components should be accepted only from known and
trusted users.

• Fork: creates a perfect independent copy of a component on another de-
vice. Similarly to the migration, also fork requires that the owner trust the clients
interacting with it, because they will own a copy of their data.

• Clone: creates a copy of a component on another device, but also keeps
the state of the original and newly created component synchronized between
the two devices. A cloned component has stronger privacy implications, since all
its future states will be revealed to the synchronized parties. It should be pos-
sible to support both bi-directional synchronization as well as mono-directional
synchronization.

• Pair: ensures that the state of paired components or paired properties is
kept synchronized across multiple devices. This action can be performed on pre-
viously deployed components of different types and has the same security and
privacy implications of Clone.

With the introduction of the DAC system we limit access to these actions.
The permission entity defines a set of executable actions mapped to the liquid
primitives of Liquid.js.

The entity Room is not directly associated with any core entity in DAC, Rooms
group a set of Devices owned by multiple Users who decide to collaborate with
each other and hence have visibility of each other. A room is used both for dis-
covery of the presence of devices and for adding an additional layer of privacy
between users, in fact inside rooms it is possible to create dynamic white and
black lists (see RoomAdmission) in which the owner of the room can decide the
devices to be admitted.

Figure 7.20 describes in detail how these entities are designed in Liquid.js:
• User: the user entity keeps track of all the devices the user has access to.

168 7.6 Privacy and Security

C RoomAdmission

identifier: Number
allow-Public: Boolean
authentication: Boolean
enable-Whitelist: Boolean
whitelist: [User]
blacklist: [Device]

C Room

identifier: Number
creator: User
followers: [Device]
rules: RoomAdmission

C User

identifier: Number
devices: [Device]
created-Permissions: [Permission]
granted-Permissions: [Permission]

C Device

identifier: Number
components: [Component]
user: [User]

C Component

identifier: Number
properties: [Property]
permissions: [Permission]

C Permission

identifier: Number
component: Component
owner-User: User
granted-User: User
API-actions: [Boolean]

C Property

identifier: Number
type: String

*

*

1

*

*

*

1

*

1

*

1 1

*

*

*

1

* *

1 *

Figure 7.20. Extended entity diagram in Liquid.js

Whenever a user authenticates with his credentials from any device, the device
is added to the user. The user can authenticate from multiple devices at once,
which enables parallel screening. Users also keep track of the permissions they
receive from other users and the ones they granted to other users;

169 7.6 Privacy and Security

Input : device, rules
Output: true if device can join the room given the definition of rules

attached to the room

if device.identi f ier is in rules.blackl ist then
return false

end
if rules.allowPublic == false ∧ device.users.length == 0 then

return false
end
if rules.authenticat ion== t rue then

if rules.enableWhitel ist == t rue then
forall user o f device.users do

if user.identifier is not in rules.whitelist then
return false

end
end

end
end
return true

Algorithm 7.6.1: Accepting a new device in a room with assigned
RoomAdmission rules

• Device: in the previous version of Liquid.js it could not be possible to an-
notate the ownership of the device. We distinguish three different cases in how
a device can be used by users: – private: a device is owned by one single au-
thenticated user at a time; – shared: a device is owned by multiple users who
authenticate on the device at the same time; – public: a device is not owned
by any specific user, hence it could be used by anybody, even unauthenticated
users. The concept of public and shared devices is necessary in collaborative Liq-
uid Web applications. For example users can edit their data on their own devices
(e.g. edit on a tablet), however they want to display the data on a shared device
(e.g., a smart television), so that they can receive feedback from the audience.

• Room and RoomAdmission: users can create any number of rooms, and
devices can join a room by following it, the same device can follow multiple
rooms at the same time. The creator of the room can change the rules attached
to the room entity (Room Admission) that can be used to prevent users to join the
room. The owner can decide to allow public devices to follow the room, to accept
only users authenticated in the system and create white and black-lists. In white
lists it is possible to state which users are allowed to access the room, in black

170 7.6 Privacy and Security

Input : users, act ion, component
Output: true if act ion can be executed by the set of users authenticated

in a device, given the set of permissions attached to a
component

forall user o f users do
f ound ← f alse;
forall permission o f component.permissions do

if permission.grantedUser == user.identi f ier then
if permission.act ion== act ion then

f ound ← t rue
end

end
end
if f ound == f alse then

return false
end

end
return true

Algorithm 7.6.2: Allowing API methods to be performed on components

lists it is possible to prevent particular devices to join the room. Algorithm 7.6.1
shows the pseudo-code for accepting devices which attempt to join a room.

• Permission: permissions are created and changed dynamically by users at
runtime. Permissions are attached to the component they are referring to, asso-
ciated with the user who created it, and sent to the user to which it was granted.
The system is restrictive by default and the permissions defines the permit of exe-
cuting actions to be performed on the data. Only the set of users authorized in the
device in which the component was created on can add new permissions to the
component itself, preventing un-trusted users to get the possibility of accessing
someone else components. Algorithm 7.6.2 shows the pseudo-code for deciding
if an executable action can be performed from a device or not. In the case that
we want to allow public devices (device.users← empt y) to attempt to execute
actions, we should also check that the condition permission.grantedUser ==
empt y is defined. In fact if the grantedUser inside a permission is not defined,
it means that the permission is granted to all users (authenticated or not).

• Components: components are built in a hierarchical structure, meaning
that components may recursively contain other components. As permissions can
be assigned to components independently of their nesting level, conflicts between

171 7.6 Privacy and Security

Input : users, act ion, component
Output: true if act ion issued by users can be executed on a container

component

if isContainer(component) then
child ren← getChild ren(component);
forall child of children do

if checkPermission(users, action, children) == false then
return false

end
end
return true

else
return checkPermission(users, action, component)

end

Algorithm 7.6.3: Conflict resolution for container Components

permissions may happen between different levels of the hierarchy. We take a con-
servative approach to deal with such conflicts whereby a container component
can be shared only when all its leaf components (a component which does not
contain any other component) inside of it permit the requested action (see Algo-
rithm 7.6.3).

7.6.1.2 Architecture and Implementation

Figure 7.22 shows the architecture of Liquid.js extended with the previously de-
scribed DAC system. We divide the framework between server-side and client-
side and discuss them separately.

7.6.1.2.1 Server-side The goal of the decentralized Web [16] is to shift the
workload from the server-side to the client-side as much as possible, however a
central server is always required, because the current technologies impose that
clients discover each other through a central meeting point. However we can
benefit from this constraint: • Data persistence: users own multiple devices
and can store information directly in their devices, however if a device is offline
it cannot distribute the information stored in it to the other clients. While the
users can decide wherever they can store their liquid components, permissions
should be stored both in the client and in a central database as a reference.
The permission are create by the users and these permissions affect only what

172 7.6 Privacy and Security

others can do with the data they create. Permissions can be distributed through
P2P channels among users, however if the user is not connected, they should be
accessible anyway. A central Database can be act as a fallback mechanism.

The same fallback mechanism can be used for the assets distribution, the
assets of the liquid Web application can be received both from the server and
from the clients if they own a copy.

• Discovery and Authentication: the server is used as the mean for discovery
and for authentication of the users. The server can discard and expel the devices
of malicious users from the system and can decide if two devices are allowed to
create a WebRTC DataChannel between them.

This architecture makes it possible to trust the users connected to the ap-
plication thanks to the Web server and allows clients to distribute permissions
between them. The server can also be used as a fallback mechanism or for re-
laying messages exchanged between devices whenever they fail to communicate
with each other directly (e.g., the Web browser does not implement the WebRTC
standard).

The database component shown in Figure 7.22 stores information about the
Users registered in the Web application and the corresponding permissions. The
decision of making rooms persistent is up to the developer of the liquid Web
application. It is not necessary to store rooms, nor the associated rules, in the
database if by design the rooms are created dynamically and automatically close
whenever all devices leave them. If the application requires rooms to continue
to exist and be available even after the owner leaves, then also the Room and the
RoomAdmission entities should be stored in the database.

The server can also ban authenticated devices from rooms whenever they
attempt to issue too many unauthorized actions between clients. Clients can
close their direct channels with other devices when adding them to the blacklist
of a room. However in the case that a device keeps attempting to join the room,
the server can prevent these actions and decide to expel and close the socket
connection with the device, preventing it to sending any other further request to
the liquid Web application.

7.6.1.2.2 Client-side Clients communicate directly with each other through
the WebSocket / LPC Handler component. The permission rules component takes
care of deciding which actions can be executed and which one are prohibited.

Figure 7.21 shows how permissions are initialized in a room: 1. Whenever
a client joins a room, all other devices in the room are notified with the joining
deviceId, the joining device receives the entire list of devices inside the room;

173 7.6 Privacy and Security

Client 1
new client

Server Other clients

WS-PC-Handler
WS

Signaling WS-PC-Handler : clients

WS-PC-Handler WS
Signaling

WS-PC-Handler : clients

Room Join

join(deviceId, room)

broadcastJoin(deviceId)

join(deviceList)

For Each client: Create WebRTC channels

createChannel(deviceId, target)

createChannel(deviceId)

ack(deviceId)

bindChannel(deviceId)bindChannel(deviceId)

Permission Propagation

propagateUserList(users, permissions)

permissions

Figure 7.21. Messages exchanged during room join

174 7.6 Privacy and Security

Client-side

Liquid API

Liquid Behavior

Local Storage
PouchDB

y-liquid
Connector

Liquid
Styles

Server-side

Deployment
Server

Websocket
Server

Signaling
ServerAssets

Temporary
Storage

HTTP
Client

Websocket
Client

WebRTC
Peer

Liquid Peer
Connection Strategy

Liquid
Style

Controller

Liquid
UI Wrapper

Liquid Components

Liquid
WebWorker

Pool

Liquid
WebWorkers

User
Sessions

Permission
Rules

Permissions

Figure 7.22. Liquid.js simplified architecture extended with the DAC model.
Highlighted components and interfaces are added or changed during the exten-
sion.

175 7.6 Privacy and Security

2. All clients start exchanging the device descriptors of their own devices among
them. The descriptor is used for initialising the WebRTC PeerConnection. In
this phase clients also exchange the information about the current authenticated
users in their devices; 3. The created channels are labeled with the userIds of the
other clients. This binding is done locally on all devices for every channel and
the label cannot be changed afterwards. This process makes sure that incoming
messages passing through Peer Connections always come from a known device,
meaning that devices cannot fake be to be somebody else once the channel is
created; 4. Finally devices exchange with each other any permission they granted
to the users in the past, making sure that they own a copy of them. The joining
device does the same with the followers of the room.

Figure 7.23 shows how permissions are exchanged among devices:
1. a user creates a new permission choosing which act ions a user can exe-

cute on a component; 2. The permission is attached to the component, only the
creator of the component can attach permissions to a component; 3. The permis-
sion is forwarded both to the server-side of the application and to all devices in
which the user is logged in; 4. The permission is associated to the owner and
to the granted users inside the database. Permissions are persistent and can be
requested by the users if they lose them or if they cannot access to the permis-
sions stored in some other of their devices (e.g. because they are turned off).
5. Permissions are stored in all receiving devices. The users of the device must
manually accept permissions when they are created. This process makes sure to
prevent unwanted spam to happen (e.g. the migration of an unwanted compo-
nent to one or more devices of an user from a malicious user’s device). In this
case the device can be reported to the Web server and expelled from the room.

Figure 7.24 shows how API methods can be issued on components and sent
to other clients in order to be executed:

1. The liquid API component needs to execute an act ion on a component the
user of device does not own. The Liquid.js API requests if the users of the device
have been granted with the necessary permissions for executing the act ion on
the component; 2. If the owner of the component granted the permission to exe-
cute the action, then the device can forward the request to the target component
device, otherwise the device is encouraged not to send the request; 3. Whenever
the message arrives to the target device, it checks if it is allowed to execute the
received action on the component. If it does then the action is executed, oth-
erwise the message is discarded and the peer remembers that a device tried to
request an action without having permission to execute it.

It is possible to see that the process checks the permissions twice: • The
first check is not required, but prevents the devices to send useless messages

176 7.6 Privacy and Security

Server Client Other clients

User
Sessions

WS
Signaling

WS-PC
Handler

Liquid.js
API

Permission
Rule

WS-PC
Handler

Liquid.js
API

Permission
Rules

User
Sessions

WS
Signaling

WS-PC
Handler

Liquid.js
API

Permission
Rule

WS-PC
Handler

Liquid.js
API

Permission
Rules

createPermission
(user, comp, act)

permission

attach
(permission, comp)

msg

sendMessage
(msg)

socket.send
(msg)

handler.emit
(msg, userId)

store
(msg.permission)

forward
(msg, userId)

store
(msg.permission)

Figure 7.23. P2P distribution of the permissions

that other devices would anyhow discard. It avoids the congestion of the We-
bRTC DataChannel, it saves up bandwidth usage and it prevents the clients to
be flagged as spammers and potentially be expelled from the room; • The sec-
ond check is required, and allows users to decide which capabilities other users
have access to. It prevents malicious users to access and steal their data and
allows trusted users to execute only the actions they were granted permission to
execute.

7.6.2 Security

Security in Web applications depends on the platform they are built upon, specif-
ically on the Web browsers which limits access to the hardware of a device. The
Web provides secure protocols which can secure the communication channels
between all parties. In particular, we rely on these three protocols:

• Hypertext Transfer Protocol Secure (HTTPS) [154] encrypts the requests
and responses sent between client and server;

• WebSocket Secure (WSS) [53]: WSS ensures that the persistent commu-
nication channel between server and clients is encrypted;

• Session Description Protocol (SDP) [140]: the SDP using the P2P trans-
mission protocol Secure Real-Time Protocol (RSTP) ensures security over the
direct WebRTC DataChannels between client devices.

177 7.6 Privacy and Security

Client 1 Client 2

Permission
Rule

Liquid.js
API

WS-PC
Handler

WS-PC
Handler

Liquid.js
API

Permission
Rules

Permission
Rule

Liquid.js
API

WS-PC
Handler

WS-PC
Handler

Liquid.js
API

Permission
Rules

checkPermissions
(’me’, action, compURI)

ack

createMessage
(action, compURI)

msg

sendMessage
(msg)

handler.emit
(msg, userId)

forward
(msg, userId)

checkPermissions
(userId, msg.action,
msg.compURI)

ack

execMessage(msg)

Figure 7.24. P2P issuing and checking actions

In the following sections we discuss how our design can protect users from
attacks started by malicious users or protect data from attempted attacks to the
system. We base our explanations starting from the security baseline provided
by the protocols cited above. Malicious users may attack the platform in four
different ways:

1. pretend to be the Web server of the application;
2. impersonate other users or devices identities within the peer-to-peer mesh;
3. change assets of the application at runtime and send them to other clients;
4. create malicious components attempting to run unauthorized actions.

7.6.2.1 Trusting the server

Thanks to the certificates used in HTTPS it is possible to recognize trusted server
from un-trusted ones. However we do not use only HTTPS in order to reach the
server, but also the WSS protocol. Figure 7.25 shows how it is possible to make
sure that the same user authenticated through HTTPS requests is also the same
user authenticating through WSS:

1. A client requests and receives the page from the Web server;

178 7.6 Privacy and Security

Clients Server

WS-PC
Handler

HTTP
Handler HTTP

WS
Signaling User

Sessions

WS-PC
Handler

HTTP
Handler

HTTP WS
Signaling

User
Sessions

GET / URL

page

login(username,
passHash)

authenticate
(username, passHash)

userId

createAuthToken(userId)

authToken

saveSession(userId, authToken)

ack

userId,
authToken

connect(userId, authToken)

checkToken
(userId, authToken)

ack

ack

Figure 7.25. Client handshake with server

2. Afterwards the clients logs in the Web application through HTTPS. The
Web server checks if the user submitted the right credentials;

3. If the users authenticate the server creates a unique authorisation token
and stores it in the database associated with the user;

4. The client receives his own userId and authentication token back. This
tuple must be sent to the Web server every single time the user must interact
with the Web server.

5. The client can finally try to connect with a WebSocket connection. The
request must contain also the userId and authToken.

6. The server checks if the authToken exists and confirms that the connection
can be established.

179 7.6 Privacy and Security

Server Client 1
Joiner

Client 2
Room Owner

Clients
Room Followers

User
Sessions

WS
Signaling

WS-PC
Handler

WS-PC
Handler

WS-PC
Handler

User
Sessions

WS
Signaling

WS-PC
Handler

WS-PC
Handler

WS-PC
Handler

joinRoom(roomId,
userId_1, deviceId,
authToken)

checkToken
(userId_1, authToken)

ack

findRoomCreator
(roomId)

userId_2

canJoin(roomId, userId_1)

followers[]

for each device in followers[]

broadcastJoin(roomId, followers[])

updateRoom
(roomId, followers[])

updateRoom
(roomId, followers[])

updateRoom
nroomId, Followers[])

Figure 7.26. Joining a room

Since all communication with the Web server is encrypted, the authToken can-
not be stolen. This ensures that users cannot impersonate someone else. HTTPS
certificates ensure that all these steps are carried out with the correct server.

7.6.2.2 Trusting the client

Clients should also not impersonate other clients when they are part of the P2P
network corresponding to a room. Figure 7.26 shows the process for joining a
room:

1. A device can join a room if its owners know the roomId of the room they
want to access, this identifier works as a shared secret between the creator and
the followers of the room. The device requests to join a room using the roomId,
the request contains the authToken it received when the device authenticated as
well as its userId and deviceId associated with the WebSocket channel created
during the handshake (see Figure 7.25);

2. The server checks the authToken and maps the roomId, to the creator of
the room. The mapping operation can be done querying the database if the room

180 7.6 Privacy and Security

is persistent;
3. The server requests to the creator of the room if the user and the device

are allowed to join the room;
4. If the device is allowed to join the room, the creator sends to the server the

list of devices connected to the room and then broadcast to all of them the infor-
mation which will allow the newly client to join the room. Thereafter the clients
can exchange permissions and talk to each other without any further interaction
with the server.

This process shows that the Web server initiates the creation of the WebRTC
DataChannels. Since the Web server is trustworthy and the clients cannot cheat
the Web server to be other users, then all PeerConnections created can be bound
with the trustworthy user information (see also Figure 7.21). Once the channel
is created the client cannot change their identity, meaning that the clients can
trust who they are talking to.

7.6.2.3 Trusting the component

The creator of a liquid Web application may attempt to create a malicious com-
ponent which automatically call API methods when loaded. For example a devel-
oper may create a component which whenever is created requests all following
clients in a room to clone the component in their machine. While API meth-
ods can be called by the component itself and hidden from the unaware user,
the clone action request will reach all devices, but will not be executed because
the owner of the receiving device does not possess the permission associated to
it. Similarly if a malicious components attempts to create permissions and then
clone itself, it would not be able to overcome the manual permission acceptance
given to the users whenever a permission is granted. In fact API actions called by
a component can never override the manual checking done by the user. Continu-
ous unauthorized requests will eventually result in the expulsion of the malicious
device from the room. This ensures that malicious component and infected de-
vices do not propagate and spread malicious behavior in all devices on which the
liquid Web application is running.

7.6.2.4 Trusting the asset

Clients that receive assets of the application from the Web server can change
those assets at runtime and attempt to infect the rooms with malicious scripts.
Figure 7.27 shows how this can be prevented in our design. Every time an asset
is sent through the P2P channels the clients create a MD5 checksum of the file

181 7.6 Privacy and Security

Server Client 1 Client 2

User
Sessions

WS
Signaling HTTP

HTTP
Handler

WS-PC
Handler

WS-PC
Handler

User
Sessions

WS
Signaling

HTTP HTTP
Handler

WS-PC
Handler

WS-PC
Handler

Server Fetch

fetch(URL,
userId, authToken)

checkToken
(userId, authToken)

ack

asset

load(asset)

store
(URI, asset)

P2P Fetch

fetch(URI)

asset

checksum
(asset)

checksum

checkAsset(URI, checksum)

checkAsset
(URI, checksum)

ack

ack

load
(asset)

store
(URI, asset)

Figure 7.27. Asset fetching

and asks the server if the MD5 hash they possess is correct. If it does then it can
load the assets safely, otherwise it can download the assets directly from the Web
server or from another peer.

182 7.6 Privacy and Security

7.6.3 Limitations

While the given design can be implemented on top of native applications in any
other similar component-based liquid framework, we are running our implemen-
tation of top of Web browsers, coding our scripts and components with JS. The
sand-boxed environment provided by the Web browser and the interpreted na-
ture of the JS scripting language allow users to access and change any data they
posses in their Web page. Even if the data inside of the component was encrypted
by the means of private and public keys, as long as it is showed in the Web page,
it means it is attached to the DOM of the page and thus accessible by the user.
For Liquid applications running on different environments, other than the Web
browser, it is encouraged to encrypt the data inside of the component as well as
the permissions stored inside of it, preventing the users to change or corrupt the
permission attached on the component. Whenever a component is moved to an-
other device, it exists as a copy of the original, if the permissions can be changed
then a users may create his own copy of it and share it with anyone else. Similar
malicious behavior also happen in the current design of social networks, in which
it is impossible to prevent users to create a copy of someone else’s data and send
it to other users (e.g. uploading on Instagram a picture saved on the computer
from another Instagram account).

Chapter 8

The Liquid.js API

Developers of liquid Web application need to control how to expose the liquid be-
havior of their cross-device Web applications to the users. The Liquid.js API gives
to the developers fine-grained control over the LUE primitives, device discovery,
and the life-cycle of liquid Web components.

The core Liquid.js API deals with device configuration and discovery, con-
trols the liquid component life-cycle and exposes the LUE primitives that can be
used for advanced customization scenarios of the default user experience con-
trols provided by Liquid.js. Additionally, the API offers a cross-device version
of many useful HTML5 APIs, such as LWWs, for offloading computationally in-
tensive tasks across devices, Liquid Storage, for managing the runtime state of
components shared across multiple devices, and Local Persistence, for storing
snapshots of component state. The Assets API supports peer to peer deployment
of the Web application assets and the Connection API provides a decentralized
event bus. Many of the described methods are asynchronous because they re-
quire inter-device communication. In this case, they return Promises to represent
the successful or failed completion of the asynchronous method invocation.

8.1 Framework Configuration API

The Framework Configuration API (see Table 8.1) allows developers to configure
the client-side of Liquid.js and instantiate the Liquid.js framework properly. The
configure method expects an options object (see Listing 8.1 for default values) in
which the developer should at least define the host address of the Web server
used for discovery and asset deployment.

The getLoadableComponents returns the list of components stored and acces-
sible from the server-side. To enumerate the component types cached and avail-

183

184 8.1 Framework Configuration API

Table 8.1. Liquid.js API: framework configuration methods

Method name and parameters Return value

Configuration Methods
configure(options) Promise()
getLoadableComponents() Promise(componentTypes[])
getAllComponentURIs([DeviceURI]) Promise(componentURIs[])
getAllComponentInstances() componentInstances[]
getComponentInstance(componentURI) componentInstance
getDevicename() devicename
setDevicename(devicename) devicename

Events - callback([values])
devicenameChange(devicename)
Triggers when the server accepts the notification of the devicename change.
loadableComponentsListChange(componentTypes[])
Triggers when the available list of components on the server side changes
and returns a list of componentTypes[]. The list includes only the components
available on the server, and not the ones that can be obtained directly from
other clients.

able from other devices, use the Assets API.
Since it is difficult for the user to recognize a device by its deviceURI, Liq-

uid.js allows developers to assign devicenames to the devices with the method
setDevicename. The function can be called only on the device issuing the API
method, it is not possible to change the device-name of remote devices. If the
developer chooses to label devices with a name, it can replace all occurrences
of deviceURI with the assigned device-name in all methods calls of the API. The
server guarantees the uniqueness of the devicename.

The remaining methods of this API return a snapshot of the current deploy-
ment configuration of the liquid Web application. The getAllComponentURIs
method returns either the componentURIs identifiers of all instantiated compo-
nents inside the target device(s), or by default all URIs of the instantiated com-
ponent on the issuing device. To access the actual components (the JS object
referencing the custom element) use the getAllComponentInstances and getCom-
ponentInstance. These can only retrieve components instantiated on the device
executing the command, since it is impossible to return a reference to a remote
object. If the developer calls the getComponentInstance with an invalid compo-
nentURI, or a URIs pointing to a remote component, the value undefined is re-
turned.

185 8.2 Component Life-cycle API

Listing 8.1. Configuration default options
1 defaultOptions = {

2 host: 'localhost', // Web server address

3 port: 80, // Web server port

4 signalingServerRoute: '/signaling', // Route for accessing

signaling server

5 relayMessages: false, // Automatically relay ALL messages via the

Web server

6 workerPool: {} // Preloaded Liquid WebWorkers

7 }

8.2 Component Life-cycle API

The Component Lifecycle API (Table 8.2) are the core methods of the Liquid.js
framework. Together with the LUE primitives migrate, fork, clone (see next Sec-
tion 8.3) can be used to implement customized LUEs. The LUE primitives them-
selves are a pipelined composition of the methods described in this section. Ex-
posing them in the API provides access to fine-granular mechanisms so that de-
velopers can combine them in different ways to fine-time their own LUE.

The loadComponentType is the first necessary step in the component life-cycle.
It first checks that the assets of a component are loaded on the issuing device. If
they are not yet loaded, it will request them from the Web server and dynami-
cally load them into the Web browser. The second step on the life-cycle consists
of the createComponent method, which creates and appends the HTML custom el-
ement tag corresponding to the Polymer component to the target DOMElement
inside the DOM. The registerComponent takes an existing Polymer component
and marks it as liquid component. If a component is not registered with Liquid.js,
then any method called on this component will fail apart from registerComponent
and deleteComponent. For convenience, the instantiateComponent method simpli-
fies the process of instantiating a component in a single call, which is functionally
equivalent to pipelining the three methods loadComponentType→ createCompo-
nent→ registerComponent. The deleteComponent removes the target component
from the DOM and deletes it; a deleted component is lost forever as its state can-
not be retrieved. The only way to save and later restore a component is to store
a snapshot of its state by using the Local Persistence API (see Section 8.6).

The liquid storage for stateful component synchronization methods can be
used if the target liquid component defines at least one liquid property. The get-
State method returns a snapshot of the state of a liquid component in the form
of {proper t yName : value}. The setState method allows to apply a state snap-

186 8.3 Liquid User Experience (LUE) API

Table 8.2. Liquid.js API: component lifecycle and liquid storage methods

Method name and parameters Return value

Component Lifecycle
loadComponentType(componentTypeURI) Promise(componentTypeURI)

createComponent(componentType [,
DeviceURI, DOMElement, UIType])

Promise(componentURI)

registerComponent(componentURI) Promise(componentURI)
instantiateComponent(componentType [,
DOMElement, UIType])

Promise(component)

deleteComponent(componentURI) Promise()

Liquid Storage for Stateful Component Synchronization
getState(componentURI) Promise(stateSnapshot)
setState(componentURI, stateSnapshot) Promise(componentURI)
pairComponent(sourceCompURI, targetCompURI) Promise()
unpairComponent(sourceCompURI, targetCompURI) Promise()
pairProperty(sourcePropURI, targetPropURI) Promise()
unpairProperty(sourcePropURI, targetPropURI) Promise()

Table 8.3. Liquid.js API: Liquid User Experience (LUE)

Method name and parameters Return value

Liquid User Experience
migrateComponent(compURI, deviceURI [, opts]) Promise(componentURI)
forkComponent(compURI, deviceURI [, opts]) Promise(componentURI)
cloneComponent(compURI, deviceURI [, opts]) Promise(componentURI)

shot to the target component. The pairComponent and pairProperty establish a
binding between two properties or between all properties sharing the same name
of two different component instances so that their values will be kept synchro-
nized thereafter. The pairing is reverted by calling either the unpairComponent
or unpairProperty methods.

8.3 Liquid User Experience (LUE) API

The Liquid User Experience (LUE) API (see Table 8.3) builds upon the component
life-cycle and liquid storage APIs to deliver the following three primitives [61]:

• Migrate: a liquid component (and its runtime execution state) is trans-
ferred from one device to another. Whenever a user performs a migrate command

187 8.4 Device Discovery API

on a component, he perceives that it visually moves from the source device to
the target device while the original instance of the component disappears on the
source device. Once the migration completes, the user can continue working on
the target device resuming from the state immediately before the migration was
triggered. Every time a component is migrated, the framework transparently
transfers 1) the migrated component assets and 2) a snapshot of its state; the
target device loads the asset if it was not already loaded, then it instantiates a
new component on the target device and finally it applies the snapshot of the
state sent from the source device.

• Fork: the fork method allows to instantiate a copy of any liquid component
on a new device. From the user perspective, the source component running on
the initial device is unaffected by the primitive. However, on the target device a
new instance of the same liquid component appears carrying over the same state.
Along with the state it had on the source device, the component carries over also
the same view it was previously presenting. The copies are not connected after
the command finishes executing, and the states of the original component and
the forked one can evolve separately.

• Clone: similarly to the fork method, cloning allows to instantiate a copy
of a liquid component on any target device. Differently from the fork method,
the state of the original and of the cloned components is kept synchronized.

The LUE primitives are actually implemented as compositions of the compo-
nent life-cycle methods (see Section 8.2): e.g., the migrateComponent method
is implemented by pipelining the following methods: connectDevice → getCom-
ponentState → getLoadedAssets → requestAsset → loadAsset → loadComponent-
Type → registerComponent → createComponent → setComponentState → delete-
Component. The pipelines defining the forkComponent and the cloneCompoment
methods are very similar to the migrateComponent one, without the final call
to deleteComponent in the case of the fork primitive, and the additional call to
pairComponent for the clone primitive.

8.4 Device Discovery API

The Device Discovery API (see Table 8.4) allows developers to access and read the
metadata related to the set of remotely connected devices constituting the execu-
tion environment of the liquid Web application. The framework fingerprints all
connected devices using the ClientJS library [Jac16]. The deviceInfo object has
the following form: {deviceURI, clientjsFingerPrint, devicename, hardwareData}.
In the fingerprint we include the information about the current platform type,

188 8.5 Liquid WebWorker (LWW) API

Table 8.4. Liquid.js API: device discovery methods

Method name and parameters Return value

Device Discovery
getDeviceInfo() deviceInfo
getDeviceURI() deviceURI
getDevicesList() availableDeviceURIs[]
getDevicesInfoList() availableDeviceInfos[]

Events - callback([values])
devicesListChange(availableDeviceInfos[])
Triggers when a new device connects to the server and is available to be
paired. The event callback receives the entire list of {deviceURI,
clientjsFingerPrint, devicename, customData} identifying each connected
device.

recognizing the following three categories: Desktop/Laptop, Tablet, and Phone.
There are other possible platform values, but currently Liquid.js supports only
these three, as they can run Web browsers supporting its dependencies (e.g.,
WebRTC, Polymer). The getDevicesList and the getDeviceInfoList ask Liquid.js to
retrieve the latest version of the list of the known and currently available devices
from the Web server. The getDeviceURI methods returns the URI of the device
issuing the command.

8.5 Liquid WebWorker (LWW) API

The LWW API (see Table 8.5) is used for sharing the computational power of
multiple devices to run computationally-heavy tasks by automatically offloading
WebWorkers from weaker devices to more powerful ones.

The createLiquidWorker method allows the developer to create a WebWorker
that can be shared across devices. If developers need to create multiple LWWs,
they can call the method createLiquidWorkerArray and pass an array listing all the
LWWs to be created. The purpose of the pairDeviceWorkers method is to establish
a trust relationship between devices so that all Liquid Workers identified by the
same name in the source device and in the target device can be executed replac-
ing the other. When the postLiquidWorkerMessage method is called, Liquid.js will
attempt to reduce the worker execution time and automatically decide whether
the message should be sent to the local worker or to a remote one running on
the pool of paired devices. Finally the terminateLiquidWorker methods ends the

189 8.6 Local Persistence API

Table 8.5. Liquid.js API: worker offloading methods

Method name and parameters Return value

Liquid Worker Pool
createLiquidWorker(workerName, workerURI) Promise(worker)
createLiquidWorkerArray({workerName, workerURI}[]) Promise(workers[])
pairDeviceWorkers(DeviceURI) Promise(DeviceURI)
postLiquidWorkerMessage(workerName, msg) Promise(callResponse)
terminateLiquidWorker(workerName) Promise(workerName)

Liquid Worker
postMessage(msg) Promise(callResponse)
_postMessage(msg) Promise(callResponse)
terminate() Promise()

life-cycle of a liquid worker.
The developer can access the Liquid worker API also without passing through

the Liquid.js object, since the Liquid worker object itself exposes an API. If that is
the case then the methods postMessage and terminate have the same functional-
ities of postLiquidWorkerMessage and terminateLiquidWorker. The _postMessage
method bypasses the offloading functionality and ensures the task is executed on
the local device.

8.6 Local Persistence API

The Local Persistence API (see Table 8.6) allows saving snapshots of the state of
liquid components inside a PouchDB [Pou20] database running within the Web
browser. The snapshot of the state can be saved at the device, component or
property levels and any snapshot of the state can be loaded whenever the cor-
responding method is invoked. The snapshot is taken internally by the Liquid.js
framework and does not need to be passed as a parameter to the save functions.
The memento of the state is stored in JSON format, so that it can be exchanged
across devices by using the event bus. The three abstraction levels allow the de-
veloper to save a snapshot of the corresponding state by giving the unique key
that will be used by the PouchDB database to identify the snapshot. All abstrac-
tion levels define a getAll and get method for snapshots retrieval. Finally the
device and component levels also define a load method which will restore on
the current device the retrieved snapshot, the method will instantiate and reload
the state of all liquid components contained in the snapshot. The property-level

190 8.7 Assets API

Table 8.6. Liquid.js API: local persistence methods

Method name and parameters Return value

Device level
saveDeviceState(key) Promise(key)
loadDeviceState(key) Promise(key)
getAllDeviceState() Promise(deviceStateSummaries[])
getDeviceState(key) Promise(deviceStateSummary)

Component level
saveComponentState(key, compURI) Promise(key)
loadComponentState(key) Promise(key)
getAllComponentState() Promise(compStateSummaries[])
getComponentState(key) Promise(compStateSummary)

Property level
savePropertyState(key, propURI) Promise(key)
getAllPropertyState() Promise(propertyStateValues[])
getPropertyState(key) Promise(propertyStateValue)

API does not define any load method because properties cannot be instantiated
independently from the liquid component they belong to.

8.7 Assets API

The Asset API (see Table 8.7) is used to request and load asset files. In order to
create a distributed environment that relay on the Web server as little as possible,
Liquid.js allows clients to exchange asset files among one another. To make this
possible, at least one connected client needs to own a cached copy of the assets
initially stored on the Web server. For security reasons not all assets can be shared
using the Asset API, the list of shareable assets must be filled in a configuration
file. Assets can be shared only on-demand, clients cannot send assets directly
to other clients if the receiving client did not send a request. The requestAsset
method allows the developer to poll a device for a specific asset which can then be
executed on the machine by calling the loadAsset function. The getAsset method
retrieves the script of any asset that was previously executed on the machine, and
the getLoadedAssets methods returns an array containing all names of executed
scripts. The loadingChange event is associated to this API: whenever Liquid.js is
in the process of requesting or loading a file from another client it will set its
loading status to true, in all other cases the status is set to false.

191 8.8 Connection API and Event Bus

Table 8.7. Liquid.js API: assets lifecycle methods (P2P)

Method name and parameters Return value

Assets
requestAsset(name, deviceURI) Promise(script)
loadAsset(name, script, type) Promise(name)
getAsset(name) script
getLoadedAssets() names[]

Events - callback([values])
isLoadingStatusChange(status)
Triggers when Liquid.js starts or ends fetching assets from the server or
another client. The event carries one of the following loading status codes:
true if Liquid.js is fetching or loading at least one asset; false if Liquid.js is not
currently fetching or loading any assets.

8.8 Connection API and Event Bus

The Connection API (see Table 8.8) defines all methods that can be used by the
developers to communicate with other devices, or with the Web server if they
need to exchange data with it. The API exposes three methods that can be used
to enhance the server-client communication passing through a WebSocket chan-
nel: the isSocketConnected method returns the current status of the connection,
the sendSocketCustomMessage method is used for direct communication with the
server through special purpose socket messages, and the socketDisconnect method
closes the connection with the server. The remaining four methods are used to
interact with the WebRTC channels connecting clients: the connectDevice ask Liq-
uid.js to open a connection between the current device and the target device,
similarly the disconnectDevice forces to close an opened connection between tar-
get clients; the sendMessage method allows developer to exchange messages with
other clients; and the getConnectionList method returns an array containing all
deviceURIs of all devices that share an opened connection with the issuing de-
vice.

The device connection API triggers the connect, disconnect and reconnect
events whenever the socketConnected status changes. Moreover the developers
can define their own custom sockets events if they are developing Web applica-
tions that need to communicate directly with the Web server.

192 8.8 Connection API and Event Bus

Table 8.8. Liquid.js API: device connection and event bus methods

Method name and parameters Return value

WebSocket and WebRTC
isSocketConnected() isSocketConnected
sendSocketCustomMessage(msg) -

Se
rv

er

socketDisconnect() -
connectDevice(deviceURI) Promise(deviceInfo)
disconnectDevice(deviceURI) Promise()
sendMessage(message) -D

ev
ic

e

getConnectionList() connectedList
Events - callback([values])
connect(deviceID)
Triggers when the client connects to the server for the first time.
disconnect()
Triggers when the client disconnects from the server.
reconnect()
When the client reconnects to a server, this event is triggered instead of the
connected event.

Custom Events
It is possible to use the socket connection opened by Liquid.js to
communicate with the server side or allow the server to push custom data to
the client. By sending a socketCustom message defined as {type, payload},
liquid.js fires an event type with parameter payload on the receiving client.

Chapter 9

Validation

In this chapter we validate the design of the three application layers and evaluate
the implementation of Liquid.js. First we discuss the validation of the layers and
then we show how to build liquid Web applications with the framework.

9.1 Data Layer and Synchronization

In this section we focus on the synchronization performance of the data layer
of Liquid.js. We compare the performance of the different strategies presented
in Section 7.3.1 and we measure how the overall LiquidPeerConnection (LPC)
design impacts on the synchronization of the data layer.

The strategies are evaluated with three different kind of topologies: • star
topology; • spanning tree topology; • linear topology. The star topology is
automatically constructed by the full-graph strategy at runtime, while the linear
and spanning tree topologies can be constructed with the Minimal Connection
(MinCon) strategy.

9.1.1 Evaluation of the Routing Table

We evaluate the implementation of the local RT stored in the LPC component
(described in Section 7.3.2.3) by comparing the relative data transfer (band-
width) between all pairs of devices in a sample topology. The experiment is ran
both when the RT is enabled and disabled, so that we can directly compare the
gathered values.

193

194 9.1 Data Layer and Synchronization

Specs Computer 1 Computer 2

Brand MacBook Pro (Mid 2014) MacBook Pro (late 2012)
OS macOS Sierra v10.12.2 macOS Sierra v10.12.2
Processor 2.2 GHz Intel Core i7 2.5 GHz Intel Core i7
of cores 4 4
Memory 16 GB 1600 MHz DDR3 8 GB 1333 MHz DDR3
Browser Chrome v.55.0.2883.95 (64-bit) Chrome v.55.0.2883.95 (64-bit)

Table 9.1. Specification of the two devices used for the evaluation.

9.1.1.1 Testbed Configuration

All the data presented in this section was collected by running the test in the two
following scenarios:

1. in all single device scenarios (e.g., when only Computer 1 is connected), all
peers are running on the same physical machine. Multiple peers can be deployed
on the same machine by opening multiple Web browser tabs. Each Web browser
tab connects to the application with a different id, meaning that they behave like
different devices, even if the peers are deployed locally on the same machine. In
the case the peers are deployed on the same physical host, each peer still relies on
WebRTC DataChannels to deliver messages to all other peers. The specifications
of Computer 1 can be found in Table 9.1;

2. in the multi-device scenarios (e.g., when both Computer 1 and Computer
2 are connected) peers are distributed among two different physical hosts. Simi-
larly to the single device scenarios, when multiple peers need to be deployed on a
single machine, they are simulated with multiple tabs of the same Web browser.
The WebRTC DataChannels decide when messages are sent locally or through
the network. The specifications of Computer 2 can be found in Table 9.1. The
two computers are connected to the same wireless local network using a 5 GHz
frequency in 802.11n mode.

In order to provide as much consistency as possible, for each new run the
devices were restarted. The Web browser tab where peer p0 was always the one
on focus until the experiment finished (the onFocus tabs has higher priority).
All the machines started the experiment under the same conditions and their
memory was free.

195 9.1 Data Layer and Synchronization

Computer 1

p0

p1
(1 hop)

p2
(1 hop)

p3
(1 hop)

p4
(1 hop)

p5
(1 hop)

p6
(1 hop)

p7
(1 hop)

p8
(1 hop)

p9
(1 hop)

(a) Network visualization of the topol-
ogy in the full graph single device ex-
ample.

Computer 2Computer 1

p1
(1 hop)

p2
(1 hop)

p3
(1 hop)

p4
(1 hop)

p5
(1 hop)

p0

p6
(1 hop)

p7
(1 hop)

p8
(1 hop)

p9
(1 hop)

(b) Network visualization of the topol-
ogy in the full graph on multiple de-
vices.

Computer 1

p0
p1
(1 hop)

p2
(2 hops)

p3
(2 hops)

p4
(3 hops)

p5
(3 hops)

p6
(3 hops)

p7
(3 hops)

p8
(4 hops)

p9
(5 hops)

(c) Network visualization of the topology in the MinCon single-device example.

Computer 1

Computer 2

p0
p1
(1 hop)

p2
(2 hops)

p4
(3 hops)

p5
(3 hops)

p3
(2 hops)

p6
(3 hops)

p7
(3 hops)

p8
(4 hops)

p9
(5 hops)

(d) Network visualization of the topology in the MinCon multi-device example.

Figure 9.1. Topologies used in the evaluation of the data layer of Liquid.js.
The number of hops is computed relatively to the peer p0.

196 9.1 Data Layer and Synchronization

Single Computer Two Computers
P# Hops Up [MB/s] Ping [ms] Up [MB/s] Ping [ms]

P0 - - - - -
P1 1 30.83 8 18.38 9
P2 1 29.11 7 16.10 10
P3 1 28.31 7 18.78 10
P4 1 33.29 7 18.09 9
P5 1 29.67 8 17.76 15
P6 1 34.9 7 37.11 7
P7 1 34.55 7 34.09 8
P8 1 30.62 8 32.36 8
P9 1 32.38 7 34.27 7

(a) Performance of the fully connected strategy.

P0 - - - - -
P1 1 29.58 8 32.27 7
P2 2 15.74 20 17.13 25
P3 2 13.99 17 12.26 27
P4 3 9.29 39 12.07 58
P5 3 9.77 39 11.75 68
P6 3 10.22 43 8.55 56
P7 3 9.46 42 7.96 71
P8 4 6.65 67 6.36 133
P9 5 5.25 93 5.15 145

(b) Performance of the MinCon strategy without routing table.

P0 - - - - -
P1 1 31.59 8 34.58 8
P2 2 15.91 11 15.79 9
P3 2 16.33 10 12.91 26
P4 3 11.24 17 11.40 14
P5 3 11.12 15 12.29 12
P6 3 11.20 15 8.21 33
P7 3 9.72 12 9.00 29
P8 4 7.43 21 6.34 33
P9 5 5.59 27 4.98 36

(c) Performance of the MinCon strategy with routing table.

Table 9.2. Experimental values measured on all peers ranging from p1 to p9
based on the topologies shown in Figure 9.1. Peer p0 starts the conversations
across all peers. White rows represent peers deployed on Computer 1, dark
rows represent peers deployed on Computer 2.

197 9.1 Data Layer and Synchronization

9.1.1.2 RT in Sequential Conversations

The topologies used in this experiment are composed by 10 interconnected peers
as shown in Figure 9.1. All diagrams show the numbers of hops relative to peer
p0, which is also the peer that starts the conversation and initially start exchang-
ing messages across the peers. In Figure 9.1c we show the topology created with
the MinCon strategy, when all peers are deployed on a single device, while in Fig-
ure 9.1d we show the same topology deployed on two computers. In the latter
scenario, five peers are deployed on each device. The full-graph strategy is used
as a baseline for the message passing comparison, since we expect it to be the
topology with the lowest latency and the highest relative bandwidth, as there is
no need for the LPC to query the RT and all the peers can exchange messages
directly. In Figure 9.1a we show the topology of the full-graph strategy deployed
on a single device and in Figure 9.1b we show the topology deployed on two
devices.

In Table 9.2 we show all the results of the evaluation. Each cell is computed
as the average of five independent runs. The upload bandwidth and the ping are
all relative to peer p0, even if there is not a direct connection between them. The
bandwidth is computed locally in p0’s LiquidPeerConnection (LPC) component
and represents how much data flowed between two devices since the moment
the message is created in p0’s LPC and until it was processed in the target device’s
LPC1. Since p0 is the peer that starts the conversation, we ignore to compute the
ping and bandwidth for sending messages between components deployed on p0

itself, because the internal message passing does not requires to query the LPC
component. The size of the message payload transferred between the devices is
270 Kilobytes.

It is important to note that in this section our goal is to evaluate the impact
of the RT in the message transferring, we are not evaluating the performance
of the synchronization across the devices. In this experiment messages are
passed sequentially, and not in parallel. E.g., p0 first sends a message to p1,
then, once the message reaches p1, it sends a message to p2, and so on. In Sec-
tion 9.1.1.3 we will talk about parallel conversations, and in Section 9.1.2 we
evaluate the actual parallel Yjs synchronization implemented in Liquid.js.

In Table 9.2a we show the results for the full graph strategy where all peers
are 1 hop away from p0:

1The bandwidth we compute is not the network bandwidth and we are not computing the
maximum rate of data transfer of each individual peer. We are computing the rate of data trans-
ferred between devices during the experiment from the point of view of p0. The data transfer
lapse also includes the LPC overhead, the RT querying and the packaging process when enabled.

198 9.1 Data Layer and Synchronization

• In the single-device scenario the average upload bandwidth is 31.5
Megabytes/second. It is interesting to note, that even if the peers are deployed
on the same physical machine, the processing time of the ping messages in both
machines takes a total time of 7.3 milliseconds on average. The latency between
peers deployed on the same machine is high because nevertheless the ping mes-
sages pass through the WebRTC DataChannel and are queued twice in the respec-
tive DataChannel’s queues. Since the ping message is processed as soon as the
DataChannel triggers a onPing event, the 7 milliseconds represent both the time
spent in queues and the time needed for triggering the event. For each individual
peer there is no significant difference in the gathered values.

• In the multi-device scenario we can clearly see that the average upload
bandwidth decreases to 25.22 MB/s. More precisely, the local average upload
bandwidth on Computer 1 increases to 34.35 MB/s, while the remote average
upload bandwidth on Computer 2 lowers to 17.82 MB/s. The bandwidth on
Computer 1 increases because fewer peers are deployed on the same machine,
allowing a faster processing of the messages. However, the total time-lapse of
the data transfer and message processing of the 270 KB message from Computer
1 to Computer 2 is almost doubled, therefore decreasing the relative bandwidth
between the two machines by almost half (51.71%). The average ping of the
peers deployed on Computer 2 is 10.6ms, an increment of 3.3ms from the single
device deployment. These milliseconds represent the time spent in transit from
a device to another in the local WiFi network.

In Table 9.2b we show the results for the MinCon strategy without using the
RT. In this evaluation the distance between the peers is not constant and depends
on the topology shown in Figure 9.1c and 9.1d):

• In the single-device scenario the average bandwidth decreases as the num-
ber of hops increases. The average upload bandwidth from p0 to p1, which is
1 hop away from p0 is 29.58 MB/s, a value consistent with the previous exper-
iment shown in the full graph scenario. The average upload bandwidth for the
peers 2 hops away from p0 is 14.87 MB/s, 50.25% of to the 1 hop bandwidth.
The average bandwidth for the peers 3 hops away is 9.685 MB/s, 32.74% of the
1 hop bandwidth, the bandwidth for the 4 hops is 6.65 MB/s, 22.48% of the 1
hop bandwidth, and the 5 hops is 5.25 MB/s, 17.75% of the 1 hop bandwidth.
These values are not surprising, because each peer relays messages to the next
peer in the topology, in fact we expected to see exponential decrements of the
bandwidth as the number of hops increased. E.g., when a message needs to be
delivered from p0 to p2, p0 initially sends the 270 KB message to p1, which then
forwards it to p2. The total size of all messages sent by the peers in the topology
for reaching p2 is 540 KB, which is double the size of KB exchanged when we

199 9.1 Data Layer and Synchronization

Full Graph MinCon
Upload Download Upload Download

P# # msg. Size [KB] # msg. Size [KB] # msg. Size [KB] # msg. Size [KB]
P0 9 2430 0 0 9 2430 0 0
P1 0 0 1 270 8 2160 9 2430
P2 0 0 1 270 2 540 3 810
P3 0 0 1 270 4 1080 5 1350
P4 0 0 1 270 0 0 1 270
P5 0 0 1 270 0 0 1 270
P6 0 0 1 270 0 0 1 270
P7 0 0 1 270 2 540 3 810
P8 0 0 1 270 1 270 2 540
P9 0 0 1 270 0 0 1 270

Total: 9 2430 9 2430 26 7020 26 7020

Table 9.3. Number of messages and data transferred for each peers in the ex-
amples shown in Table 9.2 without the RT. The size of the messages exchanged
only counts the payload of the synchronization messages without considering
the headers of the wrapper. The wrapper contains the URI of the destination,
the sender URI, timestamp and other metadata used by the LPC component,
for a total of on average 60 bytes.

compare it to th full-graph strategy for reaching the same peer. By doubling the
size and number of messages, we expected to observe a decrease of 50% in the
relative bandwidth. Similarly we expected to observe 33% bandwidth for the
3 hops peers, 25% for the 4 hops and 20% for the 5 hops. In our experiment
the percentages are slightly lower than those, because of the overhead derived
from relaying the message. In fact whenever a message reaches a peer, the peer
needs to decide if the message should be forwarded to another peer in the topol-
ogy. When the peer reads a message from the WebRTC DataChannel queue, it
decides if it has reached the destination or if it should query the LPC and the
strategy component for the next target. This process is the cause of the overhead
in the data transferred. In Table 9.3 we show the number of messages and size of
data sent and received by all peers: in the full graph example p0 sends a total of
2’430 KB and 9 messages, while all other peers received 270 KB; in the MinCon
experiment, where the peers are required to relay messages, the total number
of messages transferred is 26, 2.8 times more data than the full graph strategy.
Given the same number of peers, if the topology constructed by the MinCon strat-
egy is linear (similarly to the topology we discuss later in Figure 9.3), the total
size of messages transferred is 45, 5 times more messages than the full graph. In
the best case, in which the MinCon strategy constructs a binary-tree-like topol-
ogy with root p0, the total number of messages transferred is 18, 2 times more

200 9.1 Data Layer and Synchronization

messages than the full graph.
The increase in the average ping values in the experiment are the following: 8
ms for 1 hop; 18.8 ms for 2 hops, 2.3 times the value of 1 hop ; 40.75 ms for 3
hops, 5 times the 1 hop ; 67 ms for 4 hops, 8.3 times the 1 hop; 93 ms for 5 hops,
11.6 times the 1 hop. These values are much worse than we could expect, since
we would expect a linear increase. The exponential growth is due to the fact
that we are not using the RT, and thus before forwarding a message to a peer,
the network is flooded with probing messages.

• In the multi-device scenario we can infer similar trends. As expected, the
ping increases when the peers are deployed on remote devices. If we compare the
average ping of the single-device scenario with the pings of the peers deployed
on a remote computer in the multi-device experiment, we see that the increase
is constant: the average ping of the peer 2 hops away is 27 ms, 1.45 more than
before; 63.25 for 3 hops, 1.55 time more; 133 for 4 hops, 1.98 times more; and
145 for 5 hops, 1.55 times more. We can also see that the average ping for local
devices has increased and adapted to the value of the ping of the peers deployed
on the remote device. Again this is due to the fact we are not using the RT,
thus the MinCon strategy recomputes the path to a peer every time a message
is transferred, affecting the ping computation which waits for all the responses
sent by all other peers. We will see that the RT will significantly improve the
ping performance in the next experiment. The average upload bandwidth has
a constant drop when compared to the single-device scenario. In average the
bandwidth with peers deployed on a remote device is 9% lower.

In Table 9.2c we show the results for the MinCon strategy with the RT. In this
experiment the distance between the peers is not constant and depends on the
topology shown in Figure 9.1c and 9.1d):

• In the single-device scenario we see that the RT impacts positively both
on the bandwidth and ping. The average ping grows linearly and starts from 8
ms and increases on average by 4 ms for each hop. The RT allows to skip the
querying of the strategy component, which fastens the execution and relaying
of a message inside the LPC component. The average upload bandwidth also
increases when compared to the evaluation of the MinCon without RT: for peers
2 hops away the average bandwidth is 16.12 MB/s, 8% faster than before; for
3 hops the average is 10.82 MB/s, 11% faster; for 4 hops it is 7.43 MB/s, 11%
faster; and for 5 hops it is 5.59 MB/s, 6% faster.

• In the multi-device scenario we have similar results. The ping grows lin-
early and the average 5 hops ping is 36 ms, almost 4 times lower (24.8%) if
compared to the experiment without RT. The average 5 hops bandwidth is 4.98
MB/s.

201 9.1 Data Layer and Synchronization

1 2 3 4 5
0

25

50

75

100

125

150

Number of hops

Pi
ng
[m

s]

FullGraph (1 device)
FullGraph (2 devices)

MinCon no RT (1 device)
MinCon no RT (2 devices)
MinCon with RT (1 device)
MinCon with RT (2 devices)

(a) Ping comparison

1 2 3 4 5
0
5

10
15
20
25
30
35

Number of hops

R
el

at
iv

e
B

an
dw

id
th
[M

B
/s
]

FullGraph (1 devices)
FullGraph (2 devices)

MinCon no RT (1 device)
MinCon no RT (2 devices)
MinCon with RT (1 device)
MinCon with RT (2 devices)

(b) Relative bandwidth comparison

Figure 9.2. Comparison between full-graph, minimal connection with and with-
out routing table,the topologies shown in Figure 9.1. For helping with the
comparison, the full-graph strategy is shown with a prolonged dashed line of
the 1 hop values.

In Figure 9.2 we plot the results. We compare the average values of each
experiment for both the ping and bandwidth. In Figure 9.2a we compare the
average ping of the six experiments. On the x-axis we display the number of
hops and on the y-axis the ping in milliseconds. The dashed lines represents
the average values of the full-graph strategy for both single and multi-device ex-
periments. The full-graph strategy has the best ping overall, while the MinCon
strategy with RT has a better trend compared to the experiments without the RT.
In Figure 9.2b we plot the average bandwidth in MB/s (y-axis) for all six exper-
iments. All MinCon experiments have a similar trend, but the RT experiments
are slightly faster. As expected, we can see that the fully connected graph out-
performs the MinCon strategy both in terms of ping and bandwidth for both the
single and multi-device experiments. We can also see that the enabling of the
local routing table greatly reduces the ping between the machines.

202 9.1 Data Layer and Synchronization

Full Graph MinCon
Upload Download Upload Download

P# # msg. Size [KB] # msg. Size [KB] # msg. Size [KB] # msg. Size [KB]
P0 9 2430 0 0 1 270 0 0
P1 0 0 1 270 1 270 1 270
P2 0 0 1 270 1 270 1 270
P3 0 0 1 270 1 270 1 270
P4 0 0 1 270 1 270 1 270
P5 0 0 1 270 1 270 1 270
P6 0 0 1 270 1 270 1 270
P7 0 0 1 270 1 270 1 270
P8 0 0 1 270 1 270 1 270
P9 0 0 1 270 0 0 1 270

Total: 9 2430 9 2430 9 2430 9 2430

Table 9.4. Number of messages and data transferred for each peers in the
examples shown in Figure 9.1 when the RT is enabled in a parallel execution
environment. The size of the messages exchanged only counts the payload of
the synchronization messages without considering the headers of the wrapper.
The packaged message header contains the URI of all destinations, the sender
URI, timestamp and other metadata used by the LPC component, for a total
of on average 80 bytes plus 14 bytes for each destination after the first one.

9.1.1.3 Decreasing the Messages Transferred with Message Packaging in Par-
allel Conversations

In the previous section we showed the effect of the RT in the sequential data
transfer using different strategies. The consequence of using the MinCon strat-
egy is that messages must be relayed through other peers in order to reach the
final destination. In a parallel scenario, the network would be congest with mul-
tiple messages, decreasing the performance of the synchronization process even
further. If the synchronization process takes too long, then the updates of the
liquid state would not be visible on real-time on companion devices, and thus di-
minishing the effect of the expected LUE responsiveness. The message packaging
feature allows the LPC to send multiple copies of the same payload to multiple
destinations using a single message.

In Table 9.4 we show the effect of the message packaging during the parallel
synchronization of the topologies shown in Figure 9.1. The results of the parallel
conversation with the packaging feature enabled, are similar to the sequential
one without packaging. Locally, on the source peer that creates the packaged
message, we computed that the packaging feature has an overhead of 1 millisec-
ond when we compared it with the transfer without the same feature. On all

203 9.1 Data Layer and Synchronization

target machines, the unpacking has no overhead when compared with the se-
quential synchronization, because the unpacking of the message from the queue
was already necessary and happening in the sequential experiment in order to
read the target destination stored in the relayed message headers.

9.1.2 Evaluation of the Yjs Synchronization

In Section 9.1.1.2 and in Section 9.1.1.3 we evaluated the RT of the LPC with a
simple conversation: p0 sends the payload containing the updates of the state to
another peer and the peer updates its own state locally, no further communica-
tion happened. The algorithm used by Yjs [139] for synchronizing data between
peers has a more complex conversation than the one we evaluated in the previous
sections. Whenever a peer updates its own state, it queries the Yjs component
for creating the update payloads and then it sends them to all connected peers
with the help of the LPC. This process however does not finish when the pay-
load arrives to the peers and the update is patched. In fact, once the update is
patched, Yjs queries all other connected peers and asks them if they are currently
working on the last version of the state. If one peer, for any reason, is not up to
date, Yjs decides if it owns a newer version of the state, or if it should be patched
and repeat the previous process until all peers are working on the last version of
the state. The conversation requires all peers to communicate multiple times in
order to ensure that the state between them is consistent. The consequence is
that the synchronization process finishes only when all peers update their state
and transmit all messages to all other peers. For this reason the duration of
this process depends directly on the bandwidth and latency of the slowest peer
connected in the topology.

In this section, we compare the relative bandwidth of the Yjs synchronization
happening in the full-graph topology against the relative bandwidth performed
by the MinCon strategy. We start the evaluation in Section 9.1.2.2 by showing the
impact of the payload size and message packaging feature on the synchronization
process on a linear topology, then in Section 9.1.2.3 we show the impact of the
RT and message packaging features on the synchronization performance on the
topology previously presented in Figure 9.1. The evaluation will both address
single and multi-device deployments.

9.1.2.1 Testbed Configuration

In Table 9.5 we show the specifications of the devices used in the evaluation.
All the experiments follow the same rules and conditions explained in Sec-

204 9.1 Data Layer and Synchronization

Specs Computer 1 Computer 2

Brand MacBook Pro (Mid 2014) MacBook Pro (late 2012)
OS macOS Sierra v10.12.2 macOS Sierra v10.12.2
Processor 2.2 GHz Intel Core i7 2.5 GHz Intel Core i7
of cores 4 4
Memory 16 GB 1600 MHz DDR3 8 GB 1333 MHz DDR3
Browser Chrome v.55.0.2883.95 (64-bit) Chrome v.55.0.2883.95 (64-bit)

Table 9.5. Specification of the two devices used for the Yjs synchronization
evaluation.

Computer 1

p0
p1
(1 hop)

p2
(2 hops)

p3
(3 hops)

p4
(4 hops)

(a) Deployment on a single device.

Computer 1
Computer 2

p0
p1
(1 hop)

p2
(2 hops)

p3
(3 hops)

p4
(4 hops)

(b) Deployment on two devices.

Figure 9.3. Linear topologies used in the Yjs synchronization evaluation. The
number of hops is computed relatively to the peer p0

tion 9.1.1.1.

9.1.2.2 Payload Size and Message Packaging in Linear Topologies

In Figure 9.3 we show the linear topologies we used for both the single and
multi-device evaluations. We compare the two deployments against each other
and against the full-graph strategy. In Table 9.6 we show the results of the eval-
uation. For each row, we run the experiment 5 times and in each run we update
the state of a liquid property on p0 10 times with an interval of 30 seconds be-
tween an update and the other. We run the experiments with 270 KB and then
5 MB payloads, in order to check if the size of the message has an impact on
the performance of the synchronization. The values displayed on the tables are
the average of all relative upload bandwidth values computed on p0 when the
synchronization process ended for each of the 10 updates in the 5 runs. Since
the synchronization process depends on the slowest peer in the topology and
not only on the distance (in hops) between the source and the target, the rows

205 9.1 Data Layer and Synchronization

Single Computer Two Computers
Payload Payload Payload Payload
270Kb 5Mb 270Kb 5Mb

Hops [MB/s] [MB/s] [MB/s] [MB/s]
1 15.44 15.62 13.54 13.29
2 5.78 4.93 4.57 2.26
3 2.57 2.05 2.23 [Crash]
4 1.94 1.34 1.88 [Crash]

(a) Yjs synchronization performance of the MinCon strategy without packaging.

1 15.36 15.64 13.51 13.32
2 10.43 9.23 8.32 7.85
3 6.59 5.31 4.78 4.16
4 4.53 3.8 3.84 3.59

(b) Yjs synchronization performance of the MinCon strategy with packaging.

Table 9.6. Experimental values measured depending on the distance (hops)
from peer p0 based on the topologies shown in Figure 9.3. Peer p0 starts the
conversations across all peers.

showing the relative bandwidths for the 1, 2, and 3 hops would normally hold
the same values as the 4 hops row, however in order to understand how the
distance impacts the performance, we evaluated the bandwidths of those rows
with additional experiments ran on their subset topologies. E.g, the 1 hop row
is evaluated with the linear topology created by peers p0-p1, the 2 hops row is
evaluated with the linear topology created by peers p0-p1-p2, and the 3 hops
row is evaluated with the linear topology created by peers p0-p1-p2-p3. We also
run the same experiments with message packaging enabled (see Table 9.6b) and
then disabled (see Table 9.6a).

In Figure 9.4 we plot the values for an easier comparison of the results:
• In the single device experiment shown in Table 9.6), as expected, we see

that the full-graph strategy performs better than any other strategy with an av-
erage relative bandwidth of 18.58 MB/s. The MinCon strategy behaves similarly
for all 1 hop experiments, in fact when only two devices are connected, the pack-
aging feature does not influence the Yjs synchronization at all. It is interesting
to see that the MinCon strategy for the 1 hop experiment is on average 16.3%
slower than the results obtained by full-graph strategy, meaning that the multi-
ple queries to the LPC component in the peers create a substantial overhead in
the synchronization process. From the the gathered data we can also derive the

206 9.1 Data Layer and Synchronization

1 2 3 4
0

5

10

15

20

Number of hops

R
el

at
iv

e
B

an
dw

id
th
[M

B
/s
]

270 KB no PKG
5 MB no PKG

270 KB with PKG
5 MB with PKG

FullGraph

(a) Comparison when peers are de-
ployed on a single device (see Fig-
ure 9.3a).

1 2 3 4
0

5

10

15

20

Number of hops

R
el

at
iv

e
B

an
dw

id
th
[M

B
/s
]

270 KB no PKG
[Crash] 5 MB no PKG

270 KB with PKG
5 MB with PKG

FullGraph

(b) Comparison when peers are de-
ployed on multiple devices (see Fig-
ure 9.3b).

Figure 9.4. Relative bandwidth comparison of the Yjs synchronization for the
linear topologies shown in Figure 9.3 compared with the full-graph strategy.
The evaluation is performed both with payloads of 270 KB and 5 MB. The full-
graph strategy is displayed only for the average values of the 1 hop experiment,
the line is then prolonged in order to help with the comparison with other
strategies.

rates of bandwidth losses compared to the 1 hop experiment for each individual
point in the plots: ? in the 270 KB payload experiment without packaging we can
see that the bandwidth for the 2 hops is on average equal to the 37.43% of the 1
hop experiment, the 3 hops is on average equal to 16.64%, and the 4 hops is on
average equal to 12.56%; ? in the 5 MB payload experiment without packaging
the rates are lower and respectively equal on average to: 31.56%, 13.12%, and
8.58%; ? in the 270 KB experiment with packaging we have the following rates:
67.9%, 42.9%, 29.9%; ? in the 5 MB experiment with packaging we have the
following rates: 59.01%, 33.95%, 24.29%. We can see that enabling the packag-
ing feature in the MinCon strategy increases the speed of the Yjs synchronization
of on average more than 100% for all experiments above the 1 hop distance.
We can also see that the size of the message decreases the performance of the

207 9.1 Data Layer and Synchronization

synchronization process: the bigger the message, the slower is the relative band-
width between the devices. This overhead is due to the time it takes for the LPC
to receive the message from the buffer, unpack, read and forward it to another
device.

• In the multi-device scenario shown in Table 9.6 we get similar results. The
full-graph strategy is always faster and has a better performance than the Min-
Con strategy with an average bandwidth of 14.45 MB/s. The Yjs synchronization
process crashed during the experiments with the 5 MB payload and no message
packing starting from 3 hops. The peer throwing the first error was always p1,
which was not able to handle the transmission of all the messages to all other
peers without throwing a timeout error. Without message packaging, p1 receives
three 5 MB messages from p0, two of them must be forwarded to the other peers,
while in the meantime it needs to patch its own liquid state and create new mes-
sages that must then be forwarded to all other peers. p1 always crashed after
the state was patched and before they ended the synchronization process, be-
cause the peers were never able to agree when the state was consistent on the
topology. The bandwidth losses compared to 1 hop run are the following: ? in
the 270 KB experiment without packaging we have the following rates: 33.75%,
16.47%, 13.88%; ? in the 270 KB experiment with packaging we have the follow-
ing rates: 61.58%, 35.38%, 28.42%; ? in the 5 MB experiment with packaging
we have the following rates: 58.93%, 31.23%, 26.95%. While all the individual
values in the multi-device experiments are lower when compared to the single
device experiments, we can see that the rates follow similar trends.

In these experiments we can see that the size of the message has a slight
impact on the Yjs synchronization. In the ideal scenario, where the packaging
feature is enabled, the relative bandwidth is from 5 to 13% faster when the pay-
load of the messages is 270 KB instead of 5 MB. We can also see that when the
message is too big, the current state synchronization can have some problems
agreeing on the consistency of the state deployed on distant machines.

9.1.2.3 Routing Table and Message Packaging in Hybrid Topologies

In this section we investigate the impact of the RT and message packaging fea-
tures on the performance of the Yjs synchronization on the hybrid topology we
presented in Figure 9.1. The payload of all messages contains a patch of 270 KB
and p0 is the peer that starts the conversation.

In Table 9.7 we show the aggregated results of all experiments. For each row,
we run the experiment 5 times and in each run we update the state of a liquid
property on p0 10 times with an interval of 30 seconds between an update and the

208 9.1 Data Layer and Synchronization

Single Computer Two Computers
No RT RT RT No RT RT RT

no PKG no PKG PKG no PKG no PKG PKG
Hops [MB/s] [MB/s] [MB/s] [MB/s] [MB/s] [MB/s]

1 15.39 15.35 15.27 15.31 15.42 15.4
2 1.43 5.44 10.28 1.16 4.45 8.21
3 0.58 2.7 6.72 [Crash] 2.17 4.83
4 [Crash] 1.86 4.58 [Crash] 1.83 3.78
5 [Crash] 1.27 3.31 [Crash] 1.64 3.49

Table 9.7. Experimental values measured depending on the distance (hops)
from peer p0 based on the topologies shown in Figure 9.1. Peer p0 starts the
conversations across all peers.

other. The values displayed on the tables are the average of all relative upload
bandwidth values computed on p0. Similarly to the experiments described in
the previous section, the rows for the 1, 2, 3, and 4 hops are computed with
additional experiments ran on the subset topologies consisting of all peers that
have an equal or lower distance to the number of hops shown in the hops column.

In Figure 9.5 we plot the results of both the single and multi-device experi-
ments: • in the single device experiments (shown in Figure 9.5a) we can see that
lowering the number of messages exchanged between the peers with the RT and
message packaging feature is necessary for the integrity of the state synchroniza-
tion. In fact the synchronization crashes when both features are disabled starting
from the 4 hops experiments. Similarly to the previous section, the conversation
between the peers never finishes and Yjs throws an error caused by a timeout.
We can also see the sudden drop in the performance starting from the 2 hops
experiment, where the relative bandwidth is more than 10 time slower than the
1 hop experiment. The Yjs synchronization performs better when both RT and
message packaging feature are enabled. The bandwidth losses compared to the 1
hop run are the following: ? in the RT without packaging experiment we have the
following rates: 35.44%, 17.59%, 12.11%, 8.27%; ? in the RT with packaging
experiment we have the following rates: 67.32%, 44.01%, 29.99%, 21.67%;

• in the multi-device experiment (shown in Figure 9.5b) we see that the ex-
periment without RT and message packaging crashes even earlier than the single
device experiment. The delay of communication between the devices influences
the conversation, which starts crashing from the 3 hops experiment. The band-
width losses compared to the 1 hop run are the following: ? in the RT without
packaging experiment we have the following rates: 28.86%, 14.07%, 11.86%,

209 9.1 Data Layer and Synchronization

1 2 3 4 5
0

5

10

15

20

Number of hops

R
el

at
iv

e
B

an
dw

id
th
[M

B
/s
]

[Crash] no RT & no PKG
RT & no PKG

RT & PKG
Full Graph

(a) Relative bandwidth comparison
with Yjs synchronization for the single
device topology shown in Figure 9.1c.

1 2 3 4 5
0

5

10

15

20

Number of hops

R
el

at
iv

e
B

an
dw

id
th
[M

B
/s
]

[Crash] no RT & no PKG
RT & no PKG

RT & PKG
Full Graph

(b) Relative bandwidth comparison
with Yjs synchronization for the mul-
tiple devices topology shown in Fig-
ure 9.1d.

Figure 9.5. Relative bandwidth comparison of the Yjs synchronization with
an image size of 270 KB for a topology with 9 peers with and without routing
table and message packaging. The values of the full-graph strategy is displayed
only for the 1 hop experiment and then the line is prolonged in order to help
with the comparison with other strategies.

10.63%; ? in the RT with packaging experiment we have the following rates:
53.31%, 31.36%, 24.54%, 22.66%;

The rates of the experiments when the RT is enabled are following the same
trends we showed in the previous section when they were performed on the linear
topologies. The shape of the topology does not directly affect the performance
of the Yjs synchronization.

9.1.3 Discussion of the Results

The experiments we presented show that the full-graph strategy always outper-
forms the MinCon strategy. In fact, as expected, it has an higher relative average
bandwidth in all experiments. However it is important to note that it is not
always feasible to use the full-graph strategy on all deployments, because the

210 9.1 Data Layer and Synchronization

peers have access to a limited number of resources. The full-graph strategy is
more demanding and while it has an higher relative bandwidth, it requires to
allocate more memory on each peer when we compare it to the MinCon strat-
egy. E.g, when N peers are participating in a topology, the full-graph strategy
creates N-1 communication channels on each of them, while the MinCon strat-
egy creates 2*(N-1) communication channels in total. Moreover, whenever a
peer broadcasts an update to all participants, in the full-graph strategy it may
be impossible to update every peer in real-time if peers have access to a limited
bandwidth. E.g., in the full-graph strategy the peer in charge of broadcasting the
update sends N-1 times the same payload to all neighbour peers, while in the
MinCon strategy, with RT and packaging enabled, the bandwidth usage is shared
between peers.

This trade-off is important and must be taken into consideration when the
developers select a strategy. When the peers are powerful and nothing limits
their bandwidth, the developers can select the full-graph strategy. If the devel-
opers expect to connect slow peers with limited resources (e.g., IoT devices), they
should consider to use the MinCon strategy, or create a strategy of their own. A
possible strategy that developers can use for IoT devices can be an hybrid, where
multiple IoT devices connect to a powerful node (e.g., an hub), and the hubs are
then connected among each other.

The state synchronization tightly depends on the synchronization algorithm
used. Currently we built the state synchronization with Yjs, assuming that all
peers are masters and that any peer can change the liquid state at any time. In
a master-slave environment the state synchronization process could be further
improved and the conversations could be optimized in the MinCon strategy. In
a master-slave environment, the peers would be required to check the consis-
tency of their state only once against the version owned by the master, without
checking the consistency with all other connected peers, consequently decreas-
ing the total number of messages exchanged. In the general solution proposed
by Liquid.js, the master-slave synchronization is not part of the core design deci-
sions and is not currently available. In any case, the RT and message packaging
features provided by the LPC do not depend on the current Yjs implementation,
meaning that those features can be re-used for any kind of conversation and
synchronization algorithm.

The payload size we sampled in the evaluation is also an overestimate of the
average size of messages we expect to be exchanged between peers. The 270 KB
and 5 MB payloads we used were PNG files meant to stress the synchronization
process, however files are not the usual kind of data exchanged between peers
in a Web application. Data is usually represented with objects in JSON format,

211 9.1 Data Layer and Synchronization

which do not necessarily change their whole content after the initial state migra-
tion. It is more common to change a single or multiple properties of an object
instead of redefining it. With trickle synchronizations it is possible to synchro-
nize only the delta that changed without sending the whole object to all peers.
Yjs helps with lowering the amount of data exchanged between peers by auto-
matically create payloads containing only the delta of updated objects.

212 9.2 Logic Layer

9.2 Logic Layer

In order to study the feasibility and performance of the LWWs, in this section we
present the results of an evaluation of the Liquid.js prototype implementation.

9.2.1 Test Scenario: Offloading Image Processing Tasks

The Liquid.js framework comes with various demo applications, including the
liquid camera. This allows users to take pictures with their devices’ Webcams,
share pictures and display them across multiple devices, and apply a variety of
image transformation filters. Applying filters to the images displayed on one
device will immediately show the result on all copies of the image found across all
connected devices. Since filtering images is a CPU-intensive operation, we have
migrated the existing implementation based on WebWorkers to use the LWWPool.
Figure 9.6 and 9.7 show the results of our preliminary experiments using LWWs.

9.2.2 Testbed Configuration

All experiments described hereafter are ran using different machines connected
to the same private WiFi 5GHz network with the following hardware and OS
specification: • Laptop (L): MacBook Pro (Retina, 15-inch, Mid 2014), 2.2 GHz
Intel Core i7, macOS High Sierra Version 10.13.2, Chrome Version 64.0; • Tablet
(T): Samsung Galaxy Tab A (2016), Octa Core 1.6 GHz, Android Version 7.0,
Chrome Version 64.0; • Phone (P): Samsung J5 (2015), Quad Core 1.2 GHz,
Android Version 5.1.1, Chrome Version 62.0.

In this study we show the performance for all shown configurations given
the three different kind of devices. The policy loaded inside the LWW takes the
decision not to or to offload the execution to other devices based on a prede-
fined static configuration used to explore all possible device combinations in the
experiments.

9.2.3 Workloads

In this evaluation we run two different experiments by applying various filters
to the same picture. In the first "Edge Detection" experiment (see Figure 9.6a)
we apply to the image the Sobel operator filter (using a 3x3 convolution matrix
kernel). In the second "Improved Edge Detection" experiment (see Figure 9.6b)
we improve the result of the edge detection by chaining multiple filters. Com-
pared to the first, the second experiment puts a larger workload on the device

213 9.2 Logic Layer

CPUs as they run multiple filters with larger kernels. The chained filters are: 1. a
sharpening filter implemented by using a convolution filter with a 5x5 kernel;
2. an embossing filter using a 5x5 kernel; 3. the Sobel operator filter using a 5x5
kernel.

For each experiment we apply the filter on two different image resolutions,
consequently changing the size of the message exchanged between devices. Both
versions of the image are encoded using the PNG format and are transferred with
messages of size 94196 bytes and 198560 bytes.

9.2.4 Measurements

We run each experiment 10 times, during each trial we applied the filters 25 times
for both image sizes for all different device offloading combinations. Between
two trials we reset the execution environment by restarting the Web browser on
all devices. The values of the execution time shown in Figure 9.6 are computed
as the average over the 10 trials.

9.2.5 Results

The charts show the average time spent by the devices in order to execute a
submitted task. Using three different colors we highlight the time elapsed during
(see Equation 9.1): the worker processing time in blue, the remote (or cross-device)
communication time in green, and the local (or intra-device) communication time
in red. The worker time represents the time spent running the LWW script to
process the submitted task; the remote communication time is spent during the
transfer of the submitted task and its output result between the local and remote
devices; the local communication time includes the time for sending and receiving
back the task from the main thread to the LWW, the time employed for message
marshalling and unmarshalling, the time spent idle in a message queue, and the
overhead of the logging needed to gather performance data for this evaluation.

Processtotal
t ime = PromisePreProcesst ime + Sendo f f load

time +

MessageQueuet ime +WorkerExecutiont ime +Marshall ingt ime+

Send response
t ime + PromisePostProcesst ime

(9.1)

214 9.2 Logic Layer

(a) Edge detection workload

(b) Improved edge detection workload

Figure 9.6. Average processing and communication time of the LWW offloaded
across different pairs of devices (L Laptop, T, Tablet, P Phone)

215 9.2 Logic Layer

94 kb 198 kb

0

500

1000

1500

L T P L>T T>L L>P P>L T>P P>T L T P L>T T>L L>P P>L T>P P>T

To
ta

l P
ro

ce
ss

 E
xe

cu
tii

on
 T

im
e

[m
s]

(a) Edge detection workload

94 kb 198 kb

0

500

1000

1500

2000

L T P L>T T>L L>P P>L T>P P>T L T P L>T T>L L>P P>L T>P P>T

To
ta

l P
ro

ce
ss

 E
xe

cu
tii

on
 T

im
e

[m
s]

(b) Improved edge detection workload

Figure 9.7. Boxplots of the total process execution time of the LWW offloaded
across different pairs of devices (L Laptop, T, Tablet, P Phone)

216 9.2 Logic Layer

9.2.5.1 Edge Detection Case

In Figure 9.6a and 9.7a the fastest execution happens on the laptop (L) without
any offloading. The laptop finishes the process on average about five times faster
than the tablet (T), and nine times faster than the phone (P) for both image sizes.
It is interesting to see that every time the laptop was configured to offload work
to any other device (L→T, and L→P), the overall execution took longer due to
the slower worker processing time of the remote devices and the additional remote
communication time required to transfer the task and the response between the
devices; the same behavior can be observed when the tablet offloads its work to
the phone (T→P).

In the T→L and P→L offloading configurations, the overall execution is faster
when compared with the local execution without offloading cases. The elapsed
worker time of the laptop is so low compared to the one of the tablet and the
phone that, despite the penalty due to the remote communication time, the total
execution time remains lower. T→L is on average 81% faster than T and P→L
is on average 64% faster than P. Despite the expectation that also the configu-
ration P→T would execute faster than P, this was not observed because of the
communication time. So there were no benefits in offloading the task from the
phone to the tablet, in fact in this case the performance worsened.

As a side note, we observed that the WiFi data transmission performance de-
pends on the device, with the phone’s available bandwidth being smaller than
on the other devices. This behavior is evident when comparing all offloading
configurations where the phone is involved with all other configurations. In par-
ticular the communication time between the phone and the tablet is double than
the time between the laptop and the tablet. This could also be caused by the
physical proximity of the devices during the tests which may have led to some
interference as indicated by changes of the WiFi signal strength on the devices.
We did not attempt to shield the devices to reduce measurement noise because
our goal was to reproduce real-world usage conditions.

From this experiment we can conclude that it is possible to benefit from using
LWWs and thus it is possible to lower the total processing time by offloading
tasks to nearby devices. However, this can be achieved only when the extra
communication overhead is smaller than the gained processing time due to the
faster remote CPU.

217 9.2 Logic Layer

Figure 9.8. Boxplot of the benchmark scores for each device.

9.2.5.2 Improved Edge Detection Case

In Figure 9.6b and 9.7b we stress the devices more as we increase the workload
exerted on the LWWs. On average the worker processing time for this experiment
is 248% longer on all devices when compared to the previous experiment. We
can observe that the local communication time is unaffected by the experiment,
but the average remote communication time slightly changes due to the previously
discussed noisy WiFi channel.

Offloading computations to the phone never registers lower process execution
times (L→P and T→P), which is the conclusion we observed before.

Particularly interesting in the second experiment are the values registered in
configuration P→T compared to values registered in P. In this case we observe
that again on average P is slightly faster (82-85ms difference) than P→T. Still,
if we examine the trend by including the data from the experiment before we
can see that the longer the worker time, the better it is to offload workload from
P to T. Eventually, for heavy workloads, offloading to a tablet would be better
than executing the tasks on the phone, because the remote communication time
remains mostly constant for the same image size while the worker time constitutes
the dominant factor.

9.2.6 Micro-Benchmark evaluation

Can the micro benchmarking score accurately predict the capabilities of a con-
nected device? We answer this question by comparing the scores returned by the

218 9.2 Logic Layer

Table 9.8. Average benchmark ranking and average processing.

94kb 198kb
Comb Sobel Comb Sobel Benchmark

[ms] % [ms] % [ms] % [ms] % Score %-1

laptop 91 33 145 60 17898
tablet 466

19.5
196

16.8
953

15.2
345

17.3
2707

15.1

laptop 91 33 145 60 17898
phone 662

13.7
363

9.1
1413

10.3
569

10.5
1550

8.7

tablet 466 196 953 345 2707
phone 662

70.4
363

54.0
1413

67.4
569

60.6
1550

57.3

Figure 9.9. Boxplot of the benchmark execution times.

test benchmark against the results obtained in the previous sections.
Figure 9.8 shows the results obtained by running the benchmark a total of

200 times for each device. The benchmark is executed at startup and then it
is repeated periodically every 300 seconds. The application is restarted after it
has completed 50 benchmarks, meaning that the application runs continuously
for 15000 seconds (approximately 4 hours), before the device is restarted. In
order to reduce the measurements noise, during the benchmark execution the
user does not interact with the device, simulating a comparable scenario with
the previous evaluation.

As expected the score for the laptop is higher than the other devices, with an
average score of 17898, while the tablet scores 2707.3 and the phone 1550.4.

In Table 9.8 we compare the average worker execution times against the

219 9.2 Logic Layer

benchmark scores. We list all possible pairs of devices and compute both the
ratio between their respective average worker execution times and their average
score returned by the benchmark. In yellow , orange , and red we highlight
the average ratios computed for the same couple of devices. Since the machines
do not change, we expect that the execution ratios do not change within the same
pair even if the experiment is different. Whenever the LWW executes a longer
task on a machine, then we expect it proportionally increases also on the other
one. In all three couples, we see that the average ratio between the sampled ben-
charked ratio and the real world example are similar. The benchmarked ratio for
taptop-tablet differs on average the 13% of the real world scenario ratio, the

laptop-phone ratio differs on average the 20% from the real world ratio, and

the tablet-phone ratio only 9%.
Figure 9.9 shows how much time it takes to execute the benchmark on each

device. The execution time is stable, with very few outliers on the tablet device.
On average, between all three the devices, it takes 9.3 seconds to execute the
micro-benchmark.

220 9.3 View Layer

9.3 View Layer

We show the expressiveness of liquid media queries by designing the liquid-style
components on a realistic multi-device video player application.

The video player is built with four components (see Figure 9.10): • the video
component which displays and plays the video; • the video controller com-
ponent which allows the user to play/pause and seek to a specific time in the
selected video; • the suggested videos component that displays a list of recom-
mended videos, which can be selected to be played; • the comments component
where the user can read or post comments about the video.

These components can be deployed across different devices (phones, tablets,
laptops, and televisions) owned by one or multiple users.

It is best to display the video component (see Listing 9.1) on the de-
vices with big screens, for this reason we define three liquid media query
expressions including the attributes device-type: laptop, device-role:

display, and device-ownership: shared with different priorities. The rule
for device-type: laptop has an higher priority over the rule defined for the
comments component (see Listing 9.2) so that whenever a laptop device is avail-
able, the video component is migrated to the laptop. If the user configures the
role of any device and assigns the role display to it, then this device will have
priority over the laptop. Finally, if there are multiple users connected to the ap-
plication (attribute min-users:2), the priority for deploying the video component
is given to shared devices (e.g., a television).

The video controller component (see Listing 9.3) defines a liquid media query
expression with the attribute clone:1-user. The clone rule migrates the compo-
nent to a phone owned by a user, then it clones the component for every other
user, if they connect at least another phone to the application.

Video

Comments

Suggested
Videos Video Controller

Figure 9.10. Liquid video player UI split into four components: video, video
controller, suggested videos, comments

221 9.3 View Layer

Listing 9.1. The liquid-style elements defined for the video component.
1 <liquid-style device-ownership="shared" min-users="2" priority="4">

2 <!-- CSS Style Sheet 1 -->

3 </liquid-style>

4
5 <liquid-style device-role="display" priority="3">

6 <!-- CSS Style Sheet 2 -->

7 </liquid-style>

8
9 <liquid-style device-type="laptop" priority="2">

10 <!-- CSS Style Sheet 3 -->

11 </liquid-style>

Listing 9.2. The liquid-style element defined for the comments component.
1 <liquid-style device-type="laptop">

2 <!-- CSS Style Sheet 1 -->

3 </liquid-style>

Listing 9.3. The liquid-style element defined for the video controller component.
1 <liquid-style device-type="phone" priority="2"

2 clone="1-user">

3 <!-- CSS Style Sheet 1 -->

4 </liquid-style>

Listing 9.4. The liquid-style elements defined for the suggested videos compo-
nent.
1 <liquid-style device-type="phone">

2 <!-- CSS Style Sheet 1 -->

3 </liquid-style>

4
5 <liquid-style device-type="tablet" priority="3">

6 <!-- CSS Style Sheet 2 -->

7 </liquid-style>

222 9.3 View Layer

The suggested video component (see Listing 9.4) defines two styles: one for
tablets and the other for phones. The tablet style has an higher priority with
respect to the phone style.

9.3.1 Scenario 1: Second User Connects a Smartphone

In Figure 9.11 we show the component redistribution for a set of devices before
and after a second user connects to the application. The initial configuration with
only devices owned by UserA is obtained following the priorities associated with
the liquid-style elements of each component. Starting from the suggested video
component, which migrates to the tablet, then the video component migrates to
a laptop device, because the higher priority rules it holds are not accepted by
any other device. The video controller migrates to a phone device, but it is not
cloned on both available phones because of the clone rule set to 1-user. Finally,
the comments component migrates to the second laptop device.

After UserB logs in the application and connects an additional phone de-
vice, the UI is redistributed as follows. The video component is migrated to the
television device because of the ownership and min-users rules have now higher
priority 4. The video controller component is cloned to UserB’s phone.

9.3.2 Scenario 2: Dynamic Device-Role Change

In Figure 9.12 we show an example of dynamic change in the metadata configu-
ration of the connected devices. The initial device configuration is not accepted
by at least one liquid media query defined in the video controller component, and
the target device for the video and comments components points the same laptop.
Starting from the highest priority, the suggested video component is deployed on
the tablet and the video component is deployed on the laptop. Since the laptop
component is already the target of the video component, the comments compo-
nent migrates to the television, which was ranked as the next possible target for
migration. The video controller component is deployed on the tablet device with
the lowest priority.

When UserA assigns the role display to the television, the device metadata
changes. The UI is redistributed and the video component migrates to the televi-
sion, because the liquid-style that defines the property device-role is now accepted
by the device with an higher priority. The comment component migrates to the
now available laptop device.

223 9.3 View Layer

Component Video
Video

Controller Comments
Suggested

Videos
Initial

Configuration
Priority 2 2 1 3

Migration Target laptop 1 phone 1 laptop 2 tablet
User B

connects
phone

Priority 4 2 1 3
Migration Target television (phone 1) (laptop 2) (tablet)

Cloning Target phone 2

Laptop (User A)
Television (SHARED)

User A

Tablet (User A)
Phone (User A) Phone (User A)

Video Controller
Suggested

Videos
Comments

Phone (User B)

User B
Video Controller

Laptop (User A)

Video

Laptop (User A)
Television (SHARED)

User A

Tablet (User A)
Phone (User A) Phone (User A)

Video Controller
Suggested

Videos
Comments

Laptop (User A)

Video

Figure 9.11. When a second user connects to the application the video compo-
nent is migrated to the shared device and a new instance of the video controller
is deployed on the new user’s phone.

Component Video
Video

Controller Comments
Suggested

Videos
Initial

Configuration
Priority 2 0 1 (0) 3

Migration Target laptop tablet television tablet
Television role

set to display
Priority 4 0 1 3

Migration Target television (tablet) laptop (tablet)

Laptop (User A)
Television (SHARED)

User A

Tablet (User A)

VideoSuggested
Videos

Comments

Tablet (User A)

Video Controller

Laptop (User A)
Television (SHARED)
Role Display

User A

Tablet (User A)

CommentsSuggested
Videos

Video

Tablet (User A)

Video Controller

Figure 9.12. After the television device changes role configuration, the video
and comments components are swapped following different priorities.

224 9.4 Building Liquid Web Applications with Liquid.js

9.4 Building Liquid Web Applications with Liquid.js

In this section we discuss how to build liquid components in Liquid.js. The fol-
lowing sections shows the following five examples: 1. in the first example we
present all the necessary steps for trasforming any standard Polymer component
into a liquid component; 2. in the second example we show how to build a liquid
component with multiple liquid properties with the liquid Googlemap compo-
nent; 3. in the third example we present how to build a simplified version of the
liquid Youtube player using containers; 4. in the fourth example we discuss liq-
uid UI wrappers and present our manual position-aware migration UI wrapper,
that allows users to use liquid primitives with drag-and-drop gestures; 5. in the
last example we present an advanced experiment built with Liquid.js, in which
we show that we can code components on the Web browsers and deploy them
on other connected clients without the need of a Web server.

9.4.1 Converting Standard Polymer Components into Liquid Com-
ponents

It is possible to convert any Polymer component uploaded in the WebComponents
Catalogue [Web20] into a liquid component by following three steps. In partic-
ular in this section we decided to show the conversion of the <paper-input>

component [The18c], one of the basic Polymer elements that encapsulate the
behavior of an <input> element with the standard appearance (CSS styles) of
the paper-ui element suite. The three steps are the following:

1. In this step we setup the new Polymer component we are going to make
liquid. First we create a new file that contains the definition of the liquid
component, we name this file liquid-polymer-input.html. Inside this file
we write the required and standard minimum Polymer component template as
shown in Listing 9.5. In this template we are defining a new component labeled
liquid-component-example, which contains: • a <template> element (line 3)
in which we will append the HTML that will be loaded inside every instance of
our <liquid-component-example>; • a <script> element (line 6) in which we
will define the logic of the component with a JS snippet. In the standard Polymer
template, the <liquid-component-example> does not import any behavior yet
(line 9), and has no properties (line 10). This template is not Liquid.js specific
and can be used to create any Polymer component even without liquid features.
In order to create an instance of the <paper-input> component, we then down-
load the source of the <paper-input> source from the Web components cata-
logue [The18c] into the assets folder of your Web application. Once the compo-

225 9.4 Building Liquid Web Applications with Liquid.js

Listing 9.5. Building liquid components step 1: default Polymer template
1 <!-- Imports here -->

2 <dom-module id="liquid-component-example">

3 <template>

4 <!-- HTML here -->

5 </template>

6 <script>

7 Polymer({

8 is: 'liquid-component-example',
9 behaviors: [],

10 properties: {},

11
12 // Methods here

13 });

14 </script>

15 </dom-module>

Listing 9.6. Building liquid components step 1: HTML import definition
1 <link rel="import" href="/paper-input/paper-input.html">

nent can be accessed from the Web server, we can preprend the HTML import
shown in Listing 9.6 before our component definition. We suggest to import it
on top of the liquid-polymer-input.html file at line 1, however the develop-
ers can choose to import it anywhere else in their Web application, e.g., they
can globally import it in the main .html file where the Liquid.js framework is ini-
tialized. The best practice is to import the <paper-input> inside the files that
depend on it, since the Web browser and Liquid.js will download it only when
necessary.
Once the <paper-input> is imported into our component, we can finally access
and instantiate it inside the <template> element. We append it at line 4 and then
we assign a string to the property value, e.g., "Insert Text Here", as shown
in Listing 9.7.

2. Now that the component is ready, we make it liquid by injecting the
LiquidBehavior into the component behaviors array. In Listing 9.8 we show
how line 9 of our component definition changes with the newly injected behav-
ior. The developers do not need to import the behavior on top of the file, because
it is automatically imported by the Liquid.js framework upon initialization, and
consequentially the object LiquidBehavior can be accessed globally anywhere
in the Web application.

226 9.4 Building Liquid Web Applications with Liquid.js

Listing 9.7. Building liquid components step 3: append the <paper-input>
element
1 <paper-input value="Insert Text Here"></paper-input>

Listing 9.8. Building liquid components step 2: inject the LiquidBehavior

1 behaviors: [LiquidBehavior],

With the injected behavior, the component is now liquid and can fully ac-
cess all the features provided by the Liquid.js framework. Any instance of the
liquid-component-example can now be migrated, forked or cloned to any de-
vice, even if we did not define any liquid property yet. Without liquid properties
the component does not define its own liquid state, thus when the component
moves among the devices, it does not bring any change to the state with it. E.g.,
if the users change the value of the <paper-input> inside the liquid component
and then migrate it to another device, the the new value will not migrate with the
component, and once the migration finishes, the value will be set to the default
"Insert Text Here".
In Figure 9.13 we show how the Web browser displays the <paper-input>

component (Figure 9.13a) and our new <polymer-component example> (Fig-
ure 9.13b). As it is possible to see, the components are visually the same and
both can be used as inputs in a solid application, since they both define the same
<input> behavior.

3. In the last step we define a new liquid property and bind it to the attribute
value of the <paper-input> element. This can be done by adding a new prop-
erty inside the definition of our liquid component at line 10. In Listing 9.9 we
show how to create a property labeled myProp of type String, that has a default
value and is annotated as liquid. We can then bind myProp to the attribute
value as shown in Listing 9.10. It is important to note that property binding
is a core feature of Polymer and is not Liquid.js dependant, moreover the liq-
uid properties can define any other standard attribute that could be defined in a
standard Polymer property, e.g., observers. The type is not required, however it

(a) <paper-input> (b) <liquid-component-example>

Figure 9.13. Standard Polymer component versus liquid component

227 9.4 Building Liquid Web Applications with Liquid.js

Listing 9.9. Building liquid components step 3: define a liquid property
1 myProp: {

2 type: String, // Optional

3 value: "Insert Text Here", // Default value

4 liquid: true // Makes a property liqiud

5 }

Listing 9.10. Building liquid components step 3: property binding
1 <paper-input value="{{my-prop}}"></paper-input>

helps Liquid.js to initialize an optimized proxy trap when the developers define
it in advance.
Now that the component contains at least one liquid properties, we can finally
migrate, fork and clone it to a target device and it will bring the new updated
value when it moves. Components can contain any number of properties and
each property can either be liquid or non-liquid.

The final snippet of code for the liquid-component-example is shown
in Listing 9.11.

Now that we built our component we can load it in our liquid Web application.
We can load a liquid component in two different ways: • we can instantiate it
programmatically after the Liquid.js is initialized; • or we can write it inside the
.html file of the Web application as if it is a HTML element.

In the first case, the developers can use Promises [Moz20c] as shown
in Listing 9.12. The Liquid object is accessible globally and must be config-
ured as we discussed in Section 8.1. Once Liquid.js finishes the configuration
process, the following three Promises’ chains can be used to instantiate the
<liquid-component-example> (all chains produce the same final result):

1. in the first chain the developers load the liquid component type first and
then instantiate the component into the Web application. Since the developers
do not specify a target for the instantiation, the component is created on the local
machine and appended to the <body> element;

2. in the second chain the developers use a helper function that loads and
creates a new component with a single operation. The developers do not have
to worry to load components multiple times, because when Liquid.js detects that
a component is already loaded and stored in the local database, it will skip the
operation;

3. in the last chain the developers instantiate the component by passing two
additional parameters: an HTML element and an object. The first parameter is

228 9.4 Building Liquid Web Applications with Liquid.js

Listing 9.11. Building liquid components final snippet
1 <link rel="import" href="/paper-input/paper-input.html">

2 <dom-module id="liquid-component-example">

3 <template>

4 <paper-input value="{{my-prop}}"></paper-input>

5 </template>

6 <script>

7 Polymer({

8 is: 'liquid-component-example',
9 behaviors: [LiquidBehavior],

10 properties: {

11 myProp: {

12 type: String, value: "Insert Text Here", liquid: true

13 }},

14 });

15 </script>

16 </dom-module>

the target local element where the liquid component will be appended, e.g., in
this example the <body> element, the second parameter defines the options of
the create operation. In this particular case it allows the developers to specify if
a liquid UI wrapper should be loaded with the component, e.g., in this case they
do not load it (the default value of the liquidui attribute is false).

If the developers do not want to instantiate components programmatically,
they can instantiate the component directly in the HTML of the Web application
as shown in Listing 9.13. During the configuration process, after the framework
downloaded the needed dependencies from the Web server, it parses the whole
DOM tree of the Web application and searches for the definition of liquid com-
ponents. When a liquid component is detected, Liquid.js automatically loads the
component type and instantiates the components in the position where it finds
the definitions. The developers can also pass options as attributes of the element
they are creating, e.g., in this example the liquidui attribute is set to false.

229 9.4 Building Liquid Web Applications with Liquid.js

Listing 9.12. Loading liquid components programmatically with Promises
1 // Using the Liquid.js API

2 Liquid.configure(liquidOptions)

3 .then(function(){

4 Liquid.loadComponentType('component-example')
5 })

6 .then(function(){

7 Liquid.createComponent('component-example')
8 })

9
10 // Using an helper function of the Liquid.js API

11 Liquid.configure(liquidOptions)

12 .then(function(){

13 Liquid.loadAndCreateComponent('component-example')
14 })

15
16 // Using optional parameters

17 Liquid.configure(liquidOptions)

18 .then(function(){

19 Liquid.loadAndCreateComponent('component-example', document.

querySelector('body'), {liquidui: false})

20 })

Listing 9.13. Loading liquid components in the main .html file of the Web
application
1 <html>

2 <head> <!-- Headers --> </head>

3 <body>

4
5 <liquid-component-example liquidui="false">

6 </liquid-component-example>

7
8
9 <script src="/liquidAPI.js"></script>

10
11 <script>

12 Liquid.configure()

13 </script>

14 </body>

15 </html>

230 9.4 Building Liquid Web Applications with Liquid.js

9.4.2 Multiple Properties with the Liquid Googlemap Component

In this section we show a more complex example in which we instantiate mul-
tiple components with multiple properties for creating a multi-device map ap-
plication. We reuse the liquid-component-example we built in the previous
example (Section 9.4) and rename it to liquid-component-input in order to
enhance the readability of the following listings. The map is drawn with the
google-map [Goo16b] and the google-map-directions [Goo16c] components
which can be found in the Web components catalogue. In Figure 9.14 we show
how the <liquid-component-googlemap> we built looks when it is instantiated
on a Web browser, and in Listing 9.14 we show the definition of the component.
From Listing 9.14 we can point out the following features:

• The component defines five liquid properties: the latitude (line 19), the
longitude (line 20), the zoom (line 21), the startLoc (line 22), and the endLoc
(line 23). The first three properties are used to control the center position of the
map, while the other two are used for drawing a path between two locations.

• The component imports the google-map (line 1) and the
google-map-directions (line 2) components, which are then instanti-
ated at lines 9 and 11. In the google-map component we bind the latitude,
longitude and zoom properties, while in the google-map-directions component
we bind the startLoc and endLoc properties. Whenever those properties are
updated, the changes will be displayed on the map.

• Inside the component we also instantiate two instances of the
liquid-component-text component (lines 5 and 7). These textual inputs are
used by the users for writing the two locations that will be displayed on the map.
Both components are loaded with the default liquid UI wrapper and define a

Figure 9.14. <liquid-component-googlemap> on the Web browser

231 9.4 Building Liquid Web Applications with Liquid.js

Listing 9.14. Definition of the <liquid-component-googlemap> component
1 <link rel="import" href="/google-map.html">

2 <link rel="import" href="/google-map-directions.html">

3 <dom-module id="liquid-component-googlemap">

4 <template>

5 <liquid-component-text liquidui="default" liquidname="From:"

6 value="{{start-loc}}"> </liquid-component-text>

7 <liquid-component-text liquidui="default" liquidname="To:"

8 value="{{end-loc}}"> </liquid-component-text>

9 <google-map api-key="..." map="{{map}}" latitude="{{latitude}}"

10 longitude="{{longitude}}" zoom="{{zoom}}"> </google-map>

11 <google-map-directions api-key="..." map="{{map}}"

start-address="{{start-loc}}"

12 end-address="{{end-loc}}"> </google-map-directions>

13 </template>

14 <script>

15 Polymer({

16 is: 'liquid-component-googlemap',
17 behaviors: [LiquidBehavior],

18 properties: {

19 latitude: { value: 37.77493, liquid: true },

20 longitude: {value: -122.41942, liquid: true },

21 zoom: { value: 15, liquid: true },

22 startLoc: { value: "", liquid: true },

23 endLoc: { value: "", liquid: true }

24 }

25 });

26 </script>

27 </dom-module>

name that helps the users distinguish them. The given name is displayed on the
liquid UI wrapper as can be seen in Figure 9.14.

Once the components are instantiated on a device, the users (or the develop-
ers) can migrate, fork, or clone them on multiple target devices. In all the fol-
lowing examples, since we are not defining a liquid container yet (we will show
them in Section 9.4.3), the users need to clone each component individually.
This means that when the users clone the <liquid-component-googlemap>,
the component is cloned on the target devices, but it will not bring the
<liquid-component-text> components with it. As discussed in the implemen-
tation of Liquid.js, when the developers intend to migrate/fork/clone the chil-
dren of a liquid component together with the parent, they should define a liquid

232 9.4 Building Liquid Web Applications with Liquid.js

(a) Desktop view

(b) Smartphone view

Figure 9.15. Multi-device deployment of <liquid-component-googlemap>
component: the map is cloned on both devices

container.
In Figure 9.15 we show the view of the map application when the users de-

cide to clone the map component from a desktop computer to a smartphone. The
component cloned on the smartphone can adapt its size to the smaller display,
however, even if the view port is smaller, we can see that the two maps are still
sharing the same properties’ values. The latitude, longitude, and zoom are
synchronized between the devices and whenever they change, Liquid.js propa-
gates the updates accordingly. Both devices are masters, meaning that both the
desktop and the smartphone can change the value of the liquid state.

In Figure 9.16 we show another possible deployment for the same map appli-
cation. The map is initially instantiated on the desktop computer, then the users
clone the two input components on the smartphone device. In this scenario the
smartphone is used as a companion device, in fact it owns a fraction of the whole
Web application. In this particular case the smartphone is used as a controller
for the map, which represents the view of the application and is deployed on a
machine with a bigger screen. This example simulates the GPS device that can
be found in a car, where the drivers can see the map on the dashboard in front

233 9.4 Building Liquid Web Applications with Liquid.js

(a) Desktop view

(b) Smartphone view

Figure 9.16. Multi-device deployment of <liquid-component-googlemap>
component: the inputs are cloned on both devices

of them, while passengers can change the addresses directly from their phones.
The drivers and the passengers can decide to search for locations from the GPS
and display a path on the map, or they can search for new locations from their
smartphone.

When the value of the input changes on either of the two devices, the value is
propagated to all other components. The input values are updated in real-time,
meaning that each letter written or deleted in an input, is displayed immediately
in the other. While the startLoc and endLoc properties are synchronized be-
tween the desktop and the smartphone, it is interesting and important to note
that the phone does not hold the values for the latitude, longitude, and zoom

properties in this scenario. In fact the two cloned input components do not inter-
nally define those three liquid properties, and thus the desktop never propagates
their state to the smartphone. During the lifespan of map application, the smart-
phone never receive the state of the latitude, longitude, and zoom properties
as long as the map componented is not cloned on the smartphone. The smart-
phone would receive the values of those properties only if the map component

234 9.4 Building Liquid Web Applications with Liquid.js

(a) Tablet 1 (b) Tablet 2

Figure 9.17. Multi-device deployment of <liquid-component-googlemap>
component: latitude, longitude, and zoom are not liquid

itself would be migrated, forked, or cloned from the desktop computer into it.
In Figure 9.17 we show what happens when we slightly change the definition

of the <liquid-component-googlemap> and deploy it on two tablets. In this
example we change lines 19, 20, and 21 of Listing 9.14 and set the properties
liquid to false. This means that the liquid state of the component changed, and
the values of latitude, longitude, and zoom are not synchronized anymore
among the two devices. When the users clone the map application from the first
tablet to the second, Liquid.js synchronizes the new liquid state on the second
tablet. Since the liquid state is now different, the second tablet can now navigate
the map independently from what is viewed on the first tablet. The starting and
ending address however are still displayed on both devices.

235 9.4 Building Liquid Web Applications with Liquid.js

9.4.3 Liquid Containers with the Liquid Youtube Component

In the previous section we presented an application composed by multiple liq-
uid components that moved independently from each other even if they were
defined as children of a parent liquid component. In some scenarios this is the
expected behavior when the users invoke the migrate, fork, and clone LUE prim-
itives, but in other cases they expect to invoke those methods on both the parent
and children at the same time, rather than invoking the primitives individually
on each of them. Web applications already exploit the hierarchical DOM in order
to understand when elements are children of another element, and thus we can
reuse the same hierarchical system in order to understand which components
are subordinated to a parent component. In such a way, Liquid.js can infer the
children of the component passed as parameter of the LUE primitive and extend
the primitive to them. In order to enable this feature, the developers need to
annotate which liquid components are meant to be containers in the application.
In Section 9.4.2 we presented the <liquid-component-googlemap> that poten-
tially could be defined as a liquid container, since it internally instantiates two
liquid components, however the developers designed it in such a way that only
single parts of the component could be moved around.

In this section we present the <liquid-component-youtube>, that allows the
users to load a video from Youtube. This component internally instantiates the
<liquid-component-slider>, that can be used to control the feed of the video.
When the youtube component moves from a device to another, it also brings the
slider togheter with it.

In Listing 9.15 we show the definition of the <liquid-component-youtube>.
This component uses the <google-youtube> [Goo17c] in order to load a video
from Youtube. The component is imported at line 1 and loaded at line 4. We
define four liquid properties bound to the <google-youtube>:

• videoID (line 17) is the identifier of the video that the users load. In this
example the video is loaded with a defualt value, but the developers can add a
<paper-input> in the <template> if they want the users to dynamically change
the identifier at runtime;

• state (line 18) defines the current state of the video player, e.g., state=1
means that the video is playing, state=2 means that the video is currently
paused. This property is bound to an observer labeled as _stateChange (def-
inition at line 24) which is called every time the value of the property is up-
dated. This method checks the new value of the state: if state=1, it will start the
playback of the video, otherwise when the state=2 it will stop it;

• currenttime (line 19) is the current playback time in seconds of the video.

236 9.4 Building Liquid Web Applications with Liquid.js

Listing 9.15. Definition of the <liquid-component-youtube> component
1 <link rel="import" href="/google-youtube.html">

2 <dom-module id="liquid-component-google-youtube">

3 <template>

4 <google-youtube id="myVideo" video-id="{{videoID}}"

5 height="320px" width="600px" chromeless="0"

6 state="{{state}}" on-google-youtube-ready="_playerReady"

7 currenttime="{{currenttime}}" duration="{{duration}}">

8 </google-youtube>

9 <liquid-component-slider liquidui="default"

10 currenttime="{{currenttime}}" duration="{{duration}}">

11 </liquid-component-slider>

12 </template>

13 <script> Polymer({

14 is: 'liquid-component-google-youtube',
15 behaviors: [LiquidBehavior, LiquidContainerBehavior],

16 properties: {

17 videoID: { value: '848QV4H0IDE', liquid: true },

18 state: { value: 0, liquid: true, observer: "_stateChange" },

19 currenttime: { liquid: true, observer: "_timeChange" },

20 duration: { liquid: true }

21 },

22 ready: function () { Liquid.loadComponentType('slider'); },

23 _playerReady: function(e) { ... },

24 _stateChange: function(state) { ... },

25 _timeChange: function(time, prevTime) { ... },

26 }); </script>

27 </dom-module>

This liquid property is bound to the observer _timeChange (definition at line 24)
which is called when the value of the property is updated. The method can check
both the previous and new value of the currenttime and it can decide to skip
the video to the specified number of seconds;

• duration (line 20) is the maximum video duration in seconds.

The video player is also attached to an helper function labeled as
_playerReady (line 23), this method allows to detect when the video
is loaded and takes care of starting it as soon as the method is called
by the <google-youtube> component. At line 9 we instantiate the
<liquid-component-slider> which is bound to the properties currenttime

and duration. When the users move the slider, the new value of the property

237 9.4 Building Liquid Web Applications with Liquid.js

Listing 9.16. Definition of the <liquid-component-slider> component
1 <link rel="import" href="/paper-slider.html">

2 <dom-module id="liquid-component-slider">

3 <template>

4 <paper-slider value="{{currenttime}}"

5 max="{{duration}}"> </paper-slider>

6 </template>

7 <script>

8 Polymer({

9 is: 'liquid-component-slider',
10 behaviors: [LiquidBehavior],

11 properties: {

12 currenttime: { value: 0, liquid: true, notify: true },

13 duration: { liquid: true, notify: true }

14 }

15 });

16 </script>

17 </dom-module>

currenttime is propagated to the <liquid-component-youtube>, which takes
care of updating its own liquid property and therefore triggers the _timeChange

observer.

At line 15 we inject two behaviors into the component: the LiquidBehavior

which gives access to the LUE primitives; and the LiquidContainerBehavior,
which annotates a component as a container. The developers do not need
to do anything more than injecting the behavior in order to make the com-
ponent a liquid container. At line 22 we define the ready method, which
Polymer automatically invokes when the component is instantiated and ready.
Inside this function, as a precaution, we pre-load the component type of
<liquid-component-slider>, in order to be sure that the component can be
instantiated on the targets of the migrate, fork, and clone LUE primitives.

In Listing 9.16 we show the definition of the <liquid-component-slider>.
At line 1 we import the <paper-slider> component [Goo17c], which we load at
line 4 in order to implement the slider input of the <liquid-component-slider>
itself. We bind the slider to two liquid properties: currenttime, which repre-
sents the number of seconds currently playing on the video (defined at line 12),
and duration, which represents the maximum length of the video in seconds
(defined at line 13). The value for both properties is passed from the parent
of the slider component. At line 10 we can see that the component loads the

238 9.4 Building Liquid Web Applications with Liquid.js

(a) Tablet 1 (b) Tablet 2

Figure 9.18. Multi-device deployment of <liquid-component-youtube> on
two tablets

LiquidBheavior, in this case it is not necessary to inject any other behavior,
since the parent will be able to detect without any additional annotation when
this component is one of its children.

In Figure 9.18 we show the deployment of the
<liquid-component-youtube> on two tablets. The application is initially
deployed and instantiated on tablet 1. The black topbar on top of the device is
an instance of the liquid-create component, which can be used for debugging
purposes and allows to select loaded components from a drop-down menu and
instantiate them in the body of the Web application. This component also allows
the developers/users to set a device name, which can be helpful for recognizing
remote devices. The red bar on top of the <liquid-component-youtube> is
a liquid UI wrapper. The wrapper displays the name of the wrapped compo-
nent (e.g., google-youtube in this example) and allows the users to display a
drop-down menu containing the list of all other connected devices by clicking
on the wrench button. The users can then select a LUE primitive and invoke it
on target device. Optionally, the wrapper allows the users to pass as a string
parameter the QuerySelector pointing to a HTML element contained on the
target device (e.g., body in this example). In Figure 9.18a the users decide to
clone the component targeting the second tablet as shown in Figure 9.18b.
When the clone primitive is invoked, Liquid.js creates a new instance of the
<liquid-component-youtube> on tablet 2, and, since the component imports
the LiquidContainerBehavior, then it also create a new instance of the
<liquid-component-slider> on target device. Liquid.js transparently takes

239 9.4 Building Liquid Web Applications with Liquid.js

(a) Tablet (b) Phone - horizontal

Figure 9.19. Multi-device deployment of <liquid-component-youtube> on a
tablet and a phone

care of pairing the liquid properties of both components accordingly on both
tablets. The users can now stop and play the video from either devices and
propagate the effect to the other tablet. Similarly they can change the value of
the slider and propagate the new time to both video viewers.

In Figure 9.19 we show that it is still possible to individually clone the child
slider to a remote device. In this case we clone the slider from tablet 1 (Fig-
ure 9.19a) to a smartphone (Figure 9.19b). Liquid.js instantiates a new slider
component on the smartphone and pairs the liquid properties currenttime and
duration.

240 9.4 Building Liquid Web Applications with Liquid.js

9.4.4 Liquid UI Wrappers and Position-Aware Primitives

The liquid UI wrappers are optional tools meant to enhance the LUE. In the pre-
vious examples we already showed some wrappers that can help the users invoke
and select a target for the LUE primitives. Liquid.js natively provides the debug

and default liquid UI wrappers, however the developers can create any ad-hoc
solution for their Web applications.

In Figure 9.20 we show the debug wrapper. This wrapper allows the devel-
opers (or the users) to access the migrate, fork, and clone primitives. Depending
on the icon, the developers have access to multiple features: • the phone icon
allows the developers to have a feedback on the current state of the connection
with the signalling server. The icon can be green or red: whenever the icon
is green, the Web application is currently connected to the Liquid.js signalling
server, otherwise it is red; • the four-arrows icon allows the users to call the
clone LUE primitive with a drag-and-drop gesture which we will demonstrate
later in this section; • The label displays the name of the wrapped component
(e.g., text); • The drop-down menu can be used to select a device in the list of
all connected devices, once the device is selected the users can use the next to
buttons for accessing the fork and migrate LUE primitives; • The copy button can
be used to fork the component on the selected device; • The cut button can be
used to migrate the component on the selected device; • the X icon can be used
to delete the instance of the component. The debug wrapper also allows the
users to target the LUE primitives to the current device they are using. Typically
it is unlikely that the users migrate or clone a component on the local device,
however since the local device is a valid target for the migrate, fork, and clone
primitives, the wrapper provides this possibility. The default wrapper which we
will show later hides the local device from the list of available devices.

In Figure 9.21 we show the default wrapper. Similarly to the debug one,
the default wrapper is rendered as the black bar on top of the liquid compo-
nent which it is wrapping (see Figure 9.21a). By clicking on the wrench icon the
users have access to a cleaner drop-down menu where they can select both the
target device and the LUE primitives. From the menu the users can also broad-

Figure 9.20. Debug liquid UI wrapper on top of <liquid-component-text>

241 9.4 Building Liquid Web Applications with Liquid.js

(a) Wrapper on top of the component

(b) LUE primitives and target devices

(c) Liquid URIs

Figure 9.21. Debug liquid UI wrapper on top of
<liquid-component-googlemap>

242 9.4 Building Liquid Web Applications with Liquid.js

cast the forking and cloning of the component to all connected device (shown
in Figure 9.21b). Without the broadcast feature, the users need to invoke the
selected primitive for each device individually.

The three icons on the left of the wrench can be used to investigate the liquid
state of the component. By clicking on any of the three icons, a drop-down menu
appears displaying the summary of all liquid properties defined inside the liquid
component. The users can click on the cell below the name of the liquid property
for copying on the clipboard its liquid URI. Depending on the icon clicked the
users can access the list of properties grouped by type: 1. The first icon groups
all Boolean, Number, and String properties; 2. The second icon displays Array
properties; 3. The last icon displays Object properties.

Liquid UI wrappers do not need to look similar to the debug and default

wrappers, and developers can design and implement their own ad-hoc solutions.
We now show a more complex example where we build a liquid UI wrapper that
allows the users to target the devices depending on their position, instead of
using a drop-down menu [156]. In Figure 9.22 we show a Web application that
allows the users to create multiple chat rooms on the same page. For every chat

Figure 9.22. <liquid-space> and liquid-component-chat components

243 9.4 Building Liquid Web Applications with Liquid.js

(a) Map view (b) Hovering on a device

Figure 9.23. <liquid-space> position configuration

room, Liquid.js instantiates a new instance of the liquid-component-chat in
the body of the Web application. The wrapper is displayed in blue on top of the
chat component. In the current state of the application shown in the example,
the wrapper provides to the users the name of the component, the bin icon that
allows to delete the component instance by invoking the Liquid.js API, and the
simulate remote users feature which is part of the chat room implementation.
The top black bar of the Web application is an instance of the <liquid-space>

component, which is bound to all liquid UI wrappers loaded in the page.
The <liquid-space> component can be used to configure the relative posi-

tions of the connected devices by clicking on the button labeled configure device
position. In Figure 9.23 we show what happens when the users click on this but-
ton. Upon clicking a modal window containing an empty white space with mul-
tiple colored circles appears in front of the Web application (see Figure 9.23a),
each circle represents a connected device and it displays the device name in the
center. In this example there are five connected devices named c0, c1, c2, c3,
c4. The device names are displayed and can be edited on each device by clicking
on the yellow rectangle shown in the <liquid-space> component. The users

244 9.4 Building Liquid Web Applications with Liquid.js

(a) Users can click on the
share button.

(b) When the share button is clicked, a new icon
appears on the top right corner of all chat room
components.

(c) When the users drag the icon, a gray frame appears around the Web application
containing multiple circle icons representing the connected devices. If the users con-
figured the relative positions of the devices, the circles are displayed in the frame in
the correct relative direction from the current device viewpoint. The users can drop
the icon on the desired device circle in order to perform the LUE primitive selected.

Figure 9.24. <liquid-space> and liquid UI wrapper

245 9.4 Building Liquid Web Applications with Liquid.js

can drag and drop the circles in any empty position of the white space of the
modal window, replicating the relative position of the devices in the surrounding
space. E.g., c1 is in front of c0 and c3 is positioned on the right of c0. In order
to simplify as much as possible the identification of the devices on the map, the
users can hover the mouse on any of the circles like shown in Figure 9.23b, in
turn the <liquid-space> component will show the corresponding type of the
device below it, and display an orange frame around the borders of the hovered
device page.

Once the users finish positioning the devices on the map, they can fi-
nally close the modal window and start migrating or cloning the instances of
liquid-component-chat among the connected devices. In Figure 9.24 we show
how the users can now use the relative positions of the devices in order to select
the target of the migrate and clone LUE primitives. When the users click on the
share button (Figure 9.24a) it becomes green and an hidden icon appears on
the top right corner of all chat instances (Figure 9.24b). The icon is draggable
and whenever the users start the dragging operation a dark gray frame appears
around the Web page (Figure 9.24c). Similarly to the modal window map, this
frame contains multiple colored circles representing the connected devices. The
position of the circles depends on the relative position configured in the map,
and they are placed in the correct relative direction from the active device per-
spective. The users can then drag and drop the icon on the circle representing
the desired target device of the LUE primitive, which will transparently query
Liquid.js to perform the required action.

In Figure 9.25 we show the final deployment of the chat application, after
the user on c0 (Figure 9.25a) dragged and dropped the UI wrapper icon on top

(a) Laptop 1 (b) Laptop 2

Figure 9.25. <liquid-component-chat> after cloning

246 9.4 Building Liquid Web Applications with Liquid.js

of the icon representing device c1 (Figure 9.25b). The component is cloned on
the target device and the two users can now chat.

247 9.4 Building Liquid Web Applications with Liquid.js

9.4.5 Experiment: Creating Liquid Components on the Clients

In this section we present an experimental example that demonstrates the power
of the decentrilized approach of Liquid.js. This Web application can be used to
design new liquid components on the client-side that can be moved among clients
without uploading them on a Web server. The Web application is meant to be
an experiment to showcase the features of Liquid.js and should not be used in a
production environment without improving its security. We understand that its
current implementation can be used by malicous users in a multi-user scenario.
The application is currently meant to be used in a single-user scenario, or in a
multi-users scenarios if all users trust each other.

The Web application is composed by a single liquid component called editor.
In Figure 9.26 we show how <liquid-component-editor> looks when it is in-
stantiated on a desktop computer togheter with its liquid UI wrapper and the

Figure 9.26. <liquid-component-editor>

248 9.4 Building Liquid Web Applications with Liquid.js

(a) Evaluate

(b) Instantiate

Figure 9.27. Create an instance of the component on the client-side

<liquid-space> component shown on top. The editor is composed by three
main elements: • the writable area in which the users can design their own liq-
uid components; • the evaluate element button, which loads and evaluates the
component source into the Web application (this operations uses the eval func-
tion available in the Web browser); • the create element button connected to a
text-area which allows to instantiate any pre-loaded liquid component by pro-
viding its name.

The users can design any liquid component inside the editor. In this
example the component we designed in the text-area is similar to the
<liquid-component-example> we built in Section 9.4, but it also add a unique

249 9.4 Building Liquid Web Applications with Liquid.js

Figure 9.28. Drag and drop cloning of my-online-component from device 1
(on the left) to device 2 (on the right).

label. In Figure 9.27 we show how the users can instantiate the component in the
Web browser. When the code they write is correct and it defines a valid Polymer
component, they can press the evaluate button (Figure 9.27a). If the evaluation
is successful, a green-bordered toast message appears on the bottom left of the
page prompting the users that the were no issues with the evaluation, otherwise
a red-bordered message appears and they need to correct the issues in the editor.
When the editor evaluates the new component, Liquid.js stores its definition in
the local client-side database where it also stores all the liquid components it
previously downloaded (either from the Web server or from other clients). This
means that Liquid.js considers the new component a full-fledged liquid compo-
nent and it in not important if it was created on the Web browser or downloaded
from somewhere else. Every time the users try to instantiate a component with
the specified name, they will append the component on the body of the Web ap-
plication. In Figure 9.27b the users can press the create button and create an
instance of the new component underneath the editor. In this particular exam-
ple, the instantiated component in boundle with the drag-and-drop migration UI
wrapper.

If the users connect an additional device to the Web application, they can
now move the component by dragging-and-dropping the component into the

250 9.4 Building Liquid Web Applications with Liquid.js

Figure 9.29. my-online-component cloned and paired among two devices

neighbour device (Figure 9.28). In our example, the users clone the component
from the device on the left, to the device on the right, which initially does not hold
the source of my-online-component. When the clone operation is performed,
the framework notices that the device on the right does not own the component
source, therefore it also sends a copy of the component definition to the target
device.

In Figure 9.29 we can see the final deployment of the application when the
clone process ends. The component is now loaded and instantiated on the second
device and the liquid properties are synchronized.

The interesting part of the experiment is that the users can now disconnect
from the Web server of the application without reloading the page (e.g., they
can close the Node.js process running the server) and they can repeat all the
steps discussed above and recreate the same behavior. Disconnecting from the
Web server without reloading the page, allows the Web browsers to maintain
the WebRTC channel connecting the clients even if they lost connection with the
signalling server. When the users create a new component and move it from a
device to another, they can be sure that the component is never uploaded to the
Web server.

Chapter 10

Conclusion

10.1 Summary

In the past three decades the Web underwent a fast evolution and now became a
mature platform that allows the development of powerful Web applications. The
latest HTML5 standards and the new proposed Web technologies are shifting
the center of the Web towards the edge, making it possible to run distributed
Web applications in any standard-compliant Web browser. As the users own a
constantly increasing number of devices and the Web applications are growing
more and more complex, the users’ expectation is to be able to access them from
any of their devices at any given time without the effort of manually managing
them. Now, it is more important than ever that developers understand how the
set of connected devices can support each other in a distributed mobile Web
environment concurrently running a Web application.

In this dissertation we presented the design of decentrilized cross-device liq-
uid Web applications and the Liquid.js for Polymer framework. In the current
state of the art of liquid software, many of the proposed solutions add the Liquid
User Experience to existing Web applications by extending the view layer with
cross-device interface features. These approaches usually update the front-end
without touching or re-designing the back-end or the data and logic layers of the
Web application. While from the users perspective they may perceive a liquid-like
user experience, the software itself does not implement all the features expected
by the liquid software manifesto. We believe that in order to create liquid ap-
plications able to take full advantage of the set of connected devices running
on multiple Web browsers, we must consider liquid software requirements from
the beginning and re-design all the layers of a Web application (data, logic, and
view).

251

252 10.1 Summary

The contributions presented in this dissertation can be summarized as fol-
lows:

• RQ#1 Liquid Software Design - “How can we help Web developers design
liquid software and the Liquid User Experience?”
In order to answer this research question we first investigated the evolution of
liquid software in Chapter 2, then presented and explained the liquid software
requirements in Section 2.1. We investigated the most famous solutions exist-
ing in the industry in Section 2.4 and the experiments, prototypes, and studies
proposed in multiple research areas.
The main design contributions for liquid Web applications are presented in Chap-
ter 3, where we defined the design space of liquid software (Section 3.2). The
design space is based on twelve architectural dimensions (Section 3.1) related to
liquid software: topology, application source topology, state replication topology,
layering, client deployment, granularity, state identification, synchronization, de-
vice usage, UI adaptation, primitives, and discovery. Developers can use the pro-
posed alternatives to understand the complexity of liquid applications and plan
how to build their own. In the section we also discussed real-world applications
and solutions featuring the same design considerations.
In the maturity model presented in Section 3.3 we investigated the quality at-
tributes related to liquid software built on the Web: latency, LUE primitives, UI
adaptation, and privacy. These quality attributes are also related to non-Web liq-
uid software and can be considered in the design of liquid software which is built
on top of other platforms (e.g., native clients that are not specifically built on a
HTML5-compliant Web browser).
In the remainder of this dissertation, specifically in Chapters 4, 5, and 6, we in-
vestigated the liquid software design by discussing multiple technological alter-
natives available on the Web. For each technology we presented their trade-offs
when multiple choices were available.

• RQ#2 Beyond Centralized Deployments - “How can we abstract liquid Web
applications away from the current centralized deployment approaches?”
In this dissertation we presented the rationale behind the decision of using the
Web platform for creating liquid software able to overcome the boundaries of
vendor-locked OSs and hardware. The choice of the Web platform follows the
evolution of the available HTML5 standards, which established a platform that
can be used to create decentralized and distributed Web applications.
In Section 3.1 we investigated the design space of liquid software and explained
which architectural concerns are related and should be considered in the devel-
opment of liquid applications. These architectural concerns also apply on Web-
based architectures. In the maturity model in Section 3.3 we focused our study

253 10.1 Summary

on the Web platform and presented the reasons why liquid software evolved in
the past decades on the Web. We designed the maturity model for understand-
ing how liquid applications can provide support for the Liquid User Experience
in multiple deployment configurations and developed with different Web tech-
nologies. Each level of the maturity model is related with quality attributes that
can be implemented only if the architectural decisions of the liquid Web appli-
cations meet the maturity level requirements. Furthermore we discussed all the
Web technologies and standards that can be used for reaching higher level of
maturity. Developers can use the presented design insights for developing their
own liquid Web software.

• RQ#3 Liquid User Experience Adaptation Among Devices - “How can we
make the Distributed User Interfaces of a Web application automatically adapt
to the set of connected devices?”
The automatic adaptation of the UI of a liquid application for enhancing the
LUE is mainly presented in Chapter 6, where we proposed an extension for the
standard CSS3 media queries. We designed ad-hoc CSS3 media types, features,
and the syntax for allowing developers to create rules that can be used to auto-
matically adapt the view layer of a cross-device liquid Web application. We also
designed the adaptation algorithms and events that are needed to be considered
for implementing the automatic computation of new deployments dynamically
at runtime.
The Liquid.js for Polymer framework we implemented and presented in Chap-
ter 7 is meant to demonstrate how our design of liquid media queries can be
implemented in a Web framework. Specifically in Section 7.5 we built the liq-
uid media queries inside the behavior of a Polymer component and simulated
the rules we designed with the <liquid-style> component. We also presented
how it is possible to decentralize the adaptation algorithm in Liquid.js and shift
the whole computation on the client-side, without the need of relaying messages
through a Web server. Finally in Chapter 8 we also showed the exposed API
methods developers can use in order to create their own Liquid User Experience
(LUE), and in Section 9.3 we show the expressiveness of the liquid media queries
with two examples.

• RQ#4 Resource Sharing Among Devices - “How can we take advantage of
all resources provided by the set of connected devices?”
In order to answer this RQ we intentionally separated the description of the de-
sign chapters into three independent layers: data, logic, and view. The layers
can be mapped to specific resources provided by each connected device: stor-
age, CPUs, and screens. While the view layer and the provided screen resource
are covered by RQ#3, in this RQ we focused on the provided storage and CPUs

254 10.2 Future Work

resources.
In Chapter 4 we designed the liquid data layer, which can be used to transparently
synchronize data and state across the set of connected devices. We presented the
technologies and framework that can be used for creating a decentralized or dis-
tributed synchronization mechanism. We also presented data privacy and model
rules for enhancing the protection of data created by the users. The liquid data
layer is at the core of the Liquid.js implementation (Chapter 7) and is evaluated
in Section 9.1. We built and evaluated two different network strategies that can
be used in data synchronization and inter-device communications in a liquid ap-
plication with devices that have access to limited bandwidth or storage resources.
In Chapter 5 we designed Liquid WebWorkers (LWWs) for creating a liquid
logic layer and modelled the horizontal computation offloading of stateless tasks
across multiple devices. We also demonstrated how a microbenchmark can be
used to evaluate the resources available in a Web browser without having direct
access to the hardware specifications. In Section 7.4 we presented the imple-
mentation of the LWWs built inside the Liquid.js framework and evaluated them
in Section 9.2, together with the evaluation of the micro-benchmark.

• RQ#5 Privacy and Security - “How can we design secure liquid Web appli-
cations? How can we enhance privacy?”
Multiple times throughout this dissertation we claimed that the users must be in
control of their data and should be able to decide if a particular device should or
should not be used in the cross-device deployment.
In Section 7.6 we modelled a Discretionary Access Control (DAC) system for
enhancing privacy and security in a liquid Web application. We presented the
attacks and possible failures in an unprotected application and presented a de-
centralized solution for protecting the users’ data. While the model is meant to
run on the client-side of the application, the identity of the users are stored in a
central Web server.

10.2 Future Work

The main goal of this dissertation was to provide to Web developers the neces-
sary knowledge required for developing their own liquid Web applications. Our
contributions and artefacts can be used to understand the complexity of the de-
velopment of liquid Web software and allows Web developers to make better
design decisions thanks to our discussion on multiple design and technological
alternatives.

So far Liquid.js for Polymer was used by students enrolled in the second year

255 10.2 Future Work

bachelor at Università della Svizzera italiana (USI) for creating their own liquid
applications during the project of the Web Atelier course. While they were able to
successfully build liquid Web applications with the framework, we believe that in
the future we need to study how developers with different levels of experience
build their own solutions. In our particular scenario, the students found it dif-
ficult to shift from a server-centric approach to a decentralized one, even if the
proposed Liquid.js API helped them create their own LUE. We believe that more
experienced developers may have different difficulties and different needs and
that by studying liquid applications together with multiple Web developers we
can better understand their needs and create debugging tools suited for creating
liquid software.

The Web is still evolving and as this dissertation is being written new HTML5
standards are constantly proposed [Wil20]. We believe that the next generation
of liquid software should be implemented in the Web and that they will shift
away from vendor-locked centralized solutions towards decentralized options
that do not necessarily rely on Cloud services. Liquid Web applications can be
further studied towards many directions, in particular we should focus on version
control and distribution:

• As liquid Web applications can exist in the Web browsers without the need
of querying the Web server after the initial download, we need to address the
versioning of liquid components. During the lifespan of the Web application on
a specific device, a new version can be released and downloaded by other de-
vices. When those devices interact with each other, they can potentially incur
into issues or glitches. Liquid.js, and liquid Web applications in general, should
be able to detect when there is a mismatch in the application versions and au-
tomatically download the newest one, either from the Web server of from the
paired Web browser. Version control adds new challenges in the design of liquid
Web applications, such as: – Can the users be able to use an older version of
the application if they want? – Can the users download multiple versions of the
same application and use them sequentially? – How can the Web browser store
and discard different versions of the Web application?

• While we already experimented with Internet of Things (IoT) devices in
our related work [52], our solution for including embedded devices and sensors
in the set of connected devices of a liquid application is strongly centralized.
Fischer presents in his thesis an adapter module that can be locally loaded or
remotely connect to an instance of a signalling server of Liquid.js. The module
allows any kind of micro-processor or sensor to connect to the liquid application
as if they were a Web browser instantiating a single liquid component defining
any number of liquid properties. Those simulated Web browsers however do not

256 10.2 Future Work

have access to the specification of the WebRTC DataChannels as a standard Web
browsers does, and therefore all messages exchanged between the IoT devices
and the connected Web browsers are relayed thorugh the signalling server (using
WebSockets). While this approach at the time was the only possible solution for
making Web browsers and IoT devices communicate, nowadays the HTML5 Web
Bluetooth [Web17] standard improved and can be used to connect Bluetooth-
enabled devices directly with a Web application. We envision that in the future,
thanks to Web Bluetooth or other similar technologies, it will be possible to create
liquid Web applications that do not require a signalling server. The same principle
can be extended from IoT devices to public displays.

• Similarly, the Discretionary Access Control model we proposed for enhanc-
ing privacy and security, uses a central server for storing the identity of the users
connecting to the Web application. We believe that this approach can be fur-
ther decentralized and fully distributed on the client-side of the Web application
by storing the identity of the users in a block-chain. We should investigate if
the block-chain approach has an impact on the performance of the Liquid User
Experience in comparison to the server-centric approach.

As a concluding remark, in this dissertation we presented Liquid.js, a liquid
sfotware framework that can be used to build liquid applications on the Web,
however, thanks to our personal experiences, we believe that we need to gather
more insights from both developers and users before it can be used at its full
potential in a real-world scenario. In fact we must teach the developers how to
design and implement decentralized applications that shift away from the tra-
ditional server-centric architectures. Moreover from the users perspective, it is
not always clear how to implement an intuitive Liquid User Experience that can
be used by any user. New kind of interaction and gestures should be studied in
order to enhance the migration process of liquid Web applications.

Bibliography

[1] OLSR. https://www.ietf.org/rfc/rfc3626.txt (cit. on p. 145).

[2] Edward Anstead, Steve Benford, and Robert J Houghton. “Many-Screen
Viewing: Evaluating an Olympics Companion Application”. In: Proceed-
ings of the International Conference on Interactive Experiences for TV and
Online Video. ACM. 2014, pp. 103–110 (cit. on p. 106).

[3] David P Anderson and Gilles Fedak. “The Computational and Storage
Potential of Volunteer Computing”. In: Proceedings of the International
Symposium on Cluster Computing and the Grid. Vol. 1. IEEE. 2006, pp. 73–
80 (cit. on p. 28).

[4] Martin L Abbott and Michael T Fisher. The Art of Scalability: Scalable
Web Architecture, Processes, and Organizations for the Modern Enterprise.
Pearson Education, 2009 (cit. on p. 17).

[5] Ejaz Ahmed et al. “Process State Synchronization for Mobility Support in
Mobile Cloud Computing”. In: Proceedings of the International Conference
on Communications (ICC). IEEE. 2017, pp. 1–6 (cit. on p. 4).

[6] Luigi Atzori, Antonio Iera, and Giacomo Morabito. “The Internet of
Things: A Survey”. In: Computer Networks 54.15 (2010), pp. 2787–2805
(cit. on pp. 25, 106).

[7] J Chris Anderson, Jan Lehnardt, and Noah Slater. CouchDB: the Definitive
Guide: Time to Relax. " O’Reilly Media, Inc.", 2010 (cit. on p. 56).

[8] Florian Alt et al. “Designing Shared Public Display Networks–
Implications From Today’s Paper-Based Notice Areas”. In: Proceedings
of the International Conference on Pervasive Computing. Springer. 2011,
pp. 258–275 (cit. on p. 26).

257

https://www.ietf.org/rfc/rfc3626.txt

258 BIBLIOGRAPHY

[9] Matti Anttonen et al. “Transforming the Web into a Real Application Plat-
form: New Technologies, Emerging Trends and Missing Pieces”. In: Pro-
ceedings of the ACM Symposium on Applied Computing. 2011, pp. 800–
807 (cit. on p. 16).

[10] Muhammad Raisul Alam, Mamun Bin Ibne Reaz, and Mohd Alauddin
Mohd Ali. “A Review of Smart Homes — Past, Present, and Future”. In:
IEEE transactions on systems, man, and cybernetics, part C 42.6 (2012),
pp. 1190–1203 (cit. on p. 15).

[11] Mario Barbacci et al. Quality Attributes. Tech. rep. Software Egineering
Institute Carnegie Mellon University, 1995 (cit. on p. 54).

[12] Victoria Bellotti and Sara Bly. “Walking Away from the Desktop Com-
puter: Distributed Collaboration and Mobility in a Product Design Team”.
In: Proceedings of the Conference on Computer Supported Cooperative
Work. ACM. 1996, pp. 209–218 (cit. on pp. 4, 24).

[13] Sriram Karthik Badam and Niklas Elmqvist. “Polychrome: A Cross-Device
Framework for Collaborative Web Visualization”. In: Proceedings of the
International Conference on Interactive Tabletops and Surfaces. ACM.
2014, pp. 109–118 (cit. on pp. 31, 68, 69).

[14] Federico Bellucci et al. “Engineering Javascript State Persistence of Web
Applications Migrating Across Multiple Devices”. In: Proceedings of the
SIGCHI Symposium on Engineering Interactive Computing Systems. ACM.
2011, pp. 105–110 (cit. on pp. 67, 69).

[15] Eric A Benson. Use of Browser Cookies to Store Structured Data. US Patent
6,714,926. 2004 (cit. on p. 56).

[16] Tim Berners-Lee. Re-Decentralizing the Web - Some Strategic Questions.
Keynote Address at Decentralized Web Summit. 2016 (cit. on pp. 21,
171).

[17] Tim Berners-Lee, Mark Fischetti, and Michael L Foreword By-Dertouzos.
Weaving the Web: The Original Design and Ultimate Destiny of the World
Wide Web by its Inventor. HarperInformation, 2000 (cit. on p. 64).

[18] Masiar Babazadeh, Andrea Gallidabino, and Cesare Pautasso. “Liquid
Stream Processing Across Web Browsers and Web Servers”. In: Proceed-
ings of the International Conference on Web Engineering (ICWE2015).
Springer. 2015, pp. 24–33 (cit. on p. 20).

259 BIBLIOGRAPHY

[19] Nilton Bila et al. “Pagetailor: Reusable End-User Customization for the
Mobile Web”. In: Proceedings of the International Conference on Mobile
Systems, Applications and Services. ACM. 2007, pp. 16–29 (cit. on pp. 66,
69).

[20] Peter Brusilovsky and Mark T Maybury. “From Adaptive Hypermedia to
the Adaptive Web”. In: Communications of the ACM 45.5 (2002), pp. 30–
35 (cit. on p. 17).

[21] Flavio Bonomi et al. “Fog Computing and its Role in the Internet of
Things”. In: Proceedings of the Workshop on Mobile Cloud Computing.
ACM. 2012, pp. 13–16 (cit. on pp. 25, 28).

[22] Daniela Bourges-Waldegg et al. “The Fluid Computing Middleware:
Bringing Application Fluidity to the Mobile Internet”. In: Proceedings of
the Symposium on Applications and the Internet. IEEE. 2005, pp. 54–63
(cit. on pp. 20, 39).

[23] Daniele Bonetta and Cesare Pautasso. “An Architectural Style for Liquid
Web Services”. In: Proceedings of the Working IEEE/IFIP Conference on
Software Architecture (WICSA2011). IEEE. 2011, pp. 232–241 (cit. on
p. 20).

[24] Harry Brignull and Yvonne Rogers. “Enticing People to Interact with
Large Public Displays in Public Spaces”. In: Proceedings of INTERACT.
Vol. 3. Brighton, UK. 2003, pp. 17–24 (cit. on p. 15).

[25] A Bouzid and D Rennyson. The Art of SaaS: A Primer on the Fundamentals
of Building and Running a Successful SaaS Business. 2015 (cit. on p. 30).

[26] Robert Bradford et al. “Live Wide-Area Migration of Virtual Machines In-
cluding Local Persistent State”. In: Proceedings of the International Con-
ference on Virtual Execution Environments. ACM. 2007, pp. 169–179 (cit.
on p. 53).

[27] Alexandru Boicea, Florin Radulescu, and Laura Ioana Agapin. “Mon-
goDB vs Oracle – Database Comparison”. In: Proceedings of the Inter-
national Conference on Emerging Intelligent Data and Web Technologies.
IEEE. 2012, pp. 330–335 (cit. on p. 56).

[28] Eric Brewer. “CAP Twelve Years lLter: How the "Rules" Have Changed”.
In: Computer 45.2 (2012), pp. 23–29 (cit. on p. 52).

260 BIBLIOGRAPHY

[29] Frederik Brudy et al. “Cross-Device Taxonomy: Survey, Opportunities and
Challenges of Interactions Spanning Across Multiple Devices”. In: Pro-
ceedings of the Conference on Human Factors in Computing Systems. ACM.
2019, pp. 1–28 (cit. on p. 22).

[30] Gianluca Brugnoli. “Connecting the Dots of User Experience”. In: Journal
of Information Architecture 1.1 (2009) (cit. on p. 4).

[31] Josiah L Carlson. Redis in Action. Manning Publications Co., 2013 (cit. on
p. 56).

[32] Diane J. Cook and Sajal K. Das. “How Smart are our Environments? An
Updated Look at the State of the Art”. In: Pervasive and Mobile Computing
3.2 (2007), pp. 53–73 (cit. on p. 25).

[33] Sven Casteleyn, Irene Garrig’os, and Jose-Norberto Maz’on. “Ten Years of
Rich Internet Applications: A Systematic Mapping Study, and Beyond”.
In: ACM Transactions on the Web (TWEB) 8.3 (2014) (cit. on pp. 27, 44,
60, 65).

[34] Olexiy Chudnovskyy et al. “Awareness and Control for Inter-Widget Com-
munication: Challenges and Solutions”. In: Web Engineering. Springer,
2013, pp. 114–122 (cit. on p. 26).

[35] Olexiy Chudnovskyy et al. “Inter-widget Communication by Demonstra-
tion in User Interface Mashups”. In: Web Engineering. Springer, 2013,
pp. 502–505 (cit. on p. 26).

[36] Sarah Clinch et al. “Ownership and Trust in Cyber-Foraged Displays”.
In: Proceedings of the International Symposium on Pervasive Displays
(PerDis2014). ACM. 2014, pp. 168–173 (cit. on p. 26).

[37] Sarah Clinch. “Smartphones and Pervasive Public Displays”. In: IEEE Per-
vasive Computing 12.1 (2013), pp. 92–95 (cit. on p. 25).

[38] Cinzia Cappiello, Maristella Matera, and Matteo Picozzi. “A UI-Centric
Approach for the End-User Development of Multidevice Mashups”. In:
ACM Transactions on the Web (TWEB) 9.3 (2015), pp. 1–40 (cit. on p. 26).

[39] M Scott Corson et al. “Toward Proximity-Aware InterNetworking”. In:
IEEE Wireless Communications 17.6 (2010) (cit. on p. 26).

[40] Antonio Carzaniga, Gian Pietro Picco, and Giovanni Vigna. “Designing
Distributed Applications with Mobile Code Paradigms”. In: Proceedings of
the International Conference on Software Engineering (ICSE1997). Vol. 97.
1997, pp. 22–32 (cit. on pp. 17, 135).

261 BIBLIOGRAPHY

[41] Brendan Cully et al. “Remus: High Availability Via Asynchronous Virtual
Machine Replication”. In: Proceedings of the Symposium on Networked
Systems Design and Implementation. San Francisco. 2008, pp. 161–174
(cit. on p. 53).

[42] Reginald Cushing et al. “Distributed Computing on an Ensemble of
Browsers”. In: IEEE Internet Computing 17.5 (2013), pp. 54–61 (cit. on
p. 28).

[43] Linda Di Geronimo, Maria Husmann, and Moira C Norrie. “Surveying
Personal Device Ecosystems with Cross-Device Applications in Mind”.
In: Proceedings of the International Symposium on Pervasive Displays
(PerDis2016). ACM. 2016, pp. 220–227 (cit. on p. 3).

[44] Linda Di Geronimo et al. “Ctat: Tilt-and-Tap Across Devices”. In: Pro-
ceedings of the International Conference on Web Engineering (ICWE16).
Springer. 2016, pp. 96–113 (cit. on p. 23).

[45] Hoang T Dinh et al. “A Survey of Mobile Cloud Computing: Architecture,
Applications, and Approaches”. In: Wireless Communications and Mobile
Computing 13.18 (2013), pp. 1587–1611 (cit. on pp. 25, 28, 44).

[46] Florian Daniel and Maristella Matera. “Turning Web Applications into
Mashup Components: Issues, Models, and Solutions”. In: Proceedings of
the International Conference on Web Engineering. Springer. 2009, pp. 45–
60 (cit. on p. 26).

[47] Florian Daniel and Maristella Matera. Mashups: Concepts, Models and Ar-
chitectures. Springer, 2014 (cit. on p. 26).

[48] David Dearman and Jeffery S Pierce. “It’s on my other Computer!: Com-
puting with Multiple Devices”. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI08). ACM. 2008, pp. 767–
776 (cit. on p. 3).

[49] Niklas Elmqvist. “Distributed user interfaces: State of the art”. In: Dis-
tributed User Interfaces. Springer, 2011, pp. 1–12 (cit. on pp. 16, 24).

[50] Alan W Esenther. “Instant Co-Browsing: Lightweight Real-Time Collab-
orative Web Browsing”. In: Proceedings of the International World Wide
Web Conference (WWW2002). ACM. 2002 (cit. on p. 24).

[51] George Fairbanks. Just Enough Software Architecture: A Risk-Driven Ap-
proach. Marshall & Brainerd, 2010 (cit. on p. 54).

[52] Alexander Fischer. Liquid Web of Things. Sept. 2018 (cit. on pp. 142,
255).

262 BIBLIOGRAPHY

[53] Ian Fette and Alexey Melnikov. The WebSocket Protocol. 2011 (cit. on
p. 176).

[54] Luca Frosini, Marco Manca, and Fabio Paternò. “A Framework for the De-
velopment of Distributed Interactive Applications”. In: Proceedings of the
SIGCHI Symposium on Engineering Interactive Computing Systems. ACM.
2013, pp. 249–254 (cit. on pp. 67, 69).

[55] Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna. “Understand-
ing code mobility”. In: IEEE Transactions on Software Engineering 24.5
(1998), pp. 342–361 (cit. on pp. 17, 34, 50).

[56] Ben Frain. Responsive Web Design with HTML5 and CSS3. Packt Publish-
ing Ltd, 2012 (cit. on pp. 105, 106).

[57] Steven Feiner and Ari Shamash. “Hybrid User Interfaces: Breeding Virtu-
ally Bigger Interfaces for Physically Smaller Computers”. In: Proceedings
of the Symposium on User Interface Software and Technology. ACM. 1991,
pp. 9–17 (cit. on p. 6).

[58] Alois Ferscha and Simon Vogl. “Pervasive Web Access Via Public Com-
munication Walls”. In: International Conference on Pervasive Computing.
Springer. 2002, pp. 84–97 (cit. on p. 15).

[59] George H. Forman and John Zahorjan. “The Challenges of Mobile Com-
puting”. In: Computer 27.4 (1994), pp. 38–47 (cit. on p. 26).

[60] Andrea Gallidabino et al. “On the Architecture of Liquid Software: Tech-
nology Alternatives and Design Space”. In: Proceedings of the Working
IEEE/IFIP Conference on Software Architecture (WICSA16). IEEE. 2016,
pp. 122–127 (cit. on pp. 11, 12, 164).

[61] Andrea Gallidabino et al. “Architecting Liquid Software”. In: Journal of
Web Engineering 16.5&6 (2017), pp. 433–470 (cit. on pp. 11, 12, 186).

[62] Andrea Gallidabino et al. “Liquid Web Applications: ICWE2017 Tuto-
rial”. In: Proceedings of the International Conference on Web Engineering
(ICWE17). Springer. 2017, pp. 269–271 (cit. on p. 13).

[63] Andrea Gallidabino. “Migrating and Pairing Recursive Stateful Compo-
nents Between Multiple Devices with Liquid.js for Polymer”. In: Pro-
ceedings of the International Conference on Web Engineering (ICWE16).
Springer, 2017, pp. 555–558 (cit. on p. 13).

[64] Andrea Gallidabino. “Liquid Web Architectures”. In: Proceedings of the
International Conference on Web Engineering (ICWE19). Springer. 2019,
pp. 560–565 (cit. on p. 13).

263 BIBLIOGRAPHY

[65] Jessa James Garrett. AJAX: A New Approach
to Web Applications. Archived from the original
(http://www.adaptivepath.com/ideas/essays/archives/000385.php) to
https://web.archive.org on 2 July. 2005 (cit. on pp. 35, 45).

[66] Andrea Gallidabino and Cesare Pautasso. “Deploying Stateful Web Com-
ponents on Multiple Devices with Liquid.js for Polymer”. In: Proceedings
of the International SIGSOFT Symposium on Component-Based Software
Engineering (CBSE16). IEEE. 2016, pp. 85–90 (cit. on pp. 11, 12, 39,
69).

[67] Andrea Gallidabino and Cesare Pautasso. “The Liquid.js Framework for
Migrating and Cloning Stateful Web Components across Multiple De-
vices”. In: Proceedings of the Companion to the International Conference
on the World Wide Web (WWW16), Demonstrations. 2016, pp. 183–186
(cit. on p. 13).

[68] Andrea Gallidabino and Cesare Pautasso. “Maturity Model for Liquid Web
Architectures”. In: Proceedings of the International Conference on Web En-
gineering (ICWE17). Springer. 2017, pp. 206–224 (cit. on pp. 11, 12).

[69] Andrea Gallidabino and Cesare Pautasso. “Decentralized Computation
Offloading on the Edge with Liquid WebWorkers”. In: Proceedings of the
International Conference On Web Engineering (ICWE18). Springer. 2018,
pp. 145–161 (cit. on pp. 12, 13).

[70] Andrea Gallidabino and Cesare Pautasso. “The Liquid User Experience
API”. In: Proceedings of the Companion to The Web Conference 2018
(TheWebConf2018). 2018, pp. 767–774 (cit. on pp. 11, 12).

[71] Andrea Gallidabino and Cesare Pautasso. “The Liquid WebWorker API
for Horizontal Offloading of Stateless Computations”. In: Journal of Web
Engineering 17.6 (2018), pp. 405–448 (cit. on pp. 12, 13, 158).

[72] Andrea Gallidabino and Cesare Pautasso. “Multi-Device Adaptation with
Liquid Media Queries”. In: Proceedings of the International Conference On
Web Engineering (ICWE19). Springer. 2019, pp. 474–489 (cit. on pp. 11,
12).

[73] Andrea Gallidabino and Cesare Pautasso. “Multi-Device Complementary
View Adaptation with Liquid Media Queries”. In: Journal of Web Engi-
neering 18.8 (2020), pp. 1–40 (cit. on pp. 11, 12).

264 BIBLIOGRAPHY

[74] Sergio Gusmeroli, Salvatore Piccione, and Domenico Rotondi. “A
Capability-Based Security Approach to Manage Access Control in the
Internet of Things”. In: Mathematical and Computer Modelling 58.5-6
(2013), pp. 1189–1205 (cit. on p. 164).

[75] Giuseppe Ghiani, Fabio Paternò, and Carmen Santoro. “On-Demand
Cross-Device Interface Components Migration”. In: Proceedings of the In-
ternational Conference on Human Computer Interaction with Mobile De-
vices and Services. ACM. 2010, pp. 299–308 (cit. on p. 17).

[76] Giuseppe Ghiani, Fabio Paternò, and Carmen Santoro. “Push and Pull of
Web User Interfaces in Multi-Device Environments”. In: Proceedings of the
International Working Conference on Advanced Visual Interfaces (AVI12).
ACM. 2012, pp. 10–17 (cit. on p. 24).

[77] Martin Gaedke and Jörn Rehse. “Supporting Compositional Reuse in
Component-Based Web Engineering”. In: Proceedings of the Symposium
on Applied Computing. ACM. 2000, pp. 927–933 (cit. on p. 26).

[78] Marko Gröönroos. The Book of Vaadin, 4th Edition. Vaadin Ltd, 2012 (cit.
on p. 35).

[79] Jens Grubert et al. “Multifi: Multi Fidelity Interaction with Displays on
and around the Body”. In: Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems (CHI15). ACM. 2015, pp. 3933–3942
(cit. on p. 25).

[80] Jonathan Grudin. “Computer-Supported Cooperative Work: History and
Focus”. In: Computer 27.5 (1994), pp. 19–26 (cit. on p. 22).

[81] Martin Gaedke and Klaus Turowski. “Specification of Components Based
on the Webcomposition Component Model”. In: Data Warehousing and
Web Engineering. IGI Global, 2002, pp. 275–284 (cit. on p. 26).

[82] Dominique Guinard et al. “From the Internet of Things to the Web of
Things: Resource-Oriented Architecture and Best Practices”. In: Archi-
tecting the Internet of Things. Springer, 2011, pp. 97–129 (cit. on p. 25).

[83] John Grundy, Xing Wang, and John Hosking. “Building Multi-Device,
Component-Based, Thin-Client Groupware: Issues and Experiences”. In:
Proceedints of the Australian Computer Science Communications. Vol. 24.
Australian Computer Society, Inc. 2002, pp. 71–80 (cit. on p. 22).

[84] John Hartman et al. Liquid Software: A New Paradigm for Networked Sys-
tems. Tech. rep. 96-11. University of Arizona, 1996 (cit. on p. 17).

265 BIBLIOGRAPHY

[85] John H. Hartman et al. “Joust: A Platform for Liquid Software”. In: IEEE
Computer 32.4 (1999), pp. 50–56 (cit. on pp. 4, 17, 35, 39).

[86] Matias Hirsch et al. “Battery-Aware Centralized Schedulers for CPU-
Bound Jobs in Mobile Grids”. In: Pervasive and Mobile Computing 29
(2016), pp. 73–94 (cit. on p. 96).

[87] Matias Hirsch et al. “A Two-Phase Energy-Aware Scheduling Approach
for CPU-Intensive Jobs in Mobile Grids”. In: Journal of Grid Computing
15.1 (2017), pp. 55–80 (cit. on p. 28).

[88] Maria Husmann, Nicola Marcacci Rossi, and Moira C. Norrie. “Usage
Analysis of Cross-Device Web Applications”. In: Proceedings of the Sym-
posium on Pervasive Displays. ACM. 2016, pp. 212–219 (cit. on p. 5).

[89] Maria Husmann and Moira C Norrie. “XD-MVC: Support for Cross-Device
Development”. In: Proceedings of the International Workshop on Inter-
acting with Multi-Device Ecologies in the Wild (Cross-Surface2015). ETH
Zürich. 2015 (cit. on pp. 23, 39, 68, 69).

[90] Richard Han, Veronique Perret, and Mahmoud Naghshineh. “WebSplit-
ter: a Unified XML Framework for Multi-Device Collaborative Web
Browsing”. In: Proceedings of the Conference on Computer Supported Co-
operative Work. ACM. 2000, pp. 221–230 (cit. on p. 5).

[91] Maria Husmann, Nicola Marcacci Rossi, and Moira C Norrie. “Usage
Analysis of Cross-Device Web Applications”. In: Proceedings of the In-
ternational Symposium on Pervasive Displays (PerDis2016). ACM. 2016,
pp. 212–219 (cit. on p. 3).

[92] Karl Huppler. “The Art of Building a Good Benchmark”. In: Proceedings of
the Technology Conference on Performance Evaluation and Benchmarking.
Springer. 2009, pp. 18–30 (cit. on p. 92).

[93] Maria Husmann et al. “UI Testing Cross-Device Applications”. In: Pro-
ceedings of the International Conference on Interactive Surfaces and Spaces
(ISS16). ACM. 2016, pp. 179–188 (cit. on p. 23).

[94] Mehdi Jazayeri. “Some Trends in Web Application Development”. In:
Proceedings of Future of Software Engineering, 2007 (FOSE’07). IEEE.
2007, pp. 199–213 (cit. on p. 56).

[95] Alan B Johnston and Daniel C Burnett. WebRTC: APIs and RTCWEB proto-
cols of the HTML5 real-time web. Digital Codex LLC, 2012 (cit. on p. 165).

266 BIBLIOGRAPHY

[96] David Johnson, Ntsibane Ntlatlapa, and Corinna Aichele. “Simple Prag-
matic Approach to Mesh Routing Using BATMAN”. In: (2008) (cit. on
p. 145).

[97] Tero Jokela, Jarno Ojala, and Thomas Olsson. “A Diary Study on Com-
bining Multiple Information Devices in Everyday Activities and Tasks”.
In: Proceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems (CHI2015). ACM. 2015, pp. 3903–3912 (cit. on pp. 3,
110).

[98] Bettina Kemme and Gustavo Alonso. “Database Replication: A Tale of
Research across Communities”. In: Proceedings of the VLDB Endowment
3.1-2 (2010), pp. 5–12 (cit. on pp. 27, 40).

[99] Tim Kadlec. Implementing Responsive Design: Building Sites for an Any-
where, Everywhere Web. New Riders, 2012 (cit. on p. 106).

[100] Shaun Kane et al. “Exploring Cross-Device Web Use on PCs and Mobile
Devices”. In: Proceedings of IFIP Conference on Human-Computer Interac-
tion. Springer, 2009, pp. 722–735 (cit. on p. 4).

[101] Amy K Karlson et al. “Working Overtime: Patterns of Smartphone and
PC Usage in the Day of an Information Worker”. In: Proceedings of the In-
ternational Conference on Pervasive Computing. Springer. 2009, pp. 398–
405 (cit. on p. 3).

[102] Fahim Kawsar and AJ Brush. “Home Computing Unplugged: Why, Where
and When People Use Different Connected Devices at Home”. In: Pro-
ceedings of the 2013 ACM international joint conference on Pervasive and
ubiquitous computing (UbiComp2013). ACM. 2013, pp. 627–636 (cit. on
pp. 3, 110, 160).

[103] Carel P Kruger and Gerhard P Hancke. “Benchmarking Internet of Things
Devices”. In: Proceedings of the International Conference on Industrial In-
formatics. IEEE. 2014, pp. 611–616 (cit. on p. 92).

[104] Mikkel Baun Kjærgaard et al. “ndoor Positioning Using GPS Revisited”.
In: Pervasive Computing. Springer, 2010, pp. 38–56 (cit. on p. 43).

[105] Karthik Kumar and Yung-Hsiang Lu. “Cloud Computing for Mobile Users:
Can Offloading Computation Save Energy?” In: Computer 43.4 (2010),
pp. 51–56 (cit. on p. 25).

[106] Janne Kuuskeri, Janne Lautamäki, and Tommi Mikkonen. “Peer-to-Peer
Collaboration in the Lively Kernel”. In: Proceedings of the Symposium on
Applied Computing. 2010, pp. 812–817 (cit. on p. 40).

267 BIBLIOGRAPHY

[107] Petr Knetl. Complementary View Adaptation with Liquid.js. Sept. 2019
(cit. on p. 160).

[108] Oskari Koskimies et al. “EDB: A Multi-Master Database for Liquid Multi-
Device Software”. In: Proceedings of the International Conference on Mo-
bile Software Engineering and Systems. IEEE. 2015, pp. 125–128 (cit. on
pp. 34, 38, 53).

[109] Dejan Kovachev et al. “DireWolf - Distributing and Migrating User Inter-
faces for Widget-Based Web Applications”. In: Proceedings of the Interna-
tional Conference on Web Engineering (ICWE13). Springer. 2013, pp. 99–
113 (cit. on pp. 67, 69).

[110] Glenn E Krasner, Stephen T Pope, et al. “A Description of the Model-
View-Controller User Interface Paradigm in the Smalltalk-80 System”.
In: Journal of Object Oriented Programming 1.3 (1988), pp. 26–49 (cit.
on p. 136).

[111] Karthik Kumar et al. “A Survey of Computation Offloading for Mobile
Systems”. In: Mobile Networks and Applications 18.1 (2013), pp. 129–
140 (cit. on p. 85).

[112] Wei-Jenn Ke and Sheng-De Wang. “Reliability Evaluation for Distributed
Computing Networks with Imperfect Nodes”. In: IEEE Transactions on
Reliability 46.3 (1997), pp. 342–349 (cit. on p. 93).

[113] Michael Krug, Fabian Wiedemann, and Martin Gaedke. “Smartcomposi-
tion: A Component-Based Approach for Creating Multi-Screen Mashups”.
In: Proceedings of the International Conference on Web Engineering
(ICWE14). Springer. 2014, pp. 236–253 (cit. on pp. 26, 67, 69).

[114] Marc Langheinrich. “Privacy by Design—Principles of Privacy-Aware
Ubiquitous Systems”. In: Proceedings of the International Conference on
Ubiquitous Computing. Springer. 2001, pp. 273–291 (cit. on pp. 162,
165).

[115] Kris Luyten and Karin Coninx. “Distributed User Interface Elements to
Support Smart Interaction Spaces”. In: Proceedings of the International
Symposium on Multimedia. IEEE. 2005 (cit. on p. 24).

[116] Michal Levin. Designing Multi-Device Experiences: An Ecosystem Approach
to User Experiences across Devices. O’Reilly Media, Inc., 2014 (cit. on pp. 4,
17, 51).

268 BIBLIOGRAPHY

[117] Hui Liu et al. “Survey of Wireless Indoor Positioning Techniques and Sys-
tems”. In: Systems, Man, and Cybernetics, Part C: Applications and Re-
views, IEEE Transactions on 37.6 (2007), pp. 1067–1080 (cit. on p. 43).

[118] Saadi Lahlou, Marc Langheinrich, and Carsten Röcker. “Privacy and Trust
Issues with Invisible Computers”. In: Communications of the ACM 48.3
(2005), pp. 59–60 (cit. on p. 162).

[119] Avinash Lakshman and Prashant Malik. “Cassandra: a Decentralized
Structured Storage System”. In: ACM SIGOPS Operating Systems Review
44.2 (2010), pp. 35–40 (cit. on p. 58).

[120] Seng W Loke et al. “Mobile Computations with Surrounding Devices:
Proximity Sensing and Multilayered Work Stealing”. In: ACM Transac-
tions on Embedded Computing Systems 14.2 (2015), p. 22 (cit. on p. 28).

[121] Avraham Leff and James T Rayfield. “Web-Application Development Us-
ing the Model/View/Controller Design Pattern”. In: Proceedings of the In-
ternational Conference on Enterprise Distributed Object Computing. IEEE.
2001, pp. 118–127 (cit. on p. 44).

[122] Tom H Luan et al. “Fog Computing: Focusing on Mobile Users at the
Edge”. In: arXiv preprint arXiv:1502.01815 (2015) (cit. on p. 28).

[123] Yoël Luginbuhl. “Comparing Peer-to-Peer WebRTC Routing Strategies in
Liquid.js”. MA thesis. USI, Feb. 2017 (cit. on p. 144).

[124] Essam Mansour et al. “A Demonstration of the Solid Platform for Social
Web Applications”. In: Proceedings of the International Conference Com-
panion on World Wide Web. 2016, pp. 223–226 (cit. on p. 21).

[125] Ethan Marcotte. Responsive Web Design. Editions Eyrolles, 2011 (cit. on
pp. 6, 17, 51, 55, 105).

[126] Erik Meijer. “Democratizing the Cloud”. In: Proceedings of the Companion
to the Conference on Object-Oriented Programming Systems and Applica-
tions. 2007, pp. 858–859 (cit. on pp. 35, 45).

[127] Giuseppe Mendola. “Roles and Groups for Access Control in Liquid Soft-
ware”. MA thesis. USI, Sept. 2016 (cit. on p. 162).

[128] Takuya Maekawa, Takahiro Hara, and Shojiro Nishio. “A Collaborative
Web Browsing System for Multiple Mobile Users”. In: Proceedings of
the International Conference on Pervasive Computing and Communications
(PERCOM2006). IEEE. 2006, pp. 12–23 (cit. on p. 5).

269 BIBLIOGRAPHY

[129] Nemanja Memarovic, Marc Langheinrich, and Florian Alt. “The Interact-
ing Places Framework: Conceptualizing Public Display Applications that
Promote cCommunity Interaction and Place Awareness”. In: Proceedings
of the International Symposium on Pervasive Displays. 2012, pp. 1–6 (cit.
on p. 26).

[130] Jonathan D Moffett. “Specification of Management Policies and Discre-
tionary Access Control”. In: Network and Distributed Systems Manage-
ment (1994), pp. 455–480 (cit. on p. 163).

[131] Michael S Mikowski and Josh C Powell. “Single Page Web Applications”.
In: B and W (2013) (cit. on p. 45).

[132] Tommi Mikkonen, Kari Systä, and Cesare Pautasso. “Towards Liquid Web
Applications”. In: Proceedings of the International Conference on Web En-
gineering (ICWE15). Springer, 2015, pp. 134–143 (cit. on pp. 6, 17, 127,
163).

[133] Jonathan D Moffett, Morris Sloman, and Kevin P Twidle. “Specifying Dis-
cretionary Access Control Policy for Distributed Systems.” In: Computer
Communications 13.9 (1990), pp. 571–580 (cit. on p. 164).

[134] Tommi Mikkonen and Antero Taivalsaari. “Cloud Computing and its Im-
pact on Mobile Software Development: Two Roads Diverged”. In: Jour-
nal of Systems and Software 86.9 (2013), pp. 2318–2320 (cit. on pp. 6,
162).

[135] Jörg Müller et al. “Requirements and Design Space for Interactive Public
Displays”. In: Proceedings of the International Conference on Multimedia.
ACM. 2010, pp. 1285–1294 (cit. on p. 110).

[136] Bashar Nuseibeh and Steve Easterbrook. “Requirements Engineering: A
Roadmap”. In: Proceedings of the Conference on the Future of Software
Engineering. ACM. 2000, pp. 35–46 (cit. on p. 54).

[137] Michael Nebeling et al. “Interactive Development of Cross-Device User
Interfaces”. In: Proceedings of the International Conference on Human Fac-
tors in Computing Systems. ACM. 2014, pp. 2793–2802 (cit. on pp. 16,
23).

[138] Qun Ni et al. “Privacy-Aware Role-Based Access Control”. In: ACM Trans-
actions on Information and System Security (TISSEC) 13.3 (2010), pp. 1–
31 (cit. on p. 164).

270 BIBLIOGRAPHY

[139] Petru Nicolaescu et al. “Yjs: A Framework for Near Real-Time P2P Shared
Editing on Arbitrary Data Types”. In: Proceedings of the International Con-
ference on Web Engineering (ICWE15). Springer, 2015, pp. 675–678 (cit.
on pp. 128, 132, 152, 203).

[140] S Nandakumar and C Jennings. “SDP for the WebRTC”. In: (2012) (cit.
on p. 176).

[141] Michael Nebeling, Maximilian Speicher, and Moira C Norrie. “Crow-
dAdapt: Enabling Crowdsourced Web Page Adaptation for Individual
Viewing Conditions and Preferences”. In: Proceedings of the SIGCHI
Symposium on Engineering Interactive Computing Systems. ACM. 2013,
pp. 23–32 (cit. on pp. 66, 69).

[142] Jeff Offutt. “Quality Attributes of Web Software Applications”. In: IEEE
software 19.2 (2002), pp. 25–32 (cit. on p. 54).

[143] Shusuke Okamoto and Masaki Kohana. “Load Distribution by Using Web
Workers for a Real-Time Web Application”. In: International Journal of
Web Information Systems 7.4 (2011), pp. 381–395 (cit. on p. 27).

[144] Tim O’reilly. What is Web 2.0. O’Reilly Media, Inc., 2009 (cit. on p. 105).

[145] Antti Oulasvirta and Lauri Sumari. “Mobile Kits and Laptop Trays: Man-
aging Multiple Devices in Mobile Information Work”. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. ACM.
2007, pp. 1127–1136 (cit. on pp. 3, 160).

[146] Antti Oulasvirta. “FEATURE When users" do" the Ubicomp”. In: Interac-
tions 15.2 (2008), pp. 6–9 (cit. on p. 3).

[147] Evaggelia Pitoura and Bharat Bhargava. “Maintaining Consistency of
Data in Mobile Distributed Environments”. In: Proceedings of the Interna-
tional Conference on Distributed Computing Systems. IEEE. 1995, pp. 404–
413 (cit. on p. 27).

[148] Jorge Pérez et al. “Connectivity and Continuity: New Fronts in the Plat-
form Wars”. In: Panel at Twenty-First Americas Conference on Information
Systems (AMCIS). 2015 (cit. on p. 27).

[149] Thomas D Palmer and N. Ann Fields. “Computer Supported Cooperative
Work”. In: Computer 27.5 (1994), pp. 15–17 (cit. on p. 22).

[150] Stefan Poslad. Ubiquitous Computing: Smart Devices, Environments and
Interactions. John Wiley & Sons, 2011 (cit. on pp. 3, 15, 28).

271 BIBLIOGRAPHY

[151] Fabio Paternò and Carmen Santoro. “A Logical Framework for Multi-
Device User Interfaces”. In: Proceedings of the 4th ACM SIGCHI sympo-
sium on Engineering interactive computing systems. ACM. 2012, pp. 45–
50 (cit. on p. 24).

[152] Soheil Qanbari et al. “IoT Design Patterns: Computational Constructs
to Design, Build and Engineer Edge Applications”. In: Proceedings of the
International Conference on Internet-of-Things Design and Implementation
(IoTDI). IEEE. 2016, pp. 277–282 (cit. on p. 4).

[153] Miguel Raposo and José Delgado. “Empowering the Web User with a
Browserver”. In: Proceedings of the International Conference on Enterprise
Information Systems. Springer. 2010, pp. 71–80 (cit. on pp. 67, 69).

[154] Eric Rescorla. SSL and TLS: Designing and Building Secure Systems. Vol. 1.
Addison-Wesley, 2001 (cit. on p. 176).

[155] Tom Rodden. “A Survey of CSCW Systems”. In: Interacting with computers
3.3 (1991), pp. 319–353 (cit. on p. 15).

[156] Umberto Sani. Liquid User Experience. Sept. 2016 (cit. on p. 242).

[157] Mahadev Satyanarayanan et al. “Pervasive Computing: Vision and Chal-
lenges”. In: IEEE Personal Communications 8.4 (2001), pp. 10–17 (cit. on
p. 25).

[158] Mahadev Satyanarayanan et al. “Experience with Disconnected Op-
eration in a Mobile Computing Environment”. In: Mobile Computing.
Springer, 1993, pp. 537–570 (cit. on p. 93).

[159] Mahadev Satyanarayanan. “The Emergence of Edge Computing”. In:
Computer 50.1 (2017), pp. 30–39. ISSN: 0018-9162 (cit. on p. 28).

[160] Bill Schilit, Norman Adams, and Roy Want. “Context-Aware Computing
Applications”. In: Proceedings of the Workshop on Mobile Computing Sys-
tems and Applications. IEEE. 1994, pp. 85–90 (cit. on p. 26).

[161] Mark Stefik and John Seely Brown. “Toward portable ideas”. In: Techno-
logical Support for Work Group Collaboration (1989), pp. 147–165 (cit.
on p. 22).

[162] Kjeld Schmidt and Liam Bannon. “Taking CSCW Seriously”. In: Com-
puter Supported Cooperative Work (CSCW) 1.1-2 (1992), pp. 7–40 (cit.
on p. 15).

272 BIBLIOGRAPHY

[163] R. Schollmeier. “A Definition of Peer-to-Peer Networking for the Classi-
fication of Peer-to-Peer Architectures and Applications”. In: Proceedings
of the International Conference on Peer-to-Peer Computing. IEEE. 2001,
pp. 101–102 (cit. on p. 68).

[164] Weisong Shi and Schahram Dustdar. “The Promise of Edge Computing”.
In: Computer 49.5 (2016), pp. 78–81 (cit. on pp. 28, 164).

[165] Mary Shaw, David Garlan, et al. Software Architecture. Vol. 101. prentice
Hall Englewood Cliffs, 1996 (cit. on p. 54).

[166] Steve Shafer et al. “The New EasyLiving Project at Microsoft Research”.
In: Proceedings of the Smart Spaces Workshop. 1998, pp. 127–130 (cit. on
p. 16).

[167] Swaminathan Sivasubramanian et al. “Analysis of Caching and Replica-
tion Strategies for Web Applications”. In: IEEE Internet Computing 11.1
(2007), pp. 60–66 (cit. on p. 58).

[168] Katarina Segerståhl and Harri Oinas-Kukkonen. “Distributed User Expe-
rience in Persuasive Technology Environments”. In: Proceedings of the In-
ternational Conference on Persuasive Technology. Springer. 2007, pp. 80–
91 (cit. on p. 4).

[169] Stephanie Santosa and Daniel Wigdor. “A Field Study of Multi-Device
Workflows in Distributed Workspaces”. In: Proceedings of the Interna-
tional Joint Conference on Pervasive and Ubiquitous Computing. ACM.
2013, pp. 63–72 (cit. on p. 23).

[170] Antero Taivalsaari et al. “The Death of Binary Software: End User Soft-
ware Moves to the Web”. In: Proceedings of the International Conference on
Creating, Connecting and Collaborating Through Computing. IEEE. 2011,
pp. 17–23 (cit. on p. 16).

[171] Mark Turner, David Budgen, and Pearl Brereton. “Turning Software into
a Service”. In: Computer 36.10 (2003), pp. 38–44 (cit. on p. 30).

[172] A. Taivalsaari and T. Mikkonen. “A Roadmap to the Programmable
World: Software Challenges in the IoT Era”. In: IEEE Software 34.1
(2017), pp. 72–80 (cit. on pp. 25, 70).

[173] Antero Taivalsaari, Tommi Mikkonen, and Kari Systä. “Cloud Browser:
Enhancing the Web Browser with Cloud Sessions and Downloadable User
Interface”. In: Proceedings of the Conference on Grid and Pervasive Com-
puting. Springer. 2013, pp. 224–233 (cit. on p. 39).

273 BIBLIOGRAPHY

[174] Antero Taivalsaari, Tommi Mikkonen, and Kari Systä. “Liquid Software
Manifesto: The Era of Multiple Device Ownership and its Implications for
Software Architecture”. In: Proceedings of the Annual Computer Software
and Applications Conference. IEEE. 2014, pp. 338–343 (cit. on pp. 3, 15,
17–19, 31, 50, 53, 54).

[175] Vasileios Triglianos. ASQ: Active Learning with Interactive Web Presenta-
tions and Classroom Analytics. PhD Thesis at USI, 2018 (cit. on pp. 78,
102).

[176] Antero Taivalsaari and Kari Systä. “Cloudberry: An HTML5 Cloud Phone
Platform for Mobile Devices”. In: IEEE Software 29.4 (2012), pp. 40–45
(cit. on pp. 30, 39, 48).

[177] Stefan Tilkov and Steve Vinoski. “Node.js: Using JavaScript to Build
High-Performance Network Programs”. In: IEEE Internet Computing 14.6
(2010), pp. 80–83 (cit. on p. 57).

[178] Randika Upathilake, Yingkun Li, and Ashraf Matrawy. “A Classification of
Web Browser Fingerprinting Techniques”. In: Proceedings of the Interna-
tional Conference on New Technologies, Mobility and Security. IEEE. 2015,
pp. 1–5 (cit. on p. 97).

[179] Jari-Pekka Voutilainen, Tommi Mikkonen, and Kari Systä. “Synchroniz-
ing Application State Using Virtual DOM Trees”. In: Proceedings of the
International Workshop on Liquid Software. Springer. 2016, pp. 142–154
(cit. on pp. 39, 67, 69).

[180] Jari-Pekka Voutilainen, Tommi Mikkonen, and Kari Systä. “Synchroniz-
ing Application State using Virtual DOM Trees”. In: Proceedings of the
International Conference on Web Engineering (ICWE16). Springer. 2016,
pp. 142–154 (cit. on p. 4).

[181] Christian Vogt, Max Jonas Werner, and Thomas C Schmidt. “Leverag-
ing WebRTC for P2P Content Distribution in Web Browsers”. In: Proceed-
ings of the International Conference on Network Protocols (ICNP13). IEEE.
2013, pp. 1–2 (cit. on pp. 41, 165).

[182] Andrew Whitmore, Anurag Agarwal, and Li Da Xu. “The Internet of
Things - A Survey of Topics and Trends”. In: Information Systems Fron-
tiers 17.2 (2015), pp. 261–274 (cit. on p. 25).

[183] Karl Wiegers and Joy Beatty. Software Requirements. Pearson Education,
2013 (cit. on p. 54).

274 BIBLIOGRAPHY

[184] Mark Weiser. “The Computer for the 21st Century”. In: Scientific Ameri-
can 265.3 (1991), pp. 94–104 (cit. on p. 15).

[185] Mark Weiser. “Ubiquitous Computing”. In: Proceedings of the ACM Confer-
ence on Computer Science. Vol. 418. 10.1145. 1994, pp. 197530–197680
(cit. on p. 15).

[186] Evan Welbourne et al. “Building the Internet of Things Using RFID: the
RFID Ecosystem Experience”. In: IEEE Internet Computing 13.3 (2009)
(cit. on p. 25).

[187] Felix Wortmann and Kristina Flüchter. “Internet of Things”. In: Business
& Information Systems Engineering 57.3 (2015), pp. 221–224 (cit. on
p. 15).

[188] Mark Wallis, Frans Henskens, and Michael Hannaford. “A Distributed
Content Storage Model for Web Applications”. In: Proceedings of the In-
ternational Conference on Evolving Internet. IEEE. 2010, pp. 98–106 (cit.
on p. 59).

[189] MH Willebeek-LeMair, Dilip D Kandlur, and Z-Y Shae. “On Multipoint
Control Units for Videoconferencing”. In: Proceedings of the conference
on Local Computer Networks. IEEE. 1994, pp. 356–364 (cit. on p. 146).

[190] Luke Welling and Laura Thomson. PHP and MySQL Web Development.
Sams Publishing, 2003 (cit. on pp. 56, 57).

[191] Stelios Xinogalos, Kostas E Psannis, and Angelo Sifaleras. “Recent Ad-
vances Delivered by HTML5 in Mobile Cloud Computing Applications:
A Survey”. In: Proceedings of the Balkan Conference in Informatics. ACM.
2012, pp. 199–204 (cit. on p. 27).

[192] Jishuo Yang and Daniel Wigdor. “Panelrama: Enabling Easy Specification
of Cross-Device Web Applications”. In: Proceedings of Annual ACM Con-
ference on Human Factors in Computing Systems. ACM. 2014, pp. 2783–
2792 (cit. on pp. 67, 69).

[193] Andrea Zanella et al. “Internet of Things for Smart Cities”. In: IEEE In-
ternet of Things Journal 1.1 (2014), pp. 22–32 (cit. on p. 25).

[194] Mikel Zorrilla et al. “A Web-Based Distributed Architecture for Multi-
Device Adaptation in Media Applications”. In: Personal and Ubiquitous
Computing 19.5-6 (2015), pp. 803–820 (cit. on p. 23).

Students

[Fis18] Alexander Fischer. Liquid Web of Things. Sept. 2018 (cit. on pp. 142,
255).

[Kne19] Petr Knetl. Complementary View Adaptation with Liquid.js. Sept.
2019 (cit. on p. 160).

[Lug17] Yoël Luginbuhl. “Comparing Peer-to-Peer WebRTC Routing Strate-
gies in Liquid.js”. MA thesis. USI, Feb. 2017 (cit. on p. 144).

[Men16] Giuseppe Mendola. “Roles and Groups for Access Control in Liquid
Software”. MA thesis. USI, Sept. 2016 (cit. on p. 162).

[San16] Umberto Sani. Liquid User Experience. Sept. 2016 (cit. on p. 242).

275

276 STUDENTS

Web References

[IoT18] IoT Analytics, Knud Lasse Lueth. State of the IoT 2018: Number of
IoT Devices now at 7B – Market Accelerating. 2018. URL: https:
//iot-analytics.com/state-of-the-iot-update-q1-q2-

2018-number-of-iot-devices-now-7b/ (cit. on p. 3).

[Wor14] World Wide Web Foundation. Web Index. 2014. URL: https://
thewebindex.org/report/ (cit. on p. 3).

[Wor19] World Wide Web Foundation. New Mobile Broadband Pric-
ing Data Shows Uneven Progress on Affordability. 2019. URL:
https : / / webfoundation . org / 2019 / 03 / new - mobile -

broadband-pricing-data-reveals-stalling-progress-on-

affordability/ (cit. on p. 3).

[Glo17] Global Connected Consumer Survey. The Connected Consumer.
2017. URL: http://www.google.com.sg/publicdata/explore?
ds=dg8d1eetcqsb1_&hl=en&dl=en (cit. on pp. 3, 25, 70, 106).

[Goo17a] Google. How Many Connected Devices Do People Use? 2017. URL:
https://www.consumerbarometer.com/en/graph- builder/

?question=M3 (cit. on p. 3).

[Goo17b] Google. Which Devices Do People Use? 2017. URL: https://www.
consumerbarometer.com/en/graph- builder/?question=M1

(cit. on p. 3).

[And15] Monica Anderson. Technology Device Ownership: 2015. 2015. URL:
http : / / www . pewinternet . org / 2015 / 10 / 29 / technology -

device-ownership-2015/ (cit. on p. 3).

[Goo12] Google. The New Multi-Screen World: Understanding Cross-Platform
Consumer Behavior. 2012. URL: http://services.google.com/
fh/files/misc/multiscreenworld_final.pdf (cit. on pp. 4,
127).

277

https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://thewebindex.org/report/
https://thewebindex.org/report/
https://webfoundation.org/2019/03/new-mobile-broadband-pricing-data-reveals-stalling-progress-on-affordability/
https://webfoundation.org/2019/03/new-mobile-broadband-pricing-data-reveals-stalling-progress-on-affordability/
https://webfoundation.org/2019/03/new-mobile-broadband-pricing-data-reveals-stalling-progress-on-affordability/
http://www.google.com.sg/publicdata/explore?ds=dg8d1eetcqsb1_&hl=en&dl=en
http://www.google.com.sg/publicdata/explore?ds=dg8d1eetcqsb1_&hl=en&dl=en
https://www.consumerbarometer.com/en/graph-builder/?question=M3
https://www.consumerbarometer.com/en/graph-builder/?question=M3
https://www.consumerbarometer.com/en/graph-builder/?question=M1
https://www.consumerbarometer.com/en/graph-builder/?question=M1
http://www.pewinternet.org/2015/10/29/technology-device-ownership-2015/
http://www.pewinternet.org/2015/10/29/technology-device-ownership-2015/
http://services.google.com/fh/files/misc/multiscreenworld_final.pdf
http://services.google.com/fh/files/misc/multiscreenworld_final.pdf

278 WEB REFERENCES

[Moz20a] Mozilla. RTCDataChannel. 2020. URL: https : / / developer .

mozilla.org/en-US/docs/Web/API/RTCDataChannel (cit. on
pp. 20, 74).

[Sho20] Shopify. Liquid. 2020. URL: https : / / shopify . github . io /

liquid/ (cit. on p. 21).

[Eva11] Dave Evans. The Internet of Things: How the Next Evolution of the
Internet is Changing Everything. 2011. URL: http://www.cisco.
com/web/about/ac79/docs/innov/IoT (cit. on p. 25).

[Moz19a] Mozilla. Web Components. 2019. URL: https : / / developer .

mozilla.org/en-US/docs/Web/Web_Components (cit. on p. 26).

[Pro20] Protocol Labs. IPFS. 2020. URL: https://ipfs.io/ (cit. on pp. 27,
75).

[Gal14] Gruman Galen. Apple’s Handoff: What works, and what doesn’t.
2014. URL: https://www.infoworld.com/article/2691101/
apples-handoff-what-works-and-what-doesnt.html (cit. on
pp. 29, 36, 39).

[Kar14] Bell Karissa. Baton Promises to be the Ultimate Android App
Switcher. 2014. URL: https : / / mashable . com / 2014 / 10 / 27 /

nextbit-baton-app/ (cit. on pp. 29, 39).

[Mic16] Microsft. Continuum. 2016. URL: https://www.microsoft.com/
en-us/windows/continuum (cit. on pp. 29, 39).

[Goo20a] Google. Chromecast. 2020. URL: https://store.google.com/
product/chromecast (cit. on p. 30).

[Ope09] Opera. Opera Unite reinvents the Web. 2009. URL: http://www.
operasoftware.com/press/releases/general/opera-unite-

reinvents-the-web (cit. on p. 30).

[Moz12] Mozilla. Introduction to Firefox OS. 2012. URL: https : / /

developer . mozilla . org / en - US / docs / Archive / B2G _ OS /

Introduction (cit. on pp. 30, 48).

[App18] Apple Inc. iCloud. 2018. URL: https://www.icloud.com/ (cit. on
pp. 30, 34).

[Goo20b] Google. Google Sync. 2020. URL: https://www.google.com/sync/
index.html (cit. on pp. 30, 34).

[Rai16] Rails Core Team. Ruby on Rails. 2016. URL: https : / /

rubyonrails.org/ (cit. on p. 35).

https://developer.mozilla.org/en-US/docs/Web/API/RTCDataChannel
https://developer.mozilla.org/en-US/docs/Web/API/RTCDataChannel
https://shopify.github.io/liquid/
https://shopify.github.io/liquid/
http://www.cisco.com/web/about/ac79/docs/innov/IoT
http://www.cisco.com/web/about/ac79/docs/innov/IoT
https://developer.mozilla.org/en-US/docs/Web/Web_Components
https://developer.mozilla.org/en-US/docs/Web/Web_Components
https://ipfs.io/
https://www.infoworld.com/article/2691101/apples-handoff-what-works-and-what-doesnt.html
https://www.infoworld.com/article/2691101/apples-handoff-what-works-and-what-doesnt.html
https://mashable.com/2014/10/27/nextbit-baton-app/
https://mashable.com/2014/10/27/nextbit-baton-app/
https://www.microsoft.com/en-us/windows/continuum
https://www.microsoft.com/en-us/windows/continuum
https://store.google.com/product/chromecast
https://store.google.com/product/chromecast
http://www.operasoftware.com/press/releases/general/opera-unite-reinvents-the-web
http://www.operasoftware.com/press/releases/general/opera-unite-reinvents-the-web
http://www.operasoftware.com/press/releases/general/opera-unite-reinvents-the-web
https://developer.mozilla.org/en-US/docs/Archive/B2G_OS/Introduction
https://developer.mozilla.org/en-US/docs/Archive/B2G_OS/Introduction
https://developer.mozilla.org/en-US/docs/Archive/B2G_OS/Introduction
https://www.icloud.com/
https://www.google.com/sync/index.html
https://www.google.com/sync/index.html
https://rubyonrails.org/
https://rubyonrails.org/

279 WEB REFERENCES

[Ora16] Oracle. Sun Ray Products. 2016. URL: http://www.oracle.com/
technetwork / server - storage / sunrayproducts / overview /

index.html (cit. on pp. 35, 36, 39, 44, 54, 64, 69).

[Goo20c] Google. Firebase. 2020. URL: https://firebase.google.com/
(cit. on p. 35).

[Goo16a] Google. Google Web Toolkit. 2016. URL: http://www.gwtproject.
org/ (cit. on p. 35).

[Mic17] Microsoft. Retro review: Microsoft’s 2008 Surface Coffee Table
in 2017. 2017. URL: https : / / www . windowscentral . com /

microsoft-surface-pixelsense-table (cit. on p. 43).

[Lin16] Linux Foundation. Tizen Developers. 2016. URL: https : / /

developer.tizen.org/ (cit. on p. 48).

[Moz19b] Mozilla. Using the application cache. 2019. URL: https : / /

developer.mozilla.org/en-US/docs/Web/HTML/Using_the_

application_cache (cit. on p. 48).

[Moz20b] Mozilla. Using Service Workers. 2020. URL: https://developer.
mozilla.org/en- US/docs/Web/API/Service_Worker_API/

Using_Service_Workers (cit. on p. 48).

[DBE20] DB-Engines. DB-Engines Ranking. http://db-engines.com/en/
ranking. 2020 (cit. on p. 56).

[W3C10] W3C. Web SQL Database. 2010. URL: https://www.oracle.com/
database/ (cit. on p. 56).

[Moz19c] Mozilla. IndexedDB API. 2019. URL: https : / / developer .

mozilla.org/en-US/docs/Web/API/IndexedDB_API (cit. on
p. 56).

[Moz19d] Mozilla. Window.localStorage. 2019. URL: https://developer.
mozilla.org/en-US/docs/Web/API/Window/localStorage (cit.
on pp. 56, 83).

[Moz19e] Mozilla. Window.sessionStorage. 2019. URL: https://developer.
mozilla.org/en-US/docs/Web/API/Window/sessionStorage

(cit. on pp. 56, 83).

[Mic20] Microsoft. ASP.NET. 2020. URL: https://dotnet.microsoft.com/
apps/aspnet (cit. on p. 57).

[Pou20] PouchDB. Pouchdb. 2020. URL: https://pouchdb.com/ (cit. on
pp. 58, 189).

http://www.oracle.com/technetwork/server-storage/sunrayproducts/overview/index.html
http://www.oracle.com/technetwork/server-storage/sunrayproducts/overview/index.html
http://www.oracle.com/technetwork/server-storage/sunrayproducts/overview/index.html
https://firebase.google.com/
http://www.gwtproject.org/
http://www.gwtproject.org/
https://www.windowscentral.com/microsoft-surface-pixelsense-table
https://www.windowscentral.com/microsoft-surface-pixelsense-table
https://developer.tizen.org/
https://developer.tizen.org/
https://developer.mozilla.org/en-US/docs/Web/HTML/Using_the_application_cache
https://developer.mozilla.org/en-US/docs/Web/HTML/Using_the_application_cache
https://developer.mozilla.org/en-US/docs/Web/HTML/Using_the_application_cache
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API/Using_Service_Workers
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API/Using_Service_Workers
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API/Using_Service_Workers
http://db-engines.com/en/ranking
http://db-engines.com/en/ranking
https://www.oracle.com/database/
https://www.oracle.com/database/
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://dotnet.microsoft.com/apps/aspnet
https://dotnet.microsoft.com/apps/aspnet
https://pouchdb.com/

280 WEB REFERENCES

[Goo18] Google. AngularJS. 2018. URL: https://angularjs.org/ (cit. on
p. 60).

[Fac20] Facebook Inc. React. 2020. URL: https://reactjs.org/ (cit. on
p. 60).

[Til20] Tilde Inc. Ember. 2020. URL: https : / / emberjs . com/ (cit. on
p. 60).

[Web17] Web Bluetooth Community Group. Web Bluetooth. 2017. URL:
https://webbluetoothcg.github.io/web-bluetooth/ (cit. on
pp. 70, 146, 256).

[Moz19f] Mozilla. XMLHttpRequest. 2019. URL: https : / / developer .

mozilla.org/en-US/docs/Web/API/XMLHttpRequest (cit. on
p. 73).

[Moz19g] Mozilla. Fetch API. 2019. URL: https://developer.mozilla.org/
en-US/docs/Web/API/Fetch_API (cit. on pp. 73, 86).

[Moz20c] Mozilla. Promise. 2020. URL: https://developer.mozilla.org/
en-US/docs/Web/JavaScript/Reference/Global_Objects/

Promise (cit. on pp. 73, 86, 227).

[Ope20] OpenJS foundation. Node.js. 2020. URL: https://nodejs.org/
en/ (cit. on p. 74).

[WS 20] WS Community. ws: a Node.js WebSocket Library. 2020. URL:
https://www.npmjs.com/package/ws (cit. on p. 74).

[Soc20] Socket.io Community. socket.io. 2020. URL: https://www.npmjs.
com/package/socket.io (cit. on p. 74).

[Moz19h] Mozilla. RTCPeerConnection. 2019. URL: https : / / developer .

mozilla.org/en-US/docs/Web/API/RTCPeerConnection (cit.
on p. 74).

[Ale20] Deveria Alexis. Can I Usee WebRTC. 2020. URL: https://caniuse.
com/#search=webrtc (cit. on p. 74).

[Mic19] Bu Michelle. PeerJS. 2019. URL: https://peerjs.com/ (cit. on
pp. 74, 133).

[Tom20] Cartwright Tom. Socket.IO P2P. 2020. URL: https://socket.io/
blog/socket-io-p2p/ (cit. on p. 75).

[Fer20] Aboukhadijeh Feross. WebTorrent. 2020. URL: https : / /

webtorrent.io/ (cit. on p. 75).

https://angularjs.org/
https://reactjs.org/
https://emberjs.com/
https://webbluetoothcg.github.io/web-bluetooth/
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://nodejs.org/en/
https://nodejs.org/en/
https://www.npmjs.com/package/ws
https://www.npmjs.com/package/socket.io
https://www.npmjs.com/package/socket.io
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection
https://caniuse.com/#search=webrtc
https://caniuse.com/#search=webrtc
https://peerjs.com/
https://socket.io/blog/socket-io-p2p/
https://socket.io/blog/socket-io-p2p/
https://webtorrent.io/
https://webtorrent.io/

281 WEB REFERENCES

[Moz20d] Mozilla. Using Web Workers. 2020. URL: https : / / developer .

mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_

web_workers (cit. on pp. 85, 86).

[Moz19i] Mozilla. Blob. 2019. URL: https://developer.mozilla.org/en-
US/docs/Web/API/Blob (cit. on pp. 87, 90).

[BD16] M Bynens and JD Dalton. Benchmark.js v2.1.0. 2016. URL: https:
//benchmarkjs.com/ (cit. on p. 93).

[Moz19j] Mozilla. Battery Status API. 2019. URL: https : / / developer .

mozilla.org/en-US/docs/Web/API/Battery_Status_API (cit.
on p. 97).

[Moz19k] Mozilla. Network Information API. 2019. URL: https : / /

developer . mozilla . org / en - US / docs / Web / API / Network _

Information_API (cit. on p. 98).

[W3C14] W3C. WebComponents. 2014. URL: https://www.w3.org/wiki/
WebComponents/ (cit. on p. 128).

[The18a] The Polymer Project Authors. Polymer Project. 2018. URL: https:
//www.polymer-project.org/ (cit. on pp. 128, 136).

[Web20] WebComponent.org Community. WebComponents.org. 2020. URL:
https://www.webcomponents.org/ (cit. on pp. 128, 224).

[Pol18] Polymer Project Authors. Polymer Behaviors. 2018. URL: https://
polymer-library.polymer-project.org/3.0/docs/devguide/

behaviors (cit. on p. 128).

[Ale19] Deveria Alex. Can I Use. 2019. URL: https://caniuse.com/ (cit.
on p. 133).

[W3C16] W3C. HTML Imports. 2016. URL: http://www.w3.org/TR/html-
imports/ (cit. on p. 135).

[The18b] The Polymer Project Authors. About Polymer 1.0. 2018. URL:
https://polymer-library.polymer-project.org/1.0/docs/

about_10 (cit. on p. 136).

[Moz20e] Mozilla. Proxy. 2020. URL: https://developer.mozilla.org/
en-US/docs/Web/JavaScript/Reference/Global_Objects/

Proxy (cit. on p. 138).

[Moz19l] Mozilla. Using shadow DOM. 2019. URL: https://developer.

mozilla . org / en - US / docs / Web / Web _ Components / Using _

shadow_DOM (cit. on p. 142).

https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Blob
https://developer.mozilla.org/en-US/docs/Web/API/Blob
https://benchmarkjs.com/
https://benchmarkjs.com/
https://developer.mozilla.org/en-US/docs/Web/API/Battery_Status_API
https://developer.mozilla.org/en-US/docs/Web/API/Battery_Status_API
https://developer.mozilla.org/en-US/docs/Web/API/Network_Information_API
https://developer.mozilla.org/en-US/docs/Web/API/Network_Information_API
https://developer.mozilla.org/en-US/docs/Web/API/Network_Information_API
https://www.w3.org/wiki/WebComponents/
https://www.w3.org/wiki/WebComponents/
https://www.polymer-project.org/
https://www.polymer-project.org/
https://www.webcomponents.org/
https://polymer-library.polymer-project.org/3.0/docs/devguide/behaviors
https://polymer-library.polymer-project.org/3.0/docs/devguide/behaviors
https://polymer-library.polymer-project.org/3.0/docs/devguide/behaviors
https://caniuse.com/
http://www.w3.org/TR/html-imports/
http://www.w3.org/TR/html-imports/
https://polymer-library.polymer-project.org/1.0/docs/about_10
https://polymer-library.polymer-project.org/1.0/docs/about_10
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/Web_Components/Using_shadow_DOM
https://developer.mozilla.org/en-US/docs/Web/Web_Components/Using_shadow_DOM
https://developer.mozilla.org/en-US/docs/Web/Web_Components/Using_shadow_DOM

282 WEB REFERENCES

[Moz20f] Mozilla. this. 2020. URL: https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Operators/this (cit. on
p. 142).

[Moz19m] Mozilla. WebRTC Statistics API. 2019. URL: https://developer.
mozilla.org/en-US/docs/Web/API/WebRTC_Statistics_API

(cit. on p. 148).

[W3C19] W3C. Media Queries Level 4. 2019. URL: https://drafts.csswg.
org/mediaqueries-4 (cit. on p. 153).

[Jac16] Spirou Jack. clientJS. 2016. URL: https : / / www . npmjs . com /

package/clientjs (cit. on p. 187).

[The18c] The Polymer Project Authors. paper-input. 2018. URL: https://
elements.polymer-project.org/elements/paper-input (cit.
on p. 224).

[Goo16b] Google. Google-map. 2016. URL: https://www.webcomponents.
org/element/GoogleWebComponents/google-map/1.2.0 (cit.
on p. 230).

[Goo16c] Google. Google-map-directions. 2016. URL: https : / / www .

webcomponents.org/element/GoogleWebComponents/google-

map/1.2.0/google-map-directions (cit. on p. 230).

[Goo17c] Google. Google-youtube. 2017. URL: https : / / www .

webcomponents . org / element / @google - web - components /

google-youtube/2.0.0/google-youtube (cit. on pp. 235, 237).

[Wil20] Erik Wilde. HTML5 Overview. 2020. URL: http : / / html5 -

overview.net/ (cit. on p. 255).

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_Statistics_API
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_Statistics_API
https://drafts.csswg.org/mediaqueries-4
https://drafts.csswg.org/mediaqueries-4
https://www.npmjs.com/package/clientjs
https://www.npmjs.com/package/clientjs
https://elements.polymer-project.org/elements/paper-input
https://elements.polymer-project.org/elements/paper-input
https://www.webcomponents.org/element/GoogleWebComponents/google-map/1.2.0
https://www.webcomponents.org/element/GoogleWebComponents/google-map/1.2.0
https://www.webcomponents.org/element/GoogleWebComponents/google-map/1.2.0/google-map-directions
https://www.webcomponents.org/element/GoogleWebComponents/google-map/1.2.0/google-map-directions
https://www.webcomponents.org/element/GoogleWebComponents/google-map/1.2.0/google-map-directions
https://www.webcomponents.org/element/@google-web-components/google-youtube/2.0.0/google-youtube
https://www.webcomponents.org/element/@google-web-components/google-youtube/2.0.0/google-youtube
https://www.webcomponents.org/element/@google-web-components/google-youtube/2.0.0/google-youtube
http://html5-overview.net/
http://html5-overview.net/

Acronyms

AJAX Asynchronous JavaScript And XML. 35, 45, 73

API Application Programming Interface. x, xii, xvii, xxi, 11, 29, 31, 35, 57–59,
67, 73, 82, 83, 85–88, 91, 93, 97, 98, 128, 130–133, 135, 137, 138, 140,
142, 143, 146, 148–150, 155, 156, 158, 159, 165, 166, 170, 175, 180,
183–192, 243, 253, 255

B.A.T.M.A.N. Better Approach To Mobile Adhoc Networking. 145

BaaS Backend as a Service. 35

CPU Central Processing Unit. 8, 28, 44, 85, 98, 101, 212, 216, 253

CSCW Computer-Supported Collaborative Work. ix, 22–28

CSS Cascading Style Sheets. 64, 105, 106, 108, 122, 130, 135, 136, 142, 153,
224

CSS3 Cascading Style Sheets 3. 11, 105, 106, 108–110, 153, 154, 253

DAC Discretionary Access Control. xvii, 9, 13, 163–167, 171, 174, 254, 256

DOM Document Object Model. 67, 142, 182, 185, 228, 235

DUI Distributed User Interfaces. 7, 8, 24, 253

GPS Global Positioning System. 16, 43, 232, 233

GPU Graphics Processing Unit. 45

GUI Graphical User Interface. 23

GWT Google Web Toolkit. 35

283

284 Acronyms

HCI Human-Computer Interactions. ix, 24

HTML Hypertext Markup Language. 64, 130, 133, 135, 136, 142, 185, 224,
225, 227, 228, 238

HTML5 Hypertext Markup Language 5. v, 13, 16, 26, 27, 48, 57, 58, 60, 70, 73,
83, 85, 86, 91, 93, 97, 98, 106, 132, 133, 138, 164, 183, 251, 252, 255,
256

HTTP Hypertext Transfer Protocol. 55–57, 60, 61, 64, 65, 73, 86, 131

HTTPS Hypertext Transfer Protocol Secure. 176–179

IoT Internet of Things. v, ix, 3, 8, 20, 25, 28, 99, 106, 142, 164, 210, 255, 256

IP Internet Protocol. 43, 130, 165

IPFS InterPlanetary File System. 27, 75

JS JavaScript. 34, 83, 86, 87, 130, 132, 133, 135, 138, 149, 152, 164, 182, 184,
224

JSON JavaScript Object Notation. 138, 143, 147, 189, 210

LAN Local Area Network. 43

LPC LiquidPeerConnection. xvii, xxii, 144–150, 172, 193, 197, 199, 200, 202,
203, 205, 207, 210

LUE Liquid User Experience. vi, ix, x, xii, xv, xvii, xxi, 4, 6–8, 11, 19, 33–36, 38,
43, 46, 49–51, 54, 55, 60–63, 65, 66, 69, 70, 76, 82, 105, 108, 127, 134,
135, 137, 140–142, 145, 155, 158, 183, 185–187, 202, 235, 237, 238,
240, 241, 244, 245, 251–253, 255, 256

LWW Liquid WebWorker. x, xii, xvi, xviii, 13, 85–96, 98–102, 140, 150, 151,
183, 188, 212–216, 254

LWWPool Liquid WebWorker Pool. x, 86–92, 94–96, 140, 150–152, 212

MAC Media Access Control. 43

MCU Multipoint Control Unit. 146

MinCon Minimal Connection. 193, 195–203, 205–207, 209, 210

285 Acronyms

MVC Model-View-Controller. 44, 56, 57, 61, 70, 73

OLSR Optimized Link State Routing. 145

OS Operating System. 6, 46, 48, 52, 90, 212, 252

P2P Peer-to-Peer. xvii, xviii, xxi, 7, 27, 36, 38, 41, 49, 52, 55, 61, 68, 69, 74, 75,
84, 128, 130, 132, 133, 145, 155, 163, 164, 172, 176, 177, 179, 180, 191

PAN Personal Area Network. 43

PKG Message Packaging. 206, 209

QR Quick Response. 43, 44, 100

RQ Research Question. ix, xxi, 6–11, 252–254

RSSI Received Signal Strength Indication. 43

RSTP Secure Real-Time Protocol. 176

RT Routing Table. xii, xxii, 148, 149, 193, 197–203, 207–210

RTT Round Trip Time. 148

SaaS Software as a Service. 30

SDP Session Description Protocol. 176

SSID Service Set Identifier. 43

UI User Interface. vi, x, xi, xiii, xviii, xix, 4, 5, 8, 10, 11, 16–18, 22–24, 26, 29,
33–35, 45, 51, 52, 55, 57, 64, 67, 105–109, 111, 117–124, 128, 132, 134–
136, 142, 161, 220, 222, 224, 228, 230, 231, 238, 240–245, 247, 249,
252, 253

URI Uniform Resource Identifier. xi, xxii, 60, 64, 82, 86, 90, 130, 131, 142–144,
149, 151, 152, 184, 188, 199, 202, 241, 242

URL Uniform Resource Locator. 43, 48, 55, 64, 65, 100

VM Virtual Machine. 46

286 Acronyms

W3C World Wide Web Consortium. 70, 132

WebRTC Web Real-Time Communication. 20, 56, 57, 61, 69, 74, 75, 84, 128,
130, 133, 142, 144, 146, 148, 163–165, 172, 175, 176, 180, 188, 191,
192, 194, 198, 199, 250, 256

WSS WebSocket Secure. 176, 177

XSL Extensible Stylesheet Language. 64

	Contents
	List of Figures
	List of Tables
	I Liquid Software
	Introduction
	Motivation
	rq
	rq#1 - Liquid Software Design
	rq#2 - Beyond Centralized Deployments
	rq#3 - lue Adaptation Among Devices
	rq#4 - Sharing Resources Among Devices
	rq#5 - Privacy and Security

	Summary and Outline
	Contributions and Publication Overview

	State of the Art
	Liquid Software Metaphor
	Similar Metaphors

	Beyond the Liquid Metaphor
	cscw
	Cross-Device Interfaces
	hci
	iot and Public Displays
	Mashups
	Distributed State in the Web
	Offload Computations in the Web

	Industry Solutions
	Cloud

	Liquid Software Design
	Design Considerations
	ui Adaptation
	Data and State Synchronization
	Client/Server Partitioning
	Security

	Design Space
	Topology
	Discovery
	Layering
	Granularity
	Client Deployment
	lue
	Data and State
	Privacy and Security

	Maturity
	Maturity Model Facets
	Controller Layer deployment
	Communication channel
	Maturity Model
	Beyond Level 5 Framework

	II Liquid Web Architectures
	Liquid Data Layer and State Synchronization
	Communication Channels
	Granularity
	Data Flow Direction
	Liquid Storage

	Liquid Logic Layer and Liquid WebWorkers
	api
	lwwpool api
	lww api

	Design
	Features
	Micro-Benchmark
	Failure Handling
	Task Offloading Policies

	Scenarios
	Single User Scenario - Editors (Image Processing)
	Single User Scenario - Public Displays
	Multiple Users Scenario - Education/Teaching Programming

	Liquid View Layer and Liquid Media Queries
	Automatic Component Style Adaptation
	Component Deployment Redistribution
	Redistribution step
	Cloning step

	Liquid ui Redistribution and Cloning Algorithms
	Phase 1: Constraint-Checking and Priority Computation
	Phase 2: Migration and Cloning
	Phase 3: Component Adaptation
	Run-time Complexity

	III Framework Implementation
	Liquid.js for Polymer
	The Framework
	Granularity
	Topology and Code Deployment

	Liquid Web Applications
	Liquid Components
	Liquid Properties
	Liquid Behaviors
	Liquid ui Wrapper
	uri

	Data Layer - Synchronization
	Strategies
	Features
	Configuration

	Logic Layer - Liquid WebWorkers
	Implementation
	Synchronous vs Asynchronous Data Transfer

	View Layer - <liquid-style> Component
	Design
	Decentralized Algorithm
	Impact

	Privacy and Security
	Privacy
	Security
	Limitations

	The Liquid.js api
	Framework Configuration api
	Component Life-cycle api
	lue api
	Device Discovery api
	lww api
	Local Persistence api
	Assets api
	Connection api and Event Bus

	Validation
	Data Layer and Synchronization
	Evaluation of the rt
	Evaluation of the Yjs Synchronization
	Discussion of the Results

	Logic Layer
	Test Scenario: Offloading Image Processing Tasks
	Testbed Configuration
	Workloads
	Measurements
	Results
	Micro-Benchmark evaluation

	View Layer
	Scenario 1: Second User Connects a Smartphone
	Scenario 2: Dynamic Device-Role Change

	Building Liquid Web Applications with Liquid.js
	Converting Standard Polymer Components into Liquid Components
	Multiple Properties with the Liquid Googlemap Component
	Liquid Containers with the Liquid Youtube Component
	Liquid ui Wrappers and Position-Aware Primitives
	Experiment: Creating Liquid Components on the Clients

	Conclusion
	Summary
	Future Work

	Bibliography
	Students
	Web References

