
RESTalk
A Visual and Textual DSL for
Modelling RESTful Conversations

Ana Ivanchikj

RESTalk
A Visual and Textual DSL for Modelling RESTful Conversations

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Ana Ivanchikj

under the supervision of

Prof. Dr. Cesare Pautasso

January 2021

Dissertation Committee

Prof. Dr. Cinzia Cappiello Politecnico di Milano - Milan, Italy
Prof. Dr. Mathias Weske Hasso Plattner Institute - Potsdam, Germany
Prof. Dr. Walter Binder Università della Svizzera italiana - Lugano, Switzerland
Prof. Dr. Matthias Hauswirth Università della Svizzera italiana - Lugano, Switzerland

Dissertation accepted on 25 January 2021

Research Advisor PhD Program Director

Prof. Dr. Cesare Pautasso Prof. Dr. Walter Binder, Prof. Dr. Silvia Santini

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been submit-
ted previously, in whole or in part, to qualify for any other academic award; and
the content of the thesis is the result of work which has been carried out since
the official commencement date of the approved research program.

Ana Ivanchikj
Lugano, 25 January 2021

ii

To everyone who provided their selfless support
during my PhD endeavour

In memoriam of Prof. Dr. Florian Daniel

iii

iv

One LEGO block by itself is no fun
at all.

Jason Bloomberg

v

vi

Abstract

Digitalization is all around us, even more so in pandemic times where substantial
part of our lives has been moved online. One of the key enablers of digitalization
are the Application Programming Interfaces (APIs) which enable the communi-
cation and exchange of data between different systems. They abstract from the
implementation details of the underlying systems and allow for the monetization
of digital assets paving the way to innovative services, bringing together different
business partners, even in traditionally closed sectors such as banking.

In this dissertation we focus on a particular type of APIs which conform to
the REpresentation State Transfer (REST) architectural style constraints due to
their dominance in the API landscape. Although Fielding defined REST as ar-
chitectural style back in 2000, our state of the art review has identified a gap
when it comes to modeling the behaviour of REST APIs. Existing approaches are
not domain specific and as such fail to emphasise important facets in RESTful
interactions. Since APIs need to satisfy multiple clients, it is not always possible
to provide them with operations dedicated to achieving the specific goals of in-
dividual clients. Instead, clients often need to perform multiple interactions in
a specific order to achieve their goals. We call the set of possible sequences of
interactions to achieve a goal a RESTful conversation.

Visualizing complex RESTful conversations in a domain specific model can
help streamline their design by facilitating discussion and common knowledge
sharing, but also by constraining the supported API behavior from the combi-
natorial set of all possible interaction sequences. This enables service providers
to maintain and evolve their APIs. Visual models can also facilitate client de-
velopers’ understanding of a given API, and speed up the identification of the
correct sequence of calls to be made given a goal. Based on our study of the
characteristics of RESTful conversations, we introduce the design of RESTalk: a
Domain Specific Language (DSL) for modelling the behaviour of REST APIs. The
language supports single client to single server conversations, but also multiple
clients talking to the same server in order to achieve a common goal, as well as
composite layered conversations. We have designed RESTalk iteratively with a

vii

viii

frequent feedback from users while modelling different use-cases. Since its tar-
geted users are developers, we propose both a graphical and a textual syntax for
the language. We take an innovative approach in the design of the textual gram-
mar, which leverages on a mining algorithm to generate the alternative control
flow of the RESTful conversation and on a graph layout algorithm to automati-
cally produce the visual diagram. Thus, the textual DSL has a log-like form with
a minimal use of keywords. It aims at decreasing the cognitive load of the mod-
eler while increasing the efficiency of model generation. Further evaluations are
necessary to verify the actual benefits of the textual DSL over the graphical DSL.
We have evaluated the expressiveness of RESTalk with real-world examples of
RESTful conversations and patterns, and performed controlled experiments to
attempt to determine the effectiveness and efficiency of the visual diagrams in
facilitating the understanding of a given API.

Acknowledgements

As the famous proverb says “it takes a village to raise a child”, it also takes a
whole community to raise a PhD student, both an academic community and a
personal community, although often the two begin to intertwine with time. I
experienced some of the worst and some of the best moments personally and
professionally during my PhD endeavour, and my advisor Prof. Cesare Pautasso
was always there with his comprehensive nod, pushing me when needed and
giving me freedom once I got back on the right track. I heard today a person
being described as a volcano of ideas, and this is what Prof. Pautasso represents
for me. He spent countless hours discussing with me, inspiring me with his new
ideas, patiently explaining and waiting for me to fill up my knowledge gaps due
to my different educational background. I always left his office with clarification
of many doubts, and a creation of many new doubts and ideas. He supported
me in trying a workflow performance research path, and gave me the courage to
go back to the RESTful conversation modeling as research path when the other
one came to a dead end. I will always remain profoundly grateful to this wise
discreet man for his fatherly advises and support.

As I love teaching and put my heart to it, sometimes at an expense of my free
time and sleep, in addition to Prof. Pautasso, I would also like to thank another
great teaching reference, Prof. Matthias Hauswirth. I really enjoyed his mastery
checks and his Informa platform while taking his Java course, and I learned so
much about teaching itself from his PhD seminar on How Learning Works. His
dedication to teaching is amazingly unselfish and creative.

I would also like to express my gratitude to Prof. Florian Daniel, a very pos-
itive person who I will always remember with a smile on his face. This thesis is
in memoriam of his personality, his valuable constructive feedback on my thesis
proposal work, the numerous discussions on broad topics we had over a coffee
or a lunch. Words of gratitude also go to Prof. Cinzia Cappiello who accepted
my request to join the committee at a last minute. I learned a lot about ERPs
while assisting her courses, enjoyed our discussions regarding student projects
and grading, and enjoyed our coffee breaks.

ix

x

I would also like to thank Prof. Mathias Weske who I met at my very first
conference as a PhD, the BPM 2015 conference in Innsbruck, where I showed
him the first work on RESTalk, a nameless DSL at that point, which I was so
nervous to present at the ECSA conference the week after. His feedback during
the breaks at different BPM conferences as well as on my thesis proposal was
very valuable for the final outcome of this work. My gratitude also goes to Prof.
Walter Binder and his feedback during the thesis proposal presentation.

Another volcano of ideas which I spent countless hours discussing with, and
who I learned a lot from, is Vincenzo Ferme. He was a co-supervisor of my
master thesis, co-author of numerous publications and co-traveler to different
conferences during my first years as a PhD. His ambition in life and passion for
informatics is inspiring.

Of course these past 6 years would not have been fun if I were alone in the
office, renamed to the Nerfds office in the Skype chat after Andrea appeared with
5 Nerf guns at the door as a new stress release method. Thank you Andrea for
the guns, and for all the coffee breaks (thanks God you started drinking coffee
when you became a PhD). The birthday muffins you prepared for me with Masiar
will remain in history, as will the barbeques at Vassilis’s place. I am sure the new
members of the SW design office, Souhaila and Fabio will continue the good
office vibe we created.

A warm thank you note goes to my close friends spread across many countries,
and to “noi 7” my close group of friends here in Lugano, for all of their support
when it was time to relax, but also when it was time to say no to their invitations
due to an upcoming deadline. Special thanks to Miki, we have been through hell
and back together in this period, but I would not change a thing about it.

Of course a huge life-long thank you goes to my family, for their unconditional
love and support during all of my academic career. When I was on the crossroad
after finishing my Master’s degree they supported me into deciding for a PhD,
and stood by me every step of the way. As my father said to me once “my role as
a parent is to give you the means to learn so that you can fly away and succeed
when the time comes”. And last but not least, huge thanks to my husband to-be,
Kevin. He stood by me in the last 4 years of my PhD and made everything more
beautiful. He supported me and made me smile when I was nervous and stressed
out, and pampered me with coffee and food during the thesis writing marathon.
Thank you for all the love and patience.

Contents

Contents xi

List of Figures xv

List of Tables xix

I Motivation and Context 1

1 Introduction 3
1.1 Context . 3
1.2 Problem Statement . 5
1.3 Research Questions . 6

1.3.1 RESTful Conversations . 6
1.3.2 Modelling REST APIs . 7
1.3.3 Modelling Techniques Support 9
1.3.4 DSL Benefits . 10

1.4 Outline . 13
1.5 Publications Overview . 15

2 REST APIs 19
2.1 APIs, Web APIs and Service oriented architecture 19
2.2 REST Architectural Style . 22

2.2.1 REST Constraints . 22
2.2.2 REST Architectural Entities 24

2.3 RESTful Conversations . 25
2.4 REST APIs Description Languages . 28
2.5 Chapter Summary . 34

xi

xii Contents

3 State of the Art 37
3.1 Modeling REST APIs . 37

3.1.1 Modelling REST APIs Structure and Behaviour 37
3.1.2 Modelling RESTful Interactions in Microservice Architecture 41

3.2 Designing Domain Specific Languages 42
3.3 Designing Modelling Tools . 44

3.3.1 Existing Tool Studies . 46
3.3.2 Maturity Model and Reference Architectures 47
3.3.3 Textual DSL Syntax . 52
3.3.4 Textual Editor’s Features . 55

3.4 Evaluating DSLs and DSL Tooling . 57
3.5 Chapter Summary . 59

II RESTalk 61

4 RESTalk Language 63
4.1 RESTalk Requirements Layer . 63

4.1.1 Language Scope and Purpose 64
4.1.2 Language Requirements . 66

4.2 RESTalk Language Layer . 67
4.2.1 RESTalk Abstract Syntax and Semantics 68
4.2.2 RESTalk Graphical Representation 78
4.2.3 RESTalk Textual Representation 88

4.3 Chapter Summary . 99

5 RESTalk Tooling 101
5.1 RESTalk Envisioned Ecosystem . 101
5.2 Design First Approach - RESTalk Modeler 105

5.2.1 RESTalk Graphical Editor . 105
5.2.2 RESTalk Textual Editor . 107

5.3 Code First Approach - RESTalk Miner 113
5.3.1 RESTalk Graph and Comparative Statistics Visualization . 115
5.3.2 Pattern Matching, Discovery and Visualization 117

5.4 Chapter Summary . 120

III RESTalk Evaluation 121

6 RESTalk Formative Evaluation 125

xiii Contents

6.1 Exploratory Survey . 125
6.1.1 Survey design . 126
6.1.2 Survey sample . 128
6.1.3 Survey results . 129
6.1.4 Discussion . 143
6.1.5 Threats to Validity . 146

6.2 RESTalk Expressiveness . 146
6.2.1 Modelling RESTful Conversation Patterns 147
6.2.2 One Client - One Server Conversation 159
6.2.3 Multiple Clients - One Server Conversation 171
6.2.4 Composite Conversation . 174

6.3 Chapter Summary . 182

7 RESTalk Summative Evaluation 183
7.1 Design Validation of the Graphical RESTalk Representation 183
7.2 RESTalk vs Non-domain Specific Languages 189
7.3 Controlled Experiment . 194

7.3.1 Experiment Design and Setup 194
7.3.2 Experiment Results . 201
7.3.3 Statistical Significance Analysis 212
7.3.4 Discussion . 214

7.4 Chapter Summary . 219

8 Conclusions 221
8.1 Summary . 221

8.1.1 Contributions . 221
8.2 Limitations . 227
8.3 Future Work . 227

8.3.1 Requirements and Language Layers 228
8.3.2 Tooling . 228
8.3.3 Evaluation Layer . 229

Appendices 233

A Exploratory Survey Questions 233

B Controlled Experiment Tasks and Survey 275

Bibliography 289

xiv Contents

Figures

1.1 API Lifecycle . 11
1.2 Histogram of number of operations in a set of REST APIs 12

2.1 An example of a RESTful conversation 28
2.2 Behavioral elements of the OpenAPI metamodel 30
2.3 The use of links in OAS 3.0 to describe the API behavior 34

3.1 Reference architecture for a model editor in Cluster 1 48
3.2 Reference architecture for a model editor in Cluster 2 49
3.3 Reference architecture for a model editor in Cluster 3 50
3.4 Reference architecture for a hybrid model editor in Cluster 4 . . . 51
3.5 Sequence diagram definition in WebsequenceDiagrams vs ZenUML 53
3.6 Activity diagram definition in PlantUML vs yUML 54

4.1 RESTalk Development Framework (adapted from [94]) 64
4.2 Use Case Diagram for RESTalk’s Stakeholders 66
4.3 RESTalk meta-model . 71
4.4 Modification 1: replacing the BPMN Choreography Task 79
4.5 Modification 2: allowing for different server responses 80
4.6 Modification 3: hyperlink flow . 81
4.8 Extended RESTalk constructs . 84
4.9 RESTtalk diagram simplified following the simplification guidelines 85
4.10 Execution logs like textual DSL for core RESTalk elements 91
4.11 Execution logs like textual DSL for extended RESTalk elements . . 95

5.1 Architecture of envisioned RESTalk modelling and simulation tools 102
5.2 Architecture of envisioned ecosystem built around RESTalk 103
5.3 yEd RESTalk palette and example diagram 106
5.4 Pipeline of the current version of the RESTalk textual editor 108
5.5 Screenshot of the current version of the RESTalk textual editor . . 109

xv

xvi Figures

5.6 Pipeline of the envisioned version of the RESTalk textual editor
(Adapted from [92]) . 111

5.7 From “...” placeholder to expanded traces 112
5.8 RESTalk Miner overlapping vs. unique parts of conversations vi-

sualization . 116
5.9 RESTalk Miner pie chart visualizations 118
5.10 RESTalk Miner pattern matching . 119

6.1 Time dedicated to filling out the survey with distinction between
complete and partial answers . 126

6.2 Respondents’ experience with REST APIs 128
6.3 Maximum vs. actual number of answers per question 129
6.4 Used visual notations for RESTful conversations in practice 130
6.5 Diagram used for assessing RESTalk’s intuitiveness 131
6.6 Multiple choice questions for assessing RESTalk’s intuitiveness (or-

dered by percentage of correct answers) 133
6.7 Assessing RESTalk’s intuitiveness from respondents’ experience per-

spective . 133
6.8 RESTalk vs. Standard BPMN Choreography 134
6.9 RESTalk vs. Standard BPMN Choreography per sector 135
6.10 Long running request conversation modeled with RESTalk 136
6.11 Assessing the reading of RESTalk diagrams (questions are ordered

by percentage of correct answers) . 137
6.12 Assessing the reading of RESTalk diagrams from respondents’ ex-

perience perspective . 138
6.13 Correlation between time to answer and accuracy of answers . . . 138
6.14 Respondents’ models of CRUD operations on a collection item . . 140
6.15 Assessing RESTalk’s understandability per sector 141
6.16 Assessing RESTalk’s efficiency . 141
6.17 Assessing RESTalk’s efficiency per sector 142
6.18 Assessing RESTalk’s conciseness per sector 142
6.19 RESTalk textual and visual model of the POST Once Exactly pattern149
6.20 RESTalk textual and visual model of the POST-PUT Creation pattern150
6.21 RESTalk textual and visual model of the Long Running Operation

with Polling pattern [160] . 151
6.22 RESTalk textual and visual model of the Server-side Redirection

with Status Codes pattern . 152
6.23 RESTalk textual and visual model of the Client-side Navigation

following Hyperlinks pattern . 153

xvii Figures

6.24 RESTalk textual and visual model of traversals of a collection re-
source with four items (Example of the Incremental Collection
Traversal conversation pattern) . 154

6.25 RESTalk textual and visual model of the (Partial) Resource Editing
pattern . 155

6.26 RESTalk textual and visual model of the Conditional Update for
Large Resources pattern . 156

6.27 RESTalk textual and visual model of the Basic Resource Authenti-
cation pattern . 157

6.28 RESTalk textual and visual model of the Cookies-based Authenti-
cation pattern . 158

6.29 RESTalk visual model for Imgur’s API interactions with an unau-
thenticated user . 160

6.30 RESTalk visual model for Imgur’s API interactions with an authen-
ticated user regarding publishing and managing own content . . . 161

6.31 RESTalk visual model for Imgur’s API interactions with an authen-
ticated user regarding interacting with other user’s content 162

6.32 Sample of textual DSL user stories for the Imgur API 164
6.33 Microservice architecture of the example e-commerce company . 166
6.34 RESTful conversation for rendering a product item page 168
6.35 Sample of textual DSL user stories for the e-commerce microser-

vice architecture . 171
6.36 Doodle RESTful conversation with RESTalk 172
6.37 Textual DSL admin user story for the Doodle API 173
6.38 Simplified unified OAS (medium gray), RESTalk (light gray) and

SLA4OAI (white) metamodel . 175
6.39 Conversational model of a subset of the Scopus API for retrieving

an Author (top-left branch), an Affiliation (top-right branch) and
a Publication (bottom) . 176

6.40 RESTalk Conversation required to obtain the R00 report (enhanced
with SLA metadata on quotas and rate limits for the Subscriber
Plan, OAS links for the hypermedia flow and branch probabilities
extracted from the actual data). 178

6.41 Interaction dependencies between the end-user, SABIUS and Sco-
pus APIs . 180

6.42 Sample textual DSL for the SABIUS-Scopus composite conversation181

7.1 RESTalk full notation . 184

xviii Figures

7.2 Trade-off between the Physics of Notation principles (presented
in [212]) . 189

7.3 Redirect pattern modelled with UML Sequence diagram, BPMN
Choreography diagram and RESTalk 190

7.4 Long Running Operation with Polling pattern modelled with UML
Sequence Diagram . 191

7.5 Long Running Operation with Polling pattern modelled with BPMN
Choreographies . 192

7.6 Long Running Operation with Polling pattern modelled with RE-
STalk . 193

7.7 Grading structure and REST API experience per groups per exper-
iment . 199

7.8 Distribution of Correctness and Completeness Grades per group
in different tasks in Experiment 1 . 202

7.9 Distribution of Completion Time per group in different tasks in
Experiment 1 . 203

7.10 Distribution of the Perceived Task Difficulty per group in different
tasks in Experiment 1 as well as rating of RESTalk’s helpfulness
for solving the tasks . 205

7.11 Distribution of Correctness and Completeness Grades and Com-
pletion Time per group for Task 1 during the pilot study 206

7.12 Distribution of Correctness and Completeness Grades per avail-
ability of RESTalk diagrams in different tasks in Experiment 2 . . 208

7.13 Distribution of Completion Time per availability of RESTalk dia-
grams in different tasks in Experiment 2 209

7.14 Distribution of the Perceived Task Difficulty in different tasks in
Experiment 2 as well as rating of RESTalk’s helpfulness for solving
the tasks . 210

7.15 Scatterplot of the correctness/completeness grade and completion
time per task per group in Experiment 1 and Experiment 2 215

7.16 Scatterplot of the relation between RESTalk’s helpfulness rating
and correctness/completeness grade and completion time in Ex-
periment 1 and Experiment 2 . 216

Tables

1.1 Summary of publications related to RESTalk 16
1.2 Summary of publications related to the Bechflow project 17
1.3 Summary of publications related to the BPMN Sketch Miner 18
1.4 Summary of supervised bachelor and master thesis 18

2.1 SOAP vs REST Characteristics (adopted from [198; 218; 221]) . . 21
2.2 Root JSON objects in an OpenAPI documentation 29

3.1 Existing approaches for modelling the behaviour of REST APIs . . 40
3.2 Text for visual modeling - Maturity model 47

4.1 RESTalk Constructs supported by the textual RESTalk DSL 94

7.1 Experimental treatment in different experiment runs 198
7.2 Descriptive statistics about the correctness/completeness grade

metric and completion time metric in Experiment 1 204
7.3 Descriptive statistics about the correctness/completeness grade

metric and completion time metric in Experiment 2 211
7.4 Mann-Whitney mean ranks per group and per task for Experiments

1 and 2 . 213
7.5 Mann-Whitney Test statistics for Experiments 1 and 2 213
7.6 Mann-Whitney Test statistics for RESTalk’s Helpfulness rating be-

tween Experiments 1 and 2 . 217

xix

xx Tables

Part I

Motivation and Context

1

Chapter 1

Introduction

1.1 Context

Web Application Programming Interfaces (hereinafter APIs) allow different sys-
tems, built on top of heterogeneous technology, to interact with each-other over
the network, thus enabling remote access to services [173]. The main benefit
is that these type of interactions do not require deep knowledge of the oppo-
site system [114]. Emerging technologies, such as Cloud services [132], Service
mashups [37], and Microservices [148] all make use of APIs, driving their im-
provement, not only in terms of design and performance, but also in terms of
usability. APIs are used on daily basis in many different domains, from check-
ing weather and traffic, to updating your social media status, sending messages,
to even making payments. People working on digital transformation initiatives
state that APIs play significant role in those initiatives [166]. In fact tradition-
ally closed sectors, such as banking, are opening up their businesses through
APIs [203], in what is known as the Open Banking initiative whose goal is to
increase competition among financial institutions and boost innovation. This
initiative is partially arising from the legislative changes in the Payment Services
Directive (PSD2)1, which came to force in 2018 and required banks to share cus-
tomer data with regulated third-parties. As the years pass by this initiative is now
seen as an opportunity to meet important client needs such as customized prod-
ucts and solutions, high-degree of automation and end-to-end integration, as
well as hybrid digital-personal relationships [114]. “Innovative companies have
discovered that APIs can be used as an interface to the business, allowing them
to monetize digital assets, extend their value proposition with partner-delivered

1https://www.ecb.europa.eu/paym/intro/news/articles_2018/html/1803_

revisedpsd.en.html

3

https://www.ecb.europa.eu/paym/intro/news/articles_2018/html/1803_revisedpsd.en.html
https://www.ecb.europa.eu/paym/intro/news/articles_2018/html/1803_revisedpsd.en.html

4 1.1 Context

capabilities, and connect to customers across channels and devices" [159]. That
said, APIs are becoming the center of ecosystems bringing together different busi-
ness partners and disrupting existing markets (e.g., Uber). APIs are creating
essentially a new form of business model innovation [145], where companies
are monetizing their data and changing their value chain [96]. Depending on
who is the target user, we can distinguish between internal APIs, partner APIs
and external APIs. Internal APIs are used only inside the company who created
them, partner APIs are only shared with integration partners, while external APIs
are public APIs openly available to everyone. The results of recent industry sur-
vey [166] show dominance of the internal APIs (56.96%) in respect to partner
APIs (26.75%) and external APIs (16.29%), but that might change in the future
moving more towards external APIs. Although it is hard to tell the exact number
of APIs in the world, the ProgrammableWeb2, a popular API repository, counts al-
most 24’000 publicly available APIs in 2020, more than half of them being added
in the last 6 years.

There has been a recent shift in software engineering towards API-driven de-
velopment, where the key focus in the development is the API [71; 20]. Thus,
the term “API First”, which in a recent State of the API survey has been defined as
“defining and designing APIs and schema before beginning development” [166],
has been coined and has been gaining on popularity. The survey has discovered
that respondents with more then 6 years of experience with API development
are more likely to be “API First” leaders and as such are more likely to focus on
external public APIs. Such an “API First” or “contract first” paradigm fosters an
agile approach, not only in the service development, but also in the API devel-
opment and allows for the creation of the API designer role, which might not
always coincide with the API developer role. The API designer has to define the
API interface, discover endpoints that are of interest to potential clients and map
them to back-end data or functionalities [96]. The API developer will then be re-
sponsible for the implementation of the API. However, API initiatives do not only
involve the API designers and the developers in charge of the technical imple-
mentation of the API (hereinafter API developers), but also the developers who
implement the client which uses the API (hereinafter API client developers) [69].
API client developers “end up choosing the API that is easy to use, easy to inte-
grate, well-documented and easy to get started with” [20].

According to the ProgrammableWeb classification, APIs can be designed us-
ing different styles and protocols, such as Remote Procedure Calls (RPC), Simple
Object Access Protocol (SOAP), REpresentation State Transfer (REST) etc. [19;

2http://www.programmableweb.com

http://www.programmableweb.com

5 1.2 Problem Statement

112], and recently GraphQL3. ProgrammableWeb highlights the dominance of
REST APIs, as 83% of the registered APIs on this directory use HTTP methods
for client-server communication4. The 2020 State of the API Report based on
a Postman survey with over 13’500 industry practitioners [166] confirms the
trend as 93.4% of the respondents claim to use REST, with the other most pop-
ular styles, but with significantly less adoption, being webhooks (34.4%), SOAP
(33.4%) and GraphQL (22.5%). REST dominance has also been confirmed by
empirical studies [184; 146], which among other aspects, explored how service
to service communication is implemented in industry. REST is an architectural
style first presented by Roy Fielding’s PhD thesis in 2000 [54]. REST APIs are
structured around resources, which represent abstractions of information of po-
tential interest for the API users. Unique Resource Identifiers (URIs) are used
to access the information which is delivered as resource representation contain-
ing data, metadata and hypermedia links. An interaction between a client (API
consumer) and the API may result in a creation or deletion of a resource, or the
update or retrieval of the resource representation depending on the combination
of the HTTP method and the URI. In practice, the REST style is preferred to SOAP
as it supports different data formats, provides for loose-coupling and is less ver-
bose which renders it more scalable [236]. Having in mind such dominance of
REST APIs, this research focuses only on REST APIs, considering the other API
types out of scope.

1.2 Problem Statement

APIs provide powerful abstraction mechanisms, however such abstraction does
not come for free. The structure and the behaviour of the APIs need to be well un-
derstood both by the API developers and by the API client developers. Software
engineering is a social and collaborative activity [99], with communication and
knowledge sharing being among the most effort-requiring activities in software
engineering projects [100]. Documentation aims at facilitating such knowledge
sharing, and models have been frequently used for documenting software appli-
cations, as they abstract from implementation details [180]. Such models ought
to be used for documentation and knowledge sharing regarding the structure
and behaviour of APIs as well. Our literature review has shown that in the REST
APIs domain existing documentation solutions cover well the structure of the API,

3https://graphql.org
4https://www.programmableweb.com/news/json-clearly-king-api-data-formats-

2020/research/2020/04/03

https://graphql.org
https://www.programmableweb.com/news/json-clearly-king-api-data-formats-2020/research/2020/04/03
https://www.programmableweb.com/news/json-clearly-king-api-data-formats-2020/research/2020/04/03

6 1.3 Research Questions

however we have identified a gap in solutions targeting the documentation and
knowledge sharing regarding the behaviour of REST APIs. In this dissertation
we aim to address this gap.

1.3 Research Questions

Having identified the above mentioned research gap we have formulated a set of
research questions which we have divided into logical sections. The ultimate ob-
jective of this research is to study the modeling and visualization of the behaviour
of REST APIs with the aim of facilitating and improving their understanding, de-
sign, and usage.

1.3.1 RESTful Conversations

RQ1: What are the entities and constraints that are needed to model the inter-
actions with an API which is compliant with the REST architectural style?

The characteristics of the interactions with a given API depend on the API
style and the protocol used. As our research focuses on REST APIs, our first
research question refers to defining the entities, and constraints which are char-
acteristic for interactions with a REST API. The term RESTful conversations was
first coined by Haupt, Leymann and Pautasso [81] to “indicate a set of basic Hy-
perText Transfer Protocol (HTTP) request-response interactions that are driven
by the same client interacting with one or more RESTful Web services”. In this
thesis we broaden the definition to also include multiple clients interacting with
the same REST API. The characteristics of RESTful conversations are dictated by
the REST architectural style constraints which we discuss in detail in Sec. 2.2.
The communication primitives are dictated by the uniform interface constraint
requiring the use of an HTTP method and URI in every request, and an appro-
priate status code, and when applicable hyperlinks to next possible actions, in
the response. The stateless communication constraint requires that each interac-
tion is initiated by the client and contains all relevant data to enable the server
to process the request. Thus, a RESTful conversation is controlled by the server
sending hyperlinks for resource discovery, but is driven by the client who can de-
cide which hyperlink to follow next. In order to answer RQ1, after defining the
RESTful conversation constraints in Sec. 2.2, in Sec. 4.2.1 we propose a concept
dictionary of the relevant entities in a RESTful conversation and a metamodel to
define the relationship between the entities.

7 1.3 Research Questions

1.3.2 Modelling REST APIs

RQ2: What are the shortcomings of existing solutions for modelling REST APIs
and how can those shortcomings be overcome?

The existing industry tools for REST API documentation (e.g., RAML5, Swag-
ger6, Blueprint7, Mashape8) focus on structural and data modeling aspects,
and as such do not capture the dynamics of the client-server interactions. At the
end of 2015 the OpenAPI initiative9 has been launched to promote the effort of
standardizing the description of REST APIs. The Swagger 2.0 specification has
become the basis for the proposed standard OpenAPI Specification (OAS), which
is a vendor-neutral, portable and open specification for a YAML/JSON-based de-
scription format for APIs. OAS underwent a major revision towards the OAS
3.010. This revision has introduced the notion of a Link Object which “provides
a known relationship and traversal mechanism between responses and other op-
erations", thus recognizing the importance of the knowledge of the sequences
of interactions, in addition to the knowledge of the operations that can be per-
formed on a single resource. Although the newly proposed link object has not
been extensively used in industry yet, as service providers upgrade from OAS 2.0
to OAS 3.0, the use of this object can making it possible to use existing documen-
tation to generate feasible RESTful conversations.

Visual notations have been used in software engineering since the 1940s [142].
Gurr [79] argues that diagrammatic representation systems are more effective
than textual ones, as certain conclusions can be directly derived from the dia-
gram with no need to make logical inference. For instance, in case of nested
interactions, the nesting is more evident from a diagram than when explained
textually. Visual information is also more likely to be remembered due to the pic-
ture superiority effect [142]. Jolak et al. [99] in their controlled experiment have
also observed that graphical representation, in addition to providing better recall,
also fosters active discussion and creative conflict discussions while decreasing
the effort of conversation management compared to textual representation. As
mentioned in [212], the main purposes of using conceptual visual modelling are
communication, design, and understanding. Having in mind the goal of this the-

5http://raml.org
6http://swagger.io
7https://apiblueprint.org
8https://www.mashape.com
9https://www.openapis.org

10https://www.openapis.org/blog/2017/03/01/openapi-spec-3-implementers-
draft-released

http://raml.org
http://swagger.io
https://apiblueprint.org
https://www.mashape.com
https://www.openapis.org
https://www.openapis.org/blog/2017/03/01/openapi-spec-3-implementers-draft-released
https://www.openapis.org/blog/2017/03/01/openapi-spec-3-implementers-draft-released

8 1.3 Research Questions

sis to facilitate exactly those aspects, we argue that visualizing RESTful conversa-
tions can be a potentially beneficial approach. In existing research, non-domain
specific languages such as Petri Nets [117], UML state machines [187; 169; 170],
or UML sequence diagrams [81] have been used to visually model the behaviour
of REST APIs. There have also been attempts to visualize RESTful conversations
with BPMN Choreographies [151] as Domain Specific Language (DSL) in the
domain of visual modeling of interactions between business processes.

Using existing modelling languages has its advantage both in terms of the
time consuming task of designing a DSL, as well as in terms of language dissem-
ination and use of existing tool support for the DSL. However, the drawback of
using general purpose languages, or borrowing notations from other domains,
to visualise RESTful conversations, is that the REST domain specific facets dis-
cussed in RQ1 are not emphasised, are added as comments, or are simply omitted
(such as for example the information regarding the flow of resource discovery).
Lindland et al., in their framework for understanding the quality in conceptual
modeling [119], claim that a very important aspect of a modeling language is
precisely its domain appropriateness. Gurr [79] also argues that reasoning is
made easier for the user if the structure of the representation matches the pri-
mary concepts over which one must reason. Representations which are too ab-
stract, or unsupportive of basic reasoning tasks, create difficulties for the user.
Cortes-Cornax et al. [29] emphasize the same when evaluating the quality of
BPMN Choreographies. They state that “the language must be powerful enough
to express anything in the domain but no more”.

That said, in this thesis we propose RESTalk, a visual and textual DSL for
modeling the behaviour of REST APIs. We have used BPMN Choreography as a
starting point of the visual representation of the language in order not to built
it from scratch. BPMN Choreograpies are part of the BPMN [101] ISO stan-
dard for process modeling and they focus on modeling the coordination in cross-
organizational interactions. Process are similar to RESTful conversations in that
they are a sequence of activities which lead to a desired outcome [210]. REST
navigational style of following links naturally supports a workflow style of inter-
action between resources [191]. After all, service compositions, which are a se-
quence of calls to Web Services, are essentially fully automated processes [147].
Visual modelling of the behaviour of workflows [45] has been around for quite
some years, and it has been proven to facilitate process understanding and opti-
mization [109; 44]. Our aim is to transfer similar benefits in the REST domain
by modeling and visualization of RESTful conversations. With RESTalk, we are
modifying and extending the BPMN Choreography diagrams to fit the intrinsic
properties of the REST architectural style. The extension is described in detail in

9 1.3 Research Questions

Sec. 4.2.2. We have been developing RESTalk’s constructs through different iter-
ations, as we have been using it to model different use cases [160; 87; 161; 91]
described in Sec. 6.2. We compare RESTalk to standard visual notations for mod-
eling interactions in Sec. 7.2.

1.3.3 Modelling Techniques Support

RQ3:What type of a tool support can be built around a DSL for modeling REST
APIs behaviour?

The first set of tools that ought to be built around a DSL are DSL editors. As
RESTalk is a visual language the intuitive solution could be to build a graphical
editor. However, RESTalk targets developers who are more inclined toward tex-
tual editors due to the traditionally textual form of programming languages [22].
Having this in mind, we have studied over 30 existing editors for visual models,
which can be textual editors or graphical editors, or both, and we have come up
with a maturity model for going from text to visual models which we discuss in
Sec. 3.3. The maturity model identified five maturity clusters, going from just
binary or encoded textual model representation to hybrid tools with both textual
and graphical editors. We went on with analysis of the design of the textual DSLs
in the studied tools, identifying several approaches, such as the textual DSL being
visually close to the graphical DSL (e.g., yUML), the textual DSL being close to
programming languages syntax (e.g., ZenUML), or the textual DSL being close
to natural language (e.g., PlantUML, NaturalMash [5]).

We have decided to take a different approach for the RESTalk textual repre-
sentation and design a log-like DSL in order to leverage on the power of existing
process mining algorithms to aid the modelling of RESTful conversations. Min-
ing has been around for decades, and has gained on particular popularity in
the visual modeling of business processes [208], where it has been proven to
facilitate process understanding and optimization [109; 44]. Process mining ba-
sically takes as input process execution logs and through the use of algorithms
reconstructs the process workflow. As discussed in RQ2, workflows are similar
to RESTful conversations as they both focus on the sequence in which activi-
ties/interactions are performed. Thus, we had the novel idea of using a mining
algorithm to reconstruct the sequences of interactions described by the API de-
signer/developer in the form of simplified logs in order to generate the visual
RESTalk diagram. This is a novel use of mining algorithms as a modelling aid
on top of a textual DSL, thus extending their utility also to cases when execution
logs are not available. The proposed textual DSL is discussed in Sec. 4.2.3 and

10 1.3 Research Questions

a proof of concept implementation of a textual editor of the core version of the
same is presented in Sec. 5.2.2.

In addition to editors for designing models, it is also important to create an
ecosystem of tools around the DSL which ideally integrate with existing related
tooling in the domain, thus enabling the wider adoption of the DSL. In the case of
RESTalk this would include integration with OAS as a widely accepted standard
documentation for the structure of a REST API. Such integration would enable
an integrated documentation describing both the structure and the behaviour of
the API. In the spirit of Model Driven Engineering (MDE) [107], RESTalk models
can also be used to translate a given goal of the client to a skeleton of client im-
plementation code. RESTful conversation models can also be derived a posteriori
from the actual usage of the REST API, by mining its logs. A prototype mining
tool we have developed as part of a bachelor thesis is presented in Sec. 5.3. The
mining result can bring to interesting insights regarding how different clients
actually use REST APIs, and can thus help developers detect unexpected usage
patterns of their APIs by comparing different clients’ conversation logs. It can
also pinpoint frequent interaction sequences which are worth optimizing as they
are being used by most of the clients. Another idea is for a tool to be built on top
of the mining algorithm to perform conformance checking to detect divergence
of the actual conversation from the expected conversation [139]. We discuss our
envisioned tooling ecosystem around RESTalk in detail in Sec. 5.1.

1.3.4 DSL Benefits

RQ4: How can REST API developers and API client developers benefit from mod-
eling the API’s behaviour?

The benefits that can be derived from modeling API’s behaviour depend on
the phases of the API lifecycle the models are used in. As evident in Fig. 1.1 both
the API provider and the API consumer are involved in the API lifecycle.

In the design phase, when the “API First” approach is used fast feedback on
the API’s design is essential. Such feedback can be facilitated by modelling the
designed API’s behavior as it can reveal undesired traits, such as a chatty API
or inappropriate selection of resources, or missing resources given the business
goals. Fixing design mistakes in a published API is much harder than an error
inside a Web application due to the impact on the API clients, which are not
always known to the API designer [234]. When the API provider creates separate
roles for the API designer and the API developer, modeling API’s behavior can
facilitate the communication and common understanding of the API design by

11 1.3 Research Questions

the API developer. Depending on the tooling around a DSL, behavioral models
can also be used in the creation phase to transform models to code, a well known
practice in the model-driven development community [190]. They can also be
used in the testing phase to create test cases to verify that the API behaves as
expected [115].

Before publishing the API so that it can be discovered by the API consumer,
behavioural models can be used to complement the API documentation. A survey
on what makes APIs hard to learn [176] has revealed that 78% of the respon-
dents learn APIs by reading documentation. However, as indicated by a recent
study of REST APIs [146], in more than half of the analyzed APIs, documentation
is missing. And even when it is available, what is often missing, is the high-level
design of API’s behavior. In order to pass from the discovery phase to the de-
velopment phase in the API consumer, the API client developers need to learn
and understand how to use the API given their goal. Simple APIs, designed to
fulfill the requirements of a single client, can minimize the number of exposed
operations (method+URI pairs). Public and reusable APIs, however, are typi-
cally used by multiple clients, built at different times and operated by different
organizations. In this case, API’s size and complexity would grow out of con-
trol if an operation is added to satisfy the needs of each type of client using it.
Thus, although reusable APIs publish the minimal set of operations to satisfy all
clients, this set can sometimes reach over 50 operations [25; 146], requiring the
API client developers to compose such operations through multiple interactions,
thus having a conversation with the API to achieve their goals. This implies that
API client developers need to have good understanding of the APIs they ought

Figure 1.1. API Lifecycle

*Image taken from https://dzone.com/

https://dzone.com/

12 1.3 Research Questions

Figure 1.2. Histogram of number of operations in a set of REST APIs

*Source: [106]

to use, as well as the flow of the conversation that will enable them to achieve
their goal which is where conversation models can help.

A REST APIs visualization tool implemented as part of a master thesis we
have supervised [106] has analyzed 1176 REST APIs showing that, although
rare, there are APIs, such as Gitlab, with over 350 operations which can result in
lengthy API conversations. However, as evident in Fig. 1.2 most of the analyzed
APIs have few operations, which might create the need of composite conversa-
tions as the one described in Sec. 6.2.4 where multiple APIs are used to create a
single service provider.

The API lifecycle does not end with the API consumption, as APIs evolve and
change over time. One way to look at APIs is as a promise made by the API
provider to the API consumer [130]. The API provider makes a promise that the
API works now, that it will keep working in the future, and that it will be able
to evolve and improve while still keeping the promise [122]. A structural de-
scription of the API allows for an exponential number of possible sequences of
interactions, behavioral models are necessary to set up constraints on the sup-
ported behavior so that clear and manageable promises can be set by the API
provider and maintained in future versions of the API.

In addition to the above stated reflection on the theoretical potential benefits
of modelling the behaviour of REST APIs for the API developers and API client
developers, we have also conducted an exploratory survey which we discuss in
Sec. 6.1. The survey has showed that 38% of the respondents already use UML di-
agrams or in-house developed notations for modeling RESTful interactions. This

13 1.4 Outline

shows that the need for and benefits of modelling the REST API behaviour have
already been identified in industry. One of the benefits stated by the survey re-
spondents is improved productivity by improving the team’s understanding of the
interactions and by driving design discussions. As a product developer stated in
the survey: “REST APIs usually include trivial conversation patterns. Regardless
of their triviality, those should be explicitly noted in technical documentation. For
high-level design that is intended to facilitate the design processes and possible
conversations among different stakeholders, identifying conversation patterns
can decrease unnecessary information and thus prove time-and energy-saving”.
On a different note, the survey results have also showed that the respondents
find the core RESTalk easily understandable and less time consuming than the
technique that they currently apply. However, as the survey was just used as an
exploratory research, we make no inference of the results on the larger popula-
tion of API developers.

RQ5: How effective and efficient is the visual model created with RESTalk in
facilitating the understanding and the use of a given API?

The only way to answer this research question is by empirical research. To
that end we have designed and conducted a controlled experiment with bache-
lor students (see Sec. 7.3). The experiment consisted of solving different tasks
asking the participants to state the necessary sequence of interactions in order to
achieve a given goal by using the Imgur API. As the goal was to study the effec-
tiveness and efficiency of RESTalk diagrams, the independent variable was the
used API documentation with one treatment being only OAS documentation and
the other one being OAS documentation complemented with RESTalk diagrams.
The experiment did not show any statistically significant difference in the results
between the two treatments regarding the correctness/completeness of the solu-
tions or the completion time. Further experiments are needed to verify whether
such results hold true also for experienced API developers. The threats to the
validity of the result are discussed in Sec. 7.3.4.

1.4 Outline

This dissertation is divided in three parts comprised of eight chapters in total and
two appendixes. In this section we provide a brief description of the content of
each of them.

The first part of the dissertation, Part I - Motivation and Context, con-
tains essential background knowledge needed to address the above state prob-

14 1.4 Outline

lem statement and is comprised of two chapters. As the thesis focuses on APIs in
Chapter 2 - REST APIs we discuss the characteristics of service oriented architec-
tures before diving into the principles and constraints of the REST architectural
style. Such knowledge of REST is needed to be able to define one of the core
concepts of this thesis, the concept of “RESTful conversations” and to look at
and describe the existing REST APIs description languages, such as OAS, whose
structure we discuss in detail in this chapter. In Chapter 3 - State of the Art we
provide an overview of the state of the art research in different areas relevant for
the topics addressed in this dissertation. Clearly we provide an overview of ex-
isting practices for modelling REST APIs from different perspectives, such as the
structure, behavior or quality of service viewpoints, but also in emerging archi-
tectural styles using REST APIs such as the microservice architecture. Needless
to say, once we have identified the need of and have taken the decision to design
a DSL we had to look at best practices and research in the field of DSL design,
but also design of modelling tools which we also describe in this chapter. Last
but not least, designing a DSL requires an evaluation of the same thus we look
at the state of art in the evaluation of DSLs and DSL tooling.

The second part of the dissertation, Part II - RESTalk, focuses on the main
contribution of this research thesis, i.e., the design of RESTalk and the tooling
around it. In Chapter 4 - RESTalk Language we discuss the requirements we
have identified for a DSL for modeling the REST API’s behaviour, including the
scope and purpose of the language, the targeted users, and their use cases. Then
we continue with defining the abstract syntax and semantics of RESTalk in the
form of a concept dictionary, a metamodel, and OCL constraints to the meta-
model. As we have decided to provide both a graphical and a textual concrete
representation of RESTalk we describe both of them in this chapter, discussing
how we started from the BPMN Choreography diagrams and obtained RESTalk.
We also present the assumptions we use to simplify RESTalk models, as well as
the EBNF specification of the textual DSL. In Chapter 5 - RESTalk Tooling we
discuss the ecosystem we have envisioned to be built around RESTalk to support
its adoption and effective use in industry. We also present the proof of concept
tooling we have managed to implement to support the design of RESTalk dia-
grams, but also the use of RESTalk for visualizing the results of mining the logs
of interactions between clients and a giver RESTful service provider.

The third part of this dissertation, Part III - RESTalk Evaluation, focuses on
our evaluation efforts. In Chapter 6 - RESTalk Formative Evaluation we discuss
the evaluation work which helped shape RESTalk to its current version through
the gathered feedback. We present the design and the results of the exploratory
survey which helped us evaluate the industry need for a DSL and provided us

15 1.5 Publications Overview

with initial feedback on the design of the core visual RESTalk. Such design was
evolved later on by using RESTalk to model different use cases, from short pat-
terns of RESTful interactions to real APIs, which has improved its expressiveness
as discussed in this chapter. In Chapter 7 - RESTalk Summative Evaluation we
present the work we have done to evaluate the design of the graphical represen-
tation of the language using the Physics of Notation as a point of reference, but
also by comparing RESTalk to non-domain specific languages such as UML Se-
quence diagrams and BPMN Choreography diagrams. This chapter also includes
the description of the design and the results of the controlled experiments we
have conducted with bachelor students.

In Chapter 8 - Conclusions we summarise our research thesis and answer the
research questions we have set up in this introductory chapter. As no research
work is ever perfect, and there are always ideas on how it can be improved,
we conclude by discussing future work on the topic. To ensure transparency
and replicability of our empirical evaluation work in Appendix A - Exploratory
Survey Questions we provide an exported file of the actual survey discussed in
Chapter 6, while in Appendix B - Controlled Experiment Tasks and Survey we
provide the material which we have used for the controlled experiment discussed
in Chapter 7.

1.5 Publications Overview

Parts of this dissertation are derived from publications in international peer-
reviewed conferences and journals. In Tab. 1.1 we list the publications closely
related to this dissertation, while in Tab. 1.2 and Tab. 1.3 we list work which has
been published during the PhD as part of other projects.

16 1.5 Publications Overview

Table 1.1. Summary of publications related to RESTalk

Publications

20
15

Cesare Pautasso, Ana Ivanchikj, and Silvia Schreier. “Modeling REST-
ful Conversations with Extended BPMN Choreography Diagrams.”
In Proceedings of the European Conference on Software Architecture
(ECSA), pp. 87-94. Springer, Cham, 2015.

20
16

Cesare Pautasso, Ana Ivanchikj, and Silvia Schreier. “A Pattern Lan-
guage for RESTful Conversations.” In Proceedings of the European
Conference on Pattern Languages of Programs (EuroPLoP), pp. 1-22.
ACM, 2016.
Ana Ivanchikj, Cesare Pautasso, and Silvia Schreier. “Visual Modeling
of RESTful Conversations with RESTalk”. Software & Systems Mod-
eling (SOSYM Journal) 17, no. 3 (2018): 1031-1051 and Invited
SOSYM First Paper at the International Conference on Model Driven
Engineering Languages and Systems (MODELS). Invited SOSYM First
Paper. ACM, 2016.
Ana Ivanchikj. “RESTful Conversation with RESTalk -the Use Case
of Doodle-.” In Proceedings of the International Conference on Web
Engineering (ICWE), pp. 583-587. Springer, Cham, 2016.

20
18

Ana Ivanchikj, and Cesare Pautasso. “Modeling REST API Behaviour
with Text, Graphics or Both?" Domain Specific Languages Design and
Implementation (DSLDI - Talk). 2018
Antonio Gamez-Diaz, Pablo Fernandez, Cesare Pautasso, Ana Ivanchikj,
and Antonio Ruiz-Cortes. “ELeCTRA: Induced Usage Limitations Cal-
culation in RESTful APIs.” In Proceedings of the International Confer-
ence on Service-Oriented Computing (ICSOC - Demo), pp. 435-438.
Springer, Cham, 2018.
Ana Ivanchikj, Ilija Gjorgjiev, and Cesare Pautasso. “RESTalk Miner:
Mining RESTful Conversations, Pattern Discovery and Matching.” In
Proceedings of the International Conference on Service-Oriented Com-
puting (ICSOC - Demo), pp. 470-475. Springer, Cham, 2018.

20
20

Ana Ivanchikj, and Cesare Pautasso. “Modeling Microservice Conver-
sations with RESTalk.” In Microservices, Science and Engineering, pp.
129-146. Book Chapter. Springer, Cham, 2020.

17 1.5 Publications Overview

Table 1.2. Summary of publications related to the Bechflow project

Publications

20
15

Ana Ivanchikj, Vincenzo Ferme, and Cesare Pautasso. “BPMeter: Web
Service and Application for Static Analysis of BPMN 2.0 Collections.”
In Proceedings of the International conference on Business Process Man-
agement (BPM - Demos), pp. 30-34. Springer, Cham, 2015.
Vincenzo Ferme, Ana Ivanchikj, and Cesare Pautasso. “A Framework
for Benchmarking BPMN 2.0 Workflow Management Systems.” In
Proceedings of the International conference on Business Process Man-
agement (BPM), pp. 251-259. Springer, Cham, 2015.

20
16

Vincenzo Ferme, Ana Ivanchikj, Cesare Pautasso, Marigianna Sk-
ouradaki, and Frank Leymann. “A Container-centric Methodology for
Benchmarking Workflow Management Systems.” In Proceedings of
the International Conference on CLOud Computing and SERvices Sci-
ence (CLOSER), pp. 74-84. 2016.
Vincenzo Ferme, Ana Ivanchikj, and Cesare Pautasso. “Estimating the
Cost for Executing Business Processes in the Cloud.” In Proceedings of
the International Conference on Business Process Management (BPM),
pp. 72-88. Springer, Cham, 2016.

20
17

Ana Ivanchikj, Vincenzo Ferme, and Cesare Pautasso. “On the Perfor-
mance Overhead of BPMN Modeling Practices.” In Proceedings of the
International Conference on Business Process Management (BPM), pp.
216-232. Springer, Cham, 2017.
Daniel Lübke, Ana Ivanchikj, and Cesare Pautasso. “A Template for
Categorizing Business Processes in Empirical Research.” In Proceed-
ings of the International conference on Business Process Management
(BPM), pp. 36-52. Springer, Cham, 2017.
Vincenzo Ferme, Marigianna Skouradaki, Ana Ivanchikj, Cesare Pau-
tasso, and Frank Leymann. “Performance Comparison Between BPMN
2.0 Workflow Management Systems Versions.” In Proceedings of
the Workshop in Enterprise, Business-Process and Information Systems
Modeling (BPMDS), pp. 103-118. Springer, Cham, 2017.

20
19

Vincenzo Ferme, Ana Ivanchikj, Cesare Pautasso, Marigianna Sk-
ouradaki, and Frank Leymann. “IT-Centric Process Automation: Study
About the Performance of BPMN 2.0 Engines.” In Empirical Studies on
the Development of Executable Business Processes, pp. 167-197. Book
Chapter. Springer, Cham, 2019.

18 1.5 Publications Overview

Table 1.3. Summary of publications related to the BPMN Sketch Miner

Publications

20
19

Ana Ivanchikj, and Cesare Pautasso. “Sketching Process Models by
Mining Participant Stories” In Proceedings of the International Con-
ference on Business Process Management (BPM), pp. 3-19. Springer,
Cham, 2019.

20
20

Ana Ivanchikj, Souhaila Serbout, and Cesare Pautasso. “From Text to
Visual BPMN Process Models: Design and Evaluation.” In Proceed-
ings of the International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS), pp. 229-239. ACM, 2020. Invited
paper for SOSYM Journal 2021.

During this PhD we have also supervised the bachelor/master thesis listed in
Tab. 1.4 which directly or indirectly contributed to this work.

Table 1.4. Summary of supervised bachelor and master thesis

Thesis

Bachelor Ilija Gjorgjiev, “RESTful Conversation Mining”

M
as

te
r

Ruben Folini, “Automating Semantics-preserving BPMN Model Transfor-
mations”
Redona Kembora, “APISYMPHONY: a Tool to Measure and Visualize Static
Metrics of RESTful APIs”
Neha Tharani, “Financial Literacy: Using Information System to Visualize
Retirement Preparedness”
Gianmarco Palazzi, “Towards Open Execution: Transparent and Tamper-
proof Processes for Blockchain Applications”
Jonas Looser, “Robotic Process Automation: a Survey”

Chapter 2

REST APIs

In this chapter we provide relevant context for understanding and defining REST-
ful conversations, the principal entity in this research thesis. In Sec. 2.1 we pro-
vide a brief history of APIs, Service Oriented Architecture and communication
protocols, while in Sec. 2.2 we focus on REST as architectural style and the con-
straints and architectural entities that characterise it. This enables us to define
the concept of RESTful conversations and their properties in Sec. 2.3. In Sec. 2.4
we discussing the existing languages for describing REST APIs with special focus
on the Open API Specification as the emerging standard in the field.

2.1 APIs, Web APIs and Service oriented architecture

An Application Programming Interface (API) is a set of functions or procedures
used by applications to access services from the operating system, software li-
braries or other systems. APIs support some of the basic design principles of ob-
ject oriented programming, such as abstraction, encapsulation and modularity.
Namely, through information hiding APIs allow for encapsulation and modularity
of software, thus promoting software reuse and reducing the software develop-
ment effort. An API is essentially a contract that defines how two systems should
communicate with each other. It defines both how calls to the API should be
made, but also what is the expected behaviour of the API when the call is made.
APIs have evolved significantly overtime. API as a term has been first men-
tioned in 1968 by Cotton [30] to refer to clearly defined interaction methods
that insure the independence of the application being developed from the un-
derlying hardware. Later on, in 1975 the term was also introduced in the field
of databases [38], and soon after the term started being applied for all types of
programming, not just application programming. The concept of an API gained

19

20 2.1 APIs, Web APIs and Service oriented architecture

momentum and was extended again with the emergence of the World Wide Web
when the first Web APIs appeared which allowed for exchange of data between
different systems through a communication protocol over the network [218]. Al-
though today the term API is most widely used to refer to a Web API, the term
API has traditionally been used to specify the expected behaviour of a software
library or to specify the interface between an application and the operating sys-
tem. In both these cases the exchange of data is local, as opposed to Web APIs
where the exchange of data is between two machines over the network. Ofoeda
et al. [155] provide a recent literature review on API research in the last decade
which includes work on different types of APIs and from different aspects, both
in technical and social dimensions.
With the appearance of Web APIs, any discrete unit of functionality that can be
accessed remotely became a service and a new architectural style called Service-
Oriented Architecture (SOA) gained on popularity. “SOA is a software architec-
ture that is based on the key concepts of an application frontend, service, service
repository, and service bus. A service consists of a contract, one or more inter-
faces, and an implementation" [113].
The application frontend calls the service and receives the results of the service
call. It is also known as service consumer or client. It can be a web application
that interacts with the end users, or it can also be a batch program that invokes
the service periodically. The Open Group consortium1 defines the following char-
acteristics of a service:

• a logical representation of a repeatable business activity with a specified
outcome;

• self-contained;
• can be composed of multiple services;
• a black box to consumers of the service.

The service contract specifies the purpose and functionality of the service as well
as the terms of use. It can be formally defined in a standard definition language
such as IDL or WSDL. The functionality of the service is exposed through one
or more interfaces-APIs. APIs can use different communication protocols which
define how the services pass data among each other. The implementation of the
service provides the business logic and the data, and its complexity is hidden by
the API. Each service should be separately maintained and deployed, and loosely
coupled with respect to other services. The service repository enables service
discovery through the service meta data and serves as a database of different pub-
lished services, while the service bus connects the application frontend with the

1https://www.opengroup.org

https://www.opengroup.org

21 2.1 APIs, Web APIs and Service oriented architecture

service. A service can provide a completely new functionality, or it can be used
only as a wrapper around the functionalities of a legacy system to make them
available remotely. SOA brings several promises such as reuse, agility and flex-
ibility, application and data integration, as well as efficient time to market with
reduced costs [181]. Whether these theoretical promises get delivered does not
depend only on the technology, but also on the business vision of the company,
the implementation methodology and the correct service abstraction.
As mentioned above, different protocols can be used to enable the communica-
tion between services. In 2000 Microsoft and IBM published the spec for the
Simple Object Access Protocol (SOAP) as standardized communication proto-
col between servers which encodes messages in XML and transfers them over
a common envelope [193]. In the same year Salesforce offered its first XML
based Web API [182]. However, only few developer teams could take advantage
of Salesforce XML API, which due to its complexity came with a more than 400
pages long user manual [2]. Meanwhile Fielding was working on a new architec-
tural style for web applications which he called REpresentational State Transfer
(REST), described in detail in his PhD dissertation [54] published also in 2000.
By the end of the year EBay published its first API following the REST principles.
Initially SOAP, supported by some of the largest organizations, gained a lot of
popularity among developers, but REST caught up fast. While SOAP continues
being used for enterprise-level web-services, REST is the dominant choice for
building public APIs [141], as it requires lower network bandwidth and lower
round-trip latency [143]. Tab. 2.1 shows the main differences between SOAP
and REST, while in [162] Pautasso et al. compare the two integration styles in
terms of architectural decisions. In this work we focus on the REST architectural
style.

Table 2.1. SOAP vs REST Characteristics (adopted from [198; 218; 221])

SOAP REST

Exposes operations/method calls Returns data without exposing methods
Supports WS-Security Security handled by underlying structure
Requires a SOAP library at the end of the client No library support needed, typically used over HTTP
Not strongly supported by all the languages Single resource for multiple actions
XML format required Supports any content-type (XML and JSON used primarily)
Heavy message payload and high bandwidth Lightweight messages and lower bandwidth
All calls send through POST Typically uses explicit HTTP action verbs (CRUD)
Can be stateless or statefull Stateless
Difficult caching due to complex XML Caching can be used for performance improvement
WSDL - Web Service Definitions Documentation can be supplemented with hypermedia
More difficult for developers to use Less difficult for developers to use

22 2.2 REST Architectural Style

2.2 REST Architectural Style

“REST is not an architecture, but rather an architectural style. It is a set of con-
straints that, when adhered to, will induce a set of properties” [53]. REST is a
hybrid architectural style [204], which combines the layered, client-server, vir-
tual machine, and replicated repository styles, with the additional constraints
described bellow [54].

2.2.1 REST Constraints

The client-server constraint is based on the principle of separation of concerns
which improves the portability of different components of the system (the client
can run on different devices) and allows for independent evolution of such com-
ponents. The client and the server can be implemented independently, using any
programming language [159]. Any change in the server should not impact the
client and vice versa [198].
The client-server interaction is affected by the statelessness constraint which
requires a client’s request to carry all the relevant information for understanding
the request, such that the server does not need to remember the state of the
conversation. As a consequence, every interaction within a RESTful architecture
is always initiated by the client. Namely, this constraint explains the name REST
(representation state transfer) as “interaction state is not stored on the server
side; it is carried (transferred) by each request from the client to the server and
encoded inside the representation of the resource the request refers to” [178].
The statelessness constraint improves scalability as the server does not need to
dedicate any resources for keeping the session state. However, the trade-off of
this constraint is that it can introduce per-interaction performance overhead by
increasing the data that needs to be sent in sequential requests.
The cache constraint requires the cacheability of the data in a response to be
implicitly or explicitly labeled. When data is labeled as cacheable, later requests
for the same data can be served from the client cache, thus eliminating the need
to interact with the server to retrieve the data. When the data is retrieved for
the first time, the response indicates the expiry date of the cached data, after
which the request can no longer be served from the client cache. Cache can also
be used by the server to avoid the generation of a response each time the same
resource representation is requested. The main reasons for the use of caching
is to reduce latency and network traffic and improve the overall availability and
reliability of a service.
The layered system constraint restricts the knowledge of the system to a single

23 2.2 REST Architectural Style

layer, i.e., each component only knows about the layer which it interacts with.
This allows the use of intermediaries, such as proxies and gateways, without
changing the interfaces between components. Intermediaries are frequently used
for security reasons, load balancing, caching or encapsulating legacy services.
Layering also allows for changing and moving layers in and out of the system
architecture as technology evolves, provided that they are loosely coupled [198].
The code-on-demand constraint requires the client to download and execute
code sent by the server, such as scripts or plug-ins. Since it can lead to technol-
ogy coupling between the client and the server it is the only constraint which is
optional in REST.
The emphasis on the uniform interface constraint is one of the central features
that distinguishes REST from other architectural styles. It allows for decoupling,
information hiding and standardization. This is achieved by using standard
methods to manipulate resource representations and using standard response
status codes. Which methods are available for which resource is decided at de-
sign time, but can change at run time based on the state of the resource. When
using the HTTP protocol the most frequently used methods are GET, POST, PUT,
and DELETE. Which one will be used in the request, depends on the client’s goal.
GET is used to retrieve the resource representation, POST is used to create new
resources, PUT is used to modify existing resources and DELETE is used to delete
existing resources [51]. Some of these methods (e.g., GET) are safe in terms that
they do not modify the resource. Others (e.g., PUT, DELETE), are not safe, but
they are nonetheless idempotent, i.e, they can be called multiple times without
changing the outcome of the call, which has important recovery implications in
presence of temporary communication failures [52]. The standardization of the
response status code is done in three-digit number classes. Thus, the responses
with status code in the range 100 to 199 indicate that the information in the
response is provisional, in the range 200 to 299 indicate a successful request, in
the range 300 to 399 indicate the need of redirecting the request, in the range
400 to 499 indicate an error while in the range 500 to 599 indicate server failure
and that the client should resend the request. The standardization of the in-
terface allows for sustainability as the implementation can be replaced without
impacting the users. The uniform interface constraint creates the necessity of
further constraints to guide the behavior of different components, i.e., the iden-
tification of resources, the manipulation of resources through representations,
the self-descriptive messages, and the Hypermedia As The Engine Of Application
State (HATEOAS).
These constraints ensure a “design that creates an API that is not dictated by its
architecture, but by the representations that it returns, and an API that – while

24 2.2 REST Architectural Style

architecturally stateless – relies on the representation to dictate the application
state” [198]. Clients do not know the internal format and state of resources, all
they receive in the server response is a representation of the resource.

2.2.2 REST Architectural Entities

The main entity in REST is the resource. Resources are conceptual abstractions of
any information or service that can be named, and thus can be identified as rele-
vant to the client. A resource is the semantics of what needs to be identified, not
the value of the semantics at the point when the reference is created. A resource
can have subresources that represent its specific subordinate concepts [126]. The
entry-point of the API is its root resource. REST APIs are collections of interlinked
resources that adhere to REST architecture principles and constraints. Resources
provide generalization which abstracts from the data type or implementation of
the resource. Each resource is globally identified by a Uniform Resource Identifier
(URI) used to address the request to that resource. Although Fielding does not
talk about URI design in his thesis, there are certain best practices that should be
followed when designing the API [126]. The role of a REST API is to provide a
mapping of a URI to a representation of the resources. The current or intended
state of a resource is captured in its representation which is a sequence of bytes
used in the communication between REST components. “The representation is
a way to interact with the resource but is not the resource itself” [126]. This
allows to send different representations of the same resource to different clients
depending on the request. The data format of the representation is called a me-
dia type. Different media types can be used such as plain text, JSON, XML, etc.
Resources allow for late binding of the reference to a representation by content
negotiation between the client and the server, depending on the desires of the
client and the nature of the resource. The response can also include a representa-
tion and resource metadata. The last data element Fielding mentions in his thesis
is the control data in the request or the response used to parameterize requests,
override default caching behaviour etc.
Fielding identifies two primary connector types, client and server. Connectors are
defined as abstract interface for component communication where components
refer to the origin server, gateway, proxy or user agent. The client instantiates the
communication with the server by making a request, while the server responds
to the request. Essentially the client is interested in manipulating the resources
managed by the server. Client’s request consists of a method, URI, request-header
fields and sometimes representation, while server’s response consists of a status
code, response-header fields and sometimes a representation.

25 2.3 RESTful Conversations

The client discovers the URIs dynamically from the server’s response, which can
refer the client to related resources. The mechanism whereby hyperlinks (or
resource references) are embedded into resource representations, or sent along
in the corresponding meta data [154], is one of the core tenets of REST, known
as Hypermedia [12]. The server’s responses can contain from zero to many links,
depending on the current state of the requested resource. The server might also
send parametrized links based on which the client can dynamically construct
the URI for the next request by providing the required parameter(s). The client
should simply follow links, without making any assumptions about the URI’s
structure [196]. This constraint is known as HATEOAS (Hypermedia As The
Engine of Application State) [54] and allows the server-side logic to be changed
and to evolve independently of the client [120; 159].

2.3 RESTful Conversations

Web services borrowed the notion of conversation [18] to indicate richer forms
of interactions going beyond simple message exchange patterns [220]. In tra-
ditional messaging systems, conversations involve a set of related messages ex-
changed by two or more parties [85; 17; 83]. As more and more Web services
adopt the constraints of REST, conversations remain an important concept when
reasoning about how clients make use of REST Web APIs [173] which by de-
sign are chatty [96]. Although the simplicity and standardization of the HTTP
protocol allows for very trivial conversations which can be limited to single inter-
actions, by studying and implementing RESTful Web services, we have noticed
that for addressing some non-functional requirements (e.g., security, reliability,
scalability), developers often combine several HTTP interactions, as part of con-
versations. Redirection is a very simple example of such a conversation, imple-
mented in many development frameworks and libraries (e.g., Express.js, Play).
Frequently, achieving a goal with a REST API requires multiple HTTP request-
response interactions. Different clients might have different goals achievable
with different HTTP request-response sequences. Thus, in the REST domain as
well we can talk about conversations. We call a RESTful conversation a model
of a set of possible sequences of interactions that one or more types of clients can
have with a given REST API. Different run-time instances of a given RESTful con-
versation can take different paths in the conversation model as different clients
might have different goals to achieve, or may take different paths to reach the
same goal. RESTful conversations have been introduced in [81], where they are
used as an abstraction mechanism to simplify the modeling of individual REST

26 2.3 RESTful Conversations

APIs. The goal of these conversations is usually to retrieve or modify the state of
one or more resources which are managed by the service provider.
To summarize, as a result of the characteristics and constraints of the REST ar-
chitectural style mentioned in Sec. 2.2, RESTful conversations can be seen as a
specific kind of message-based conversations defined by the following properties:

1. Interactions are always client-initiated, thus it is the client who drives the
conversation forward and decides when to stop it;

2. Client requests are addressed to resources, identified through their URIs;

3. When the server is available to process client requests, every request mes-
sage is always followed by a response. There may be different possible
responses to the same request message, depending on the state of the re-
quested resource;

4. Hypermedia: responses embed related URIs, which may be used to address
subsequent requests;

5. Statelessness: every request is self-contained and thus independent of the
previous ones;

6. Uniform Interface: there is a fixed set of request methods a resource can
support. Depending on the state of the resource, the server allows clients
to use different methods when interacting with it.

These properties make it possible to share the responsibility for the conversation’s
direction between clients and servers. It is the client who initiates the conversa-
tion, but it is the server who guides the client towards the next possible steps by
choosing to embed zero, one or more related URIs as hyperlinks in a response.
The client may choose which hyperlink(s) to follow, if any (it may also decide to
stop sending requests at any time). Thus, it is the client who decides the path to
take to continue the conversation by selecting the next request from the options
provided by the server in previous responses. As the client is following links, the
REST API can be seen as a navigation graph-like structure of resources connected
by hyperlinks [82]. In general, the client can accumulate URIs discovered dur-
ing the entire conversation or may remember them from previous conversations.
Zuzak et al. call this the Link Storage in their finite-state machine model for
RESTful clients [238]. Additionally, responses may be marked as cacheable, and
thus clients will not need to contact the server again when reissuing the same
request multiple times.

27 2.3 RESTful Conversations

The discussion so far assumes that servers are available and always reply to
client’s requests. However, servers may indicate their unavailability by sending
responses with the 503 Service Unavailable status code. In case of failures, either
due to loss of messages or due to the complete unavailability of the servers, an
exception to the request-response rule must be made. Clients may thus decide
to resend a request after a given timeout (for temporary failures) or eventually
give up retrying (for permanent failures).
To give an example of a RESTful conversation, lets imagine a REST API for man-
aging simple to-do lists allowing the client to create new lists and add or re-
move items to these lists. The RESTful conversation typically starts with the
client accessing the root resource of the service, i.e., sending a GET request at
http://your-to-do-list.org, for instance. In the response the client can find
links to its existing lists, like /list/1 which refers to its professional to-do list,
or /list/2 which refers to its personal to-do list, as well as a link to a resource,
e.g., /list, for creating a new list. The client can now decide to access one of the
existing resources using a GET request, or to create a new resource (list). In the
latter case the client would send a POST request to /list with the name of the
new list, e.g., “volunteer”, as content in the request body. Since POST is not an
idempotent verb, resending the POST request multiple times would result with
the creation of multiple new lists with the same name if the design of the API is
not robust enough to detect and handle such cases. Once the server creates the
list, it would send a “201 Created” response with a Location link header referring
to /list/3, the URI of the newly created list. If the client wants to access the
new list it can easily follow this link using a GET request which would respond in
a “200 OK” with the content of the new to-do list. However, this does not need
to happen immediately. The client could also pause the conversation for a longer
period of time and access the new volunteer list later, as the /list/3 location
link contains all the necessary information to identify this specific resource. Such
property of the URI provides for the statelessness principle. Namely, there is no
need for the server to store something like a session, i.e., the state of this client-
server-communication, since all required information is contained in the request
sent by the client. As all URIs, beside the first one, are provided in responses to
previous requests, the client can discover the whole service by solely knowing
the root URI of the service.
A visualization of an optional conversation of the client and the server is illus-
trated in Fig. 2.1 where the request and response bodies are left out for readabil-
ity reasons. However, Fig. 2.1 only shows one possible direction of the conversa-
tion. The client can also decide to access its personal or professional list which
would result with a different set of interactions. Visualizing all of the possible

http://your-to-do-list.org
/list/1
/list/2
/list
/list
/list/3
/list/3

28 2.4 REST APIs Description Languages

Figure 2.1. An example of a RESTful conversation

conversation directions can be facilitated with the domain specific notation we
present in Chapter 4.

2.4 REST APIs Description Languages

Good documentation of an API is not only crucial for attracting customers to build
clients for the API, but is also very important for the maintenance and evolution
of the same. In the API design first approach good documentation is also crucial
for discussing the design of the API [71].
Initially the development of REST APIs was code-driven, and due to the simplic-
ity of REST, documentation was considered redundant [121]. The first docu-
mentation attempt came to life in 2009 when the Web API Description Language
(WADL) was designed by Sun Microsystems using XML. Soon after, the open
source Swagger project, with no formal corporate backing, was started2. It used
and still uses JSON format for the API documentation. In 2013 two more REST
API description languages appeared, the API Blueprint3 and the REST API Mod-
elling Language (RAML)4, both of them with corporate backing, API Blueprint
by Apiary and RAML by MuleSoft. Swagger, API Blueprint and RAML started
competing and co-existing, each with a different vision. Swagger started with
a focus on the code-driven development needs and with vendor neutrality. API

2http://swagger.io
3https://apiblueprint.org/
4https://raml.org/

 http://swagger.io
https://apiblueprint.org/
 https://raml.org/

29 2.4 REST APIs Description Languages

Blueprint focused on the API consumers and since the human readability of the
documentation was important it opted for markdown formatting of the docu-
mentation. RAML on the other hand opted for the YAML format with a focus on
the API design. It targets larger API providers.
At the end of 2015 the OpenAPI initiative5 has been launched to promote the ef-
fort of standardizing the description of the interface of REST APIs. The Swagger
2.0 specification has become the basis for the proposed standard OpenAPI Spec-
ification (OAS). OAS is a language-agnostic, vendor-neutral, portable and open
specification for a YAML/JSON-based description format for REST APIs, striv-
ing to become a widely accepted standard. The specification is both human and
machine readable and allows its users to discover and understand the structure
of REST APIs without accessing their source code. Recently, in addition to ma-
jor companies such as Google, IBM and Microsoft, the creators of API Blueprint
and RAML also joined the OpenAPI initiative, thus opening up the possibility for
converging of the three description languages into one standard language.
The OpenAPI specification document is created with the support of dedicated
DSLs or GUI editors6, for the time being it can still not be created from an API
implementation code. Although an OpenAPI document that conforms to the Ope-
nAPI Specification can be represented in JSON or YAML format, it is actually a
set of JSON objects, with a specific schema to define the naming, order, and con-
tents of the objects. As evident in Tab. 2.2 an OpenAPI document can have eight
root level objects.

Table 2.2. Root JSON objects in an OpenAPI documentation

Object Description

openapi semantic version number of the OpenAPI Specification

info
metadata about the API such as the title, a short description, the version,
link to the license and the terms of service, and contact information

servers
array of server objects which provides the basepath to a target server,
i.e., the part of the URL that appears before the endpoint

paths endpoints provided by the API and operations on the same

components
an object that holds various schemas for the specification, i.e., re-usable
definitions that appear in multiple places in the OpenAPI document

security defines the security mechanisms that can be used in the API

tags
a list of tags to define additional metadata and arrange the endpoints
into named groups

externalDocs additional external documentation

5https://www.openapis.org
6https://openapi.tools

https://www.openapis.org
https://openapi.tools

30 2.4 REST APIs Description Languages

The authors in [48] derive a metamodel of the OpenAPI Specification, describing
three main parts: 1) behavioural elements, 2) structural elements and 3) serial-
ization/deserialization elements. The behavioural elements of the methamodel
presented in Fig. 2.2 are of main interest for this thesis.

Figure 2.2. Behavioral elements of the OpenAPI metamodel

*Image taken from [48]

The paths object is comprised of path items sub-objects. In the example in List-
ing 2.1, taken from the OpenAPI Github repository examples7, there are two
paths /2.0/users/username and /2.0/repositories/username. The call to
the resources on this path is made on the URL composed of the server URL de-
fined in the server object plus the URL path stated in the path item object. For
each endpoint, or path in OAS terminology, there is a list of operations objects
defining the methods that can be called on the endpoint. The operations object
has multiple properties that define both the request and the response to the re-
source in question. The first endpoint in the example in Listing 2.1 only supports
the GET method. The path to the resource is parametric as evident from the
parameters object where the username parameter is defined as a required pa-
rameter in the path. The in property of the parameter object defines where the
parameter appears and accepts the following values: header, path, query and
cookie. Request body parameters are described in the request body object. The
current version of the OpenAPI specification cannot programmatically reflect the
dependencies between parameters or the mutual exclusiveness of the parame-

7https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/
link-example.yaml

https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/link-example.yaml
https://github.com/OAI/OpenAPI-Specification/blob/master/examples/v3.0/link-example.yaml

31 2.4 REST APIs Description Languages

ters. It can only be described in natural language in the description property
of the parameters object.
Another important object inside the operations object is the responses object
which defines the responses that can be obtained when making a call to the end-
point of interest. In addition to the status code, 200 in the example in Listing 2.1,
the responses object can also include a reference object with a pointer to a de-
scription in the components object. The goal of using reference objects in the
OpenAPI documentation is to simplify the code and to support the reuse. The
components object can contain schemas, responses, parameters, examples,
requestBody, headers, securitySchemes, links or callbacks. In addition
to the official OAS documentation at github8, there are also different tutorials
available which explain the specification in detail [98].

Listing 2.1. YAML representation of an example of OpenAPI document

openapi: 3.0.0

info:

title: Link Example

version: 1.0.0

paths:

/2.0/users/{username}:

get:

operationId: getUserByName

parameters:

- name: username

in: path

required: true

schema:

type: string

responses:

'200':
description: The User

content:

application/json:

schema:

$ref: '#/components/schemas/user'
links:

userRepositories:

8https://github.com/OAI/OpenAPI-Specification

https://github.com/OAI/OpenAPI-Specification

32 2.4 REST APIs Description Languages

$ref: '#/components/links/UserRepositories'
/2.0/repositories/{username}:

get:

operationId: getRepositoriesByOwner

parameters:

- name: username

in: path

required: true

schema:

type: string

responses:

'200':
description: repositories owned by the supplied user

content:

application/json:

schema:

type: array

items:

$ref: '#/components/schemas/repository'
links:

userRepository:

$ref: '#/components/links/UserRepository'
components:

links:

UserRepositories:

returns array of '#/components/schemas/repository'
operationId: getRepositoriesByOwner

parameters:

username: $response.body#/username

UserRepository:

returns '#/components/schemas/repository'
operationId: getRepository

parameters:

username: $response.body#/owner/username

slug: $response.body#/slug

schemas:

user:

type: object

properties:

33 2.4 REST APIs Description Languages

username:

type: string

uuid:

type: string

repository:

type: object

properties:

slug:

type: string

owner:

$ref: '#/components/schemas/user'

The major revision of the standard in version 3.0 released in July 2017, and up-
dated to the latest release 3.1.0 in June 2020, has made structural changes to the
OpenAPI document to accommodate multiple servers, to emphasize reusability
through the definition of the above mentioned components object and to encour-
age the use of examples.
In this major release also the above mentioned links component was added.
This new component serves to describe how various parameter values returned
by one operation can be used as input for other operations. Thus, it provides
details about the relationship between the operations and a mechanism to tra-
verse the operations. More detailed explanation on the use of the links object
is available at https://swagger.io/docs/specification/links/ and an ex-
ample use is provided in Fig. 2.3. Links can also be used to refer to external
documentation of different APIs.
However, the OpenAPI Specification does have some shortcomings. It does not
provide any information about API keys, rate limits etc [64]. Furthermore, while
the OpenAPI documentation enumerates all possible operations (combinations
of resource path and method) provided to API clients, it lacks a description of
which are the meaningful sequences of API interactions that can be followed
by clients to achieve their goals. Such behavioral aspects, i.e., the dynamic in-
teractions between the client and the API, are not always evident in large and
complex systems [98] where frequently the interactions require to call a certain
endpoint in order to get an object that is required in the parameters of another
endpoint. OpenAPI documents using OAS 3.0 potentially can contain behavioral
information whose format is machine readable, but not friendly for the human
user who needs to traverse the links to get a general image of the API behaviour
as evident in Fig.2.3, as no visualization of the relationships is available as part of
the standard. A dataset of 1176 REST APIs that we analyzed as part of a master

https://swagger.io/docs/specification/links/

34 2.5 Chapter Summary

Figure 2.3. The use of links in OAS 3.0 to describe the API behavior

*Image taken from https://swagger.io/docs/specification/links/

thesis we supervised [106], has shown that none of the APIs in the API Harmony
repository9 actually uses OAS 3.0.

2.5 Chapter Summary

We started this chapter with a short discussion of the emergence of APIs and
their popularisation with the SOA architecture and the World Wide Web, to then

9https://apiharmony-open.mybluemix.net/public

https://swagger.io/docs/specification/links/
https://apiharmony-open.mybluemix.net/public

35 2.5 Chapter Summary

focus on REST as an architecture style. Studying the characteristics of REST
was indispensable for enabling us to define the central concept of this thesis, the
concept of RESTful Conversations whose properties are shaped by the the REST
constraints. RESTful conversations are models of a set of possible sequences
of interactions that one or more types of clients can have with a given REST
API. As initially the documentation of REST APIs was considered redundant due
to the simplicity of REST, existing languages for describing REST APIs, such as
the emerging standard OpenAPI Specification (OAS), only focus on describing
the structure of the API. It is only in the latest version of OAS that behavioral
information about possible interactions between operations earned its place in
the specification through the l ink object which, if used correctly, can provide
machine readable traversal mechanism for the REST API.

36 2.5 Chapter Summary

Chapter 3

State of the Art

When faced with a problem, before putting efforts into inventing a new solution,
one investigates existing solutions to see whether they can solve the problem
effectively. Thus, in this Chapter we discuss the related work and position the
contribution of this thesis with respect to the body of current research. In Sec. 3.1
we discuss existing solutions in different areas for modeling REST APIs, not only
their behaviour, but also the structure and the quality of service of the same. Af-
ter analysing existing modelling solutions, depending on how well they respond
to the identified problem, one can decide to expand them, or to find a new mod-
elling solution starting from scratch. In both cases, the solution needs to be
designed. Thus, in Sec. 3.2 we discuss existing guidelines for DSL design, while
in Sec. 3.3 we discuss existing approaches for designing editing tools for DSLs
and based on our research we present a maturity model for editors supporting
visual models. Once the solution has been designed in also needs to be evaluated
which is why in Sec. 3.4 we reflect on existing work in software evaluation and
DSL evaluation.

3.1 Modeling REST APIs

REST APIs can be modelled from different perspectives. In this section we will
look at the existing work in some of the most relevant perspectives.

3.1.1 Modelling REST APIs Structure and Behaviour

The necessity of modeling Web service interactions is as old as Web services them-
selves. It has led to the creation of the “Web Services Choreography Working

37

38 3.1 Modeling REST APIs

Group”1 in 2002 which aimed at defining a vendor-neutral choreography specifi-
cation to facilitate service integration. Muehlen et al. [236] illustrates the history
of the standardization process in this area, but the Web Services Choreography
Description Language (WS-CDL) remained only a candidate standard language
since the working group was closed in 2009. However, graphical representa-
tion of the choreographies was never in the scope of this group. Meanwhile,
academia and industry were working on the visualization aspect of choreogra-
phies and came up with different proposals for modeling languages such as Let’s
Dance [229] or iBPMN [41]. They have eventually led to the introduction of
the Choreography Diagram in version 2.0 of the BPMN standard [223, Chap. 5],
which Nikaj et al. [151; 152] use to model RESTful conversations by adding
REST-specific annotations. They focus on maintaining the business logic behind
RESTful interactions, evident also in their further work in [153], where they de-
rive RESTful choreographies from BPMN choreographies based on natural lan-
guage processing of the activities’ labels, and in [150] where they propose an
orchestration tool called ChoreoGuide that can be deployed in a REST business
process engine which serves the purpose of validating the REST request payload
whenever it requires the change of the state of a resource. This makes their vi-
sual modeling approach verbose in cases where business process orchestration
is not the main focus. While they target mainly RESTful interactions between
different business processes, we abstract from the business process context and
concentrate on the RESTful interactions in general, may they be in a business
process context, microservice context etc. More details on their approach can be
found in Nikaj’s PhD thesis [149].
Another stream of studies focuses purely on REST APIs. Schreier [187], in her
REST metamodel, identifies structural (static) and behavioral (dynamic) mod-
eling of REST APIs. The static model defines the structural elements of an API,
i.e., the resources, their URI, their methods, the supported representation me-
dia types etc. Significant theoretical work [54; 126; 80] and tool support (e.g.,
RAML, Swagger, Blueprint, Mashape, OAS) has already been provided for this
structural aspect. The behavior model, on the other hand, refers to the request-
response interactions and the behavior triggered by method calls. Existing work
on the behavioral aspect usually addresses the question of validating compli-
ance with REST. As such it tends to rely on Petri Nets [117] or UML state ma-
chines [187; 165; 169; 170] to visualize the dynamics.
Li and Chou [117] use Coloured Petri Nets [97], what they call REST Charts, to
model REST APIs as a set of hypermedia representations and transitions between

1http://www.w3.org/2005/12/wscwg-charter.html

http://www.w3.org/2005/12/wscwg-charter.html

39 3.1 Modeling REST APIs

them. Later on in [118], they extend their modeling framework in order to de-
couple the resource representation from the resource connections and to provide
for layered representations. The interaction itself is depicted in the transition el-
ement, however it lacks REST specific visual presentation, i.e., the request and
response are not evident in the transition element. Alowisheq et al. [10] use
UML collaboration diagrams to show the interactions between different REST re-
sources, but they fail to depict alternative paths, nor do they visualize responses
or hyperlink flows.
Rauf et al., tackling the research question of designing REST compliant and de-
pendable Web services in a PhD thesis [170], identify the necessity of modeling
the behavior of REST interfaces. They use UML class diagrams and UML protocol
state machines to visualize the behavioral interfaces in order to take advantage
of existing tools for model validation and consistency analysis. Their model is
state centered and focuses on any data sent with POST, PUT or DELETE requests
in order to trigger the transfer between states. The GET method is implicitly
used to check for the state invariants. Based on Schreier’s metamodel [187], van
Porten in [215] develops and evaluates a visual notation for modeling Resource-
oriented applications. Beside views for static aspects, he also offers two views for
dealing with the behavioural aspects of the model. One focuses on the behavior
of single method calls, thus not tackling multiple client-server interactions. The
other view focuses on the state transitions of a single given resource.
Alarcon and Wilde [6] embrace the important REST principle of interlinked re-
sources and propose ReLL (the Resource Linking Language). They agree that
the most important aspects in modeling REST services are the links between re-
sources and the necessary interactions to access the resources. The tool they
have implemented to harvest REST resources outputs a typed graph of the dis-
covered resources and the links between them, but it does not explicitly present
the request method, response status codes and the control flow.
Mitra [137], proposes a sketching tool aimed at Web API designers, which offers
two different canvas views depending on the API style, which he calls CRUD and
Hypermedia style. The CRUD style reflects the resource, URI and HTTP method,
while the Hypermedia style uses informal state diagram for visualization. This
tool, by design, does not support logical behavior visualization. In Tab. 3.1 we
provide a summary of the mentioned visual approaches for modelling the behav-
ior of REST APIs.
Since the convergence towards Open API Specification as a standard documenta-
tion for REST APIs, work had been done in MDE to develop tools that make use of
the specification. WAPIml [47] enables developers to create an OAS document,
or import it, generate a UML class diagram based on the same in Eclipse which

40 3.1 Modeling REST APIs

Table 3.1. Existing approaches for modelling the behaviour of REST APIs

Language Year Reference Identified shortfalls

ReLL 2010 [6]
The content of the request-response as well as
the control flow are not explicit.

UML State Machines 2011 [165; 169; 170; 187]
Not domain specific, state based and thus use of
the GET method is not explicit.

UML Collaboration Diagrams 2011 [10]
Not domain specific, alternative paths, responses
and hyperlink flow is not visualized.

Visual REST 2012 [215]
Does not include multiple interactions or only
focuses on a single resource.

Petri Nets 2013 [97; 117; 118]
Not domain specific, the request-response behaviour
and hyperlink flow are not visualized.

Rapido 2015 [137]
Does not support logical behavior visualization
by design.

BPMN Choreography Diagram 2015 [149]
Focus on maintaining the business logic behind
RESTful interactions, no hyperlink flow visualization.

they can edit and then generate an updated OAS document based on the same.
In [46] the authors present the OpenAPI Bot, a chatbot which in addition to pro-
viding users information about API’s metadata, operations, and data structures,
which are already available in the API specification itself, also provides insights
which are not as easy to derive directly from the specification (e.g., which oper-
ations return instances of a given resource).
Recently, some commercial tools, such as Visual Paradigm2, have recognized the
importance of graphical design of REST APIs and provide support for using ex-
tended UML class diagrams to that end. While such representation helps iden-
tifying the shared data among resources, there is no possibility of modeling the
interaction flow. Ballerina3 on the other hand is an open-source project for build-
ing a programming language for integration. It uses both textual and graphical
syntax to implement microservices with distributed transactions. It relies on UML
Sequence Diagrams for the graphical visualization of independent parties’ inter-
actions via the ballerina composer, which supports both code editing and graph
editing. Although Ballerina supports the development and integration of REST-
ful services, it is not REST specific.
Another modeling aspect which has been rarely addressed for RESTful services,
and which is closely related to their behaviour, is the modeling of the Quality of
Service (QoS). Work exists on annotating WSDL descriptions of services with QoS
information [35], but RESTful services are not documented in WSDL. Thus, Yoo
et al. [228] have proposed an integrated annotation for SOAP and REST Web ser-
vices that also includes non-functional semantics. In the REST specific domain,

2https://www.visual-paradigm.com/features/visual-api-designer/
3https://ballerina.io/learn/tools-ides-ballerina-composer/

https://www.visual-paradigm.com/features/visual-api-designer/
https://ballerina.io/learn/tools-ides-ballerina-composer/

41 3.1 Modeling REST APIs

Sepulveda et al. [191] have extended the previously mentioned ReLL language
to consider security constraints in RESTful services compositions. However, they
do not take into consideration how the control flow of the RESTful conversation
can impact the analyzed QoS.

3.1.2 Modelling RESTful Interactions in Microservice Architec-
ture

Most of the works which mention the challenge of microservice communication
and integration, focus on microservice architecture in general and only touch
upon the communication challenge as evident from the literature survey con-
ducted by Alshuqayran et al. in [11]. The authors in the same work also provide
a survey of the different approaches used to model different aspects of the mi-
croservice architecture. They have discovered that the most frequently used di-
agrams are component diagrams to show the static inter-dependencies between
microservicies. Some researchers have also used UML sequence diagrams, use
case diagrams or class diagrams to depict different viewpoints of the microservice
architecture. Srikanta et al. [158] use UML sequence diagrams to describe the
communication flow in the microservice architecture that they propose for dy-
namic rating, charging and billing for cloud service providers. The microservices
in their reference architecture are RESTful, however their use case is simplistic
as it uses just three microservices which communicate among each-other in a se-
quential flow, with no control flow divergence. Toffetti et al. [206], in the context
of cloud resources deployment, use a type graph to represent the needed cloud
resources and the connections between them together with their cardinality, and
an instance graph to show the actual deployment of the resources, visualized by
square nodes and undirected edges. They propose using the same type of graphs
for microservice based applications as well. De Lange et al. [40] in their Commu-
nity Application Editor, built to support model driven web engineering, include
the modeling of microservices as part of the server-side modeling view. They have
RESTful resources as the central entity of their microservice view meta-model,
together with their HTTP methods and responses. The communication depen-
dencies between the microservices, or between a microservice and the front-end
components, are drawn automatically by the tool in the communications view
based on the data entered in the other views. In the communications view the
microservice is visualized as a node, but the microservice call is also visualized
as a node which violates the perceptual discriminability principle in the design of
visual notations [142]. No control flow divergence/convergence constructs are

42 3.2 Designing Domain Specific Languages

available, and the hyperlink flow is not visualized.
Granchelli et al. [72] use a model reverse engineering approach in their tool Mi-
croART to recover the microservice architecture of a system which is available
on Github. They use the communication logs to discover the inter-dependencies
between the microservices. The automatically generated links between the mi-
croservices can be edited and refined by a knowledgeable human using the graph-
ical editor of the tool. One refinement that they propose is to resolve the inter-
faces referring to what they call the Service Discovery service (e.g., an API gate-
way), which masks the real resource dependencies. Thus, the human should
remove the API Gateway from the microservice architecture visual diagram, and
reestablish the links (the calls) directly between the microservices. In their vi-
sual model, they also include information about the teams and the developers
working on each of the microservices. As they group together all the resources
belonging to a discovered microservice, their approach only reveals the resource
URI and the microservice it belongs to, but not the method calls and the hyper-
links flow. Namely the diagram contains directed edges to show the static de-
pendencies between the different resources, but they do not show the dynamic
interaction behavior that can be followed at execution time.

3.2 Designing Domain Specific Languages

Domain Specific Languages (DSLs) are tailor-made for specific problem domain,
which allows them to be very expressive in the domain that they target, but also
makes them unsuitable for arbitrary domains. In addition to their expressive-
ness, DSLs also safeguard the integrity of models to a certain degree as their
syntax and semantics are thought through to include some domain specific con-
straints [57]. The idea of using DSLs dates back to the 1960s [133] and has
particularly gained on popularity with the raise of the Model Driven Develop-
ment (MDD) paradigm [190] where models are frequently used for code gener-
ation. As per Fowler [56] defining a DSL requires three main steps: defining the
abstract syntax, defining an editor to manipulate the abstract syntax, and defin-
ing a generator, i.e., translating the abstract representation into an executable
representation.
A rather popular work in the field of designing visual notations in software engi-
neering is Moody’s Physics of Notation theory [142]. He defines a set of principles
for designing cognitively effective visual notations: 1) semiotic clarity, i.e., one
to one correspondence between semantic constructs and graphical symbols; 2)
perceptual discriminability, i.e., clear difference between symbols; 3) semantic

43 3.2 Designing Domain Specific Languages

transparency, i.e., the appearance of the symbols should suggest their meaning;
4) complexity management, i.e., explicit mechanisms in place for dealing with
complexity; 5) cognitive integration, i.e., explicit mechanisms in place integrat-
ing information between diagrams; 6) visual expressiveness, i.e., usage of the full
range of visual variables; 7) dual coding, i.e., usage of text to complete graphics;
8) graphical economy, i.e., keeping a cognitively manageable number of sym-
bols; and 9) cognitive fit, i.e., usage of different dialects for different audiences.
He also emphasises the importance of documenting design decisions. The find-
ings of a recent survey with 104 practitioners shows that the Physics of Notation
theory “is complete in the sense that it covers all the important requirements
practitioners may have” and as such is a good candidate for a leading approach
for the design of visual notations [212]. Ulrich [57] defines generic requirements
related to the pragmatics of a DSL as well as requirements for the selection of a
metamodeling language. He also specifies the macro-process of designing a DSL
as being comprised of 7 steps: clarification of scope and purpose, analysis of
generic requirements, analysis of specific requirements, language specification,
design of graphical notation, development of a modelling tool, evaluation and re-
finement. When creating the DSL specification Ulrich advises to create a concept
dictionary where each domain concept is defined and is checked against a set of
acceptance criteria in order to decide whether the concept should be added in the
DSL. These criteria include relevance of the concept, the invariant semantics (the
concept is abstraction over types), the variance of type semantics (semantics of
the respective instances should vary). He also provides the following guidelines
for designing a graphical notation which do partially overlap with the guidelines
in [142]: 1) build semantic categories of concepts, 2) create generic symbols
for each category, 3) the bigger the semantic difference between two concepts,
the bigger the graphical difference of the corresponding symbols should be, 4)
prefer icons over shape, 5) combine shape (including icons), color and text ef-
fectively, 6) avoid symbol overload, 7) avoid redundant symbols, 8) represent
monotonic semantic features of a concept through compositions of symbols, and
9) a graphical notation should include symbols that allow for reducing diagram
complexity.
Recently Jannaber et al. [94] have conducted a literature survey and summarised
existing guidelines for designing a DSL into a framework for the design of process
specific DSLs. Although they target DSLs for modelling processes, much of their
framework can also be used for other DSLs. The framework consists of three
iterating layers: requirements layer, language layer and evaluation layer. The
requirements layer is comprised of defining the scope and purpose of the lan-
guage, as well as the generic and specific language requirements. The language

44 3.3 Designing Modelling Tools

layer refers to the design and modification of the DSL on one hand, and defini-
tion of process elements and perspectives on the other. As advised also in [57],
the design should include the concept directory as well as the meta-model which
Jannaber et al. see as determining the abstract and concrete syntax of the lan-
guage as well as its semantics. They also enlist applicable methods to use when
the DSL is not designed from scratch, but is rather based on an existing language,
i.e., unification, specialization, selection and extension. Last but not least, the
evaluation lÐřyer provides means to detect faults and gaps in the previous layers
so that the iterative approach can be followed. They argue that the evaluation
can be performed using both qualitative and quantitative methods as well as
pattern based analysis or ontological analysis.
Karsai et al. [103] propose guidelines for designing both textual and graphical
DSLs, with main focus on textual DSLs. They categorise the guidelines in 5 cat-
egories: 1) language purpose, 2) language realization or implementation, 3)
language content which refers to the elements of a language, 4) concrete syn-
tax, and 5) abstract syntax. Kelly and Pohjonen [105] on the other hand identify
pitfalls in different phases of the lifecycle of a Domain Specific Modelling (DSM)
language based on the analysis of 76 DSM cases.
Zdun and Strembeck [230] discuss three reusable DSL design patterns that re-
fer to the DSL development process, the concrete syntax style and the selection
between an external vs. an embedded DSL. The DSL development process pat-
tern offers three alternative solutions: language model driven DSL development,
mockup-language driven DSL development and extracting the DSL from an exist-
ing system. They identify as alternatives for the concrete syntax style the textual
concrete syntax, graphical concrete syntax, form/table based concrete syntax and
textual concrete syntax with generation of visualizations.

3.3 Designing Modelling Tools

Significant effort in the MDE community has been placed on the model-to-text
transformation where text stands for program code, documentation, test cases or
model serialization [22]. However, when adopting MDE, the effort for creating
the model should not be underestimated [131]. Besides the ease of use and
the intuitiveness of the modeling language, an important role in this effort is
played by the model editor. The abstract syntax of a model can have a concrete
representation using a textual notation, a graphical notation or a combination
thereof. Thus, a model can be created using an editor supporting textual or
graphical input, or both.

45 3.3 Designing Modelling Tools

Researchers have been long discussing whether textual or graphical model repre-
sentations are better [75; 131; 99]. Melia et al. [131] highlight the main benefits
of each notation type, and perform an empirical comparison of their usability.
They analyze the impact the two input modalities have on the efficiency, effec-
tiveness and satisfaction of novice programmers while performing maintenance
tasks. Their experiment has shown that the novice programmers discovered more
errors and were more efficient in fixing them when using the textual notation, but
expressed preference for the graphical notation. Jolak et al. [99] conducted an
experiment with 240 software students from four different universities to study
the impact of the type of representation (textual vs. graphical) on user’s ability
to explain, understand, recall and actively communicate knowledge. They used
UML class diagrams for the graphical representation. They have discovered that
the graphical representation has a positive effect on the explaining and under-
standing ability, but with no statistical significance, while statistically significant
advantage of graphical representation over textual representation is noticed for
the recall ability. Also a statistically significant effect is noticed regarding the
ability to actively communicate knowledge. Namely, it has been observed that
the graphical representation fosters more active discussion than the textual rep-
resentation and has a positive effect on the creative conflict discussions while
requiring less conversation management effort.
Textual notation is frequently preferred to graphical notation by developers, due
to their long tradition of using textual general purpose programming languages,
which reduces their learning curve [22] for the DSL. Non-developers, on the
other hand, might feel less comfortable with formal textual encoding of their
knowledge and thus prefer graphical editors [110], which would explain the
lack of textual editors for business-oriented DSLs, such as BPMN. Recently, DSLs
are being adopted in new domains where the users are not trained developers
or where developers need to work closely with non-developers when creating
the models [219]. In such an environment a synchronized textual and graphical
notation, where the user chooses which notation to use to create and edit the
visual model, might be the win-win solution for the design of the editor. Expe-
rience with using UML at Ericsson [124] has shown that “when a DSL is large,
covers a wide aspect and has different types of users, having one notation often
does not suit the needs of all its users".
Only recently researchers have started discussing seamless hybrid graphical-
textual modelling [4], motivated by the potential benefits of two-way synchro-
nization, such as the definition of concern-specific views, the reduction in model-
ing time/effort and the possibility to edit textual models outside of the modeling
environment. Furthermore, a hybrid editor can serve a broader range of mod-

46 3.3 Designing Modelling Tools

eling purposes. Mature graphical editors with automatic layout make modeling
more time efficient for an inexperienced modeler, and thus are more appealing
for sketching models for discussion purposes. Textual editors, on the other hand,
allow for precisely adding details for simulation or execution purposes which can
remain hidden from the graphical visualization. Having both editors in the same
modeling tool facilitates the transition between different modeling tasks.
In this section of the state of the art chapter we present a survey of existing solu-
tions for textual, graphical and hybrid visual model editors inspired by our talk at
DSLDI [89]. Based on that we derive a maturity model of editors supporting the
use of text for visual modeling and we sketch a reference architecture of editors
with each maturity cluster. To obtain the maturity model and the reference archi-
tectures, we have studied the features of over 30 mostly open source graphical,
textual and hybrid editors. During the study, we also compared the DSLs and
the user-facing features of textual editors. Starting from features identified in
existing studies [62; 49; 189], we have added features observed in recent tools
reflecting our focus on the textual input modality. The goal of our survey was
not to identify an exhaustive set of editors, but to study a set of tools sufficiently
diverse to identify different design alternatives and assess their maturity in terms
of allowing the use of text to create visual models. Based on the results of the sur-
vey we have categorized the various design alternatives in textual editors with
the aim of facilitating the sharing of design knowledge and fostering its reuse
towards the next-generation of hybrid modeling tools.

3.3.1 Existing Tool Studies

Funes et al. [62] propose a requirements tree for evaluating UML tools from the
user’s perspective to facilitate tool selection. They look at tool’s features, UML
modelling support, customization, installation and performance, and support.
Recently, Rajoo et al. [167] started working on a framework for empirical evalu-
ation of UML modeling tools based on the productivity and the completeness of
the tools in meeting the needs of healthcare informatics. Seifermann et al. [189]
survey 36 textual notations, limiting them to UML as visual language. They pro-
pose a feature model, which includes the editor, but not the model editing or
synchronization features of the same. Safdar et al. [183] have conducted an
empirical study of the impact of three different UML modeling tools (IBM RSA,
Magic Draw and Papyrus), on the productivity of the students involved in the
study. While these works focus on facilitating the selection of a UML modelling
tool by its users, in our survey we focus on the design decision to be taken by the
developers of modeling tools for visual models.

47 3.3 Designing Modelling Tools

Erdweg et al. [49] present a systematic overview of the design alternatives for
language workbenches, i.e., tools for defining and composition of DSLs. They
focus on functional properties of the language workbenches and categorize them
in a feature model. In our survey we focus specifically on the “Editor" feature,
we look at the different design alternatives proposed in [189] and [49], expand
them, relate them to the textual input modality and derive a maturity model.
Work has been done on maturity models in MDA [175] from the point of view of
level of adoption of MDA practices in software development. However, we are
not aware of any work on maturity models for modeling tools supporting text for
visual modeling nor on reference architecture for the same.
In [129] Mazanec and Macek define important features of general purpose tex-
tual modeling languages, such as the ability to describe the entire software at
various levels of abstraction, the readability and simplicity of the language, un-
ambiguity, supportability and integrability. The UML textual editors that they
used in their survey overlap with some of the ones we have surveyed, however
the focus of their features’ evaluation were not the editors, but the modeling lan-
guages themselves. Thus, while with their work they are targeting designers of
textual modeling languages, we are targeting editor designers.

3.3.2 Maturity Model and Reference Architectures

Different editors, directly or indirectly, support visual modeling with text, allow-
ing modelers to compile diagrams from textual descriptions, or to seamlessly
switch between visual and text-based editing. A summary with the different
maturity clusters we have identified in existing editors, their characteristics and
representative tools is provided in Tab. 3.2.

Table 3.2. Text for visual modeling - Maturity model

Characteristics Editors Embedded in the Tool Representative Tools

Cluster 0 Binary or encoded textual model representation Graphical Webdemo

Cluster 1a
Serialized textual representation (e.g., XML, SVG)
editable outside the tool Graphical

Signavio, Draw.io,
Online Visual Paradigm

Cluster 1b
Serialized textual representation (e.g., XML, SVG)
editable inside the tool Graphical, Textual

Camunda,
Eclipse plug-ins

Cluster 2
Textual DSL for visual element’s properties,
new elements added graphically Graphical, Textual Yakindu

Cluster 3
Textual DSL with text-to-visual
one-way synchronization Textual

PlantUML, ZenUML,
Umple state machine diagram

Cluster 4a
Textual DSL with two-way synchronization,
text in diagrams not editable in the graphical editor Graphical, Textual

Ballerina,
Sketch-n-sketch

Cluster 4b
Textual DSL with two-way synchronization,
all visual elements can be edited in both editors Graphical, Textual Umple class diagram

48 3.3 Designing Modelling Tools

Figure 3.1. Reference architecture for a model editor in Cluster 1

Every model is saved in some type of a computer readable format behind the
scenes. Thus, for every diagram, regardless whether it is modeled using a textual
or graphical editor, there is some persistent representation in textual or binary
format. This may or may not be directly available to the users. In the graphical
editing tools in Cluster 0, the model can only be exported in a predefined binary
or encoded textual format (e.g., ppt in Webdemo4) making it difficult to edit it
using a textual editor.
In the editors in Cluster 1, the textual format is serialized with direct mapping
to the diagram elements and their position. The tools with this maturity allow
exporting in SVG (e.g., Draw.io5, Online Visual Paradigm6) or BPMN (e.g., Sig-
navio7) as a standard XML-based format that can be edited in any text editor
outside of the modeling tool. In this case, any changes to the textual representa-
tion will only be visualized after importing the model back to the modeling tool as
evident in the reference architecture shown in Fig. 3.1. Camunda Modeler8 and
Eclipse9 allow the XML representation to be edited inside the tool, in a separate
tab that cannot be viewed at the same time with the visual graph tab (Camunda)
or in a tab that is visible side by side with the visual graph (Eclipse). The changes
in the textual representation are synchronized to the graphical model upon save
(Eclipse) or upon window switch (Camunda). Although it is possible to manu-

4https://webdemo.myscript.com/views/diagram
5https://www.draw.io
6https://online.visual-paradigm.com
7https://www.signavio.com
8https://camunda.com/download/modeler/
9https://www.eclipse.org

https://webdemo.myscript.com/views/diagram
https://www.draw.io
https://online.visual-paradigm.com
https://www.signavio.com
https://camunda.com/download/modeler/
https://www.eclipse.org

49 3.3 Designing Modelling Tools

Figure 3.2. Reference architecture for a model editor in Cluster 2

ally edit these standard textual representations of a visual model, this is rarely
done in practice due to the verbosity of the textual representation.
Tools in Cluster 2 use text for editing properties of the visual elements. In Yakindu10

UML elements in the state diagram have to be added using the graphical editor,
but a textual editor can be used to encode the behaviour specification of each
state. The textual editor is accessed by clicking on a specific state element in the
graphical editor and uses a textual DSL which provides the simulation semantics
for the model. As mentioned earlier, the textual DSL cannot be used to create
the model as the tool requires the use of the graphical editor. The reference
architecture of tools in Cluster 2 is provided in Fig. 3.2.
With the goal of increasing the acceptance level of MDE and improving the time
efficiency of modelers who prefer using text, tools in Cluster 3 use textual DSLs
for visual modeling, which are at a higher abstraction level compared to the
serialized text used in Cluster 1, and with a syntax that is meant to be more de-
veloper friendly and less verbose [189]. These tools (e.g., yUML11, PlantUML12,
ZenUML13, WebsequenceDiagrams14) provide only a textual editor linked to a
graphical model viewer. Thus, only one-way synchronization from the text to the
visual model is available as evident from the reference architecture in Fig. 3.3.
A Layout algorithm is required in the architecture of such plain textual editors,

10https://www.itemis.com/en/yakindu/state-machine/
11https://yuml.me
12https://www.planttext.com/
13https://app.zenuml.com/
14https://www.websequencediagrams.com

https://www.itemis.com/en/yakindu/state-machine/
https://yuml.me
https://www.planttext.com/
https://app.zenuml.com/
https://www.websequencediagrams.com

50 3.3 Designing Modelling Tools

to decide the position of newly created elements. One of the drawbacks of such
architecture, is that due to the absence of a graphical editor, the layout cannot be
manipulated manually, which results in a layout solution based on graph topol-
ogy constraints which may be suboptimal for the needs of the users. Namely, the
users might want to group the elements differently according to their intended
semantics in order to improve the understandability of the model [197].

Figure 3.3. Reference architecture for a model editor in Cluster 3

Hybrid editors are in Cluster 4. In Fig. 3.4 we present a reference architecture
for these editors where the user has access to two types of editors, a graphical ed-
itor and a textual editor, each of them using their own DSL. In some of the tools
we have surveyed, there is a direct translation from the textual to the graphi-
cal DSL [4]. This however hinders the flexibility of the architecture making it
difficult to iteratively improve the DSLs while maintaining support for the pre-
vious DSL versions, like in the case of the new textual DSL for the UML Activity
diagrams in PlantUML15. To that end we introduce a two-step translator which
transforms the visual model into textual DSL (or viceversa) via an intermediate
abstract form. As mentioned earlier for the tools in Cluster 3, translating from
the textual to the graphical DSL requires also a Layout algorithm component to
position newly created elements within the diagram. The intermediate abstract
representation can be based on standards to make it possible to reuse and in-
tegrate multiple standalone textual or graphical editing tools. Likewise, model
verification or validation features can be implemented based on this abstract rep-
resentation so that error checking can be performed independently on whether
the model was created visually or by using textual input.
In editors in Cluster 3 (Fig. 3.3, compared to hybrid editors in Cluster 4 (Fig. 3.4,
there is no translation from the Visual Model to the Abstract Model and thus the

15http://plantuml.com/activity-diagram-beta

http://plantuml.com/activity-diagram-beta

51 3.3 Designing Modelling Tools

Figure 3.4. Reference architecture for a hybrid model editor in Cluster 4

DSL Emitter is not present as a component in the architecture of such tools. Fur-
thermore, there is no Graphical Editor, but rather a read-only Model Viewer that
displays the model to the user, but does not allow the user to edit it. As per the
initial tool survey that we have conducted, hybrid editors as defined with the
reference architecture in Fig. 3.4 are starting to appear (e.g., Sketch-n-sketch16,
Balerina17, Umple18). However, in some tools not all model elements can always
be edited from both the textual and the visual editor. For instance, although con-
structs in Ballerina can be added both in the textual and the graphical editor and
the two views get automatically synchronized, some changes, such as renaming
or setting conditions, have to be done in the textual editor. Thus, all edits to the
labels of the visual elements have to be done in the textual editor. Similarly, the
Sketch-n-sketch editor allows for adding a text element using the select and drop
option, but editing the text inside can only be done in the textual editor. Umple,
which supports textual DSL for visual modeling of UML class diagrams and state
machines, provides a hybrid editor only for the UML class diagram, while for the
UML state diagram only text-to-visual synchronization is provided.
In addition to the direction, another important design decision regarding the syn-
chronization between the textual and visual model is the timing of the same. This
is especially true for editors in Cluster 3 and 4, since it can impact the velocity of
the visual feedback to the user. In most of the surveyed editors, the graphical and

16https://ravichugh.github.io/sketch-n-sketch/releases/v0.5.2/
17https://ballerina.io
18https://cruise.eecs.uottawa.ca/umpleonline/

https://ravichugh.github.io/sketch-n-sketch/releases/v0.5.2/
https://ballerina.io
https://cruise.eecs.uottawa.ca/umpleonline/

52 3.3 Designing Modelling Tools

the textual representations are synchronized in real-time. Some editors require
an explicit synchronization request. For instance, the synchronization happens
after clicking the “Run Code" button in Sketch-n-sketch, or the “Refresh" button
in the online PlantUML editor.
When using text for visual modeling, direct links between the textual and the
graphical representation of a model element can facilitate model refactoring and
correction. By direct link we intend a functionality where clicking on a given
visual construct will shift the focus of the mouse to the corresponding point in the
textual representation or vice-versa. While Ballerina and Umple only support the
links from the visual element to the textual element, the WebsequenceDiagrams
editor provides links in both directions. In the Sketch-n-sketch solution, when
hovering over a visual element this will highlight in yellow the related content
in the text editor, but will not bring the mouse focus to the same. Thus, if the
textual representation is longer than one screen view, and the view has been
scrolled down to the end of the text, if users clicks on the visual element whose
corresponding text is in the beginning of the text, they will not be able to see
the highlighting, and thus will not locate the searched text. As the graphical and
textual editors are starting to blend, dynamic mapping of the two can facilitate
model reviewing tasks, as needed modifications evident in the visual diagram can
be easily tracked back to the text and viceversa. Using an internal abstract model
representation can facilitate implementing such linking features as it provides a
common reference for model elements that are displayed across multiple textual
and graphical views.

3.3.3 Textual DSL Syntax

We can distinguish two types of textual DSLs used in visual modeling tools, based
on the maturity model described in Sec. 3.3.2. Tools in Cluster 2, where the tex-
tual editor is complementary and not an alternative to the graphical editor, use
textual DSLs only for defining the simulation or execution behaviour associated
with the diagram elements. As such the DSLs used at this maturity are usually
very close to programming language syntax. Given that the aim of these DSLs
is not enabling the creation of visual elements in the diagram, in some tools
changes in the textual DSL do not result in visual changes to the model. For
instance, in Chalktalk19 by clicking on a graphical shape a textual window pops
out which allows the user to edit the behaviour defining variables via code. In
Yakindu there are two types of textual editors with their dedicated DSLs. One is

19https://github.com/kenperlin/chalktalk

https://github.com/kenperlin/chalktalk

53 3.3 Designing Modelling Tools

Figure 3.5. Sequence diagram definition in WebsequenceDiagrams vs ZenUML

the statechart definition section used for defining interfaces and their variables,
which as such does not result in any visual diagram changes. On the other hand,
as mentioned earlier, in the properties section of the state elements in Yakindu
there is a dedicated textual editor for defining the state behaviour which sup-
ports content assistance, error checking and syntax highlighting and reflects the
changes in the visual diagram.
In editors in Cluster 3 or Cluster 4, the aim of the textual DSL is to represent the
elements of the visual model in order to enable the creation of such models from
scratch. Standard visual DSLs, such as UML, still do not have corresponding
standard textual DSL [189], thus the designers of the textual editors have to
design also the syntax of the textual DSL. In our tool survey we have identified
several different approaches being taken. Many, like PlantUML, try to keep the
textual DSL as close to natural language as possible, with the intention to make it
easy to use for non developers as well. On the other hand, the DSL of some tools,
such as ZenUML, is created aiming to get the textual DSL closer to developers,

54 3.3 Designing Modelling Tools

Figure 3.6. Activity diagram definition in PlantUML vs yUML

using programming language (Java/C#) syntax whenever possible.
For instance, as shown in Fig. 3.5 describing conditional sequence dia-
gram behavior in ZenUML uses the typical if(true){doSomething} else

{doSomething} programming language syntax, while in PlantUML the same is
expressed as follows: alt true doSomething else doSomething.
In the Activity diagram in Plant UML, a semicolon and a new line is used to
separate activities. However, the existence of gateways, where the control flow
diverges or converges, has to be known by the modeler and explicitly stated in
the textual DSL with if else or fork for parallelism, as evident in Fig. 3.6. In
yUML, as evident in Fig. 3.6, the activity has to be stated between parenthesis and
a textual arrow indicates the next activity, thus getting the textual DSL visually
closer to the graphical DSL. Gateways have to be named and enclosed between the
pipe character (i.e., |a|) to depict parallelism or between angle brackets (i.e.,
) for alternative divergence. In some textual editors not everything that is

55 3.3 Designing Modelling Tools

represented in the textual DSL is reflected in the diagram. For instance, in Umple
the textual DSL contains information about the key attribute, while in PlantUML
it is possible to specify element identifiers which, although not explicitly shown
in the diagram, are used to disambiguate references to the same model element.

3.3.4 Textual Editor’s Features

When designing a hybrid editor, three main user facing features should be con-
sidered, both in the textual and graphical editor: editing (addition, modification
and deletion) of model elements, the layout of the model elements and the nav-
igation within the diagram. Based on our survey, we discuss these features and
their design alternatives in a textual editor for visual models (Clusters 3 and 4).

Model Editing The most common way to add elements in a textual editor is by
typing-in, following the DSL syntax. However, the WebsequenceDiagrams editor
applies a hybrid approach, where in addition to typing, to add elements the user
can click on frequently used patterns which are graphically visualized. The text
corresponding to the added pattern can later be modified to create the desired
diagram. This editor also supports auto-completion from a list of suggestions,
differentiating between keywords and participants. The look and feel of the dia-
gram (sketch-like, colour, shapes etc.) can be selected from the visual catalog of
predefined styles. Some editors allow adding comments or notes to the diagram.
In PlantUML and WebsequenceDiagrams this is done by using the note keyword,
while in ZenUML the programming language like //comment is used. PlantUML
also allows to add titles to the diagram, and split the diagram into differently
titled pages. We have observed only one option for deleting elements in textual
editors, i.e., using the keyboard. When it comes to editing elements, some of the
textual editors, such as Ballerina and Yakindu Statecharts, support refactoring.

Layout A plain black and white, straight-line text, with no indentation, etc., can
quickly become cumbersome to read and edit. Textual editors found within pro-
gramming IDEs provide support for enhancing the readability of the code through
features such as syntax highlighting, semantic indentation, better visualization
of nested logic etc. However, not all textual editors found in the surveyed mod-
eling tools take advantage of these improvements in the user experience. From
the plain textual editors that we have surveyed, i.e., the editors in Cluster 3 that
do not support graphical editing, only ZenUML provides pretty printing function-
alities. On the other hand, most of the hybrid editors in Cluster 4, i.e., editors

56 3.3 Designing Modelling Tools

which support both textual and graphical editing, such as Ballerina, Umple etc.,
do provide syntax highlighting and indentation.

Navigation Navigation assistance can be quite important in textual editors, es-
pecially when the diagrams become long and complex, requiring a lengthy text
file to generate them. We have observed two types of navigation assistance in the
studied tools, a navigation overview window which reflects the current position
of the cursor in the entire text, implemented by only one of the surveyed editors,
Ballerina. Another complementary option is to support text folding, where re-
lated chunks of text can be folded, for instance conditional statements or nesting,
to provide a more general view of the text. This feature is only used by Ballerina
and ZenUML from the surveyed editors.
To summarize, based on our initial survey, the textual editors for visual model-
ing have still not reached the state of the art of modern programming language
editors. They lack common features such as syntax highlighting or pretty print-
ing. Of the surveyed editors, only Ballerina and Yakindu support refactoring and
none perform quick fixes in response to detected errors. This is inline with the
findings in [189]. Even features like text folding and navigation overview are
rarely present. As these are features which modelers with preference towards
textual editors are well acquainted to, the support of such features in a model
editor, or the lack thereof, can impact users’ acceptance of the same.
To conclude, as technology gets more and more integrated with business, hybrid
textual and graphical editors would allow different user profiles to collaborate
on modeling tasks by using the type of input modality that they prefer. To facili-
tate the transition towards hybrid editors, we have set up the foundations for a
reference architecture for hybrid editors and proposed a maturity model based
on their features. To that end we have surveyed different mostly open source ed-
itors, and encoded the gathered design knowledge. The list of design issues that
we discuss for textual editors is not meant to be exhaustive, nor are the alterna-
tives for each issue. However, we believe that they can be the first step towards
providing guidance and support for the design process of the next generation of
hybrid model editors.

57 3.4 Evaluating DSLs and DSL Tooling

3.4 Evaluating DSLs and DSL Tooling

As with any design, the design of a DSL and its tooling also need to be evaluated
from different aspects. “An evaluation is either an experiment or an observational
study, consisting of steps performed and data produced from those steps” [21].
Evaluation is used in many different areas such as marketing, medicine, software
engineering etc., and can go from simple surveys to complex controlled experi-
ments.
Molleri et al. [140] provide a recent literature review on available guidelines for
empirical research in software engineering, while Gueheneuc and Khomh [78]
discuss the rise of empirical software engineering and the seminal works that led
to the same together with the challenges to be faced in the future. One of the
seminal works that they mention as the “inflection point in software engineer-
ing” is the work of Wohlin et al. [227]who present the characteristics of different
qualitative and quantitative research techniques such as literature reviews, sur-
veys, case studies and experiments. A literature review is a systematic collection
of publications to study the state of art of a phenomenon of interest. Surveys
aim to study the public opinion on a topic and they usually collect data through
questionnaires or interviews. Case studies usually observe a phenomenon in a
real-life context, while experiments are conducted in a controlled laboratory en-
vironment. Wohlin et al. [227] then focus on experimentation, providing exam-
ples and explaining in detail the steps needed before, during and after conducting
an experiment. Zeller et al. [231] in their parody of empirical research take a
more sarcastic approach to identifying pitfalls to the analysis of empirical studies
data and provide useful references to positive examples of empirical research.
A good evaluation starts with a careful design of the evaluation procedure. Wet-
tel and Lanza [225; 224] provide guidelines for good experiment design based on
a literature survey of experimental validation in software engineering, informa-
tion visualization, and software visualization approaches. They call these guide-
lines an experimental design wish list and include the following in the same:
choose a fair baseline for comparison, involve participants from industry, take
into account the range of experience level of the participants, provide a tutorial
of the experimental tool to the participants, find a set of relevant tasks, include
tasks which may not advantage the tool being evaluated, limit the time allowed
for solving each task, choose real-world systems, include more than one subject
system in the experimental design, provide the same data to all participants, re-
port results on individual tasks and provide all the details needed to make the
experiment replicable.
When it comes to the analysis of the data collected during the evaluation dif-

58 3.4 Evaluating DSLs and DSL Tooling

ferent approaches can be taken depending on the research techniques used. The
goal of exploratory surveys as a qualitative evaluation technique for example is
not to make statistical inference regarding the population, but simply to gather
deep understanding of the identified problem [227]. A controlled experiment on
the other hand has the goal of making statistical inference about the population
based on a hypothesis. However, the selection of the right statistical test is not
straight forward and depends on many factors explained step by step by Marus-
teri and Bacarea in [125]. They describe in detail each factor (the type of data,
the distribution of the population from which the sample is taken, the sample
number and size, the dependency between the sample groups etc.) and provide
a decision-tree to guide readers into selecting the appropriate statistical test for
comparing means (medians) of one, two or more samples.
Blackburn et al. [21] provide useful instructions on how to make useful and
sound claims based on the conducted evaluation where a claim is defined as
“an assertion about the significance and meaning of an evaluation”. They warn
against two types of sins when making claims: the sin of reasoning and the sin
of exposition. The sin of reasoning can happen when the scope of the claim and
the scope of the evaluation do not perfectly overlap which might mean that some
important evaluation data or data distribution is being ignored, or that the claim
uses data that is missing from the evaluation or uses inappropriate metrics, or the
evaluation compares incompatible entities. Avoiding the sin of reasoning is not
always straightforward as evident from examples of unintentional misuse of in-
dependent variables or use of inappropriate metrics in the software development
community that went unnoticed for years. The sin of exposition refers to inade-
quate description of the evaluation or the claim, or even a complete omission of
a claim.
Last but not least, the identification and discussion of the threats to the validity
of the conducted empirical research is of utmost importance for complete un-
derstanding of the research results and their impact. In the words of Zeller et
al. [231], threats to validity “aid the reader by creating a lens through which
the results can be viewed and interpreted”. However, it was only in the 1990’s
that empirical research papers in software engineering started explicitly stating
the threats to the validity of their work [78]. Wohlin et al. [227] discuss several
types of threats to validity to be analysed. Constructs validity refers to the need
to identify the correct measures and experimental setting to be used depending
on the research goal and the hypothesis to be tested. For instance, a threat to
this validity can be the fact that the selected participants might not be represen-
tative of the population, or the lack of mutual understanding of the meaning of
tasks/questions between the participants and the survey/experiment designers.

59 3.5 Chapter Summary

Internal validity refers to whether the differences in the values of the dependent
variable are caused by the treatments of the independent variables. The factors
to be considered are the selection criteria of the study participants and how they
are divided into groups. External validity refers to the validity of generalizing
the results beyond the experiment setting. Some possible risks are wrong par-
ticipants as subjects, the created environment being too artificial, or the timing
of the experiment affecting the results. Conclusion validity refers to the ability
to draw correct conclusions regarding the relation between the treatment of the
independent variable and the outcome of the dependent variable. This validity
can be affected by the choice of statistical tests, sample size, measurements etc.
When it comes to the evaluation of DSLs themselves, Van Der Linden [214] pro-
pose a framework for applying the Physics of Notation theory to validate the
design of visual notations [142]. They define a systematic approach for the re-
porting on the design of a visual notion based on the nine principles described
in the Physics of Notation theory. Their framework uses a reporting template
to be filled in for each principle. Kahraman and Bilgen [102] propose a frame-
work for qualitative assessment of DSLs based on a combination of ISO software
quality standards, capability maturity level evaluation and perspective based as-
sessment. They adjust the ISO/IEC 25010:2011 standard to the needs of assess-
ing DSLs and identify the following quality characteristics of a DSL: functional
suitability, usability, reliability, maintainability, productivity, extensibility, com-
patibility, expressiveness, reusability and integrability. The authors believe that
the success of a DSL depends on the goals of the evaluator who needs to map
his/her goals to the above mentioned characteristics.

3.5 Chapter Summary

In this chapter we survey existing work in modelling RESTful APIs. Substan-
tial work has been done and tool support has been provided for modelling the
structure of RESTful APIs, while the work done in modelling the behaviour of
the same is not domain specific. The languages used to visualize RESTful in-
teractions rely mostly on UML State diagrams or UML Sequence diagrams, Petri
Nets or Coloured Petri Nets, or BPMN Choreography diagrams. The main iden-
tified drawback of the currently used approaches is that, although they manage
to model the behaviour from a certain viewpoint, they do not visually emphasise
the main entities and properties of RESTful conversations. The situation does not
change much also when modeling microservices which communicate over REST
APIs. That said we have decided to dedicate our research to design a DSL for

60 3.5 Chapter Summary

modeling the behaviour of REST APIs. However, before starting with the design
we looked at different existing work on guidelines for the process of designing
a DSL in general, but also guidelines for design of visual or textual notations in
particular which we discuss in this chapter. In order to gather ideas for building
an editor for our DSL, we have studied the design of modelling tools, with spe-
cial focus on tools which support textual modelling of visual DSLs. Based on the
study we have built a maturity model to classify the different types of support
for textual modelling that different tools offer and sketched a reference archi-
tecture for each maturity model. To conclude this chapter, we have surveyed
existing work in the evaluation of languages and tools in software engineering
to get guidelines on appropriate design of evaluation methods given a goal and
appropriate analysis of the results.

Part II

RESTalk

61

Chapter 4

RESTalk Language

“A Domain-Specific Language (DSL) is typically a small, highly focused language
used to model and solve some clearly identifiable problems in a domain; in con-
trast to a General-Purpose Language (GPL) that is supposed to be useful for mul-
tiple domains. [138]”. While using standard UML sequence diagrams to visually
represent a sample of RESTful conversations in [81], we have realized its limited
capability to emphasise the most important facets of RESTful interactions, and
thus the need for a domain specific notation, a need which has been confirmed
during our review of the state of the art in Chapter 3. As the constructs of DSLs
are tailored for a particular application domain they are considered to offer ben-
efits in expressiveness and ease of use compared to a GPL [133]. Lindland et al.,
in their framework for understanding the quality in conceptual modeling [119],
claim that a very important aspect of a modeling language is its domain appro-
priateness.
That said, in this chapter we will discuss the main contribution of this thesis,
i.e., the design of RESTalk, a DSL for modeling the interactions with REST APIs.
During the design process we have combined the practices discussed in Sec. 3.2,
following the three layer framework described in [94] and adopted for RESTalk
in Fig. 4.1. We will discuss the requirements layer in Sec. 4.1, passing then to
the language layer discussed in Sec. 4.2.

4.1 RESTalk Requirements Layer

The requirements layer in a DSL design sets the ground for the next layer, i.e.,
the language layer [94]. This layer includes the definition of the scope and the
purpose of the language, as well as the language requirements and the target
users of the language.

63

64 4.1 RESTalk Requirements Layer

Figure 4.1. RESTalk Development Framework (adapted from [94])

R
eq

ui
re

m
en

ts
 L

ay
er

Se
ct

io
n

4.
1

La
ng

ua
ge

 L
ay

er
Se

ct
io

n
4.

2

Ev
al

ua
tio

n
La

ye
r

Pa
rt

III

Scope and Purpose

Domain Specific
Requirements

Generic Language
Requirements

Targeted UsersREST Domain

Concept Dictionary

Abstract
Syntax

Concrete
Syntax Semantics

Requirements (generic/specific)

Quantitative
Analysis

Qualitative
Analysis

Expressiveness
Analysis

To
ol

in
g

C
ha

pt
er

 5

Fe
ed

ba
ck

Fe
ed

ba
ck

4.1.1 Language Scope and Purpose

REST APIs can be analysed from a static, structural aspect, and a dynamic be-
havioural aspect [187]. API description languages, such as OAS, already cover
well the static aspect defining all of the resources and all of the methods that
each resource supports. Thus, it is the behavioural aspect that is in the scope
of RESTalk, reflected in what we define as a RESTful conversation in Sec. 2.3.
Thus, RESTalk does not aim at making the resources the first-class citizen of the
DSL, as is the case with OAS, but rather the interactions between resources. Al-
though the initial goal of RESTalk was the visualization of interactions between
a single client and a single server, its scope has been extended to also support
RESTful conversations between clients with different roles and a single API, as

65 4.1 RESTalk Requirements Layer

well as composite conversations with multiple layers to show the dependencies
a given API has from external API(s). In the last mentioned case the internal API
acts as a client to one or more external APIs, in the sense that when one of its
endpoints is being called, in order to provide a response, the internal API needs
to call the APIs of one or more external service providers, thus creating depen-
dencies on those APIs. In this later use case, RESTalk diagrams are intended as
a complementary documentation to the existing software architecture documen-
tation. Modeling conversation of multiple clients talking to multiple servers is
out of the scope of this work.
The ultimate goal of RESTalk is to support designing, documenting, analysing
and learning RESTful services by visualization of the interactions needed to
achieve predefined goals, thus facilitating the communication between stake-
holders. Given the context, we have identified three main stakeholders as target
users of RESTalk: API designers, API developers and API client developers.
RESTalk diagrams can be used as internal documentation in a given company, or
made available to external audience when developing API clients. Depending on
the applied methodology, RESTalk diagrams can be created before developing the
API (Design First approach) or after developing it (Code First approach). Internal
facing APIs, where the speed of delivery is important, usually use the Code First
approach. For APIs targeting external customers or partners, the API’s interface
is a contract, and as such it cannot be changed frequently and radically as that
would cause clients to break. Thus, lately with the evolution of API description
languages, this type of APIs follow the Design First approach where the design
stage is separated from the development stage. The design stage follows an ag-
ile approach by requesting frequent feedback on the API design from future API
client developers [198]. In this context, RESTalk diagrams are envisioned to be
created by the API designer as a complementary documentation when designing
and modeling RESTful interactions, or by the API developer when documenting
the API. RESTalk diagrams could also be generated automatically from OAS doc-
umentation if sufficient data is available. Once created, RESTalk diagrams can
be used to discuss the API design and usage scenarios [20] among the different
stakeholders, thus facilitating the feedback loop. The API designer could also use
the diagram to validate the API design, in terms of naming consistency, the use
of appropriate HTTP methods, the use of appropriate design patterns, the appro-
priateness of the relationship between resources etc. API developers themselves
could use the diagram to understand how to implement the API, which hyper-
links to include in the responses, which response codes to support etc. And last
but not least, API client developers could use RESTalk diagrams in their learn-
ing endeavours to understand how to use the API. In Fig. 4.2 we provide a use

66 4.1 RESTalk Requirements Layer

case diagram showing how RESTalk can be used as an extension of the use cases
different stakeholders have.

Figure 4.2. Use Case Diagram for RESTalk’s Stakeholders

API Designer

API Developer

API Client Developer

Model/document
RESTful interactions

Understand how to
implement the API

Discuss the API design
(resources, methods) or

usage scenarios

Read RESTalk model

Create RESTalk model

Validate the API design Understand how to use
the API

Extends

Extends

Extends

Extends

Extends

Model/document
dependencies of an API

from external APIs

Extends

4.1.2 Language Requirements

The generic requirements of each DSL refer mainly to the need of specifying the
language syntax and semantics, and thus are no different for RESTalk [94]. What
differs for RESTalk are the specific language requirements which are derived from
the properties and constraints of a RESTful conversation as well as the use cases
presented in Fig. 4.2. We have identified the following specific requirements
for a DSL for modelling and visualization of RESTful conversations, taking into
consideration the core requirements of a DSL defined in [111]:

• RQ1: The DSL should provide constructs to support the modelling and
visualization of relevant entities in a RESTful conversation (e.g., request,
response etc.). The relevant entities are defined in details in Sec. 4.2.1.
This is referred to as the conformity requirement. Care has to be taken of
orthogonality which requires that “each construct in the language is used
to represent exactly one distinct concept in the domain”.

67 4.2 RESTalk Language Layer

• RQ2: The DSL should enable the modelling and visualization of the order
of interactions with a given API depending on users’ goals. To that end,
there should be a mechanism to show sequences of interactions, but also
control flow divergence and convergence, due to decisions on client side
or server side, or due to response time-out.

• RQ3: The DSL should support the modelling and visualization of the grad-
ual discovery of available resources by the client with the help of hyperlinks
or through the discovery of data to be used in subsequent requests.

• RQ4: The core of the DSL should focus on modelling one client - one server
interactions. However, there should also be constructs supporting the in-
teractions between multiple participants.

• RQ5: The DSL should be flexible enough to support adding optional con-
cepts to support the visualization of details relevant to the intended use of
the diagram (e.g., request header details when relevant, SLA restrictions
etc.). This requirement is also known as extensibility.

• RQ6: The DSL should take into consideration the understandability vs. ex-
pressiveness trade-off. While supporting different use cases requires for
grater expressiveness of the language, an important requirement of any
DSL is the simplicity, i.e., “a language should be as simple as possible in
order to express the concepts of interest and to support its users and stake-
holders in their preferred ways of working” [111].

• RQ7: The DSL should set up constraints to ensure that the modelled REST-
ful conversations are valid.

• RQ8: The DSL should support both visual and textual concrete syntax to
satisfy the needs of different stakeholders and different use cases.

• RQ9: There should be tooling around the DSL to support the creation and
editing of the models. This is known as the supportability requirement.

The above stated language requirements have been used when defining the RE-
STalk constructs and constraints as described in the next section.

4.2 RESTalk Language Layer

OMG’s Meta-Object Facility standard [3] defines four modelling layers: meta-
meta model (MOF M3 layer), metamodel (MOF M2 layer), model (MOF M1

68 4.2 RESTalk Language Layer

layer) and data layer (MOF M0 layer). The M3 layer is the language used to
build metamodels (M2) which define the elements in a M1 model. The last
M0 layer is used to describe real-world object. In Model Driven Architecture
(MDA), “a model is a description of (part of) a system written in a well-defined
language”, while “a well-defined language is a language with well-defined form
(syntax), and meaning (semantics), which is suitable for automated interpre-
tation by a computer” [107]. A language has an abstract syntax and a concrete
syntax. The abstract syntax identifies the modeling elements, their semantics and
the relationship between different modeling elements. As such it is frequently
presented in a metamodel (MOF M2 layer). For RESTalk we show the metamodel
in Sec. 4.2.1. The concrete syntax defines how the modelling elements should
be represented by graphical or textual elements [13]. A model can have multi-
ple representations of its abstract syntax into concrete syntax, as is the case with
RESTalk, which has both graphical visual representation presented in Sec. 4.2.2
and textual representation presented in Sec. 4.2.3.

4.2.1 RESTalk Abstract Syntax and Semantics

The language realization guidelines in [103] advise to compose existing lan-
guages and reuse language definitions when possible as the development of a
new language from scratch is labor-intensive. Since Business Process Model and
Notation (BPMN) Choreography diagrams [223, Chap. 5] focus on the exchange
of messages with the purpose of coordinating the interactions between two or
more participants [101, pg. 315], while precisely describing the partial order in
which the interactions may occur, we have decided to use its metamodel as ba-
sis for designing the interaction concepts of RESTalk. BPMN is an ISO standard
since 2013 (ISO/IEC 19510). On the other hand, RESTalk’s domain is the REST
architectural style and as such the REST specific concepts have been borrowed
from the OpenAPI metamodel [32; 48] and the REST metamodel [207; 152].
However, as stated in [103], “when designing a language not all domain concepts
need to be reflected, but only those that contribute to the tasks the language shall
be used for”. Thus, RESTalk’s metamodel does not include all of the concepts de-
fined in the above mentioned three metamodels used as basis for its design, but
only the ones relevant given its scope. As advised in [57; 94], before defining
the metamodel, we present the concept dictionary for the RESTalk domain. The
concept dictionary is a glossary whose primary goal is to ensure that the intended
domain is correctly captured and complete. It contains the definition of domain
relevant concepts and their attributes.

69 4.2 RESTalk Language Layer

1. Conversation: A conversation (MOF M1 layer) is a set of possible se-
quences of interactions between conversation participants. A conversation
instance (MOF M0 layer) is a subset of the conversation including the in-
teractions executed at a single conversation instantiation. A conversation
is comprised of one or more possible conversation instances. It can, but
does not have to, include all the possible conversation instances with the
given API.

2. Composite Conversation: A composite conversation is comprised of two
or more conversations which are interconnected, as a request in conversa-
tion n triggers the conversation n+1 and the server in conversation n will
only return a response when the conversation n+ 1 is finished.

3. Participant: A participant is a client or a server which takes part in the
conversation. There is always at least one client and one server that par-
ticipate in the conversation. This means that it is also possible for different
types of clients to talk to the same RESTful server. A participant can act
both as a client and as a server in composite conversations where once a
request is received, the server can become a client in a subsequent request
as it calls one or more different REST APIs in order to be able to respond
to the initial request of its client.

4. Sequence flow: The sequence flow shows the order in which the client-
server interactions can happen in a given conversation. Different flows are
possible depending on client’s ultimate goal.

5. Gateway: A gateway is used to control the divergence or conver-
gence [101, pg.287] of the flow of the conversation. The divergence/con-
vergence of the flow can be due to client’s decisions, e.g., to navigate to a
given resource or to end the conversation, or due to different alternative
responses that can be sent by the server.

6. Event: As defined in BPMN [101, pg.29], an event is something that hap-
pens and affects the flow of the conversation, i.e., it impacts the normal
request-response sequence of the conversation. It can be, for example, a
server time-out or a decision by the client to stop the conversation after
reaching the goal.

7. Resource: A resource is any concept that can be named and can carry
information that is of interest to potential users of the REST API. Each re-

70 4.2 RESTalk Language Layer

source has a path (URI) which makes it the conceptual target of a hypertext
reference/link.

8. Request: A request is a call sent to an individual endpoint (path to a given
resource) with a standard HTTP method (e.g., GET, POST, PUT, DELETE)
used to define the type of operation to be performed on the resource.

9. Response: A response is the data sent by the server as a consequences
of a client’s request. The data in the response will depend on the request
and on the state of the requested resource. The response always contains
a standard response code and optionally a representation of the requested
resource, when available. In some human-user facing APIs in addition to
the response the server can also send an e-mail message to the human-user
containing hyperlinks for future requests.

10. Link: A link can be a hyperlink, a parameter that needs to be used to
construct the URI in a subsequent request from a given URI template [74],
or a reference to a link parameter defined in the OAS documentation. Links
are necessary to enable future interactions with the API.

11. Parameter: A parameter is a variable that needs to be added in the path
of the request or in the request header. A path can contain one or more
parameters, depending on the URI template used. The value of the param-
eter changes at run time during the execution of different conversation
instances.

Metamodeling has became “the prevailing technique for describing the abstract
syntax of modeling languages: meta-classes represent all modeling concepts,
meta-attributes their variations, and meta-associations their relationships” [13].
The reason for defining metamodels is “to precisely describe a language so that
modelling tools, such as editors, can be created to support the use of the lan-
guage” [157]. In Fig. 4.3 we present RESTalk’s metamodel which depicts the
relationships between the concepts defined in the concept dictionary. The con-
cepts borrowed from the BPMN Choreograpy metamodel [101, pg.322] are col-
ored in green. The classes coloured in blue refer to the concepts which overlap
with the Open API Specification metamodel, and thus provide an opportunity
for automating the derivation of RESTalk diagrams from the specification. The
remaining white classes are specific to RESTalk.

71 4.2 RESTalk Language Layer

Figure 4.3. RESTalk meta-model

R
eq

ue
st

m
ul

tii
ns

ta
nc

e:
 b

oo
le

an

R
es
po

ns
e

st
at

us
C

od
e

[1
]

Pa
ra
m
et
er

1
1.
.*

1 0.
.*

0.
.*

ta
rg

et
R

ef

Se
qu

en
ce

 F
lo

w

1

0.
.*

Fl
ow

 N
od

e

ta
rg

et
R

ef

so
ur

ce
R

ef

G
at

ew
ay

ty
pe

: {
ex

cl
us

iv
e,

 p
ar

al
le

l,
in

cl
us

iv
e}

Ev
en

t

1

1.
.*

so
ur

ce
R

ef

Bo
un

da
ry

 E
ve

nt

ty
pe

: {
tim

er
}

St
ar

t E
ve

nt

C
on

ve
rs

at
io

n

1
1.
.*

2.
.*

1

En
d

Ev
en

t

1

0.
.1

Su
bC

on
ve

rs
at

io
n

Li
nk

ty
pe

: {
hy

pe
rli

nk
, O

AS
, p

ar
am

et
er

}

1

0.
.*

O
pe
ra
tio

n

m
et

ho
d

[1
]

1

1

1

1.
.*

1 0.
.*

C
al

l R
eq

ue
st

M
es

sa
ge

 A
ct

iv
ity

em
ai

l a
dd

re
ss

 [1
]

1

1.
.*

10.
.*

11

1

1

m
ul

tii
ns

ta
nc

e:
 b

oo
le

an

be
lo

ng
sT

o

st
ar

ts

ha
s

at
ta

ch
ed

To

Pa
rti

ci
pa

nt
m

ul
tii

ns
ta

nc
e:

 b
oo

le
an

ty
pe

: {
cl

ie
nt

, s
er

ve
r}

na
m

e:
 S

tri
ng

be
lo

ng
sT

o:
 {l

an
e,

 p
oo

l}

1

<e
nu

m
er
at
io
n>

M
et
ho

d
G
E
T

P
O
S
T

P
U
T

D
E
L
E
T
E

P
A
T
C
H

H
E
A
D

C
O
N
N
E
C
T

O
P
T
I
O
N
S

T
R
A
C
E

St
at

e

vi
si

bl
e:

 b
oo

le
an

1

0.
.*

ta
rg

et
R

ef

H
yp

er
lin

k
Fl

ow

co
lle

ct
io

n:
 b

oo
le

an

R
es
ou

rc
e

pa
th

 [1
]

0.
.1

so
ur

ce
R

ef

1

1

2.
.*

R
ES

Ta
lk

 M
od

el

1
1.
.*

1

2.
.*

1

0.
.*

1

0.
.*

1

1.
.*

O
ve

rla
p

w
ith

 B
PM

N
 C

ho
re

og
ra

ph
y

cl
as

se
s

O
ve

rla
p

w
ith

 O
pe

nA
PI

 S
pe

ci
fic

at
io

n
cl

as
se

s

R
ES

Ta
lk

 S
pe

ci
fic

 c
la

ss
es

72 4.2 RESTalk Language Layer

The semantical meaning of most of the classes in the domain specific language
metamodel is defined in the concept dictionary above. To explain better the
behaviour of a REST API we have added some abstract classes which we explain
below, together with the attributes and relationships between the main classes.

1. A Conversation can contain multiple flow nodes, but each flow node belongs
to just one conversation;

2. A Sub-conversation has the same characteristics as the conversation, i.e.,
it can also contain multiple flow nodes. The difference is that a sub-
conversation is a flow node itself and as such is contained inside a con-
versation and thus it has to have a source and a target reference sequence
flow. A conversation can, but does not have to, contain sub-conversations.
A sub-conversation can be used to delimit logical groups of interactions, for
instance a set of interactions that accomplish a certain goal or subgoal, or it
can also be used for groups of interactions executed in a Multi-instance loop
iterating over a given array parameter retrieved in a previous response. For
each element of the array the same sub-conversation is executed;

3. A Start event marks the beginning of the conversation. An End event marks
the end of the conversation, when the API client stops sending further re-
quests as it has achieved its goal. A boundary event of type Timer shows
alternative paths to be taken in case the server takes too long to respond
to the request. The alternative path can lead to re-sending the request, if
the response is crucial for the conversation, or it can simply continue to
the next request. The timer event element is used attached to the request
element to show its interrupting nature [101, pg.342] that breaks the nor-
mal request-response sequence, and introduces a request-timeout-request
sequence;

4. In a normal conversation execution, without timeouts, each Request is fol-
lowed by at least one Response. The request corresponds to exactly one Op-
eration in OAS terminology which contains the HTTP method (GET, POST,
PUT, DELETE) that can be called on the Resource that the request refers to.
The resource is identified by its URI, i.e., its Path, and has a State which is
reflected in its representation sent with the response. As resources can be
called with different methods, each resource can have one or more opera-
tions;

5. Three types of Gateways are supported in RESTalk: XOR - exclusive gate-
way that allows only one of the outgoing flows to be taken. This is the gate-

73 4.2 RESTalk Language Layer

way type that must be used when modeling alternative server responses;
OR - inclusive gateway that allows one, some or all of the outgoing flows
to be taken; AND - parallel gateway that requires all outgoing flows to be
taken. Similar logic is used when the gateways are used to converge the
flow. Namely, in order to continue the conversation after an XOR - exclu-
sive join gateway the response from only one of the incoming flows has to
be received; for OR - inclusive join gateway the responses from all flows
that have been activated with a split need to be received; for AND - parallel
join gateway the responses from all concurrent flows need to be received;

6. The Message Activity element is to be used to model messages send by the
RESTful server to the email account of a human-user. Thus, a message
activity element has to contain the email address attribute. The email can
contain one or more links which the user can follow in order to continue
the conversation with the RESTful server;

7. Flow node is a sub-conversation, request/response, gateway, event, or mes-
sage activity node in the RESTalk graph and as such can be a source or a
target of a Sequence flow which represents an edge in the RESTalk graph.
When a request can only have one response the request is directly followed
by the response and there is no need to use an edge between them, which is
the case when a response flow node is not a target reference of a sequence
flow. Some types of flow nodes, such as the start event or boundary event,
can only be a source reference of a sequence flow, while the end event type
of flow node on the other hand can only be the target reference of a se-
quence flow. Requests, responses, message activities and sub-conversations
are the source reference of exactly one sequence flow and the target refer-
ence of a different sequence flow. Gateways are the only type of flow nodes
that can be the source or the target of multiple sequence flows depending
on whether they act as a split or a join;

8. The Participant element refers to the client(s) and the server(s) who par-
ticipate in the conversation. When there is just one client and one server
there is no need to explicitly state the name of the roles as the client is
always the one that makes the requests and the server is always the one
that provides the responses. Explicitly differentiating between the partici-
pants becomes necessary when there are multiple types of clients using the
same API in which case we use Lanes to depict them stating the name of
the client explicitly on top of the lane. Thus, a lane is a container of a con-
versation or a part of a conversation, between a single client and a single

74 4.2 RESTalk Language Layer

server. When applicable, sequence flow can pass between lanes as it means
that the participation of multiple types of clients is needed to achieve the
given conversation goal. Explicitly differentiating between the participants
is also needed in composite conversations when a server becomes a client
calling an external REST API to obtain data necessary for sending the re-
sponse to the initial client, in which case we use Pools to depict the different
servers being involved in the RESTalk model. Each pool contains a conver-
sation between the specified participants in that pool. Thus, a pool is a
container of a conversation with a single server and can contain none or
multiple lanes. When using pools a Call Request has to be used to specify
that the response to that request will be provided only after the called ex-
ternal API provides its response. The name of the client needs to be stated
on top of the pool while the name of the server needs to be stated at the
bottom of the pool. Sequence flow cannot cross between pools as each pool
defines a separate conversation and dependencies between conversations
are depicted by using multiple pools. Thus, in composite conversations a
RESTalk model contains multiple pools. Lanes and pools assign different
flow-elements to different participants;

9. The Hyperlink flow basically shows the flow of data during the interactions.
In a single conversation it highlights the usage of resource identifiers dis-
covered from previous responses. It acts as an edge whose source reference
is a Link that is found in a response while the target reference is a Param-
eter inside a request operation. The parameter can have one value or a
Collection of values. If in the previous response a full hyperlink was pro-
vided, then the target reference is the full resource path. When the source
reference of the hyperlink flow provides a collection of parameter values,
the request whose URI path contains the target reference parameter has to
be inside a loop or has to have the multi-instance marker, as it will need
to be executed for each of the parameter values provided from the source
reference. In a composite conversation hyperlink flow is used to show the
data flow from the call request to the request(s) sent by the server to an
external server, or to show the data flow from an external server response
to the response of the initial server. Thus, while in a single conversation
hyperlink flow always connects a link from the response to a parameter
in the request, in composite conversations a hyperlink flow can connect a
parameter from a call request to a request in a different pool, as well as a
link from a response to a link in a response in a different pool. As opposed
to BPMN message flow between pools, which shows the time dimension in

75 4.2 RESTalk Language Layer

terms of when the data is sent or received and in which order, in RESTalk
the hyperlink flow between pools shows just how the data flows between
pools (i.e., the provenance of the data) without any reference to when the
data is actually transferred. A response to a call request is only sent once
the called conversation has finished although the data might have been
already available before. An example of a composite conversation is pro-
vided in Sec. 6.2.4;

10. A RESTalk Model is a model of the behaviour of one or more APIs which can
contain a conversation between one client and one server, or multiple types
of clients and one server, or multiple conversations in the case of composite
conversations. As hyperlink flow can connect elements between different
conversations a RESTalk Model can have zero or many hyperlink flows (the
hyperlink flows inside a conversation belong to the conversation) and it can
have two or more participants which can belong to lanes or pools.

Some of these elements are mandatory when creating a RESTalk diagram, while
others are optional. The minimal set of elements to use for a valid diagram are:
1) start and end events, 2) at least one request with specification of the opera-
tion method and the resource path, 3) at least one response with specification
of the response code. Additional information can be added in the request/re-
sponse elements depending on the goal of the diagram (e.g., microservice name,
header/body information, SLA information etc.).
Meta-models can be enhanced with “well-formedness rules written as OCL in-
variants that impose restrictions, which have to be satisfied in each well-formed
instance of the abstract syntax metamodel” [13]. The Object Constraint Lan-
guage (OCL) has been adopted as the formal specification language for the defi-
nition of constraints and is part of the UML standard. It adds precise semantics
to visual models. There are five types of OCL expressions: 1) invariants (inv)
to state the conditions that have to be satisfied when a model is instantiated;
2) initialization expressions (ini t) to state the initial values that the properties
of an object must take upon creation; 3) derivation rules (deriv) to define how
the value of derived model elements should be computed; 4) query operations
(de f); and 5) operation contracts (pre, post), i.e., set of operation precondi-
tions and postconditions [26]. Objects in OCL are accessed using the “.” symbol,
while collections are accessed using the “−>” symbol. All constraints in OCL are
associated with a context, which defines the entity for which the constraint has
to hold. The following OCL rules apply for creating valid RESTalk diagrams:

• //The conversation is always initiated by the client making a request

76 4.2 RESTalk Language Layer

context Start Event inv
ConversationStart: self.targetRef.oclIsKindOf(Request)

• //A request with multiple possible responses is followed by an exclusive
gateway
context Request inv DifferentResponses:
if (self.response -> size()>1) then (self.targetRef.oclIsKindOf(Gateway)
and self.targetRef.type=exclusive)

• // When a response provides multiple values of a given variable the
request based on that response should have a multi-instance marker or
the subconversation based on that response should have a multi-instance
marker
context HyperlinkFlow inv Multiinstance:
if (self.collection = true) then
(self.targetRef.operation.belongsTo.multiinstance = true or
self.restalkmodel.conversation -> includes(s:SubConversation|
(s.multiinstance = true and s.flownode ->
includes(self.targetRef.operation.belongsTo))))

• // A boundary event is attached to a request and thus it has no incoming
flows and only one outgoing flow
context BoundaryEvent inv AttachedEvent:
self.sourceRef -> isEmpty() and self.targetRef -> size() = 1

• // A start event has no incoming flows and only one outgoing flow
context StartEvent inv StartEventFlow:
self.sourceRef -> isEmpty() and self.targetRef -> size() = 1

• // An end event has no outgoing flows and only one incoming flow
context EndEvent inv EndEventFlow:
self.targetRef -> isEmpty() and self.sourceRef -> size() = 1

• // A gateway has multiple incoming or outgoing flows
context Gateway inv GatewayFlow:
self.sourceRef -> size() > 1 or self.targetRef -> size() > 1

• //Each conversation should have at least one client and one server
context Conversation inv Participation:
self.participant -> exists(p1: Participant | p1.type = client) and
exists(p2: Participant | p2.type = server)

77 4.2 RESTalk Language Layer

• // A conversation where n clients talk to n servers is out of scope for
RESTalk, only conversations between multiple clients and one server or
multiple servers and one client are supported
context Conversation inv NoNtoNConversations:
if (self.participant->select(p|p.type=client) -> size() > 1) then
(self.participant->select(p|p.type=server) -> size() = 1) or if
(self.participant->select(p|p.type=server) -> size() > 1) then
(self.participant->select(p|p.type=client) -> size() = 1)

• // A hyperlink flow can have as a target a response only if that response
is related to a call request
context Response inv ResponseToResponseHyperlinkFlow:
if (self.link.targetRef -> size()>0) then self.request.oclIsTypeOf(Call
Request)

• // A hyperlink flow can have as a source a request only if that request is a
call request and the target is a request in another conversation
context Hyperlink Flow inv RequestToRequestHyperlinkFlow:
if (self.sourceRef.oclIsTypeOf(Parameter) -> size()=1) then
(self.sourceRef.operation.oclIsTypeOf(Call Request) and
self.targetRef.operation.oclIsTypeOf(Request) and
self.sourceRef.operation.request.conversation <>
self.targetRef.operation.request.conversation)

• // If no lanes/pools are used in the model then the participants are not
named
context Participant inv NamingParticipants:
if self.belongsTo = null then self.name = null

• // When a conversation has multiple clients they should all be named
context Participant inv LabelingParticipants:
if (select(p: Participant|p.type=client) -> size() > 2) then forAll(p.name
<> null)

• // When a model has participants belonging to different pools each
participant should have a name
context Participant inv LabelingParticipantsInPools:
select(p: Participant|p.belongsTo=pool) -> forAll(p.name <> null)

The following OCL rules on the other hand are recommended optional best prac-
tices:

78 4.2 RESTalk Language Layer

• // The related request / response elements can be united, i.e., it is
recommended not to use a sequence flow between them
context Request inv OneResponse:
self.response -> size()=1 and self.targetRef -> isEmpty()

• // It is best practice to only have unique requests (method + URI pairs) in
the model
context Request inv UniqueRequest:
self.allInstances() -> forAll(r1, r2|r1<>r2 implies (r1.operation.method
<> r2.operation.method or r1.operation.resource.path
<>r2.operation.resource.path))

• // Unless required to show more detailed responses, best practice is not
to have multiple responses with the same response code related to a
single request
context Request inv UniqueResponses:
self.response -> isUnique(statusCode)

4.2.2 RESTalk Graphical Representation

The graphical notation of a Domain Specific Language is very relevant for the
comprehensibility, usability and productivity of the DSL [171]. When designing
the visual notation of RESTalk we have kept in mind the design guidelines pre-
sented in [57]. Since BPMN Choreographies do have a visual concrete syntax, we
have used them as a starting point for the RESTalk visual notation, which already
gave us good basis for visualizing the main concepts mentioned in Sec. 4.2.1. We
used a subset of the BPMN Choreographies syntax as-is (the control flow con-
structs such as sequence flows, gateways, events), but we also modified some
elements (such as the Choreography Task) to emphasise REST specific facets.
When modifying and expanding BPMN Choreographies, as advised in [57], we
have grouped the main concepts into categories and created generic symbols for
each category, trying to keep the visual distance in line with the semantic distance
of the different concepts [142]. We have created such visual distance through
shape, colour or text. In certain cases in addition to shapes we also used icons to
create a reference to the represented concept (e.g., timer event, sending message
activity). Most symbols are assigned to one particular concept (avoiding “symbol
overload”) and most concepts can only be represented by one symbol (avoiding
“redundant symbols”) [142].

79 4.2 RESTalk Language Layer

From BPMN Choreography to RESTalk

Cortes-Cornax et al. [29] when evaluating the quality of BPMN Choreographies
state that “the language must be powerful enough to express anything in the do-
main but no more”. Thus, to render the subset of BPMN Choreography graphical
symbols more concise when targeting the modeling of RESTful conversations, as
opposed to generic message-based conversations for which the BPMN Choreogra-
phies were originally designed, in [160] we have proposed minor, but significant
changes to the standard notation. We will discuss such changes, before defining
the symbols for the remaining concepts from the metamodel.
Modification 1: Contrary to business processes, where it is important to high-
light which participant is responsible for initiating the interaction, in a RESTful
conversation the initiator is always the client, and there is no one-way interac-
tion, as every successful request is followed by a response. The content of the
messages is of a particular interest, because it defines, as a minimum, the re-
source and the action to be taken by the server, by defining the HTTP method.
To comply with these differences and bring the visual construct closer to its
meaning [142], we replace the BPMN Choreography task with an interaction (re-
quest/response) element. The BPMN Choreography task can have an optional
incoming/outgoing message with a text annotation to depict the message con-
tent. The three band choreography task contains participants’ names and a task
name. We replace it with a two band request-response element with embedded
message content (Fig. 4.4). The required content of the request-response mes-
sages is the request method, the URI, as well as the response status code, and
where applicable links.

Figure 4.4. Modification 1: replacing the BPMN Choreography Task

Request

Response
Hyperlink

Client

Server

Request

Response
Hyperlink

Modification 2: Since in a RESTful interaction a request is always followed by
a response, the request-response bands always go together, except when there

80 4.2 RESTalk Language Layer

is path divergence due to different possible responses from the server to a given
client’s request. Only in this case the request is separated from the responses by
a smaller size exclusive gateway to show the two or more alternative responses
that can be sent by the server. As evident in Fig. 4.5 this makes RESTalk less
verbose and less bulky in the visual representation.

Figure 4.5. Modification 2: allowing for different server responses

Client

Server

Request
Hyperlink

Client

Server

Alternative
Response

Client

Server

Alternative
Response

Request
Hyperlink

Alternative
Response

Alternative
Response

Modification 3: The hyperlink flow indicates how URIs are discovered from hy-
perlinks embedded in a preceding response to clarify how clients discover and
navigate among related resources (Fig. 4.6). Adding this element is important in
RESTful conversations where, due to the HATEOAS constraint in a REST compli-
ant API, clients should not be forced to guess URIs, neither to retrieve the URIs
from out-of-band knowledge [217]. Thus, the hyperlink flow makes it possible to
distinguish which requests are sent by clients using hard-coded knowledge about
URIs, and which are sent by dynamically discovering the URI from previous re-
sponses. Namely, if there is a client request in the conversation model (with the
exception of the first request), where the URI is not extracted from a hyperlink
flow, the API designer is aware that a client would need out-of-band knowledge
to complete the conversation.
An exemplary RESTful conversation would look as in Fig. 4.7a, when modeled
with the standard BPMN Choreography notation, and as in Fig. 4.7b when mod-
eled with the above mentioned modifications made when designing RESTalk.

Core and Extended Constructs

The core constructs in RESTalk are used to express simple one to one (client-
server) conversations. Although the concepts they represent have been defined

81 4.2 RESTalk Language Layer

Figure 4.6. Modification 3: hyperlink flow

Client

Server

Request

Response
Hyperlink

Client

Server

Response

Request
Hyperlink

Request

Response

Hyperlink

Request

Response
Hyperlink

in Sec. 4.2.1, we will briefly summarise them here while making reference to the
visual representation of the same (please refer to the enumerated elements in
Fig. 4.7b):

1. Start event to mark the beginning of the conversation;

2. An interaction element containing the content of the request (white) and
response (gray) messages;

3. Hyperlink flow to highlight the usage of resource identifiers discovered from
previous responses;

4. Control flow split gateways to show path divergence due to client’s deci-
sions. As mentioned RESTalk supports three types of gateways: XOR -
exclusive gateway, OR - inclusive gateway, AND - parallel gateway;

5. Control flow merge gateways to show path convergence after a split. The
same constructs are used as for the split gateways, but the semantical
meaning is to allow the conversation to continue after a certain condition
is met;

6. Exclusive split due to different possible responses from the server;

7. Response timeout to model situations where it is relevant for the conversa-
tion to show that, if the server takes too long to respond, the client will
resend the request or quit. Such timeouts can happen after every request,
but we recommend to explicitly use the response timeout event only for
non-idempotent requests;

8. End event to mark the end of the conversation, when the client stops send-
ing requests after achieving its goal. Different end events (reflecting dif-
ferent outcomes) are possible for a given conversation.

82 4.2 RESTalk Language Layer

Client

Server

Response
TimeoutRequest

Response
Hyperlink1
Hyperlink2

Client

Server

Request
Hyperlink1

Client

Server

Alternative
Response

Client

Server

Alternative
Response

Client

Server

Request
Hyperlink2

Response

(a) Exemplary RESTful conversation modeled using standard BPMN Choreography

Request

Response

Request

Hyperlink1
Hyperlink2

Hyperlink1

Alternative
Response

Alternative
Response

Response
Timeout

Hyperlink Flow

Request

Response

Hyperlink2

2

3

4

6

7

1

5

8

8 8

Exclusive XOR gateway

Inclusive OR gateway

Parallel AND gateway

(b) Exemplary RESTful conversation modeled using RESTalk with num-
bered notation constructs

83 4.2 RESTalk Language Layer

As mentioned earlier we applied an iterative approach in the design of RESTalk.
Thus, based on the results of an initial exploratory survey regarding the cognitive
characteristics and the perceived usefulness of the core RESTalk (described in
Sec. 6.1), by applying RESTalk on different use cases (specified in Sec. 6.2), and
based on the results from an in-class experiment (described in Sec. 7.3) we have
gradually extended the core RESTalk with the following constructs (see Fig. 4.8)
necessary to model more complex conversations and multi-party conversations.

1. Lanes to show the roles of different participants in the same conversation,
when viable interactions depend on such roles;

2. Resource state change to show client-server interactions which lead to
changes in the related resource’s state;

3. Sending message activity to show asynchronous interaction, e.g., through
email notifications sent to participants;

4. Pools to show the roles of participants in different conversations, connected
to each other through call requests;

5. Sub-conversation to show conceptual nesting in the main conversation;

6. Multi-instance marker to show multiplicity. When used in a lane it shows
multiparty conversations where multiple clients of the same type interact
with the server. When the marker is used in a sub-conversation it shows
that the sub-conversation will be executed multiple times as part of a sin-
gle instance of the parent conversation. When used in a request it shows a
loop where multiple requests of the same type will be sent before continu-
ing with the conversation (for instance, using different values of the same
variable);

7. Multiple parameter values in the hyperlink flow to show a single request/re-
sponse which includes a collection of values for a given parameter;

8. Call request to show layering in service composition where an API request
calls another API and only receives a response when the other call has
returned;

9. OAS link in the response as an addition, or an alternative, to the hyperlink
in the response to facilitate pointing to parts of the Open API Specification;

84 4.2 RESTalk Language Layer

10. Additional information referring for example to the limitations as per the
SLA agreement, to requests where user input is required for simulation, as
for example in case of loops or to the name of the microservice a resource
belongs to.

Figure 4.8. Extended RESTalk constructs

Request

Response
Hyperlink URI

State Variable
 Client-Server

Interaction With
Resource State Change

To:
Link: Hyperlink URI

Sending Message
 Activity

III Multi-instanceLane

Introduced in ICWE poster paper

Call Request

Response
Hyperlink URI

+

Call Request
Sub-conversation

Request

Response
Hyperlink URI
OAS Link:

Request with additional
information and
OAS link response

SLA information
simulation input

Introduced in collaboration with University of Seville

Hyperlink flow with
multiple parameter values

*
Pool

Client Name
Client Name

Server Name

Simplifications

Often in high-level conceptual modeling [177, pg. 93], various assumptions and
simplifications are necessary to avoid overwhelming the reader with too many vi-
sual elements. As a result, certain details are excluded from the model represen-
tation. Having in mind the characteristics of RESTful conversations, mentioned
in Sec. 2.3, we introduce the following assumptions that help simplify RESTalk
diagrams (the visual effect of the same is evident in Fig. 4.9):

1. While a hyperlink that has been discovered by the client can be used at any
time in the future, to avoid decreased readability due to too many hyperlink
flow edges, we only take into consideration the hyperlink obtained from the
nearest previous response (Fig. 4.9 (S1));

2. While servers may send responses that include many different HTTP status
codes, we only include the status codes which are relevant for the specific
conversation. For example, 5xx status codes can occur at any time. The
conversation model should only explicitly indicate how a client will need
to react to such errors depending on the specific conversation domain and
error semantics (Fig. 4.9 (S2));

3. While clients may decide to stop sending requests at any time, we model a
path as finished (by using an end event), only if an initially intended goal
has been achieved (Fig. 4.9 (S3));

85 4.2 RESTalk Language Layer

Figure 4.9. RESTtalk diagram simplified following the simplification guidelines

Request

Response

Response 5xxResponse
 Hyperlink/ID; rel=...

Hyperlink/ID

Response Response 5xx

 Hyperlink/ID

Hyperlink

Hyperlink/ID

Request
Hyperlink/ID

Request Request

Response 5xx

Response Response 5xx

S2

S4

S1
S1 S3

S2

S3

S4 S4

S2 S2

S5

S5

S5 S5

Request

Response

 Hyperlink/ID; rel=...

 Hyperlink/ID

Response

 Hyperlink/ID
Response

Hyperlink

Hyperlink/ID

Request
Hyperlink/ID

Request Request

Response

4. While clients may choose to resend idempotent requests (GET, PUT,
DELETE) an arbitrary number of times, we only model situations where
the client retries sending non-idempotent request (POST, PATCH) after a
response timeout event occurs. This is because resending idempotent re-
quests does not affect the outcome of the request (Fig. 4.9 (S4));

5. Likewise, clients may eventually give up resending requests after a timeout.
This additional branch and end event is not typically shown in optimistic
models representing how clients deal with temporary failures (Fig. 4.9
(S5));

6. We assume that the cache is empty by default and thus responses are al-
ways served from the server, not the cache. Nonetheless, if cacheability of
the responses is important for understanding the conversation, additional
information relative to the cache can be added in the request;

7. Fundamental general resource states are implicitly stated in the response
status code. Thus, we recommend states to be visually modelled only if

86 4.2 RESTalk Language Layer

they are important for the application and impact the interaction between
the participants;

8. Proxy layers in the communication act as intermediary resending the re-
quest/response. Thus, we only recommend modelling them if they are in
a form of a gateway implementing certain business logic.

Style Guidelines

Style is frequently influenced by the personal preferences of the modeler or by
the complexity of the reality that the model needs to describe. Thus, the imple-
mentation of the following recommendations is subject to modeler’s choice in
addition to the best practice constraints mentioned in Sec. 4.2.1.
To accommodate the request-response content presented within the interaction
element, we recommend a vertical flow for the diagram layout, as opposed to
the horizontal direction usually used in standard BPMN Choreographies. This
should enhance the readability of the diagram [163] as the control flow can be
followed from top to bottom: with a starting event leading directly to client’s
request, followed by the corresponding server’s response leading directly to the
next request or an end event. The events that the modeler can use are not lim-
ited to the default none or to the timer event type. BPMN Choreographies offer
a plethora of event types, and depending on the needs of the conversation, any
of them can be used within RESTalk. For instance, events may be used to rep-
resent the out-of-band discovery of links, e.g., when they are extracted from an
e-mail message. As opposed to BPMN, where best practices advise documenta-
tion of the decisions in exclusive and inclusive gateways, in RESTalk the modeler
can abstract from describing how clients make decisions on which path to fol-
low, if such details are not entirely relevant to the conversation. Given the scope
of RESTalk described in Sec. 4.1 and based on the use-cases on which we have
applied RESTalk (see Sec. 6.2), we have found the three types of gateways we
used (exclusive, inclusive, and parallel) sufficient to express the behaviour of a
REST API. Other types of gateways, such as the event-based gateway or complex
gateways, could be used in RESTalk models if the semantics of the API behaviour
requires it. Note that there is a slight difference in the semantics of event-based
gateways in BPMN Choreographies compared to BPMN orchestration diagrams.
In BPMN orchestration diagrams event-based gateways represent a race between
possible events (external data) which determines the path to be taken. In BPMN
Choreographies event-based gateways are used to represent situations in which
the participant initiating the interaction takes an internal decision and the other

87 4.2 RESTalk Language Layer

participants have to react to that decision (external to them), so the decision data
is not known to the recipient of the message beforehand. In RESTful conversa-
tions the decisions are taken by the client, but the server reacts to such decisions
based on the state of the requested resource, as it is the server who provides and
stores the data about the resource. As such the use of event-based gateways is
more limited.
The request method, the URI, the response status code and links are mandatory
elements of the request-response interactions. However, as mentioned in the ex-
tended RESTalk constructs, RESTalk does not limit the content of a message to
only the above mentioned elements. Depending on the notation usage, white-
board or drawing tool, any headers or content details considered necessary can
be added by the modeler.
In RESTalk, the sample values of URIs found in the hyperlink flow are meant as
placeholders. They do not necessarily have to reflect the actual structure of the
URI, since as per the HATEOS principle the server is free to create any URI to
be sent to the client embedded in a response. Sometimes a concrete URI is not
expressive enough, for example, for providing the client with a link for searching,
where the search term typically is not known in advance by the server. In such
cases, an HTML form [84] or a URI template [74] is provided by the server, so
that the client can mint the concrete URI by replacing the parameter(s) in the
given template. This requires the client to know the semantics of all parameters.
Such URI templates can also be contained in the hyperlink flow.
“Color can be used as an additional discriminator. This makes sense, if a concept
is very similar to others so that it would be difficult and/or misleading to define
a separate symbol for representing it.” [171]. Using different symbols for differ-
ent types of HTTP requests (GET, POST, PUT, DELETE), can be misleading and
add additional cognitive workload for RESTalk users. Thus, in order to help the
RESTalk diagram readers, the modeler can use colours to mark the type of HTTP
request. We suggest to use the colours already used in Postman, a widely used
platform for API development and testing1, i.e., green for GET, yellow for POST,
blue for PUT, and red for DELETE. Color as a secondary notion can also be used
to mark resources or nesting of resources, depending on the needs of the user.
More details will be discussed in Sec. 8.3.2.

1https://www.postman.com

https://www.postman.com

88 4.2 RESTalk Language Layer

4.2.3 RESTalk Textual Representation

Researchers have been working on textual support for general modeling lan-
guages, in order to facilitate the adoption of those languages, as developers seem
to be more inclined to use textual editors as opposed to graphical editors. The
reason behind that is the long tradition of using textual general purpose pro-
gramming languages, which reduces the learning curve [22] for the textual DSLs.
Textual DSLs are also considered more scalable, more searchable and easier to
collaborate on, as text is supported by version control systems [75] and real-time
collaborative editors. In [192] the authors perform an empirical research based
on 28 developers in order to study the impact of structured textual vs. graphical
representation on users’ efficiency in comprehending requirements. They have
discovered that, although accuracy does not seem to be affected, the develop-
ers who used the textual representation were faster than the ones that used the
graphical representation, but nonetheless majority of the participants preferred
using the graphical representation. In areas such as business process modelling,
studies have shown that starting with textual input (e.g., activity tables, writ-
ten use-case scenarios) and then abstracting the information using visual models
improves process understanding for people who are not process modelling ex-
perts [36; 50; 156]. Furthermore, one of the respondents in our exploratory
survey discussed in Sec. 6.1 stated that a “prerequisite for easy usage is that the
graphical notation can be derived from a simple textual notation”. Given such
results, in addition to the graphical representation of RESTalk, we have decided
to also propose a textual representation so that targeted users can select which
representation to use. We have first proposed a textual RESTalk syntax in [91]
and expanded it later.
As we have seen in the survey of editors that use textual DSL for visual modeling
described in Sec. 3.3.3, most existing textual DSLs use programming language
syntax whenever possible, requiring explicit modeling of all visual elements in
the model. This approach requires the modeler to create a mental abstraction
of the reality (s)he is describing, very similar to the abstraction required from a
modeler who needs to use a graphical editor to model a RESTful conversation
with RESTalk. In the textual representation for RESTalk we have decided to take
a different approach which would require less effort to do the abstraction in order
to address the needs of people who struggle with, or are not fond of, abstraction
and thus prefer to think in execution traces which are more similar to examples
of possible interactions or user-stories. User-stories are a common practice in
software engineering [28]. The goal of classical user-stories is for the software
user to describe the desired functionalities of the software to be developed. Clas-

89 4.2 RESTalk Language Layer

sical user-stories have a predefined content structure to facilitate understanding,
but are written in natural language. In the case of RESTalk, the purpose of the
user-stories is to describe how the functionality of the system (i.e., the goal of
the conversation) is mapped to the sequences of required interactions to achieve
that goal (i.e., the conversation instance). To that end we have decided to design
the textual DSL as constrained natural language based on lists of required inter-
actions. We chose such approach as it requires little or no memory of RESTalk
specific visual constructs and allows for more intuitive story telling technique for
creating the model.
Our goal is to keep the textual DSL for the core RESTalk elements rather intuitive
so that RESTalk models can be sketched quickly without the need of complex al-
gorithms to generate the visual model, while requiring some textual modelling
effort for the use of the extended RESTalk elements. The textual DSL for RE-
STalk is designed with a tool support in mind that leverages process mining al-
gorithms [208] to reconstruct the conversation flow. This is a novel modelling
approach, which we have presented in [88; 92] for business processes modelled
with the BPMN standard modelling language [101] and have decided to also
apply it for RESTalk. A typical HTTP log would contain substantial amount of
traces with each traces carrying information about the IP address of the client,
the URI the call is addressed to, the HTTP head, a timestamp of when the call
was made [178]. The HTTP head does contain the HTTP Method as well as the
response status code. The textual DSL for RESTalk can benefit from log-like struc-
tures as API developers and API designers are likely to be familiar with them, but
it can abstract from the timestamp and the IP address information required for
the mining algorithm by pre-processing the logs to add such information algo-
rithmically.
The design of such log-like textual DSL requires an appropriate trade-off between
the use of textual modelling and mining to aid the textual modelling. That said,
an important decision for the support of the RESTalk core is the definition of the
minimal necessary user input in order to maximize what can be expressed in the
output. The desired output in our case is a draft RESTful conversation model,
for which the required minimal input are the request-response interactions and
the sequence in which they have to be completed. Namely, to get the most sim-
ple core RESTalk diagram which only shows a sequence of interactions, with no
control flow divergence, and no hyperlink flow it is sufficient for the user to write
each client-server interaction (request - response pair) as a new log entry using a
new line, in the order in which the interactions are to be completed. Each line has
to contain the following minimal required elements separated by an empty space:
1) the HTTP method, 2) the resource URI starting with a / and the 3) numerical

90 4.2 RESTalk Language Layer

response status code (per design the standard textual description of the numer-
ical status code should be added by the tool). No time-stamp is required as the
sequential order is deduced from the order in which the interactions are written.
As evident modelling a sequential flow is simple both in textual and graphical
syntax. However, unlike the graphical syntax, the textual one is characterized by
its mono-dimensional structure [70]. This constraint makes it an adequate choice
for representing sequential conversations, but makes it challenging to use plain
text to represent control flow graphs of arbitrary structures like the ones which
can be visualized in RESTalk. Inspired by our work in the BPMN field [90], we
address this challenge by using a process mining algorithm [208] to reconstruct
a model of the conversation control flow graph from a set of written sequential
interaction traces, which can be easily stated in plain text separated by an empty
line.
Fig. 4.10 shows a simple example of the use of the core textual RESTalk DSL to
model a simple conversation by using three interaction traces. As can be noticed
in the figure the DSL is designed such that it does not require the exclusive gate-
way to be explicitly stated by the user, instead it is intended to be deduced by a
mining algorithm. For instance, if two different requests never appear together
in the same conversation trace, the miner will deduce that an exclusive gate-
way needs to be visualized before reaching these requests. The same would be
true also for exclusive gateway due to different responses by the server. In this
case if the same request is followed by different response codes in different in-
stances, the mining algorithm would need to add the exclusive gateway between
the request and the different responses that can be provided by the server to that
request.
To get the full conversation model, a complete interactions instance trace is re-
quired for each possible path that can be taken in the conversation. The drawback
of this requirement is that stating all the possible conversation paths becomes
repetitive when there are many alternative paths which have many shared inter-
actions. To address this issue, we introduce the “..." symbol which is essentially a
placeholder for missing parts of the trace which are defined elsewhere. The pre-
cise semantics of the “..." symbol depends on its position relative to the start or
end of the conversation instance trace, i.e., relative to the empty line. Following
are the possible types of conversation instance traces and their semantics:

• Conversation instance trace that does not contain the “..." symbol: a se-
quence of interactions which shows a complete possible execution path of
the conversation from the start to an end;

• Conversation instance trace that starts with the “..." symbol: the start of the

91 4.2 RESTalk Language Layer

Figure 4.10. Execution logs like textual DSL for core RESTalk elements

conversation instance has been defined in the trace of other conversation
instances. This fragment of a conversation instance trace states a sequence
of interactions that leads to an end of the conversation;

• Conversation instance trace that ends with the “..." symbol: the end of the
conversation instance has been defined in the trace of other conversation
instances. This fragment of a conversation instance trace states a sequence
of interactions that follows from the start of the conversation;

• Conversation instance trace that contains the “..." symbol: there is a part
of the conversation instance that has been defined in the trace of other con-
versation instances. This fragment of a conversation instance trace states
a sequence of interactions that starts and ends the conversation, but skips
the middle of the conversation instance trace;

• Conversation instance trace that starts and ends with the “..." symbol:
this type of trace is used as a fragment to fill in the placeholders in other
traces in order to complete them. It does not correspond to a separate

92 4.2 RESTalk Language Layer

conversation instance.

The goal of the RESTalk textual DSL is to support an iterative model refinement
process, where the initial model is obtained quickly from its constrained natural
language description and further fine-grained in a visual editor or by using tex-
tual modelling. Thus, basic type annotation keywords would need to be learned
only if it becomes necessary to classify model elements during a second refine-
ment step. The most important design decisions we took to support such goal
involve:

• annotating the name of the client followed by “:”, to speed up annotating
interactions or events with their client roles. The role is applied to all inter-
actions following the annotation until another role is declared. The roles
are automatically mapped to lanes depending on the presence or absence
of handovers or pools if client roles are matched to server roles. Multi-
instance marker on a lane/pool is added when “(s)” is added at the end
of the participant’s name.

• events are distinguished from interactions because they are entered in
round brackets referring to their round visual shape “()”. The mining
algorithm should determine automatically whether they are start, interme-
diate, or end events, depending on whether there are stated interactions
preceding/following the event in question. Boundary events are stated
in double round brackets “(())” in the same line with the request they
should be attached to.

• interactions and events can be annotated by prefixing them with a type.
This addresses the requirement of modelers who need to refine their model
after the initial sketch. Stating event types (e.g., timer, error) and inter-
action types (e.g., message activity, call request, subconversation) requires
the use of keywords, which attempt to match how those constructs are
named or used.

• exclusive split gateways can be annotated with a label, specified as a ques-
tion (i.e., a line ending with “?)” in the text. As exclusive gateways denote
decisions, the line after the question represents the chosen alternative and
becomes the expression associated with the outgoing conditional flow of
the gateway.

• we intentionally decided not to mine parallel and inclusive gateways as
it would require manually entering multiple traces including different per-
mutations of the same set of interactions, which early adopters considered

93 4.2 RESTalk Language Layer

too much effort. Instead, parallel interactions are simply declared on the
same line by separating them with “|”, while an inclusive split in the con-
trol flow is marked by separating the interactions with “||” as after all an
inclusive gateway split can act as a parallel split if all of its conditions are
evaluated to true.

• the hyperlink flow is deduced from the matching hyperlink names in the
response and the subsequent request, or from the matching link parame-
ters.

• the state of the resource should be included in “< >” after the response
code or any potential response links.

• additional information can be included in the request annotation. Such
information has to be in a string format or included in quotation marks and
has to be placed after the URI in the request.

The main design challenge for the textual RESTalk DSL consists of the trade-off
between the usability, the learnability, and the expressiveness of the language.
Thus, the textual DSL attempts to draw the line between the usefulness of min-
ing algorithms to infer RESTalk constructs implicitly embedded into the textual
description vs. explicitly stating a construct, as evident in Tab. 4.1. Our goal is,
whenever possible, to reduce the cognitive effort of the users [235] by not requir-
ing them to explicitly state RESTalk constructs. For example, as hyperlink flows
can be inferred by detecting a matching hyperlink name between a response and
a subsequent request, we do not require the user to explicitly include such flows
in the textual description.
In Fig. 4.11 we show a more complex example using textual modelling on top
of the mining algorithm to also show lanes and the use of inclusive gateway. We
also use the above mentioned placeholder symbol “...” to avoid repeating already
stated sequences of interactions. More examples using different constructs of the
textual DSL for RESTalk can be found in Sec. 6.2. Different mining algorithms
can be used on top of the above described textual DSL to build the tooling support
for the DSL. They can be built from scratch for the RESTalk purposes or they can
be adapted from other fields, such as business process mining, where substantial
work has been done on the matter [208].

RESTalk Textual DSL EBNF Specification

The textual DSL concrete syntax is meant to be closer to natural language
than to common textual programming languages, which are based on control

94 4.2 RESTalk Language Layer

Table 4.1. RESTalk Constructs supported by the textual RESTalk DSL

RESTalk Construct
Derived
from mining

Explicitly
modelled DSL construct

request Ø
state each request in a new line separating the HTTP method
from the URI with an empty space

response Ø
state the response code numerically after the request separated with
an empty space

links Ø

use “/” at the beginning of a URI to indicate a hyperlink,
use “{}” to indicate a parameter inside the URI or in the response,
use the “OAS” keyword followed by the OAS reference id to
model references to OAS

events Ø
use “()” to indicate an event. Whether it is a start, intermediate
or end event is automatically inferred.

event type Ø use the “timer”, “error”, “notify”, “publish”, “terminate” keywords

boundary event Ø
include the event name in “(())” stating the event type keyword
followed by the request the event should be attached to in the same
line and the exceptional behaviour in a new line

different responses
control flow divergence Ø use the same method+URI pair followed by a different response code

exclusive gateway
split/merge Ø repeat the last common request-response interaction before the split

labeled exclusive
gateway split Ø use “?” after the name of the label

loops Ø repeat the interactions in the loop
sequence flow Ø state interactions in the order in which they happen
conditional flow Ø state the condition following the gateway label

hyperlink flow Ø
use matching names for the response hyperlink and the request URI
or use matching parameter names

hyperlink flow with
multiple parameters Ø use “[]” to indicate multiple parameters in the request/response

parallel gateway Ø separate the parallel interactions with “|”
inclusive gateway Ø separate the inclusive interactions with “||”
lanes Ø state the name of the participant followed by “:” and an interaction

pools Ø
lanes become pools in case server roles are stated at the end of the
textual input after the “SERVERS” keyword followed by matching client
name separated from the server name by a “-”

call request Ø
use the “call” keyword before the interaction and optionally
indent the called conversation to show the nesting

message activity Ø use the “send” keyword before the name of the email recipient

state Ø
use the “< >” around the name of the resource state after the response
hyperlink

additional information Ø
state any additional information (e.g., microservice name,
SLA constraint) following an empty space after the request URI

multi-instance marker Ø
use “(s)” after the name of the participant to add a multi-instance
marker in a lane/pool. Use the “forEach” keyword as a placeholder
for a multi-instance subconversation.

subconversation Ø only multi-instance subconversations are supported

text annotation Ø
use “//” before the interaction to which the text annotation is to
be attached

comment Ø use “///” to add a comment in the text

structures, blocks, and the use of keywords. A formal syntax of a textual lan-
guage is useful for naming the various syntactic parts of the language, showing
the valid sequences of symbols and showing the structure of any sentence in
the language. To provide a formal description of the RESTalk textual DSL we
have decided to use EBNF, an ISO standard language [195], as a syntactic

95 4.2 RESTalk Language Layer

Figure 4.11. Execution logs like textual DSL for extended RESTalk elements

metalanguage. The main building blocks in EBNF are terminals (atomic parts of
the language which cannot be split into smaller components) and non-terminals
(a combination of terminals and non-terminals which create syntactic parts
in the language). A terminal can be a quoted literal, a regular expression, or
a name referring to a terminal definition. Examples of terminals are variable
identifiers, keywords, literals, separators, whitespaces, comments. Terminals are
defined using string constants or regular expressions. The grammar is defined
by essentially defining production rules, i.e., rules that define how a valid
non-terminal can be composed. Each rule is composed of a left-hand side which
is the name of the rule, and a right-hand side describing that name, separated by
=. Alternative items are separated by a stroke (|), an optional item is enclosed
between square-brackets ([]) and repeatable items are enclosed between
curly-brackets ({}) meaning that the item can be repeated zero or more times.
In order to use these symbols in the DSL we are defining, we include them in
single quotation marks (e.g., ’[’). A comma (,) is used to concatenate items, and
semi-colon (;) is used to show the end of a production rule. The RESTalk tex-
tual DSL’s context-free grammar is expressed in the following EBNF specification:

96 4.2 RESTalk Language Layer

(* Assumptions: A character can be a letter, digit, or a symbol, while a string is
comprised of multiple characters of type letter. EOL stands for End Of Line.*)

label = character, { character } ;

role = string, ’:’ | string, ’(s)’, ’:’;

method = ’GET’ | ’POST’ | ’PUT’ | ’DELETE’ | ’PATCH’ | ’HEAD’ |
’CONNECT’ | ’OPTIONS’ | ’TRACE’ ;

status-code = [1-5], [0-9], [0-9] ;

(* showing how single parameters vs list of parameters should be annotated*)

parameter = ’{’, label, ’}’ | ’[’, label, ’]’ ;

uri = ’/’, label, {[parameter], [label]};

oas = ’OAS’, [digit, {digit}], ’ ’, label ;

state = ’<’, label, ’>’ ;

additional-info = string, { string } | ’"’, label, ’"’

request = [role], [’ ’], [’call’], ’ ’, method, ’ ’, uri, ’ ’,
[additional-info] ;

response = status-code, ’ ’, ([uri, {’,’, ’ ’, uri}] | [parameter, {’,’, ’ ’,
parameter}] | [oas]), ’ ’, [state], [’ ’], [additional-info] ;

interaction = request, ’ ’, response ;

dots = ’...’ ;

parallel = interaction, ’|’, interaction, {’|’ interaction} ;

inclusive = interaction, ’||’, interaction, {’||’ interaction} ;

event-type = ’start’ | ’finish’ | ’timer’ | ’publish’ | ’notify’ | ’error’ |
’escalate’ | ’terminate’ ;

event = ’(’, [event-type], [’ ’], label, ’)’;

(* showing the XOR label and the condition after *)

XOR-label = label, ’?’, EOL, label ;

97 4.2 RESTalk Language Layer

message-activity = ’send’, ’ ’, label, ’ ’, uri ;

boundary-event = ’(’, event, ’)’, ’ ’, request, EOL, request ;

subconversation = ’forEach’, ’ ’, parameter, EOL, conversation ;

annotation = ’//’, label ;

comment = ’///’, label ;

empty-line = ’ ’, EOL ;

line = dots | interaction | parallel | inclusive | event | XOR-label
| message-activity | boundary-event | subconversation
| annotation | comment, EOL ;

instance = line, { line }, empty-line ;

conversation = instance, { instance } ;

servers = ’SERVERS’, EOL, string, ’ ’, ’-’, ’ ’, string ;

compositeConversation
= conversation,{ conversation }, empty-line, servers ;

Usability vs. Expressiveness Trade-off

The trade-off between usability and expressiveness is present in different ar-
eas [59; 237]. The fundamental reason for this trade-off is the fact that greater
expressiveness requires more language constructs, which hinders the usability
as the users need more time and effort to learn the language. In existing tex-
tual modeling languages the user typically needs to write text which mimics the
graphical constructs of the modelling language (e.g., “->" to denote an edge in
plantBPMN) or use the terminology of the modelling language (e.g., pool, task
etc. in plantBPMN, fork in PlantUML) in order to obtain the visual model. This
requires the user to have prior knowledge of the visual modelling language. Us-
ability, and fast learnability as part of it, can be important when targeting users
who might not be frequently exposed to the visual modelling language in their
daily job. Thus, although we did try to provide almost full support of the RESTalk
constructs (subconversations which do not show a multi-instance execution are
not supported), using the textual DSL for some very complex diagrams may be-
come verbose and loose its benefits as it would require memorising the less fre-
quently used textual DSL constructs. Thus, we envision the textual DSL being

98 4.2 RESTalk Language Layer

used mostly for quick sketching of simple conversations as it takes the form of
notes taking during a workshop discussion or brain-storming sessions. Using and
implementing its full expressiveness would be more time-intensive and would re-
quire a higher learning curve.

Potential Improvement of Modeling Efficiency

Wasana et al. [15] have identified the modelling methodology and the modelling
tool as two factors impacting the success of a process modelling project, but this
can also hold for modelling projects in general. While the methodology refers
to the modelling approach being followed (e.g., how is the requirements and in-
formation gathering phase performed), the modelling tool refers to the software
being used for the design of the models. Each of these factors has its related costs
in terms of efficiency and cognitive load.
When modeling conversations, we can differentiate between the cognitive load
for 1) identifying and naming operations and mapping them to possible re-
sponses, and 2) identifying the correct topology of the control flow graph. The
intrinsic cognitive load of people depends on their prior knowledge and the com-
plexity of the task that they need to perform [202]. It has been shown that, when
it comes to understanding visual models, readers first identify smaller submod-
els and later connect everything together [77]. Our textual DSL design takes
advantage of this by allowing the user to specify sub-models in form of single
conversation instances. These are then assembled by the mining algorithm to
build the end-to-end conversation model. Similar approach, called Programming
by Example, has also been discussed for decades in the programming domain.
In Programming by Example the user should “work through an algorithm on a
number of examples and then the system tries to infer the general program struc-
ture” [144]. So as in our case, it is the system who deals with the abstraction
while the user just describes examples, or what we called earlier, user stories.
We expect that the proposed approach of textual modelling aided by a mining
algorithm should decrease the cognitive load of the designers thanks to the use
of a mining algorithm for reconstructing the control flow graph, which is an espe-
cially complex task in larger conversation models. There are various techniques
for measuring the cognitive load, such as self-reported scales about the mental
effort, or the difficulty of the tasks, as well as through response time [42], or eye
movement tracking and pupillary response [24]. Due to time constraints such
experiments for the effectiveness of the RESTalk textual DSL in decreasing the
cognitive load have remained as future work.
The type of modelling tool on the other hand, in addition to the cognitive load,

99 4.3 Chapter Summary

can also impact the time efficiency of the modelling task per se. In a graphi-
cal editor a modeler would need to select the correct constructs from the avail-
able palette, place them in the modeling space, frequently using the drag&drop
functionality, connect them in the correct order, and type the content of the re-
quest/response interactions. When using an editor for a textual DSL the user still
needs to type the content of the request/response interactions as when working
with the graphical editor. However, there is no drag&drop involved, thus there is
no repositioning of the cursor within the interaction shapes as all the request/re-
sponse pairs are written on different lines of the same text editor. In other words,
for equally experienced users we expect our textual entry to be more efficient
than drawing graphical models, as argued in [76; 60]. Of course with no em-
pirical evidence this remains just our expectation, thus as future work controlled
experiments can be conducted where one group is asked to use RESTalk’s textual
DSL and another group is asked to use a RESTalk’s graphical editor to construct
the same model.

4.3 Chapter Summary

In this chapter we defined the scope of RESTalk, the three types of RESTful con-
versations it is meant to support, as well as the possible use-cases of its tar-
geted users: API designers, API developers and API client developers. Then we
set up the requirements of the language and discussed how they have been im-
plemented in the design of the same. We discussed the important entities in a
RESTful conversation and their interconnections through the provided RESTalk
meta-model.
Both the graphical and the textual representation of RESTalk are discussed in
this chapter. The graphical representation draws its basis from the BPMN Chore-
ography diagram elements, adopting some elements as-is, modifying the chore-
ography task construct, and adding additional constructs to expand its expres-
siveness. Iterative approach with frequent feedback cycles has been used in the
design of the language. We distinguish between core RESTalk and extended RE-
STalk to facilitate its learnability depending on the modeler’s needs and domain
expertise.
The textual representation takes an innovative approach and uses a log-like form
in order to leverage on mining algorithms to generate the control flow and graph
layout. The greatest challenge in its design was to find the sweet spot between
the use of textual modelling and mining as a modelling aid in order to maximise
the effectiveness and efficiency of the DSL user. Our hypothesis is that this novel

100 4.3 Chapter Summary

approach of textual modelling facilitated by the use of a mining algorithm can
decrease the cognitive load of the modeller and speed up the creation of the
visual models, but additional evaluation is needed to test such hypothesis.

Chapter 5

RESTalk Tooling

Although a visual DSL can be used for whiteboard sketching during discussions
(as per a decade old survey [188] agile developers most frequently use white-
board sketching for modelling - 98% of the respondents), providing a tool sup-
port for a language increases its potential for a wider community adoption. In
our exploratory survey, described in Sec. 6.1, although some respondents stated
that simple diagrams can be drawn manually or with existing drawing tools,
69% of the respondents have expressed preference for a modeling tool support
for RESTalk. Furthermore, one respondent proposed to develop a tool for auto-
matic extraction of the diagrams from code, while another one conditioned the
RESTalk’s acceptance to the availability of a specific tool: “If I could simply gen-
erate it from a textual description of the graphs, I would use it”. Such feedback
was taken into consideration when deliberating on the possible tool support for
RESTalk. In this chapter we describe an ecosystem we have envisioned to be built
around RESTalk in Sec. 5.1. Given the time restrictions not all of the envisioned
tools have been implemented, but we did manage to implement some proof of
concept tools. For instance, in Sec. 5.2 we discuss the existing support in terms of
modelling editors for RESTalk, while in Sec. 5.3 we discuss the existing support
when the Code First approach is used.

5.1 RESTalk Envisioned Ecosystem

As mentioned in Sec. 4.1.1, depending on the applied methodology, RESTalk
diagrams can be created before developing the API (Design First approach) or
after developing it (Code First approach). Different approaches would require
different tool support.
In the Design First approach the diagram is created by the API designer/de-

101

102 5.1 RESTalk Envisioned Ecosystem

Figure 5.1. Architecture of envisioned RESTalk modelling and simulation tools

Text
Editor

DSL

DSL
Parser

Abstract
Model

Visual Model
Renderer

Layout
Algorithm

Visual
Model

Graphical
Editor

Translator

editread editeditdisplay

Model
Validator

DSL
Emitter

Mining
Algorithm

Simulator
simulate

display

readspecify
constraints

veloper using model editing tools, which depending on the preferred language
representation can be either a graphical editor or a textual editor, or as men-
tioned in Sec. 3.3.2 ideally it would be a tool of Cluster 4b maturity which sup-
ports two-way synchronization between the textual and the visual model where
all visual elements can be edited in both editors. Given the intentional design
of the RESTalk textual representation in a log-like interaction statements, a min-
ing algorithm ought to be used on the parsed textual DSL to create the abstract
model as shown in Fig. 5.1. The abstract model is then used by the visual model
renderer to create the visual model. A layout algorithm would be used to gen-
erate the graph layout, but the user would be able to edit the layout to his/her
pleasing. Ideally collaborative editing environment would be used [58]. Model
validator would be in place to control the validity of the created models against
RESTalk’s metamodel and constraints, or even against logical correctness prop-
erties specified by the designer of the concrete RESTalk diagram [194]. It would
also ensure that the model does not contain any deadlocks or any unreachable
interactions. Another tool that can be of value when creating RESTalk models is
the conversation simulator which can be used to validate whether the designed
model reflects the desired behaviour. The simulation can also support time and
cost estimates given the constraints per user/per request stated in the service-
level agreement [64]. The RESTalk design support tool could provide multi-level

103 5.1 RESTalk Envisioned Ecosystem

view of the RESTful conversation, expanding on sub-conversations when desired,
or expanding to view additional details regarding the request header or the re-
sponse content, or depending on the use case, also details about Service Level
Agreement (SLA) limitations, or simulation input/results can be expanded. This
would ensure that the readability of the diagram is not hindered by the amount
of information it needs to include. Another alternative to expanding such details
in the diagram, would be to provide direct links from the interaction constructs
in the diagram to the relative structural documentation of the API or to the SLA
documentation.
In addition to the DSL specific tools to be built around RESTalk to support the
model design shown in Fig. 5.1, we also envision integration with other existing
tools to build an ecosystem around RESTalk as shown in Fig. 5.2.

Figure 5.2. Architecture of envisioned ecosystem built around RESTalk

RESTalk
Model

OASIDE

Service
Runtime

read

edit
Translator

OAS
Browser Docs

read

Translator

Design First Approach
Code First Approach

API
Code

Mining
Algorithm

Execution
Logs

RESTalk Design Tools

Conformance
Checker

read

compare

OAS Ediiting
/Testing

edit/test

read
Client
Code

Translator
Test-cases
Generator

Constraints
Generator

Artifact

Translator

Tool

Conversation
Rules

We envision RESTalk as complementary to, and not a substitute of, the Open
API Specification described in Sec. 2.4. That said, an integration between the
two could bring about great benefits given the wide acceptance and the stan-

104 5.1 RESTalk Envisioned Ecosystem

dardization of OAS, as well as the tooling ecosystem already built around it1

which allows for API structural documentation generation, specification editing
and API endpoints testing through tools such as Postman. The YAML/JSON file
of the specification could be parsed in order to generate at least a skeleton of
the interactions which can be included in a RESTalk model, leaving it up to the
user to order such interactions in the correct sequence. Possible full RESTalk
conversation models could be generated when sufficient information is available
through appropriate use of the l inks component in OAS which shows the re-
lationship between interactions and can serve as a mechanism to traverse the
interactions. On the other hand, RESTalk models themselves can also be used to
create the skeleton of the OAS file.
Focusing still on the Design First approach, one of the cornerstone ideas behind
Model-driven Engineering (MDE) is the use of DSLs to “express application do-
main concepts and design intent" [185] and create prescriptive models, which
through model-to-text transformations are then converted to code, documenta-
tion, test cases, or model serialization [33; 22]. Thus, a tool support can be built
so that, given as input the goal of the client using the API (for instance, the in-
put can be in form of clicks on the interactions in the RESTalk diagram in the
correct sequence), the tool can automatically generate a skeleton for the client
implementation code based on the RESTalk model. Similarly, test-cases can be
generated to be used for test-driven development [95], or to be used for test-
ing purposes during the development and evolution of the API in the Code First
approach.
In the Code First approach, once the API has been in production for a sufficiently
long time to generate sufficient amount of execution logs, such logs can be fed
into a mining algorithm which can reconstruct the RESTalk conversation model
based on the logs. Mining techniques have been successfully applied in the area
of business processes for almost two decades, resulting in process discovery, con-
formance checking, prediction of delays, supporting decision making, recom-
mending process redesign etc. [208]. The IEEE Task Force on Process Mining has
even issued a process mining manifesto to promote the topic [209]. In the do-
main of REST APIs, the reconstructed model of the actual use of the API can serve
various purposes. The most obvious purpose is that it can become part of the API
documentation to help API client developers to learn the API. Depending on the
size of the API, before making it available as documentation, it might make sense
to split the reconstructed conversation model into several separate diagrams or-
ganized in some logical order based on possible client goals. Another purpose

1https://openapi.tools

https://openapi.tools

105 5.2 Design First Approach - RESTalk Modeler

of the reconstructed model, which as mentioned above has been widely used in
business process modelling [139], is conformance checking. Conformance check-
ing compares the model of the expected conversation to the reconstructed model
of the actual conversation, thus helping to discover divergence between the two
models. The service provider can use such information to discover endpoints
which are never used and as such can be depreciated, or to discover frequently
used paths in the conversation whose performance can be optimised, or also to
adjust the limits in the SLA based on the actual usage data.
One of the goals of RESTalk is to set up constraints on the otherwise exponential
number of possible sequences of interactions with the service provider, in order
to enable the service provider to safeguard the quality and maintainability of
its service. Thus, RESTalk models can be used to generate constraints which
translate into conversation rules to be used by the runtime service to check the
validity of the ongoing conversation with the client [150].
Building the above described envisioned ecosystem around RESTalk requires
time and resources, the investment of which can be justified by sufficient in-
terest/adoption of the language.

5.2 Design First Approach - RESTalk Modeler

As mentioned, in the Design First approach the model is generated by the API
designer/developer by hand or by using a dedicated editor. In this section we
propose two RESTalk specific proof of concept tools, one graphical editor and
one textual editor.

5.2.1 RESTalk Graphical Editor

During the design of RESTalk we have used Inkscape2, a graphical vector edi-
tor [14], to design the language constructs. The features of the tool allow for
great flexibility in the design of the constructs and allow export in many differ-
ent formats such as svg, eps, pdf, etc. Initially we also provided an Inkscape
template with all the available constructs which users could copy paste into their
diagrams.
To provide more traditional and user friendly graphical drag and drop editor
experience we have decided to create a RESTalk palette in yEd3. yEd is a freely
available tool which runs on all major operating systems. It has been extensively

2https://inkscape.org
3https://www.yworks.com/products/yed

https://inkscape.org
https://www.yworks.com/products/yed

106 5.2 Design First Approach - RESTalk Modeler

used in research (a google scholar key term “yEd graph” search yields over 1’000
results). It supports many of the standard diagrams (BPMN, UML, ER, flowcharts,
social networks etc.), but it also provides the functionality of creating custom
palettes using constructs from other palettes or importing custom constructs. To
use constructs from other palettes it is sufficient to drag them to the canvas and
then add them to a palette of choice. Thus, for the RESTalk constructs which are
shared with BPMN (e.g., gateways, events, sequence flow, etc.), we have added
the constructs from the BPMN palette. To use custom made construct, the user
needs to import them in one of the supported formats (jpg, png, svg). Thus,
we have created the RESTalk specific constructs (e.g., client-server interaction,
state change, message activity, etc.) in Inkscape, exported them as svg and then
imported them to yEd.

Figure 5.3. yEd RESTalk palette and example diagram

In Fig. 5.3 we show a screenshot of the tool and an example simple model cre-
ated with the same. As yEd is a graphical editor dedicated to drawing graphs,
drawing edges is more user friendly then in Inkscape as the edges get attached
to the constructs thus rendering the layout change easier and faster. It also has
some other convenient common features, like graph overview, which is useful to
help user’s orientation in large diagrams. Links can be added to each individual
element’s properties which enables linking diagrams together, or linking interac-

107 5.2 Design First Approach - RESTalk Modeler

tion elements to external documentation, for example OAS documentation. The
created diagrams can be exported in the usual visual formats (svg, eps, gif, pdf,
etc).
yEd uses graphml as a native file format, which is an XML-based file format for
graphs. Thus, diagrams are saved in graphml. The advantage is that the xml
structure of the file allows for easy algorithmic search for the elements. Descrip-
tion can be added to custom template elements which can be used to algorithmi-
cally search for all elements of a given type. These features can facilitate future
implementation of a model validator. The RESTalk palette itself can be exported
in graphml format, so that it can be shared with yEd users interested in using
RESTalk.

5.2.2 RESTalk Textual Editor

The challenge of graphical editing tools, such as the one described above, is that
they are based on explicit modeling, requiring good knowledge of the notation
and its semantics, as well as the ability to analyze and abstract the possible in-
teractions and capture them by correctly using the notation. As a consequence,
their use can be cumbersome for live modeling during design workshops, where
participants should not only provide input but also give feedback on how it has
been represented in a model. To overcome this, we have designed a tool which
combines notes taking in constrained natural language with the use of a mining
algorithm to automatically produce RESTalk diagrams in real-time as API design-
ers/developers describe them with stories. The tool facilitates textual modelling
through the use of a mining algorithm, thus reducing the complexity and the
number of keywords of the textual DSL as described in Sec. 4.2.3. Its modelling
environment replaces the complex stencil palette usually found in graphical edi-
tors with a simple text editor. Textual descriptions are transformed into diagrams,
which correctly use the RESTalk visual syntax, simultaneously while the modeler
is typing them.

Current Version of the RESTalk Textual Editor

As a proof of concept for the applicability of the proposed approach to use min-
ing algorithms for sketching RESTful conversation models, we have designed a
tool which takes as input a conversation described with the DSL presented in
Sec. 4.2.3 and provides as an output a draft RESTalk model of the conversation.
It supports live modeling environment, where the RESTalk model is produced in
real-time as the textual description is typed. As it is only a proof of concept tool

108 5.2 Design First Approach - RESTalk Modeler

it has only implemented part of the core RESTalk constructs.

Figure 5.4. Pipeline of the current version of the RESTalk textual editor

The architecture of the current version of the RESTalk textual editor is shown in
Fig. 5.4. The textual input is parsed and translated into traces that are then fed
into the mining algorithm that generates the control flow model. Then the hier-
archical layout algorithm [65; 61], which has been tailored to consider idioms of
the notation, is used to produce the graph layout. The result is rendered as a vec-
tor image, using the dagre-d3 library4 to display it. The mining and visualization
algorithms are based on the bachelor project work described in Sec. 5.3
The DSL parser translates sequences of interactions into a log form, but it only
parses for three information per line, i.e., the method and URI for the request and
the status code for the response. No additional information, such as hyperlinks,
can be added for the time being. Different alternative conversation instances are
separated by an empty line, thus the exclusive gateway to show divergence in
the interactions flow due to client decision or due to different server responses
is discovered by the mining algorithm and does not need to be explicitly stated.
Fig. 5.5 shows a screenshot of the current version of the tool implementation.
Other types of gateways, or events different than the start and end event, are
still not supported. Also the “..." symbol as placeholder for missing parts of the
traces described in Sec. 4.2.3 is not yet supported.
The current version of the tool uses the Alpha algorithm for mining the expended
traces [222]. Other mining algorithms could be used in the approach, the only
requirement being the existence of an API to automatically feed the mining algo-
rithm with the expanded traces. Additionally, users typing the traces should not
have to wait to see the resulting model, but the model should be updated live as

4https://github.com/dagrejs/dagre-d3

https://github.com/dagrejs/dagre-d3

109 5.2 Design First Approach - RESTalk Modeler

Figure 5.5. Screenshot of the current version of the RESTalk textual editor

new entries of the traces are added. This could be achieved with an incremental
mining approach [127]. Aiming at a proof of concept of this novel modeling ap-
proach, the validation of different mining algorithms for its implementation was
not in the scope of this dissertation work.

Envisioned Version of the RESTalk Textual Editor

Inspired by the initial proof of concept tool for RESTalk textual editor described
above, we decided to use the innovative approach of leveraging on mining al-

110 5.2 Design First Approach - RESTalk Modeler

gorithms to decrease the cognitive effort of the user when modelling business
processes with BPMN [88; 92]. The reasons for changing focus from RESTalk
to BPMN was higher interest expected from the BPMN community as BPMN is a
well established and frequently used standard in industry [116], thought in uni-
versities, with existing tool support [66], while RESTalk still needs to obtain its
acceptance as a DSL. Furthermore, requirements elicitation interviews for busi-
ness processes typically involve people with different skills and background [9],
such as process participants with business domain knowledge, the business an-
alysts with process modelling knowledge, and the software engineers with IT
background. Business process participants, but also BPMN novice students at
universities, might be less accustomed to use abstraction compared to computer
scientists usually involved in the REST API design. Enabling these novice BPMN
users to tell their stories as an ordered list of tasks seemed like a stronger use-case
than the one of RESTalk, thus motivating us to focus on the development of the
BPMN Sketch Miner5. Nonetheless, the design decisions we took for the BPMN
Sketch Miner and many of the functionalities which Prof. Pautasso implemented
in the tool are valid for and can be replicated in future versions of the RESTalk
textual editor. In this part of the thesis we explain them in detail.
Some of the design decisions used for the BPMN Sketch Miner but applicable for
a RESTalk textual editor as well are: 1) to deliver it as a Web-based tool, thus
avoiding the need for software installation to get started with a modeling session;
2) to embed the textual description of the model in the browser link so that it
can be easily shared in an email message or chat room; 3) to support life update
of the visual RESTalk diagram as the user is editing the textual description with
no need to click a submit or refresh button; 4) to support export of the generated
RESTalk model in SVG, PNG, or XML formats so that it can be displayed or further
refined in any compatible tool. The design decision to support life update of
the visual RESTalk diagram has the aim of facilitating the learning of the basic
RESTalk constructs, in addition to providing fast feedback to the users of the tool.
Life update is not frequently used with existing textual modeling languages. For
instance, in PlantUML the textual model gets synchronized with the visual model
only upon request, while plantBPMN generates a file in a BPMN XML format
which then needs to be imported into a dedicated tool, such as Signavio6 or an
Eclipse plug-in, for visualization and further editing.
Using textual input to generate more complex RESTalk visual models requires
multiple model generation and transformation steps as shown in Fig. 5.6. In

5https://www.bpmn-sketch-miner.ai
6https://www.signavio.com

https://www.bpmn-sketch-miner.ai
https://www.signavio.com

111 5.2 Design First Approach - RESTalk Modeler

addition to the components mentioned in Fig. 5.4, a model transformation com-
ponent needs to be added because the textual annotation of roles, call requests,
event types etc. is part of the textual modelling and thus is not fed into the
mining algorithm, but used during a second stage as follows: first, the nodes of
the control flow graph are transformed into interactions or events (according to
the type annotations found in the original description). Then, when applicable
the role annotations are used to place the interactions and events in the corre-
sponding swimlanes. Additionally we would like to enable an export option in
different formats such as svg or png, as in the current version only display with
no export is available.

Figure 5.6. Pipeline of the envisioned version of the RESTalk textual editor
(Adapted from [92])

The envisioned future version of the tool would implement the placeholder “...”
symbol, following the same logic as in the implementation of the BPMN Sketch
Miner. Namely, the tool would first expand the traces written in the DSL to obtain
the complete traces of all the possible paths that can be taken in the conversation.
Namely, the DSL user input would be parsed and each time the “..." symbol would
be encountered, depending on its position, the algorithm would perform one of
the following actions:
• If the “...” symbol is at the start of the conversation instance trace the algorithm
would search for the first interaction which is after the “...” symbol in all the
other expanded conversation instance traces. When it finds it, it would take all
the interactions which precede it, thus creating one or more missing conversation
fragments, which would then be used to expand the initial conversation instance
trace;
• If the “...” symbol is at the end of the conversation instance trace the algorithm
would search for the last interaction which is before the “...” symbol in all the

112 5.2 Design First Approach - RESTalk Modeler

Figure 5.7. From “...” placeholder to expanded traces

other expanded conversation instance traces. When it finds it, it would take all
the interactions which succeed it, thus creating one or more missing conversation
fragments, which would then be used to expand the initial conversation instance
trace;
• If the “...” symbol is in the middle of the conversation instance trace the al-
gorithm would search for the first interaction which is before the “...” symbol
and the first interaction which is after the “...” symbol in all the other expanded
conversation instance traces. When it finds both these interactions in the correct
order, it would take all the interactions which are between them, thus creating

113 5.3 Code First Approach - RESTalk Miner

one or more missing interaction fragments, which would then be used to expand
the initial conversation instance trace.
As the trace expansion algorithm would act recursively and search all expanded
traces, if different sequences are to be identified as a match in different conver-
sation instance traces, then they would all be used to expand the analyzed trace
resulting with multiple expanded traces per one compressed trace. A simple ex-
ample of how compressed traces would be expanded by the tool before passing
them to the mining algorithm is provided in Fig. 5.7. As evident from the exam-
ple, the assumption used by the expansion algorithm is the existence of at least
one common interaction between the compressed trace and the other traces, as
the algorithm uses the common interaction to identify the missing part of the
path. The use of the “...” symbol is meant to make the writing down of traces
more time efficient, as it allows the users to avoid repeating sequences of interac-
tions which they have already written down. This is especially handy when there
are alternative flows in large diagrams. However, a limitation of such approach is
that it can lead to over-fitting, i.e., the automatically derived model might allow
for conversation instances which are not described in the textual DSL. To deal
with this limitation traces of such over-fitting instances could be generated and
presented to the user so that the user can decide if some of those traces should
be excluded from the model.
This envisioned textual editor for RESTalk could be built from scratch, as is the
case with its current version, or in the future the possibility of using a DSL work-
bench to build such an editor can be evaluated, such as the Ensō DSL workbench7.

5.3 Code First Approach - RESTalk Miner

With the commercialization of the world wide web, web mining has gained on
importance, with three main streams: web content mining, web structure mining
and web usage mining [16]. Web usage mining refers to automatic discovery of
user access patterns with the goal of optimizing or customizing websites. While
web usage mining refers to purely sequential logs from human users browsing
websites, in Web services the interaction is machine to machine, and concurrent
interactions may occur. Process mining does not necessarily involve human in-
teractions and allows for non-sequentially. Therefore, the applicability of process
mining in the Web service context has been pinpointed [211], as it can be used
to discover dependencies in service-oriented systems.
Most of the web-services today use the REST architectural style and mining their

7http://enso-lang.org

http://enso-lang.org

114 5.3 Code First Approach - RESTalk Miner

logs can bring to interesting insights regarding how different clients actually use
REST APIs. This can help developers detect unexpected usage patterns of their
APIs by comparing different clients’ conversations, or to pinpoint interactions
which are worth optimizing as they are being used by most of the clients. For
instance, if there is a sequence of several requests which is frequently followed,
the API designer might decide to provide in the first request a direct link to the
last request, thus avoiding the clients having to make the intermediary requests.
Bugs might also become evident, such as unauthorized access to some resources
or frequent error messages after a certain sequence of requests. Mining of REST-
ful services requires a model-driven approach to RESTful conversations and a
visualization language such as RESTalk. Although different mining tools with
graph visualization already exist [1; 216; 200], their visualization is not REST
domain specific. On the other hand, commercial REST specific analytic tools8

provide incoming API requests capturing and database querying analytics re-
garding the usage of the API with different filtering options and timeseries vi-
sualization. However, they do not support visualization of clients’ conversations
with the server.
That said we have decided to dedicate the bachelor thesis of Ilija Gjorgjiev to
developing a REST specific mining tool which we called the RESTalk Miner9.
RESTalk Miner takes as an input a log file, containing the log entries of conver-
sation instances with different clients. Several assumptions regarding the logs
need to be valid in order for them to be correctly parsed by the tool. Each log
entry should comply to the following format:

Date
︷ ︸︸ ︷

DD/M M/Y Y Y Y

Time
︷ ︸︸ ︷

HH : M M : SS

Client IP Address
︷ ︸︸ ︷

3.171.112.202

Method
︷ ︸︸ ︷

POST

URI
︷︸︸︷

/ job

Status Code
︷︸︸︷

202

Also each log entry should be written in a new line. The logs should be just from
one API provider, thus conversations with multiple servers are not supported.
Given the statelessness principle, RESTful interactions do not include a correla-
tion identifier to distinguish between different conversation instances. In fact,
Stroinski et al. [201; 199] propose enriching logs with context information to
enable mapping of logs to execution instances. When such information is miss-
ing the only viable assumption is that all interactions with a given IP address
(client) are part of the same conversation instance. However, in order to relax
such improbable assumption, we used an algorithm to split the interactions of a
given IP address in different time periods based on a difference threshold. Then

8https://www.moesif.com
9https://github.com/USI-INF-Software/RESTfulConversationMining

https://www.moesif.com

115 5.3 Code First Approach - RESTalk Miner

the user of the tool can decide which time periods to visualize.
In addition to the log file, the RESTalk Miner takes an optional file input which
contains the URI templates derived from the API’s OAS. For instance, to abstract
the following URI /content/serial/ title /issn/03029743 the URI template would
look like this /content/serial/ title /issn/:id. Such abstraction ensures that iden-
tical method calls to the same type of resource are visualized as one request. The
main default output of the RESTalk Miner is a simplified RESTalk graph showing
all the conversations different clients have initiated with one particular server.
Alternatively, the user can select to visualize only the conversations of client(s)
of interest. As in RESTalk, the nodes in the graph take the form of a juxtaposed
request-response, but in addition to the information about the HTTP method,
URI and response status code, they also contain information about the number
of log entries in which this node has appeared. From the remaining RESTalk
constructs, the tool currently only supports the exclusive gateway, both in case
of diverging paths taken by the client, and in case of alternative responses pro-
vided by the server, as well as the start and end event. Depending on user’s
preference, the graph can be flattened by abstracting from the URI information
and showing only the methods that have been called.

5.3.1 RESTalk Graph and Comparative Statistics Visualization

Once the above mentioned graph has been generated, the user can activate or
deactivate one or more different interactive visualizations:

• The node frequency colouring colours nodes from red to yellow depending
on the number of log entries that contain the particular request/response
pair with red being the most frequent node and yellow being the least fre-
quent node. It allows the user to spot the frequency of the nodes visually
in addition to the absolute number of the logs containing the node already
present as an information in the node itself;

• The edge frequency thickness adjusts the thickness of the edges based on
how many clients follow the same path. It shows to the user the most
frequently used paths;

• The edge delay coloring colours the edges from red to yellow depending
on the average difference in the timestamps of the nodes that the edge
connects. Gradient coloring is used where red is the maximum delay and
yellow is the minimum delay;

• The edge probability shows a probability of an alternative path being taken
after an exclusive gateway. The probability is computed based on the log
entries;

116 5.3 Code First Approach - RESTalk Miner

Figure 5.8. RESTalk Miner overlapping vs. unique parts of conversations
visualization

• The status colouring colours responses based on their status codes. This
facilitates the identification of certain status codes by the user (e.g., erro-
neous status codes);

117 5.3 Code First Approach - RESTalk Miner

• The conversation path colouring colours in a unique colour all the re-
quests made by the same client and in a mix of colours the nodes which
are shared between clients in case multiple clients are selected. It is acti-
vated by clicking on the start event of a given conversation instance. This
feature enables the user to visualize the interactions of a given client with
respect to other clients. We show an example of this visualization in Fig. 5.8
where the nodes unique for client 1 are purple, the nodes unique for client
2 are green and the shared nodes between client 1 and client 2 are gray.

The tool also provides the user with pie chart visualization of statistical data
regarding the analyzed clients of the RESTful service (see Fig. 5.9).

• The number of nodes pie chart shows how many of the total request/re-
sponse nodes belong to each individual conversation (given client in a
given time period), i.e., how lengthy each conversation is.

• The uniqueness of nodes pie chart shows how many nodes are unique
to just one client, how many are shared between two, three clients etc.
Clicking on a certain slice of the pie colours in the same colour the nodes
it refers to as evident in Fig. 5.9.

• The shared nodes pie chart shows the number of requests shared between
combinations of different specific clients. For example IP/TP-0 in the pie
chart will show the number of nodes that are only present in conversation
0, IP/TP-1-0 will show the number of nodes that are shared only between
conversations 1 and 0.

• The dynamic sharing pie chart uses the same computation as the shared
nodes pie chart, but only for the clients selected by the user instead of all
clients. It is shown only if the conversation path coloring feature is active.

5.3.2 Pattern Matching, Discovery and Visualization

Patterns [134] represent a systematic form of knowledge sharing as they establish
a common vocabulary to describe recurring RESTful conversations [161]. Pat-
terns can be used to pinpoint and discuss API design best practices or the absence
of the same. RESTalk Miner supports two types of pattern searches. Searching
for unknown patterns, i.e., pattern discovery, and searching for known patterns,
i.e., pattern matching. The pattern discovery can help identify new API design
approaches and best practices, while the pattern matching can allow to search for
patterns of interest. When searching for unknown patterns the user needs to
specify the number of nodes the pattern should contain and the minimal number
of clients that must have used that pattern. If patterns that match these criteria
are identified, the user can select them one by one from a dropdown list, visual-

118 5.3 Code First Approach - RESTalk Miner

Figure 5.9. RESTalk Miner pie chart visualizations

ize them and/or save them. Saved patterns can be used later as known patterns
to be searched for in other conversations. The user can also upload known pat-
terns based on his/her experience or bast practices and search for them in the
given conversation. Such patterns need to be described in JSON with log object
describing the conversation pattern to be matched (see Fig. 5.10). Every pattern
log entry has a similar structure as the execution logs (without the timestamp
and IP address), with the difference that any of the elements (Method, Status
Code, URI, etc.) can be substituted by a ∗ symbol, meaning that any value of
that element will be considered a match when searching for the pattern. URI’s
values can also be used as placeholders, i.e., ensuring that the same URI is used
without precisely specifying the URI value. An optional separator element in the
pattern description allows for the specified log entries not to be direct succes-

119 5.3 Code First Approach - RESTalk Miner

sors. For instance, if we are searching for a pattern with two log entries (POST
/example/1 and DELETE /example/1), if we use this separator element in the
pattern description, an occurrence of POST /example/1 followed by PUT /ex-
ample/1 followed by DELETE /example/1 will also be considered a match. Such
description of the pattern we are searching for allows for greater expressiveness
to match targeted patterns.

Figure 5.10. RESTalk Miner pattern matching

As evident in Fig. 5.10 matched patterns are coloured in the graph. If multiple
occurrences of the matched pattern exist, each occurrence will have a different
color.
A screencast of the main functionalities of RESTalk Miner is available on
YouTube10 and a demo paper has been published in [88]. Details regarding the
implementation of the tool are available at Ilija Gjorgjiev’s thesis. At its current
state the RESTalk Miner does not support the visualization of the hyperlink flow
nor does it detect concurrency in the mined logs or other constructs such as timer
events or participant lanes. In the future it can be extended to fully support the
RESTalk language. Its user interface can also be improved and it can be trans-
formed from a command line tool to an online web service which would allow
for user registration, and thus storage of user’s logs and patterns. Studies which
use the RESTalk Miner given a real log of API interactions can be performed to

10https://youtu.be/N94clNa5Mlg

https://youtu.be/N94clNa5Mlg

120 5.4 Chapter Summary

search for interesting findings with respect to that log. The challenge here would
be to avoid spaghetti like graphs which are hard to analyze and draw conclusions
from. An option would be to add features in the tool letting the user to balance
between the precision of the generated graph (including all log entries) and the
generalizability of the generated graph (including only the most frequent log
entries) [208].

5.4 Chapter Summary

Depending on the intended use of a DSL, designing and implementing the tool-
ing ecosystem around it can be an important and resource intensive endeavour.
In this chapter we have discussed our vision of the ideal RESTalk editor which
would support the synchronous editing of both the graphical and the textual DSL
representation. We also presented other possible tools to be integrated into the
editor, such as a model validator and a simulator. The current state of the imple-
mented standalone editors for the graphical and textual representation are far
from our vision for an integrated editor which remains as future work.
To ensure wide adoption of a DSL, it is important to built an ecosystem around
it, integrating it with existing tools in the domain. In the case of RESTalk we
consider the integration with OAS important to work towards completeness of
REST APIs documentation from different viewpoints. We also envision support
for the MDE stream of thought, where RESTalk models would be used to gen-
erate skeleton for the client implementation code. Once an API has been used
for a sufficiently long time and has sufficient logs of calls from clients to the API,
a mining algorithm can be used to look into the actual conversations with dif-
ferent clients. As part of a bachelor project we have implemented such a miner
which we described in this chapter and whose functionalities can be enhanced
in the future, among other things, also with conformance checking option given
a RESTalk model of the expected API behaviour.

Part III

RESTalk Evaluation

121

123

This third part of the thesis refers to the third layer of the DSL design framework
discussed in [94] and presented in Fig. 4.1, the Evaluation layer. The aim of
the Evaluation layer is to assess the language against predefined criteria in order
to identify potential need for refinement [94]. It is rarely possible to follow a
waterfall approach when designing a DSL, as evidenced by the continuous release
of new versions of many standard languages. Each DSL keeps on evolving as
its domain is evolving, and as users provide feedback on identified gaps in the
language, or situations which can not be reliably modeled with it. RESTalk is
not an exception to this practice, and we support the agile approach in language
design with frequent iterations.
To be useful a model must: 1) provide for abstraction and hiding of irrelevant
details; 2) be understandable which depends directly on the modelling notation
used and its expressiveness; 3) be an accurate representation of reality; 4) allow
for predicting the behaviour of the modelled system; and 5) be inexpensive to
create [190]. In this part of the dissertation we are going to discuss whether
some of these characteristics are satisfied by models created with RESTalk. We
will start in Chapter 6 by evaluating the need of RESTalk and the capability of
RESTalk to express real-world examples of RESTful API interactions. Then in
Chapter 7 we will use different research techniques to evaluate the design of
RESTalk, as well as its usefulness for understanding and using a given RESTful
API.

124

Chapter 6

RESTalk Formative Evaluation

In this chapter we will discuss the formative evaluation of RESTalk used through-
out the PhD, which contributed to the iterative design of the language to its cur-
rent version. We start with an exploratory survey in Sec. 6.1 conducted with
industry practitioners with the aim of evaluating the need of a DSL and obtain-
ing feedback on the initial design of the core DSL. Then, in Sec. 6.2 we discuss
different use-cases which allowed us to expand the expressiveness of RESTalk by
identifying different realistic or real API behaviours scenarios which we consid-
ered important to be supported by RESTalk.

6.1 Exploratory Survey

One general problem with modeling languages is their dissemination and accep-
tance by the targeted modeler community. To address this issue, after drafting
the first version of RESTalk and testing its expressiveness with several exam-
ples of RESTful conversations, we have evaluated it with an exploratory survey.
An exploratory survey is a qualitative research technique for understanding the
viewpoint of the surveyed subjects about the addressed problem [227, Chap. 2].
The goal of the survey was to obtain initial feedback, primarily from industry, on
some of RESTalk’s cognitive dimensions [73]. Namely, we wanted to obtain in-
sights to help us manage the unavoidable trade-off between the expressiveness
and completeness of RESTalk on one hand, and its simplicity and understand-
ability on the other [67]. We also wanted to elicit whether there is a need in
industry for explicit modeling of RESTful conversations with a domain specific
language.

125

126 6.1 Exploratory Survey

6.1.1 Survey design

Given the exploratory nature of the survey, we have mostly used open-ended
questions. Their purpose was to gain understanding on industry’s existing prac-
tices in representing the client-server interactions with a REST API, and to obtain
respondents’ opinion on RESTalk, its cognitive characteristics, and usefulness. To
reach a greater audience we have translated the survey both in English and Ger-
man and made it available on-line. When answering all the questions in detail,
the expected duration of the survey as designed was 30-40 min, which fits with
the actual time spent by the participants (Fig. 6.1).

Figure 6.1. Time dedicated to filling out the survey with distinction between
complete and partial answers

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

0	 5	 10	 15	 20	 25	 30	 35	 40	 45	 50	 55	

Ti
m
e	
to
	 a
ns
w
er
	 (m

in
)	

Number	 of	 answered	 ques5ons	

4
1	

9	

Complete	 answers	

Par9al	 answers	

We have divided the questions in the following seven groups: demographic data,
background on used notations in practice, RESTalk’s intuitiveness, RESTalk vs.
standard BPMN Choreography, reading task, modeling task, and RESTalk’s eval-
uation.
We have started with questions about participants’ background and experience in
designing and using REST APIs. To understand the existing modeling practices in
the REST API design, we have further inquired the visual notation(s) respondents
have used in such circumstances. The question concerning the used notations
was a multiple-choice question in order to get a full picture of all the notations
used in practice. However, the more detailed questions referred only to one of
the selected notations in order to avoid constructing a too lengthy survey. The
priority list for the detailed questions has been as follows: BPMN Choreography,

127 6.1 Exploratory Survey

In-house developed notation, UML Sequence diagrams, UML Activity diagrams,
Other standard notations. The detailed questions were open-ended and explored
respondents’ perception about the pros and cons of the notation, as well as the
effort of learning it and the effect its usage has had on the team’s productivity.
To assess the intuitiveness of RESTalk, before explaining it in detail, we have
asked the respondents to describe, in their own words, a simple conversation we
had provided the diagram of, and then to respond to several specific multiple-
choice questions assessing their understanding of the conversation.
As per Gemino and Wand’s [67] framework for empirical evaluation of concep-
tual modeling techniques, such techniques ought to be compared based on their
grammar, i.e., the modeling constructs and the rules for combining them. Thus,
to those respondents who had basic knowledge of BPMN we have also asked some
inter-grammar comparison questions. We have first explained them the exten-
sions and the modifications we have made to the standard BPMN Choreography.
Then, based on a generic example modeled in the standard BPMN Choreogra-
phy (Fig. 4.7a) and in RESTalk (Fig. 4.7b), we have asked them to compare the
two in terms of conciseness, expressiveness, and ease of understanding. We have
closed this block of questions by asking which notation they would prefer using.
For the respondents who did not have prior BPMN knowledge, we have provided
a short RESTalk tutorial (Fig. 4.7b), describing all of the constructs used in sub-
sequent tasks as well as their semantics, without diving in depth into the full
complexity of BPMN. This tutorial was made available for further reference dur-
ing the survey. We have not presented the assumptions and simplifications of the
modeled reality mentioned in Sec. 4.2.2 to any of the respondents, in order to
explore their validity.
To further evaluate RESTalk, we have included both a reading and a modeling
task to be answered by all respondents. After these tasks, we have asked them
to evaluate RESTalk in terms of conciseness, understandability and efficiency, as
well as to identify any ambiguous semantics or missing elements. We have used
open-ended questions in order to obtain more detailed feedback.
Not being interested in statistical inference, we have made most of the questions
optional in order to encourage greater survey participation. Only the questions
used in determining the survey logic, i.e., which questions to be disclosed to
which audience, were mandatory. Essentially, the question regarding experience
with using visual notations for modeling RESTful conversation, and the question
regarding prior BPMN knowledge. A print out of the online survey is available
in Appendix A.

128 6.1 Exploratory Survey

6.1.2 Survey sample

We have kept the on-line survey open for almost 3 months, i.e., until we have
gained sufficient valuable input from the respondents. Thus, we were not aim-
ing at reaching a minimal sample size of the targeted population. While we
were targeting primarily industry practitioners, we have also used some confer-
ences and social media to reach a broader audience. The reason for focusing
mainly on industry, was to get feedback on their willingness to use visual no-
tations. Namely, while in academia modeling notations such as UML or BPMN
are frequently taught, their acceptance in industry seems to be limited [164].
However, we believe that if a notation is developed in an agile manner, with a
continuous direct contribution from industry practitioners, it is more likely to fit
their actual needs and thus to achieve greater adoption.

Figure 6.2. Respondents’ experience with REST APIs

8	

10	

7	

6	

4	

9	 9	

6	

7	

4	

0%	

5%	

10%	

15%	

20%	

25%	

30%	

Up	 to	 1	
year	

1	 to3	
years	

3	 to	 5	
years	

5	 to	 7	
years	

more	 than	
7	 years	

Developing	 APIs	

Using	 APIs	

From the total of 35 respondents, 74% (26 individual responses) are from indus-
try and 26% (9 individual responses) are from academia, based on the job title
they have provided. Their experience with using, and/or designing REST APIs,
ranges from couple of months to more than 10 years, with almost half of them
having more than 3 years of experience. More details can be found in Fig. 6.2.
The data labels in the graph show the absolute number of respondents in each
experience group. No other demographic data has been considered relevant for
the current study.
The sample includes a broad range of practitioner roles from researchers, through
IT consultants, software quality engineers, developers, architects and up to a

129 6.1 Exploratory Survey

CTO. The average time dedicated to filling out the survey has been calculated
to 23 minutes, with the time increasing as the number of answered questions
increased. Given the fact that the survey could be paused and resumed later, the
average time has been calculated after removing the data for 3 persons who took
over 3 hours to fill out the survey. Nonetheless, their answers have been taken
into consideration for the rest of the survey analysis.
Since conditional logic was used in the survey, the number of questions to be
answered differed among different respondents, with 8-14 additional questions
for respondents with modeling experience. However, double checking the re-
sponses with time to answer values above the trend line, has indicated that they
have dedicated more time to provide more exhaustive answers. Further details
are available in the scatter plot in Fig. 6.1 where also complete vs. partial an-
swers are evident. The scatter plot shows that all of the partial answers contain
the first 10 questions, with 28 questions emerging as a limit. As can be derived
from Fig. 6.3, this limit is due to the modeling task which the respondents prob-
ably found more challenging or time consuming.

Figure 6.3. Maximum vs. actual number of answers per question

0	

5	

10	

15	

20	

25	

30	

35	

40	

Q
1	

Q
2	

Q
3	

Q
4	

Q
5	

Q
6	

Q
7	

Q
8	

Q
9	

Q
10

	
Q
11

	
Q
12

	
Q
13

	
Q
14

	
Q
15

	
Q
16

	
Q
17

	
Q
18

	
Q
19

	
Q
20

	
Q
21

	
Q
22

	
Q
23

	
Q
24

	
Q
25

	
Q
26

	
Q
27

	
Q
28

	
Q
29

	
Q
30

	
Q
31

	
Q
32

	
Q
33

	
Q
34

	
Q
35

	
Q
36

	
Q
37

	
Q
38

	
Q
39

	
Q
40

	
Q
41

	
Q
42

	
Q
43

	
Q
44

	
Q
45

	
Q
46

	
Q
47

	
Q
48

	
Q
49

	
Q
50

	
Q
51

	
Q
52

	
Q
53

	
Q
54

	
Q
55

	
Q
56

	
Q
57

	
Q
58

	
Q
59

	
Q
60

	
Q
61

	
Q
62

	
Q
63

	
Q
64

	
Q
65

	
Q
66

	
Q
67

	
Q
68

	
Q
69

	
Q
70

	
Q
71

	
Q
72

	
Q
73

	
Q
74

	
Q
75

	
Q
76

	
Q
77

	
Q
78

	
Q
79

	
Q
80

	
Q
81

	
Q
82

	
Q
83

	
demo-‐	
graphic	
data	

used	
nota=ons	

in	
prac=ce	

BPMN	 Choreography	 in-‐house	 developed	 nota=on	 UML	 sequence	 diagrams	 UML	 ac=vity	 diagram	 other	 standard	 nota=ons	 RESTalk	
intui=veness	

BPMN	
Choreography	
vs.	 RESTalk	

reading	 task	 mode-‐	
ling	
task	

RESTalk	 evalua=on	

Number	 of	
answers	

Max	 number	
of	 answers	

6.1.3 Survey results

As mentioned in Sec. 6.1.1, most of the survey questions were not mandatory
and survey conditional logic was incorporated in two question groups: Used no-
tations in practice, which was only presented to participants who have used
the concrete notation before, and RESTalk vs. Standard BPMN Choreography,
which was only presented to participants with prior BPMN knowledge. Fig. 6.3
shows the theoretical maximum number of respondents per question, given the
survey sample of 35, and the actual number of respondents. You can use it as
a reference for the absolute number of respondents per question, given the per-
centages mentioned in the remaining part of this section.

130 6.1 Exploratory Survey

Used notations in practice

Out of all the respondents, 38% have used some visual notations to discuss the
life-cycle of resources and allowed HTTP interactions within a REST API. The per-
centage is equal in industry and academia. These respondents have been asked
to choose one or more of the following notations they have used: BPMN Chore-
ography, In-house developed notation, UML Sequence diagrams, UML Activity
diagrams, or Other standard notations. UML Sequence diagrams have emerged
as the most widely used, with as many as 85% of the respondents using it, while
BPMN Choreography has been used by just one person from academia who stated
that he has used it for “research incentives”. Details are available in Fig. 6.4. Such
results are not surprising given the longevity of UML. The distribution is similar
even if we analyze the answers disaggregated between industry and academia.

Figure 6.4. Used visual notations for RESTful conversations in practice

54%	

85%	

8%	

31%	

15%	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

UML	 Ac2vity	
Diagram	

UML	 Sequence	
Diagram	

BPMN	
Choreography	

In-‐house	
developed	

Other	
standard	
nota2on	

In-house developed notations have been used by four persons, mainly due to lack
of knowledge of existing standards, their complexity or lack of flexibility. These
are similar reasons to what Petre has identified regarding UML use in practice
in [164]. The respondents have developed simple, ad-hoc notations, or simplified
the UML notation, so that the diagrams can easily be drawn by hand or with a
ready-to-use tool. The one person who is no longer using the in-house developed
notation, states the reason being the fact that “it was not searchable, shareable
or usable after forgetting the context”.
All of the persons who have declared having used UML sequence diagrams, are
still using them, mainly due to their effectiveness in depicting the order of inter-
actions between the client and the server. The UML sequence diagram language

131 6.1 Exploratory Survey

features they appreciate the most are the possibility to show the creation and de-
struction of resources, concurrency and the direction of the exchanged messages.
Nonetheless, they consider it challenging to express “dynamic calls or a lot of
third party services and failover tools”, as well as conditions, loops or resource’s
state. Regardless of such limitations, they believe that using UML sequence dia-
grams has improved their productivity by improving the team’s understanding of
the interactions and driving design discussions. Furthermore, they believe that
the UML notation has a fast learning curve, which is expected given that many
study it during their formal education.

RESTalk’s intuitiveness

A notation is intuitive if it is easy to understand without explicit instruction.
Therefore, before providing any tutorial for RESTalk or explaining how it is dif-
ferent from the BPMN Choreography, we have shown respondents the diagram in
Fig. 6.5, and posed an open-ended question to describe its meaning using natural
language.

Figure 6.5. Diagram used for assessing RESTalk’s intuitiveness

POST /resource
<empty>

201 Created
Location: /resource/X

PUT /resource/X
<content>

200 OK

As per the answers, it is intuitive from the diagram that an empty resource is
created and the content is added later on. The concept of the hyperlink flow
seems to be clear as well. The elements that have emerged as ambiguous were
the exclusive merge gateway and the timer event. They depict a situation in
which the server does not respond to the POST request, and thus the client sends

132 6.1 Exploratory Survey

the request again. For instance, one person expressed doubts on whether the
“process makes a POST or is waiting for a POST”, while another one was not sure
whether the timeout occurs “if the response takes too long (or if the request is
empty?)”. One person from academia interpreted the gateway as an unspecified
data-based decision being made.
After the open-ended question we have also asked 4 multiple choice questions
with only one correct answer (marked in bold):

1. The goal of the conversation is:
• editing an existing resource
• creating a new resource
• creating multiple new resources
• none of the answers

2. The client can send the POST request multiple times:
• true
• false
• I don’t know

3. By sending multiple POST requests multiple resources are being created:
• true
• false
• I don’t know

4. The client knows the link to the created resource before the start of the
conversation:

• true
• false
• I don’t know

As can be seen in Fig. 6.6, there is a fairly high average number of correct an-
swers (77%), which we consider an indication of a rather intuitive notation. As
was evident from the open-ended question answers, the timer event has caused
confusion on how many resources are created if sending the POST request mul-
tiple times. While 56% have understood it well, other 22% have stated that they
do not know the answer. If we disaggregate the answers by sector, the academia
has higher percentage of correct answers to this question (75%). This is not sur-
prising given that 57% of them have prior BPMN knowledge, and the timer event
is one of BPMN’s core constructs. It could also explain the slightly higher average
number of correct answers in academia (81%) compared to industry (75%).
If we look at the intuitiveness from the respondents’ experience perspective, we
notice an increase in the average number of correct answers as the respondents’
experience increases (Fig. 6.7). This is to be expected in such a simple diagram,
where knowledge of the REST context can be sufficient for making educated

133 6.1 Exploratory Survey

Figure 6.6. Multiple choice questions for assessing RESTalk’s intuitiveness
(ordered by percentage of correct answers)

56%	

70%	

88%	

93%	

77%	

0%	 10%	 20%	 30%	 40%	 50%	 60%	 70%	 80%	 90%	 100%	

By	 sending	 mul8ple	 POST	 requests	 mul8ple	 resources	 are	 being	 created	

The	 client	 can	 send	 the	 POST	 request	 mul8ple	 8mes	

The	 goal	 of	 this	 RESTful	 conversa8on	 is	 crea8ng	 a	 new	 resource	

The	 client	 knows	 the	 link	 to	 the	 created	 resource	 before	 the	 start	 of	 the	 conversa8on	

Average	 correct	 answers	

guess on constructs which might be less intuitive. On the other hand, drilling
down on the results applying as a criteria respondents’ experience with using
a visual notation to depict RESTful conversations, has not revealed meaningful
differences in the answers between respondents who have used visual notations
and those who have not.

Figure 6.7. Assessing RESTalk’s intuitiveness from respondents’ experience
perspective

67%	 67%	
70%	

87%	

100%	

0%	

20%	

40%	

60%	

80%	

100%	

120%	

Up	 to1	 year	 1	 to	 3	 years	 3	 to	 5	 years	 5	 to	 7	 years	 more	 than	 7	 years	

The	 goal	 of	 this	 RESTful	 conversaCon	 is	 creaCng	 a	
new	 resource	

The	 client	 can	 send	 the	 POST	 request	 mulCple	 Cmes	

By	 sending	 mulCple	 POST	 requests	 mulCple	
resources	 are	 being	 created	

The	 client	 knows	 the	 link	 to	 the	 created	 resource	
before	 the	 start	 of	 the	 conversaCon	

Average	 correct	 answers	

RESTalk vs. Standard BPMN Choreography

Given that RESTalk is based on BPMN Choreographies, we used different ap-
proaches in explaining it to people with and without BPMN experience. As per
the survey results, 41% of the total respondents have some basic BPMN knowl-
edge, with that percentage being higher in academia (57% or 4 persons) than
in industry (35% or 7 persons). After having explained the main modifications
made to the standard BPMN Choreography, we have asked these respondents
to compare an exemplary model designed with standard BPMN Choreography
(Fig. 4.7a) to the same model designed with RESTalk (Fig. 4.7b). As can be seen
from Fig. 6.8, respondents’ perception is positive since nobody finds RESTalk

134 6.1 Exploratory Survey

less concise or less expressive than the standard BPMN Choreography. Only one
person from industry found the standard BPMN Choreography more understand-
able, but without providing further details on the reasons. The number of persons
who have answered the questions is provided in parenthesis in the x-axis labels
in Fig. 6.8.
Since as we have seen in Fig. 6.4 UML Sequence diagrams are the most widely
used notation for depicting RESTful interactions, we have decided to delve into
the answers of respondents who have used UML Sequence diagrams for this pur-
pose before (7 persons). All of them but one find RESTalk less time consuming
and more than or equally concise to UML Sequence diagrams.

Figure 6.8. RESTalk vs. Standard BPMN Choreography

80%	

60%	

75%	

20%	

40%	

13%	

0%	 0%	

13%	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

Concise	 	
(10	 pers.)	 	

Expressive	 	
(10	 pers.)	

Understandable	 	
(8	 pers.)	

More	

Equally	

Less	

If we analyze the responses comparing industry vs. academia (Fig. 6.9), we
notice that industry participants find RESTalk significantly more expressive than
the ones from academia, while they both agree on it being more understandable
than the standard BPMN Choreography. These questions were answered by 4 to
6 participants from industry1 and 4 persons from academia.
However, all respondents prefer using RESTalk to the standard BPMN Chore-
ography due to lower overhead, greater simplicity and “better notion of what
response belongs to what request”.

1Since the questions were not mandatory a few industry participants did not answer all of
them.

135 6.1 Exploratory Survey

Figure 6.9. RESTalk vs. Standard BPMN Choreography per sector

100%	

25%	

75%	
67%	

83%	
75%	

0%	

20%	

40%	

60%	

80%	

100%	

120%	

More	 Concise	 More	 Expressive	 More	
Understandable	

Industry	 (max	 6	 pers.)	

Academia	 (max	 4	 pers.)	

Reading task

For the reading task we have applied RESTalk to a common conversation that can
be found in different REST APIs, e.g., Amazon Glacier’s API for long term storage
of infrequently used data2. Fig. 6.10 shows the diagram included in the survey.
It depicts a RESTful conversation where the retrieval of data is turned into a job
resource in order to avoid the client having to keep the connection open for too
long, while waiting for the data retrieval. The client can keep on polling for the
job output, and will only get redirected to it when the job has finished. Then it
can read the job output multiple times, or it can decide to delete it. The job itself
can be deleted at any point, thus either implicitly stopping the job, if it has not
finished yet, or deleting the finished job since it is no longer necessary.
This group of questions followed after all the respondents got introduced to the
basics of RESTalk. To test their ability to read diagrams modeled in RESTalk,
we have posed the following multiple choice questions with one correct answer
(marked in bold):

1. How many resources are created during this conversation:
• none
• one
• two
• one or two
• more than two

2. What happens when you try to access the job resource while the job has

2http://docs.aws.amazon.com/amazonglacier/latest/dev/job-operations.html

http://docs.aws.amazon.com/amazonglacier/latest/dev/job-operations.html

136 6.1 Exploratory Survey

Figure 6.10. Long running request conversation modeled with RESTalk

POST /job

202 Accepted
Location: /job/42

DELETE /job/42/output

200 OK

DELETE /job/42

200 OK

GET /job/42

200 OK 303 See Other
Location: /job/42/output

GET /job/42/output

200 OK

not completed yet:
• you get a 200 OK status code and a placeholder link to where the

output will be saved once the job has completed
• you get a 200 OK status code and can try to access the job again

later
• you cannot send a GET job request before the job has completed

3. When can you delete the job resource?
• only after the job has completed
• only before the job has completed
• only after having read the output
• only before having read the output
• only after the job has completed and you have read the output
• only after the job has completed, but before you have read the output
• at any time after the creation of the job resource

We have also asked the following true/false/I don’t know questions (the correct
answer can be found in brackets):

1. You can access the job output without having a link to the job itself (false);

137 6.1 Exploratory Survey

2. The job output resource gets automatically deleted once the client has read
it (false);

3. The client must delete the job output resource after it reads it (false);
4. The client can read the job output multiple times (true);
5. The client can decide to delete the job output resource only after it has read

it (false);
6. The job resource can be deleted without deleting the job output resource

(true).

Figure 6.11. Assessing the reading of RESTalk diagrams (questions are ordered
by percentage of correct answers)

11%	

56%	

62%	

72%	

72%	

77%	

81%	

83%	

85%	

66%	

0%	 10%	 20%	 30%	 40%	 50%	 60%	 70%	 80%	 90%	

How	 many	 resources	 are	 created	 during	 this	 conversa?on	

The	 client	 must	 delete	 the	 job	 output	 resource	 aEer	 it	 reads	 it	

You	 can	 access	 the	 job	 output	 without	 having	 a	 link	 to	 the	 job	 itself	

What	 happens	 when	 you	 try	 to	 access	 the	 job	 resource	 while	 the	 job	 has	 not	
completed	 yet	

The	 job	 resource	 can	 be	 deleted	 without	 dele?ng	 the	 job	 output	 resource	

The	 job	 output	 resource	 gets	 automa?cally	 deleted	 once	 the	 client	 has	 read	 it	

The	 client	 can	 decide	 to	 delete	 the	 job	 output	 resource	 only	 aEer	 it	 has	 read	 it	

When	 can	 you	 delete	 the	 job	 resource	

The	 client	 can	 read	 the	 job	 output	 mul?ple	 ?mes	

Average	

As evident from Fig. 6.11, all of the questions were answered with more than
50% of accuracy, except the question regarding the number of resources created
during the conversation. Since the job can be deleted even before it is finished,
we considered “one or two” as a correct answer, i.e., either only the job resource
or both the job resource and the job/output resource are created. However, as
per the discussion with some of the respondents, probably many of them (63%)
consider the job/output a sub-resource of the job resource, and thus have iden-
tified “one” as the correct answer. Hence, if we regard this question as a concep-
tual rather than modeling question, and therefore discard it in the calculation,
the average number of correct answers rises from 66% to 73%. On sector level,
this indicator is much higher in academia (86%) than in industry (68%), while
on BPMN knowledge level, it is higher for respondents with no previous BPMN
knowledge (76%) than for respondents with basic BPMN knowledge (70%).
While in the intuitiveness group of questions, the impact of experience on the
correctness of the answers was evident, this is not the case in the reading task
group of questions, possibly due to the greater complexity of the modeled reality.
No meaningful differences among experience groups have been noticed in this

138 6.1 Exploratory Survey

Figure 6.12. Assessing the reading of RESTalk diagrams from respondents’
experience perspective

63%	 62%	
65%	 66%	

63%	

0%	

20%	

40%	

60%	

80%	

100%	

120%	

Up	 to	 1	 year	 	
(max.	 6	 persons)	

1	 to	 3	 years	
(max.	 6	 persons)	

3	 to	 5	 years	
(max.	 5	 persons)	

5	 to	 7	 years	 	
(max.	 7	 persons)	

more	 than	 7	
years	

(max.	 3	 persons)	

How	 many	 resources	 are	 created	 during	 this	
conversaDon	

You	 can	 access	 the	 job	 output	 without	 having	 a	
link	 to	 the	 job	 itself.	

What	 happens	 when	 you	 try	 to	 access	 the	 job	
resource	 while	 the	 job	 has	 not	 completed	 yet	

The	 job	 output	 resource	 gets	 automaDcally	
deleted	 once	 the	 client	 has	 read	 it.	

The	 client	 must	 delete	 the	 job	 output	 resource	
aMer	 it	 reads	 it.	

The	 client	 can	 read	 the	 job	 output	 mulDple	
Dmes	

The	 client	 can	 decide	 to	 delete	 the	 job	 output	
resource	 only	 aMer	 it	 has	 read	 it.	

The	 job	 resource	 can	 be	 deleted	 without	
deleDng	 the	 job	 output	 resource.	

When	 can	 you	 delete	 the	 job	 resource-‐	 	

Average	 correct	 answers	

case. Fig. 6.12 shows the results as well as the maximum number of respondents
per group.

Figure 6.13. Correlation between time to answer and accuracy of answers

0	

10	

20	

30	

40	

50	

60	

0%	 20%	 40%	 60%	 80%	 100%	

Ti
m
e	
to
	 a
ns
w
er
	 (m

in
)	

Accuracy	 of	 answers	

Although the correlation coefficient between time to answer the reading task
questions and accuracy of the answers is not high (0.25), a scattered plot of

139 6.1 Exploratory Survey

such correlation (Fig. 6.13) reveals several clusters of respondents. Those who
rushed through the questions without paying too much attention (accuracy less
than 40% in less than 10 minutes), those who understood well RESTalk and/or
the REST concept and answered the questions quickly and accurately, and those
who took their time to reason to get to the correct answers (accuracy higher than
70% in up to 50 minutes).

Modeling task

We have asked the respondents to use RESTalk to model the life-cycle of a collec-
tion item, i.e., all the possible CRUD (Create, Read, Update, Delete) operations
that can be performed on the same resource.
Only three of the respondents, all from academia, have performed the task. They
have all modeled the reality from the server’s perspective, i.e., using just one end
event after the resource is deleted. Thus, they made the simplification of only
modeling with an end event a conversation which could never be resumed in
the future, and abstracting from situations where the client ends the conversa-
tion without deleting the resource. They have all correctly used the interaction
constructs with the request-response content, and two of them have also used
the hyperlink flow element. The exclusive split and join gateways have been
merged in one combined gateway by two of the respondents (Fig. 6.14a and
Fig. 6.14b), while the third respondent made a mistake in merging the control
flows, which resulted with an infinite loop between reading and updating the
resource (Fig. 6.14c). The fact that 2 out of 3 respondents have decided not to
use a tool to perform the modeling task, indicates the appropriateness of RESTalk
for both whiteboard discussions and API documentation. Respondents’ personal
opinion on the matter is presented in Sec. 6.1.3.

RESTalk’s evaluation

After having used RESTalk, to understand or model a RESTful conversation, we
have posed open-ended questions to assess whether it is considered easily un-
derstandable, and how it stands in terms of conciseness and efficiency compared
to the textual or visual notation that the respondents had used before. To give
some structure to the obtained answers, we have classified them in the groups
shown in the graphs (Fig. 6.15 to Fig. 6.18).
83% of the respondents have a positive view on the understandability of RESTalk,
finding it easy or somewhat easy to understand. One IT consultant stated that
it is “surprisingly easy”. While almost all the respondents from academia find it

140 6.1 Exploratory Survey

Figure 6.14. Respondents’ models of CRUD operations on a collection item

(a) Respondent A (b) Respondent B

(c) Respondent C

decisively easy to understand, industry respondents seem to be more reluctant
(Fig. 6.15). The ones that did not find RESTalk easy to understand, did not
provide further details for such evaluation, while others expressed doubts of its
understandability with more “complex conversations”.
57% of the respondents find RESTalk less time consuming than the notation (tex-
tual or visual) they had used before (Fig. 6.16)3. All the ones who found RESTalk
more time consuming are respondents who have not used visual notations be-

3N/A stands for persons who did not use any notation before and thus could not make the
comparison

141 6.1 Exploratory Survey

Figure 6.15. Assessing RESTalk’s understandability per sector

31%	

88%	

44%	

13%	
25%	

0%	
0%	

20%	

40%	

60%	

80%	

100%	

Industry	 (16	 per.)	 Academia	 (8	 per.)	

Easily	 understandable	

Yes	

Somewhat	

No	

fore to depict RESTful conversations. Thus, it is reasonable that they consider
drawing a diagram more time consuming than textual description. An IT con-
sultant states that a “prerequisite for easy usage is that the graphical notation
can be derived from a simple textual notation”. As expected, given the results
from the understandability assessment (Fig. 6.15), respondents from industry
are more skeptical than in academia (Fig. 6.17), however the differences are not
as evident as in the understandability question.

Figure 6.16. Assessing RESTalk’s efficiency

57%	

10%	

19%	
14%	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

Less	 Equally	 More	 N/A	

Time	 consuming	
(21	 pers.)	

Of those 18 who responded to the conciseness question, 61% consider RESTalk
more concise. One respondent states that it “probably depends on the graph and
the number of responses at a given request”. When analyzing this indicator from

142 6.1 Exploratory Survey

Figure 6.17. Assessing RESTalk’s efficiency per sector

50%	

71%	

14%	

0%	

21%	
14%	 14%	 14%	

0%	

20%	

40%	

60%	

80%	

Industry	 (14	 per.)	 Academia	 (7	 per.)	

Time	 consuming	

Less	

Equally	

More	

N/A	

the sector viewpoint, contrary to the previous results, in this case it is the indus-
try respondents who are more united in their positive judgment about RESTalk
(Fig. 6.18).

Figure 6.18. Assessing RESTalk’s conciseness per sector

73%	

43%	

9%	
0%	

18%	
29%	

0%	

29%	

0%	

20%	

40%	

60%	

80%	

Industry	 (11	 per.)	 Academia	 (7	 per.)	

Concise	

Yes	

Somewhat	

No	

N/A	

If we define positive sentiment about RESTalk as an opinion that RESTalk is su-
perior or equal to existing notations, then a rather high percentage of support
is present in all three indicators (understandability - 83%, efficiency - 67%, and
conciseness - 72%).
Regardless of the above disclosed assessment, all respondents but two are will-
ing to try using RESTalk in their own projects. One freelance software engineer
states: “it will take some time to get familiar with but I think we could boost the
development process even more”. An IT consultant, on the other hand, condi-
tions its acceptance to the availability of a specific tool: “If I could simply gen-
erate it from a textual description of the graphs, I would use it”. 69% of the

143 6.1 Exploratory Survey

respondents seem to have preference for a modeling tool support for RESTalk
to facilitate the drawing, although some do agree that simple diagrams can also
be drawn manually on whiteboards or using existing drawing tools. One also
proposes to develop a tool for automatic extraction of the diagrams from code.
When asked whether they find the HTTP details (methods, URIs, status codes,
links) sufficient for understanding what the RESTful conversation is aiming at,
71% have responded affirmatively. Some of the proposed HTTP elements to be
added include authentication details as well as “some additional headers and
parameters”.
Interesting remarks have emerged from open-ended questions on RESTalk miss-
ing elements or ambiguities, as well as RESTful conversations used in practice
which the respondents find challenging or impossible to model with RESTalk.
Although the BPMN modeling best practice guidelines [8, Chap. 2] advise not
to use combined gateways (one gateway as both a split and a join), several re-
spondents have stated that multiple gateways create unnecessary “visual and
mental distractions”. In BPMN, exclusive gateways are data based decisions, so
some considered it confusing not having the precise data conditions defined in
the gateway. Some have also emphasized that RESTalk lacks details regarding
the length of the timer or the maximum number of iterations allowed in a loop.
Also people who deal with applications where the state changes are crucial, have
noticed that the state transition is not explicitly marked in the current version of
RESTalk. Another constructive remark is that currently it is not clear when there
is a dependence between resources (e.g., a resource and a sub-resource). This
is an important structural aspect, since updating or deleting the resource might
result with the automatic update or deletion of the sub-resource.

6.1.4 Discussion

The purpose of this empirical study was to obtain the first cycle of feedback on
RESTalk, the modeling notation we are proposing, in order to guide further im-
provements. Although 35 respondents might not seem high as an absolute num-
ber, we consider the constructive remarks we have obtained as truly valuable for
our future work.

Need for a Domain Specific Language

Despite of the fact that currently there is no domain specific notation for mod-
eling dynamic aspects of REST APIs, such as RESTful conversations, 38% of the
respondents have already used some existing UML standard notation, or an in-

144 6.1 Exploratory Survey

house developed notation, to depict sequences of client-server interactions. As
a CTO indicates, a notation is “helpful for explaining concrete scenarios. It per-
mits a ’behind the scenes look’ and thereby understanding of consequences”.
This indicates that there is an identified need for visualizing RESTful conversa-
tions in practice. However, even the currently most widely used notation, the
UML Sequence diagram, has its limitation when it comes to depicting RESTful
interactions. One programmer names the following challenges when using UML
Sequence diagrams: “If you want to know more about an object than just if it’s
engaged (active) in an interaction or not, this can be difficult to represent on
a sequence diagram and it can make the diagram too complex and unreadable.
Another case when a sequence diagram can become too complex very quickly,
is when we have multiple objects and object lifelines that we wish to represent,
and the interactions between the objects are too convoluted to read”. Our goal
with proposing RESTalk as a domain specific language is exactly to overcome
such limitations of the existing standards.

Evaluation of the Cognitive Characteristics of RESTalk

Since this was an exploratory survey, with no intention of making statistical infer-
ence based on the same, we have only tackled some of the cognitive dimensions
defined in [73], which we considered the most important in this initial stage of
RESTalk’s design. Namely, we have addressed the consistency, the closeness of
mapping and the abstraction gradient dimensions.
We have taken intuitiveness as a broader approach to what is considered consis-
tency in [73], i.e., “When some of the language has been learnt, how much of the
rest can be inferred?”. Without providing any prior information about RESTalk,
it was encouraging to see that most of the respondents understood great part
of the presented diagram and answered correctly to 77% of the multiple choice
questions. In some cases, we have realized that prior knowledge of BPMN causes
certain degree of confusion, particularly in circumstances where, due to the REST
architecture domain characteristics, there is a slight difference in the semantics
between the standard BPMN Choreography and RESTalk. For instance, while in
BPMN Choreography exclusive gateways are data based and explicitly showing
the decision point options is necessary, in RESTful interactions client’s condi-
tional decisions can be abstracted from. However, the respondents’ feedback has
made us realize that including the rationale behind server’s decisions could in-
deed facilitate understanding under which condition each alternative response
can be expected. It is also encouraging to see that even respondents with no
prior BPMN knowledge have high average score of 76% of correct answers on

145 6.1 Exploratory Survey

the reading task.
The results of what is defined in [73] as a “closeness of mapping” between the
notation and the problem world, are both positive and beneficial for future im-
provements. Namely, when asked to compare RESTalk to the BPMN Choreogra-
phy, all of the respondents have found it at least equally, if not more concise and
expressive. On the other hand, when asked to compare it to the notation they
are currently using only one person found it less concise, while 61% found it
more concise than what they are currently using. This is an encouraging result,
since it involves the first iteration of the design of RESTalk. However, what has
been particularly beneficial for us is that the respondents have provided several
examples of conversations which cannot be modeled with the existing elements
in RESTalk. For instance, conversations where the state transitions are important
for the conversation logic, and should thus become explicitly visualized. Thus,
we have implemented this in the extended version of RESTalk. Likewise, in some
cases the number of maximum retries for accessing a temporary unavailable re-
source are limited and need to be explicitly specified.
Another important cognitive characteristic of a notation, which we were inter-
ested in, was the “abstraction gradient”, i.e., the levels of abstraction. While, as
stated in Sec. 4.2.2, we have abstracted from some details when designing RE-
STalk, we have intentionally omitted to state the assumptions and simplifications
behind such abstractions in the tutorial provided in the survey. We wanted to
evaluate whether some abstractions are excessive, and thus respondents would
identify them as missing elements or vice-versa. The modeling task, for instance,
has revealed that the respondents have taken the end event simplification even
further. While we abstract from modeling an end event after every server re-
sponse, which is the real world description, they have opted for only modeling
one end event to show that the conversation can never be continued in the future.
On the contrary, we have used end events to show all the potentially successful
conversation logs that can occur in a given conversation. The reading task, on the
other hand, has disclosed that RESTalk lacks the expressiveness in showing the
dependencies between resources, or that the length of the timer is not specified.
Regardless of such findings, the understandability of RESTalk reaches a fairly
high level of 66% based on the correct answers of the reading task multiple-
choice questions, and an even higher level based on the respondents’ subjective
opinion, where 83% have evaluated RESTalk as easy or somewhat easy to un-
derstand.
To conclude, the predominantly positive sentiment regarding general under-
standability, conciseness and efficiency of RESTalk per se, or in comparison to
standard BPMN Choreography or other visual notations, and above all the will-

146 6.2 RESTalk Expressiveness

ingness of 88% of the respondents to put RESTalk into practice, gave us the
assurance we have sought to continue improving RESTalk and dealing with the
modeling challenges it poses.

6.1.5 Threats to Validity

Regardless of the seemingly encouraging results, and the exploratory nature of
the survey itself, we are aware of the threats to the validity of the results and the
conclusions caused both by the small sample size of 35 respondents and the fact
that they might have been aware that the survey is conducted by us, the design-
ers of RESTalk, who some of them did know personally which might have biased
their opinion, both when grading the language and when providing the feed-
back. To mitigate this risk we shared the survey on different targeted relevant
social media groups and conferences where people are less likely to know us per-
sonally, however obtaining respondents through non-personal contacts is never
easy. Another thereat to the construct validity is that the survey was designed to
study both the need of a visual DSL for modeling RESTful interactions, and the
characteristics of the proposed DSL, which might have biased the respondents to-
wards accepting a solution to a problem they were not even aware of prior to the
study. Furthermore, the design decision to leave most of the answers optional in
order to incentivise participation, also poses a threat to the validity of the results
as respondents could simply skip questions if they did not want to express their
opinion on the matter or if they were in a hurry, leaving us with less answered
questions towards the end of the survey as evident in Fig. 6.3.

6.2 RESTalk Expressiveness

In this section we will focus on the expressiveness of RESTalk which we have eval-
uated and iteratively augmented through different use cases. Expressiveness is
an important quality of a language, and it depends on the suitability of the lan-
guage to express a set of facts. “Expressiveness is defined as the degree to which
a given modelling language is capable of denoting the models of any number
and kind in a certain domain” [179]. That said, assessing RESTalk’s expressive-
ness requires to use the DSL for a variety of non-trivial RESTful conversations.
To that end in this section we start by discussing different RESTful conversation
patterns which we visualize using RESTalk in Sec. 6.2.1. As in the Language Re-
quirements layer in Sec. 4.1.2 we have defined three types of targeted RESTful
conversations whose modeling should be supported by RESTalk, we continue the

147 6.2 RESTalk Expressiveness

expressiveness evaluation by providing use-case examples for each targeted type
of conversation: one client - one server conversation (Sec. 6.2.2), multiple clients
- one server conversation (Sec. 6.2.3), and composite conversation (Sec. 6.2.4).
We have used the patterns and use-cases to iteratively expand and improve the
DSL and its expressiveness.

6.2.1 Modelling RESTful Conversation Patterns

A widely accepted technique for evaluating the expressiveness of a given mod-
elling language is using the language for modelling design patterns [226; 66; 55].
“Design patterns, in the context of software development, provide generalized
approaches and guidance to solving commonly occurring problems, or address-
ing common situations typically informed by intuition, heuristics and experi-
ence.” [168]. The first patterns in software engineering referred to human-
computer interaction and user interface design [31]. With the rise of Web ser-
vices, the need for capturing system to system interaction has emerged. Hohpe
and Woolf present patterns for enterprise integration through asynchronous mes-
saging in [86], while Barros et al. [17] present patters for web-services inte-
gration mainly using BPEL and WSDL as implementation languages. They do
not deal with using REST for enterprise integration. However, as the number of
REST APIs is growing and software engineers are gaining experience in designing
them, it is important to capture and share that experience to foster APIs’ quality
and usability. Patterns have emerged as an efficient method for attaining that
goal [186]. Daigneau’s patterns for Web service API design and implementation
deal with REST-related aspects, such as the importance of the HATEOAS con-
straint in the “Linked service” pattern [34, p. 77]. However, he does not describe
different interaction patterns that stem from this constraint. Such patterns can be
uncovered from the request-response messages used to solve common RESTful
design problems in [7; 174; 205].
Silvia Schreier, an experienced REST APIs designer at innoQ, expressed interest
in a joint work on identification of RESTful conversation patters, which was a
good opportunity for us to put RESTalk on test to see whether it can express
visually the identified patters. Although visualization is considered an optional
element in pattern description, it can significantly help people in grasping com-
plex problems. Thus, using RESTalk for the visualization was appropriate given
the domain. This joint work resulted in the publication of a pattern language for
RESTful conversation patterns: abstract templates for simple, often recurring,
conversations between one client and one REST API [161]. While Silvia Schreier
was mostly involved in the identification and definition of the patterns, the RE-

148 6.2 RESTalk Expressiveness

STalk visualization and polishing of the patterns’ description was provided by
us. Namely, as advised by Meszaros and Doble [134] for every pattern we pre-
sented: its name, a simple summary, the context to be considered when selecting
it, a brief discussion of the problem it addresses including the forces that make
it difficult, the corresponding solution modeled with RESTalk representing the
conversation template, and its consequences, as well as some examples of pat-
tern’s known uses in practice. Where applicable we also stated possible variants
of the pattern with high-level details of the possible extensions. While all such
details are available in [161], in this section we only include a short description
of each pattern and its RESTalk visualization.
The pattern language is organized following the life cycle of a resource, i.e.,
its create, read, update and delete (CRUD) operations, which for protected re-
sources, may require proper client authentication and authorization. The ba-
sic patterns we include in the pattern language are divided in four groups: re-
source creation patterns (POST Once Exactly, POST-PUT Creation, and Long Run-
ning Operation with Polling), resource discovery patterns (Server-side Redirec-
tion with Status Codes, Client-side Navigation following Hyperlinks, Incremental
Collection Traversal), resource editing patterns ((Partial) Resource Editing, Con-
ditional Update for Large Resources), and resource protection patterns (Basic
Resource Authentication, Cookies-based Authentication). These basic conversa-
tion patterns can also be composed into longer conversations, and thus provide
useful abstractions to manage larger conversation’s complexity.

Resource Creation Patterns

While HTTP offers the POST and PUT methods for creating resources in a single
request-response round, the conversation patterns we present deal with resource
creation under certain constraints or failure scenarios.

POST Once Exactly The goal of this pattern is to prevent creation of duplicate
resources in case of errors. The proposed solution with the pattern is: the server
should offer a resource where the client can retrieve a token, i.e., a unique target
URI, for its request. As this unique URI is used when making the POST request,
the server can check whether the corresponding resource already exists. The
resource will only get created if this URI has not been used for a POST request
before, otherwise, the server will respond with a message that the requested ac-
tion is not allowed for this resource. If the server takes too long to reply, the
client can decide to repeat the request without being exposed to the risk of creat-
ing the resource twice. The response to the POST request can either be received

149 6.2 RESTalk Expressiveness

directly (200) or in case of duplicate requests (405), and the client can fetch it
with a GET on the same URI. A RESTalk textual and visual model of the solution
is provided in Fig. 6.19.

Figure 6.19. RESTalk textual and visual model of the POST Once Exactly
pattern

/// definition of the left-hand side instance

GET /token 204 /link?poe=X "Catche-Control: no-catche"

POST /link?poe=X "<content>" 200 "<response>"

/// definition of the right-hand side instance

GET /token 204 /link?poe=X "Catche-Control: no-catche"

POST /link?poe=X "<content>" 405

GET /link?poe=X 200 "<response>"

/// definition of the boundary event

((timer)) POST /link?poe=X "<content>"

POST /link?poe=X "<content>"

GET /token

204 No Content
Cache-Control: no-cache
Link: /link?poe=X; rel=poe

POST /link?poe=X
<content>

200 OK
<response>

405 Method Not Allowed

GET /link?poe=X

200 OK
<response>

POST-PUT Creation This pattern shares the goal of the previous Post Once
Exactly pattern, i.e., to prevent creation of duplicate resources in case of errors.
However, it proposes a different solution. In this case it should be possible to

150 6.2 RESTalk Expressiveness

distinguish between the technical creation, i.e., the creation of a new URI, and
the execution of the application domain specific creation behavior. The resource
creation is split into two steps, the technical creation of its identifier and the
actions that are required by the application domain. So the client sends first an
empty POST request, which results in the creation of an empty resource resulting
in no side-effect relevant for the application domain. Server’s response contains a
link to the URI of the created empty resource to which the client can add domain-
specific content using a PUT request. The first PUT request will then trigger
the consequences of the creation in the domain. Since the PUT is idempotent,
resending it multiple times will not have side effects. A RESTalk textual and
visual model of the solution is provided in Fig. 6.20.

Figure 6.20. RESTalk textual and visual model of the POST-PUT Creation
pattern

/// definition of the main flow

POST /resource "<empty>" 201 /resource/X

PUT /resource/X "<content>" 200

/// definition of the exceptional boundary event flow

((timer)) POST /resource "<empty>"

POST /resource "<empty>"

POST /resource
<empty>

201 Created
Location: /resource/X

PUT /resource/X
<content>

200 OK

Long Running Operation with Polling The goal of this pattern is to avoid client
timeouts when waiting for long running operation results. The proposed solution
with the pattern is: the long running operation itself should be turned into a
resource, created using the original request with a response telling the client

151 6.2 RESTalk Expressiveness

where to find the results. The results will be available once the operation running
in the background completes. The client may poll the resource to GET its current
progress, and will eventually be redirected to another resource representing the
result, once the long running operation has completed. Since the output has
its own URI, it becomes possible to GET it multiple times, as long as it has not
been deleted. Additionally, the long running operation can be cancelled with a
DELETE request, thus implicitly stopping the operation on the server, or deleting
its output if it had already completed in the meanwhile. A RESTalk textual and
visual model of the solution is provided in Fig. 6.21.

Figure 6.21. RESTalk textual and visual model of the Long Running Operation
with Polling pattern [160]

POST /job 202 /job/42

GET /job/42 200

GET /job/42 303 /job/42/output

GET /job/42/output 200

POST /job 202 /job/42

DELETE /job/42 200

...

GET /job/42 303 /job/42/output

DELETE /job/42/output 200

...

GET /job/42/output 200

GET /job/42/output 200

DELETE /job/42/output 200

DELETE /job/42 200

...

GET /job/42 303 /job/42/output

DELETE /job/42 200

POST /job

202 Accepted
Location: /job/42

DELETE /job/42/output

200 OK

DELETE /job/42

200 OK

GET /job/42

200 OK 303 See Other
Location: /job/42/output

GET /job/42/output

200 OK

Resource Discovery Patterns

The HATEOAS constraint, mentioned in Sec. 2.2.1, promotes the design of APIs
featuring a single entry point URI, and the dynamic resource discovery based
on hypermedia. However, the entry point URI might not lead directly to the
resource needed by the client, due to access rights, or the resource being moved

152 6.2 RESTalk Expressiveness

to a different location, or the resource being part of a collection of resources.
The following patterns help to discover resources in such situations.

Server-side Redirection with Status Codes The goal of this pattern is to de-
couple clients from evolving resource locations. The proposed solution with the
pattern is: if a client accesses a resource with an outdated URI the server should
answers with a 3xx redirection status code usually in combination with a “Loca-
tion” header to guide the client to the new URI. The client is then responsible
for using this URI depending on the status code specification. A RESTalk textual
and visual model of the solution is provided in Fig. 6.22.

Figure 6.22. RESTalk textual and visual model of the Server-side Redirection
with Status Codes pattern

GET /resource 303 /other

GET /other 200

GET /resource

303 See Other
Location: /other

GET /other

200 OK

Client-side Navigation following Hyperlinks The goal of this pattern is to allow
clients to choose from different navigation alternatives. The proposed solution
with the pattern is: the server should provide all hyperlinks related to the re-
quested resource such that the client can decide to follow one or more of the
provided links, as depicted by the inclusive gateway in Fig. 6.23. It is important
to note that, in addition to continuing with a GET request to a linked resource,
other HTTP verbs can be used as well, depending on the semantics of the link
relation and the intention of the client, e.g., like used in the (Partial) Resource
Editing pattern. A RESTalk textual and visual model of the solution is provided
in Fig. 6.23.

Incremental Collection Traversal The goal of this pattern is to use hyperme-
dia to incrementally discover large collections. The proposed solution with the

153 6.2 RESTalk Expressiveness

Figure 6.23. RESTalk textual and visual model of the Client-side Navigation
following Hyperlinks pattern

GET /resource 200 /resource1, /resource2

GET /resource1 200 || GET /resource2 200

GET /resource

200 OK
Link: /resource1; rel="related"
Link: /resource2; rel="related"

GET /resource1

200 OK

GET /resource2

200 OK

pattern is: when a client requests the first item in a collection, the server should
provide links to the next and the last item as well. Each following response to a
GET request on a specific item in the collection, makes it possible for the client
to select whether it wants to follow the link to the first, the previous, the next, or
the last item, thus enabling it to gradually discover the collection by always fol-
lowing the link to the next item, or by moving back and forth using the provided
links. To trade-off the size of each response against the number of interactions
needed to traverse the collection, the right level of granularity needs to be deter-
mined, which can range from single items to pages (or groups) of multiple ones.
A RESTalk textual and visual model of the solution is provided in Fig. 6.24. In
order not to hinder the readability of the diagram, we have omitted the hyper-
link flows which can easily be inferred from the sequence flows. This solution is
based on the Client-side Navigation following Hyperlinks pattern.

Resource Editing Patterns

The read-only Web is long gone and editing resources has become a common
operation which can be performed using the patterns discussed below.

(Partial) Resource Editing The goal of this pattern is to use hypermedia to let
the client discover how to update existing resources. The proposed solution with
the pattern is: when responding to a GET request on an existing resource, the
server should provide a link to a page with a form representing all the editable

154 6.2 RESTalk Expressiveness

Figure 6.24. RESTalk textual and visual model of traversals of a collection
resource with four items (Example of the Incremental Collection Traversal con-
versation pattern)

GET /first 200 /next1, /first, /last

GET /first 200 /next1, /first, /last

GET /first 200 /next1, /first, /last

GET /next1 200 /next2, /first, /first, /last

...

GET /next1 200 /next2, /first, /first, /last

GET /next2 200 /last, /next1, /first, /last

...

GET /next1 200 /next2, /first, /first, /last

GET /first 200 /next1, /first, /last

...

GET /next1 200 /next2, /first, /first, /last

GET /last 200 /next2, /first, /last

...

GET /next2 200 /last,/next1, /first, /last

GET /first 200 /next1, /first, /last

...

GET /next2 200 /last, /next1, /first, /last

GET /next1 200 /next2, /first, /first, /last

...

GET /next2 200 /last, /next1, /first, /last

GET /last 200 /next2, /first, /last

...

GET /last 200 /next2, /first, /last

GET /last 200 /next2, /first, /last

GET /first 200 /next1, /first, /last

...

GET /last 200 /next2, /first, /last

GET /next2 200 /last,/next1, /first, /last

GET /first
200 OK
Link: /next1; rel="next"
Link: /first; rel="first"
Link: /last; rel="last"

GET /next1
200 OK
Link: /next2; rel="next"
Link: /first; rel="prev"
Link: /first; rel="first"
Link: /last; rel="last"

GET /next2
200 OK
Link: /last; rel="next"
Link: /next1; rel="prev"
Link: /first; rel="first"
Link: /last; rel="last"

GET /last
200 OK
Link: /next2; rel="prev"
Link: /first; rel="first"
Link: /last; rel="last"

155 6.2 RESTalk Expressiveness

content of the requested resource. The client can decide to update such content
using a PUT request, thus overwriting the entire content of the resource, or using
a PATCH request, thus sending an incremental update. The RESTalk textual and
visual model of the solution is provided in Fig. 6.25.

Figure 6.25. RESTalk textual and visual model of the (Partial) Resource Edit-
ing pattern

GET /resource 200 /resource/edit

GET /resource/edit 200 /resource

PUT /resource 200

...

GET /resource/edit 200 /resource

PATCH /resource 200

GET /resource

200 OK
Link: /resource/edit; rel=edit

GET /resource/edit
200 OK
Link: /resource

PUT /resource
200 OK

PATCH /resource
200 OK

Conditional Update for Large Resources The goal of this pattern is to enable
the client to declare its expectations to validate if the intended resource update
is possible. The proposed solution with the pattern is: before sending the ac-
tual data, the client should send an empty body with an “Expect” and “Content-
Length”, or “Content-Type” or “Accept” header, which the server should use to
control the appropriateness of the request to be sent. If the request is appropri-
ate, evidenced by a 100 Continue server response, the client makes a PUT request
with the same headers, except the “Expect” header, and the actual content. If re-
trieving another 4xx status code, the client can try with another content length
or media type, suitable authorization, or end the conversation. The textual and
visual RESTalk model for the solution is available in Fig. 6.26.

Resource Protection Patterns

Depending on the resource’s content, some or all of the CRUD (Create, Read, Up-
date, Delete) operations might be available only to a restricted group of clients.
Client’s access rights can be controlled using different patterns, including the
ones presented below.

156 6.2 RESTalk Expressiveness

Figure 6.26. RESTalk textual and visual model of the Conditional Update for
Large Resources pattern

PUT /resource "Content-Length:9999, Content-type: json" 413

PUT /resource "Content-Length:9999, Content-type: json" 415

PUT /resource "Content-Length:9999, Content-type: json" 413

PUT /resource "Content-Length:1000, Content-type: json" 415

...

PUT /resource "Content-Length:1000, Content-type: json" 415

PUT /resource "Content-Length:1000, Content-type: xml" 100

PUT /resource "<content>" 200

PUT /resource
Expect: 100-continue
Content-Lenght: 9999
Content-Type: json
<empty>

100 Continue

PUT /resource
Content-Length:
Content-Type:
<content>
200 OK

413 Request Entity Too Large 415 Unsupported Media Type

PUT /resource
Expect: 100-continue
Content-Lenght: 1000
Content-Type: json
<empty>

PUT /resource
Expect: 100-continue
Content-Lenght: 1000
Content-Type: xml
<empty>

Basic Resource Authentication The goal of this pattern is to limit the access
to authenticated and authorized users with basic HTTP authentication. The pro-
posed solution with the pattern is: when a client requests to access a protected
resource the server should reply with a 401 Unauthorized response thus challeng-
ing the client to provide authorization credentials. If the credentials are valid,
the client is granted access, otherwise, it is challenged to provide credentials
again or to end the conversation. Depending on the targeted clients this pattern
can also be used in parallel with the Cookies-based Authentication pattern. This
pattern is not only applicable to GET requests, but to every other HTTP verb as
well. In case of large representations the Conditional Update for Large Resources
pattern can be considered. A textual and visual RESTalk model of the solution is

157 6.2 RESTalk Expressiveness

provided in Fig. 6.27.

Figure 6.27. RESTalk textual and visual model of the Basic Resource Authen-
tication pattern

GET /resource 401

GET /resource Authorization 200

GET /resource 401

GET /resource Authorization 403

GET /resource 401

GET /resource Authorization 401

GET /resource 401

GET /resource Authorization 401

GET /resource Authorization 401

...

GET /resource

401 Unauthorized
WWW-Authenticate: ...

GET /resource
Authorization: ...

200 OK 401 Unauthorized
WWW-Authenticate: ...

403 Forbidden

Cookies-based Authentication The goal of this pattern is to limit the access
to authenticated and authorized users using cookies. The proposed solution
with the pattern is: after the initial request for accessing a protected resource,
the server should redirect the client (see the Server-side Redirection with Status
Codes pattern) to a login page containing an authentication form that the client
needs to fill in. If the login data is valid, the client is redirected to the initially
requested resource and a cookie is set to be used in future requests, otherwise, it
is redirected back to the login page. Depending on the targeted clients this pat-
tern can also be used in parallel with the Basic Resource Authentication pattern.
A textual and visual RESTalk model of the solution is provided in Fig. 6.28.
The visualization of the above described RESTful conversation patterns with RE-
STalk has provided us with an initial feedback on the expressiveness of the first
version of RESTalk.

158 6.2 RESTalk Expressiveness

Figure 6.28. RESTalk textual and visual model of the Cookies-based Authen-
tication pattern

GET /resource 302 /login?r=/resource

GET /login?r=/resource 200

POST /login?r=/resource 302 /resource "Set-Cookie: auth"

GET /resource "Cookie:auth" 200

...

POST /login?r=/resource 302 /resource "Set-Cookie: auth"

GET /resource "Cookie:auth" 403

...

GET /login?r=/resource 200

POST /login?r=/resource 302 /login?r=/resource

GET /login?r=/resource 200

...

302 Found
Location: /login?r=/resource

GET /login?r=/resource

POST /login?r=/resource

302 Found
Location: /resource
Set-Cookie: auth

302 Found
Location: /login?r=/resource

GET /resource
Cookie: auth

403 Forbidden

GET /resource

200 OK
<form action="/login"
method="POST">

200 OK

159 6.2 RESTalk Expressiveness

6.2.2 One Client - One Server Conversation

The initial target interactions of RESTalk as a DSL were conversations between
a single client and a single server. In this section we present two such use cases:
modelling the behaviour of a real REST API and modelling the behavior of REST
APIs in a microservice architecture.

Modelling Imgur - a Real Life API

After applying RESTalk to visualise short design patterns as shown in Sec. 6.2.1,
to test its ability to model the behaviour of larger APIs we have used it on Imgur4,
an image host and image sharing community which offers a REST API5. The API
exposes most of the website functionality via a programmatic interface, thus API
developers can use it to access content shared by other users, or publish personal
content and manage it inside albums. The gallery contains the images and al-
bums which are shared with the community. A user can also decide to upload
content without sharing it with the community. Shared content can be tagged
for easier searching, it can also be added to favourites, voted on or commented
on by users. Thus, Imgur’s API is comprised of five main resources: image and
album to manage images and albums respectively, gallery to retrieve info and
manage gallery posts, comment to manage the comments on the gallery posts
and account to retrieve information relevant to a given user’s account. Given the
size of the API, which has over 80 endpoints, we have realized that visualizing
its behaviour into one graph would be overwhelming. Thus, we have started
thinking in terms of API use cases and came up with a logical separation of the
possible API interactions depending of the feasible goal of the conversation. We
believe that such logical separation in large APIs can help the API client devel-
opers to only focus on the endpoints of interest, instead of studying all the API
endpoints, thus reducing the cognitive load of the API client developers. We have
decided upon the following three visual RESTalk models: in Fig. 6.29 we show
the interactions which can be performed by an unauthenticated user, in Fig. 6.30
we show the available interactions for an authenticated user for publishing and
managing own content, while in Fig. 6.31 we show the available interactions for
an authenticated user for discovering and interacting with other user’s content.

4https://imgur.com
5https://apidocs.imgur.com

https://imgur.com
https://apidocs.imgur.com

160 6.2 RESTalk Expressiveness

Figure 6.29. RESTalk visual model for Imgur’s API interactions with an unau-
thenticated user

GE
T
/a
cc
ou
nt
/{
{u
se
rn
am
e}
}/
av
ai
la
bl
e_
av
at
ar
s

20
0
OK

PO
ST
 /
al
bu
m

Pa
ra
me
te
r:
 d
el
et
eh
as
h?

20
0
OK

Pa
ra
me
te
r:
 i
d

 d
el
et
eh
as
h

GE
T
/a
lb
um
/{
{a
lb
um
Ha
sh
}}

20
0
OK

Pa
ra
me
te
r:
 i
ds

PO
ST
 /
up
lo
ad

Pa
ra
me
te
r:
 d
el
et
eh
as
hA
lb
um
?

20
0
OK

Pa
ra
me
te
r:
 i
d

 d
el
et
eh
as
h

DE
LE
TE
 /
im
ag
e/
{{
im
ag
eD
el
et
eH
as
h}
}

20
0
OK

 PO
ST
 /
im
ag
e/
{{
im
ag
eD
el
et
eH
as
h}
}

 20
0
OK

GE
T
/a
lb
um
/{
{a
lb
um
Ha
sh
}}
/i
ma
ge
s

20
0
OK

Pa
ra
me
te
r:
 i
ds

GE
T
/i
ma
ge
/{
{i
ma
ge
Ha
sh
}}

20
0
OK

PU
T
/a
lb
um
/{
{a
lb
um
De
le
te
Ha
sh
}}

Pa
ra
me
te
r:
 d
el
et
eh
as
he
s?

20
0
OK

DE
LE
TE
 /
al
bu
m/
{{
al
bu
mD
el
et
eH
as
h}
}

20
0
OK

PO
ST
 /
al
bu
m/
{{
al
bu
mD
el
et
eH
as
h}
}

Pa
ra
me
te
r:
 d
el
et
eh
as
he
s

 20
0
OK

PO
ST
 /
al
bu
m/
{{
al
bu
mD
el
et
eH
as
h}
}/
ad
d

Pa
ra
me
te
rs
:
de
le
te
ha
sh
es

20
0
OK PO
ST
 /
al
bu
m/
{{
al
bu
mD
el
et
eH
as
h}
}/
re
mo
ve
_i
ma
ge
s

Pa
ra
me
te
rs
:
de
le
te
ha
sh
es

20
0
OK

GE
T
/g
al
le
ry
/{
{s
ec
ti
on
}}

20
0
OK

Pa
ra
me
te
r:
 i
ds

GE
T
/g
al
le
ry
/t
/{
{t
ag
Na
me
}}

20
0
OK

Pa
ra
me
te
r:
 i
ds

GE
T
/t
ag
s

20
0
OK

GE
T
/g
al
le
ry
/t
ag
_i
nf
o/
{{
ta
gN
am
e}
}

20
0
OK

GE
T
/g
al
le
ry
/{
{g
al
le
ry
Ha
sh
}}
/t
ag
s

20
0
OK

GE
T
/g
al
le
ry
/s
ea
rc
h/
?q
={
{s
ea
rc
hI
te
m}
}

20
0
OK

Pa
ra
me
te
r:
 i
ds

GE
T
/g
al
le
ry
/{
{g
al
le
ry
Ha
sh
}}
/v
ot
es

20
0
OK

 GE
T
/g
al
le
ry
/{
{g
al
le
ry
Ha
sh
}}
/c
om
me
nt
s

20
0
OK

Pa
ra
me
te
r:
 i
ds

GE
T
/g
al
le
ry
/{
{g
al
le
ry
Ha
sh
}}
/c
om
me
nt
/{
{c
om
me
nt
Id
}}

20
0
OK

40
3
Fo
rb
id
de
n

Wh
at
 t
yp
e?

Un
au
th
en
ti
ca
te
d
us
er
 c
on
ve
rs
at
io
n

Im
ag
e

Al
bu
m

Po
st

Co
nt

ro
l fl

ow
 d

iv
er

ge
nc

e/
co

nv
er

ge
nc

e
Ex

cl
us

iv
e

de
ci

si
on

 -
on

ly
 o

ne
 p

at
h

is
 ta

ke
n

af
te

r t
he

 d
ec

is
io

n

In
te

ra
ct

io
n

co
nt

ro
l fl

ow

Pa
ra

m
et

er
 d

is
co

ve
ry

 a
nd

 h
yp

er
m

ed
ia

 fl
ow

St
ar

t o
f t

he
 R

ES
Tf

ul
 c

on
ve

rs
at

io
n

En
d

of
 th

e
RE

ST
fu

l c
on

ve
rs

at
io

n

Pa
ra

m
et

er
: w

he
n

us
ed

 in
 th

e
re

qu
es

t i
t i

s
th

e
re

qu
ire

d
or

 o
pt

io
na

l (
if

fo
llo

we
d

by
 "?

")
pa

ra
m

et
er

 to
 b

e
se

nt
 w

ith
 th

e
re

qu
es

t

 w

he
n

us
ed

 in
 th

e
re

sp
on

se
 th

e
pa

ra
m

et
er

s
pr

ov
id

ed
 in

 th
e

re
sp

on
se

 w
hi

ch
 a

re
 n

ee
de

d
fo

r f
ut

ur
e

re
qu

es
ts

UR
L

Te
m

pl
at

e:
 e

.g
.,

/a
cc

ou
nt

/{
{u

se
rn

am
e}

}/
al

bu
m

s,
{{u

se
rn

am
e}

} i
s

a
pa

ra
m

et
er

Hy
pe

rm
ed

ia
 fl

ow
 w

ith
 m

ul
tip

le
 p

ar
am

et
er

 v
al

ue
s

 *

*
*

*
*

*
*

*
*

*

*

*
*

DE
LE

TE

PU
T

PO
ST

GE
T

*Available at: http://design.inf.usi.ch/restalk-experiment/ImgurUnauth.html

http://design.inf.usi.ch/restalk-experiment/ImgurUnauth.html

161 6.2 RESTalk Expressiveness

Figure 6.30. RESTalk visual model for Imgur’s API interactions with an au-
thenticated user regarding publishing and managing own content

PO
ST

 /
al
bu

m
Pa

ra
me

te
r:

 i
ds

?

20
0

OK
Pa

ra
me

te
r:

 i
d

GE
T

/a
lb
um

/{
{a

lb
um

Ha
sh
}}

20
0

OK
Pa

ra
me

te
r:

 i
ds

PO
ST

 /
up
lo

ad
Pa

ra
me

te
r:

 a
lb

um
Ha

sh
?

20
0

OK
Pa

ra
me

te
r:

 i
d

PO
ST

 /
ga
ll

er
y/

im
ag

e/
{{
im

ag
eH

as
h}

}
Pa

ra
me

te
rs

:
ta

gN
am

e?

20
0

OK
 PO

ST
 /

im
ag

e/
{{

im
ag

eH
as
h}

}
 20

0
OK

GE
T

/a
lb
um

/{
{a

lb
um

Ha
sh
}}

/i
ma

ge
s

20
0

OK
Pa

ra
me

te
r:

 i
ds

GE
T

/i
ma
ge

/{
{i

ma
ge

Ha
sh
}}

20
0

OK

PU
T

/a
lb
um

/{
{a

lb
um

Ha
sh
}}

Pa
ra

me
te
r:

 i
ds

?

20
0

OK

DE
LE

TE
 /
al

bu
m/

{{
al

bu
mH
as

h}
}

20
0

OK

PO
ST

 /
al
bu

m/
{{

al
bu

mH
as
h}

}
Pa

ra
me

te
r:

 i
ds

 20
0

OK

PO
ST

 /
al
bu

m/
{{

al
bu

mH
as
h}

}/
ad

d
Pa

ra
me

te
rs

:
id

s

20
0

OK

PO
ST

 /
al
bu

m/
{{

al
bu

mH
as
h}

}/
re

mo
ve

_i
ma

ge
s

Pa
ra

me
te
rs

:
id

s

20
0

OK

PO
ST

 /
im
ag

e/
{{

im
ag

eH
as
h}

}/
fa

vo
ri

te
 20

0
OK

PO

ST
 /

al
bu

m/
{{

al
bu

mH
as
h}

}/
fa

vo
ri

te

20
0

OK

PO
ST

 /
ga
ll

er
y/

ta
gs

/{
{g
al

le
ry

Ha
sh

}}

Pa
ra

me
te
r:

 t
ag

Na
me

20
0

OK

DE
LE

TE
 /
im

ag
e/

{{
im

ag
eH
as

h}
}

20
0

OK

PO
ST

 /
ga
ll

er
y/

al
bu

m/
{{
al

bu
mH

as
h}

}
Pa

ra
me

te
rs

:
ta

gN
am

e?

20
0

OK

DE
LE

TE
 /
ga

ll
er

y/
{{

ga
ll
er

yH
as

h}
}

20
0

OK

GE
T

/a
cc
ou

nt
/m

e/
im

ag
es

 20
0

OK
Pa

ra
me

te
r:

 i
ds

Au
th
en
ti
ca
te
d
us
er
 -
 P
ub
li
sh
in
g
an
d
ma
na
gi
ng
 o
wn
 c
on
te
nt

PO
ST

 /
ac
co

un
t/

me
/f

ol
lo
w/

ta
g/

{{
ta

gN
am

e}
}

 20
0

OK

GE
T

/a
cc
ou

nt
/{

{u
se

rn
am
e}

}/
al

bu
ms

 20
0

OK
Pa

ra
me

te
r:

 i
ds

GE
T

/g
al
le

ry
/s

ea
rc

h/
?q
={

{p
ar

am
et

er
:s

ea
rc

hI
te

m}
}

 20
0

OK
Pa

ra
me

te
r:

 i
ds

*

*

*

*
*

Co
nt

ro
l fl

ow
 d

iv
er

ge
nc

e/
co

nv
er

ge
nc

e
Ex

cl
us

iv
e

de
ci

si
on

 -
on

ly
 o

ne
 p

at
h

is
 ta

ke
n

af
te

r t
he

 d
ec

is
io

n

In
te

ra
ct

io
n

co
nt

ro
l fl

ow

Pa
ra

m
et

er
 d

is
co

ve
ry

 a
nd

 h
yp

er
m

ed
ia

 fl
ow

St
ar

t o
f t

he
 R

ES
Tf

ul
 c

on
ve

rs
at

io
n

En
d

of
 th

e
RE

ST
fu

l c
on

ve
rs

at
io

n

Pa
ra

m
et

er
: w

he
n

us
ed

 in
 th

e
re

qu
es

t i
t i

s
th

e
re

qu
ire

d
or

 o
pt

io
na

l (
if

fo
llo

we
d

by
 "?

")
pa

ra
m

et
er

 to
 b

e
se

nt
 w

ith
 th

e
re

qu
es

t

 w

he
n

us
ed

 in
 th

e
re

sp
on

se
 th

e
pa

ra
m

et
er

s
pr

ov
id

ed
 in

 th
e

re
sp

on
se

 w
hi

ch
 a

re
 n

ee
de

d
fo

r f
ut

ur
e

re
qu

es
ts

UR
L

Te
m

pl
at

e:
 e

.g
.,

/a
cc

ou
nt

/{
{u

se
rn

am
e}

}/
al

bu
m

s,
{{u

se
rn

am
e}

} i
s

a
pa

ra
m

et
er

Hy
pe

rm
ed

ia
 fl

ow
 w

ith
 m

ul
tip

le
 p

ar
am

et
er

 v
al

ue
s

 *DE
LE

TE

PU
T

PO
ST

GE
T

DE
LE

TE
 /
ac

co
un

t/
me

/f
ol
lo

w/
ta

g/
{{

ta
gN

am
e}

}

20
0

OK

*Available at: http://design.inf.usi.ch/restalk-experiment/ImgurAuth.html

http://design.inf.usi.ch/restalk-experiment/ImgurAuth.html

162 6.2 RESTalk Expressiveness

Figure 6.31. RESTalk visual model for Imgur’s API interactions with an au-
thenticated user regarding interacting with other user’s content

GE
T
/g
al
le
ry
/{
{s
ec
ti
on
}}

20
0
OK

Pa
ra
me
te
r:
 i
ds

 n
am
es

GE
T
/g
al
le
ry
/t
/{
{t
ag
Na
me
}}

20
0
OK

Pa
ra
me
te
r:
 i
ds

GE
T
/t
ag
s

20
0
OK

Pa
ra
me
te
r:
 n
am
es

GE
T
/g
al
le
ry
/t
ag
_i
nf
o/
{{
ta
gN
am
e}
}

20
0
OK

GE
T
/g
al
le
ry
/{
{g
al
le
ry
Ha
sh
}}
/t
ag
s

20
0
OK

Pa
ra
me
te
r:
 n
am
es

GE
T
/g
al
le
ry
/s
ea
rc
h/
?q
={
{s
ea
rc
hI
te
m}
}

20
0
OK

Pa
ra
me
te
r:
 i
ds

 n
am
es

GE
T
/g
al
le
ry
/{
{g
al
le
ry
Ha
sh
}}
/v
ot
es

20
0
OK

GE
T
/g
al
le
ry
/{
{g
al
le
ry
Ha
sh
}}
/c
om
me
nt
s

20
0
OK

Pa
ra
me
te
r:
 i
ds

GE
T
/g
al
le
ry
/{
{g
al
le
ry
Ha
sh
}}
/c
om
me
nt
/{
{c
om
me
nt
Id
}}

20
0
OK

PO
ST
 /
ga
ll
er
y/
im
ag
e/
{{
ga
ll
er
yH
as
h}
}/
re
po
rt

20
0
OK

PO
ST
 /
ga
ll
er
y/
{{
ga
ll
er
yH
as
h}
}/
vo
te
/{
{v
ot
e}
}

20
0
OK

PO
ST
 /
ga
ll
er
y/
{{
ga
ll
er
yH
as
h}
}/
co
mm
en
t

20
0
OK

Pa
ra
me
te
r:
 i
d

DE
LE
TE
 /
co
mm
en
t/
{{
co
mm
en
tI
d}
}

 PO
ST
 /
co
mm
en
t/
{{
co
mm
en
tI
d}
}/
vo
te
/{
{v
ot
e}
}

20
0
OK

20
0
OK

PO
ST
 /
co
mm
en
t/
{{
co
mm
en
tI
d}
}/
re
po
rt

Au
th

en
ti
ca

te
d

us
er

 -
 D
is

co
ve

ri
ng

 a
nd

 i
nt

er
ac

ti
ng

 w
it

h
ot

he
r

us
er

s'
 c
on

te
nt

20
0
OK

40
4
Pa
ge
 n
ot

fo
un
d

PO
ST
 /
co
mm
en
t/
{{
co
mm
en
tI
d}
}

Pa
ra
me
te
r:
 i
ma
ge
_i
d

20
0
OK

Pa
ra
me
te
r:
 i
d

GE
T
/i
ma
ge
/{
{i
ma
ge
Ha
sh
}}

20
0
OK

GE
T
/a
lb
um
/{
{a
lb
um
Ha
sh
}}

20
0
OK

Pa
ra
me
te
r:
 i
ds

Co
nt

ro
l fl

ow
 d

iv
er

ge
nc

e/
co

nv
er

ge
nc

e
Ex

cl
us

iv
e

de
ci

si
on

 -
on

ly
 o

ne
 p

at
h

is
 ta

ke
n

af
te

r t
he

 d
ec

is
io

n

In
te

ra
ct

io
n

co
nt

ro
l fl

ow

Pa
ra

m
et

er
 d

is
co

ve
ry

 a
nd

 h
yp

er
m

ed
ia

 fl
ow

St
ar

t o
f t

he
 R

ES
Tf

ul
 c

on
ve

rs
at

io
n

En
d

of
 th

e
RE

ST
fu

l c
on

ve
rs

at
io

n

Pa
ra

m
et

er
: w

he
n

us
ed

 in
 th

e
re

qu
es

t i
t i

s
th

e
re

qu
ire

d
or

 o
pt

io
na

l (
if

fo
llo

we
d

by
 "?

")
pa

ra
m

et
er

 to
 b

e
se

nt
 w

ith
 th

e
re

qu
es

t

 w

he
n

us
ed

 in
 th

e
re

sp
on

se
 th

e
pa

ra
m

et
er

s
pr

ov
id

ed
 in

 th
e

re
sp

on
se

 w
hi

ch
 a

re
 n

ee
de

d
fo

r f
ut

ur
e

re
qu

es
ts

UR
L

Te
m

pl
at

e:
 e

.g
.,

/a
cc

ou
nt

/{
{u

se
rn

am
e}

}/
al

bu
m

s,
{{u

se
rn

am
e}

} i
s

a
pa

ra
m

et
er

Hy
pe

rm
ed

ia
 fl

ow
 w

ith
 m

ul
tip

le
 p

ar
am

et
er

 v
al

ue
s

 *

*
*

*
*

*

*
*

*

*
PO
ST
 /
al
bu
m/
{{
al
bu
mH
as
h}
}/
fa
vo
ri
te

20
0
OK

PO
ST
 /
im
ag
e/
{{
im
ag
eH
as
h}
}/
fa
vo
ri
te

 20
0
OK

DE
LE
TE

PU
T

PO
ST

GE
T

*Available at: http://design.inf.usi.ch/restalk-experiment/ImgurAuthExternal.html

http://design.inf.usi.ch/restalk-experiment/ImgurAuthExternal.html

163 6.2 RESTalk Expressiveness

To test whether such division of the API into single models helps the understand-
ing of the API behaviour we have conducted a controlled experiment described
in detail in Sec. 7.3. After the feedback from the first experiment, to facilitate the
readability of the behaviour we colored the requests based on the CRUD seman-
tics instead of the method as we have noticed that the methods are not always
appropriately used (for instance POST album/albumDeleteHash/add allows an
unauthenticated user to edit an album resource by adding images to the same
and as such should have used the PUT method). We have also added interac-
tivity to the diagram providing short natural language description of the request
when hovering over it in addition to links to the OAS documentation and we also
added parameter coloring on hover over a parameter to show where the values
of the parameter can be used for next requests, or how can we get the value of a
given parameter we need to use in a request.
To show that reading such an interactive diagram can be beneficial with respect
to reading the OAS documentation we use a simple example. For instance, let’s
imagine that the API client developer would like to use the service to share an
image in the gallery. In the OAS documentation (s)he can easily find in the
gal ler y resource the correct endpoint to send a POST request to (/gallery/im-
age/{{imageHash}}). But what might not be so evident is where to find infor-
mation about the imageHash parameter. If (s)he knows the domain it can be
logical to imagine that the imageHash parameter value would be included in
the response when uploading a new image, but what might not be as evident is
that there are also other endpoints which can provide the value of the parameter
which are easy to detect in Fig. 6.30 by following the hyperlink flow or in a case
of interactive diagram by hovering over the imageHashs parameter in the request
for publishing the image to the gallery.
Of course creating such large diagrams as the ones in Figs. 6.29, 6.30, 6.31 is very
time consuming and requires substantial cognitive effort both for the creation of
the flow and of the layout. However, using the textual DSL in form of user stories
fed into a mining algorithm as mentioned in Sec. 5.2 can facilitate such effort as
it breaks the conversation into smaller chunks. Some of the user stories which
can be told for the diagram in Fig. 6.30 are shown in Fig. 6.32. We do not state
all of the user stories needed to create the diagram as we would not like to bore
the reader, but we believe Fig. 6.32 renders the idea. Imgur uses the “hash”
terminology only in the URIs (imageHash, al bumHash, gal ler yHash), while
in the response uses the term “id”. This can be easily overcome when drawing
the diagram manually as the user can connect with a hyperlink flow different
terms. When using the textual DSL this has to be done algorithmically, which
means that unique terms need to be used to express matching concepts both in

164 6.2 RESTalk Expressiveness

the request and in the response. Thus, in the example user stories in Fig. 6.32
we do not use the generic “id” term, but only the specific “hash” term.

Figure 6.32. Sample of textual DSL user stories for the Imgur API

/// upload an image

POST /upload 200 imageHash

///get an album to add it to

GET /account/username/albums 200 [albumHash]

///add the image to the album

POST /album/albumHash/add "imageHash" 200

...

/// upload an image

POST /upload 200 imageHash

///create an album to add it to

POST /album 200 albumHash

///add the image to the album

POST /album/albumHash/add "imageHash" 200

...

/// get uploaded images on my account

GET /account/me/images 200 [imageHash]

///add a selected image to the gallery

POST /gallery/image/imageHash 200

...

Modelling Interactions between Microservices

In recent years, there is a clear trend towards the micro-service architectural
style where each component (i.e., micro-service) can evolve, scale and get de-
ployed independently. This style increases the flexibility of the system and has
been applied in demanding web applications such as eBay, Amazon or Net-
flix [128]. Splitting up a monolith into smaller scalable loosely-coupled microser-
vices [233], requires defining an efficient way of communication between the
newly created services. This is because, microservices are required to be tech-
nically self-contained, but not functionally self-contained, as they may interact
with other microservices to provide their business functions [108]. Different in-
tegration technologies between microservices can be used [43], some supporting

165 6.2 RESTalk Expressiveness

synchronous request-response interactions, some asynchronous event-based in-
teractions, and some using a mix of both [39]. The best approach depends on the
use case [148], but in this use-case we will focus on the lightweight synchronous
interactions built in accordance with the REST architectural style as it blends well
with the microservices doctrine. Such synchronous communication frequently
requires an orchestrated approach for driving the communication between the
client and the microservices, seen as a conversation composed of multiple basic
HTTP request-response interactions. One such orchestration approach is imple-
mented by using the API Gateway pattern [172]. An API Gateway is a single entry
point that provides access to different microservices [93]. It simplifies the client
by moving the logic for calling multiple microservices from the client to the API
gateway [123]. Namely, the API Gateway can be in charge, among other things,
for service discovery, and thus act as a router and decide which resources of the
microservices to access based on the nature of the client (e.g., mobile or desk-
top) and the received call (e.g., retrieving data, creating data, etc.) [39]. This
decision can be rather simple when the microservices are independent from each
other and thus they can all be called at the same time upon the request of the
external client. So in this case the API Gateway simply fans out the requests to
the related microservices. However, in real-world microservice architectures this
is rarely the case, as frequently data provided from one microservice is needed to
make the request to another microservice, thus requiring a predefined sequence
of interactions. This emphasizes the importance of the knowledge gathering and
the documentation of such sequences of calls to the microservices which are nec-
essary to achieve a given client’s goal.
Big e-commerce companies are known for their microservice architecture [104;
172], and they do use tools to facilitate the design and documentation of that
architecture. For instance, as eBay was restructuring its existing APIs into mi-
croservices, it adopted the OpenAPI Specification for documenting the structure
of the REST APIs6.
In this section we show how RESTalk can be useful for understanding and doc-
umenting the interactions between different microservices in the context of a
microservice architecture. We argue that visualizing the inter-dependencies be-
tween the microservices requires the system designers to actively think about
them, both when designing and when extending the system, and it empowers a
discussion regarding the same with the interested parties, for instance the devel-
opers of the individual microservices. Having a DSL helps to capture all relevant,

6https://www.openapis.org/blog/2018/08/14/ebay-provides-openapi-
specification-oas-for-all-its-restful-public-apis

https://www.openapis.org/blog/2018/08/14/ebay-provides-openapi-specification-oas-for-all-its-restful-public-apis
https://www.openapis.org/blog/2018/08/14/ebay-provides-openapi-specification-oas-for-all-its-restful-public-apis

166 6.2 RESTalk Expressiveness

REST specific details about the interactions.
In the microservices context, each microservice can be considered a resource,
as resources in general terms are conceptual abstractions of any information or
service that can be named. It is also possible that a microservice is comprised
of multiple resources. What is important is that the server can create different
representations of the same resource depending on the received request [148]
and thus serve different clients differently.
Due to the frequent use of microservices in e-commerce companies [104], we
have opted for the e-commerce domain to provide an example of the use of RE-
STalk inspired by Amazon. In our example we assume that the microservice
architecture includes an API gateway, which means that the client makes a call
to the API Gateway which in turn makes different calls to all of the relevant
microservices. In Fig. 6.33 we show a possible microservice architecture of an
e-commerce solution.

Figure 6.33. Microservice architecture of the example e-commerce company

API$
Gateway

Search
Service

Shopping-Cart
Service

Order
Service

Profile
Service

Recommendation
Service

Authentication
Service

Prime-Shipping
Service

Shipping
Service

Marketing
Service

Inventory
Service

Review
Service

Catalog
Service

As users can create their profiles for faster and more personalized shopping expe-
rience the Profile service stores all the relevant user data, such as address, contact
details, the type of user, etc. User’s authentication, log-in credentials and validity
of the access token, is controlled by the Authentication service. User’s orders are
managed by the Order service, while draft orders, which have not been submit-
ted yet, are managed by the Shopping cart service to which items can be added

167 6.2 RESTalk Expressiveness

both by logged-in users and not logged-in users. The shipping of ordered items
is managed by a call to an external provider noted as the Shipping service for
non-prime users and Prime shipping service for prime users. Frequent users may
also receive special discounts and promotions which are managed by the Mar-
keting service. The Search service provides the searching functionality and stores
session ids and product ids related to the session to later be used by the Recom-
mendation service which provides the business logic over recommending certain
products over others. All the details about a product, including its characteristics
and price, are stored in the Catalog service, while the Inventory service handles
the up-to-date information about the available quantity of a given product. Last
but not least, the Review service stores and aggregates customer’s reviews about
a given product.
In a microservice architecture using an API Gateway there are two layers of com-
munication. In the first layer there is the communication between the client and
the API Gateway, abstracting from the existence of microservices, as the client
would make the same calls also in the case of a monolith application. In the
e-commerce example this would refer to a conversation between the client and
the server which includes searching the web-site, looking at the products, adding
them to the shopping cart and up until the placing and modification of an order.
The second layer of communication refers to the interactions between the API
Gateway and the REST APIs of the microservices, triggered by a specific client
call in the first layer of communication. RESTalk can be used to represent any of
the layers, however, in this use case we present a visual diagram of the conver-
sation occurring within the second layer of communication.
In Fig. 6.34 we present the conversation that is triggered by the API Gateway as
soon as a call for rendering a specific product item’s web page is made, which in
the e-commerce context, happens as soon as the user clicks on one of the items
in the search results. We assume that when entering the home page of the e-
commerce website the system stores the session ID and performs a geolocation
query to determine the country based on the IP address. Thus, these two pa-
rameters, session ID and country, are already known when making the call for
rendering the product item’s web page. The input provided by the user when
making this call is the product ID and optionally the access token. When there
is no access token it means that the user is not logged-in, thus only the left part
of the conversation diagram will be executed.
Most of the microservices can be called in parallel, as they only require the pa-
rameters that are already available at the start of the conversation. This is the
case with the Catalog service, Inventory service, and Review service which only
require the product ID. Note that these services will be executed even if the user

168 6.2 RESTalk Expressiveness

Figure 6.34. RESTful conversation for rendering a product item page

GET /auth/{accessToken}
Authentication Service

200 OK
OAS Link:[userId]

401 Unauthorised

access token no access token

GET /product/{prodId}
Catalog Service

200 OK

GET /inventory/{prodId}
Inventory Service

200 OK

GET /review/{prodId}
Review Service

200 OK

GET /related/{prodId}
Recommendation Service

200 OK
OAS Link: [prodIds]

GET /bestSeller
Recommendation Service

200 OK
OAS Link: [prodIds]

GET /user/{userId}
Profile Service

GET /cart/{userId}
Shopping Cart Service

200 OK

GET /promo/{userId}/{memberType}
Marketing Service

200 OK

GET /order/{userId}
Order Service

200 OK
OAS Link: [prodIds]

GET /shipping/{prodId}/{IPcountry}
Shipping Service

200 OK

GET /chrono/{sessionId}
Search Service

200 OK
OAS Link: [prodIds]

III
forEach {prodId}

GET /product/{prodId}
Catalog Service

200 OK

GET /inventory/{prodId}
Inventory Service

200 OK

GET /{memberType}/{prodId}
Prime Shipping Service

200 OK

 no access token always true
 not prime

 prime

User input:
 access token
 prodId
Systen input:
 sessionId
 IPcoutry

GET /cart/{sessionId}
Shopping Cart Service

200 OK
200 OK
OAS Link:[memberType]

no
t
pr
im
e

*

*

*

*

is logged-in as they are on the outgoing path of the inclusive gateway split which
has a condition that is always true. The IDs of the best seller products provided
by the Recommendation service will also be retrieved in parallel with the above
mentioned microservices as no parameter is required for the call. For each of

169 6.2 RESTalk Expressiveness

the best selling product IDs the Inventory service will need to be called to check
whether the product is available, and the Catalog service to check its price, be-
fore they can be rendered on the web page. The same sequence needs to be
followed when generating the recommendations based on the search chronology
for the user who is not logged-in, or based on the order history, for the user who is
logged-in. Modelling such use case required us to add a new construct and a new
marker to the core RESTalk, the sub-conversation with a multi-instance marker,
which have been borrowed both as a syntax and as semantics from BPMN’s sub-
process with multi-instance marker. This allowed us to group the parallel calls
to the Catalog service and the Inventory service and visually represented them
as a sub-conversation which is executed for each product ID generated by any
of the resources of the Recommendation service, as evident from the hyperlink
flow visual construct.
The timer event on all the calls to the different resources of the Recommendation
service will ensure that at least all the page data, except for the recommended
products, is rendered in case the Recommendation service is slow (or down), as
the Recommendation service just provides added value for the users, but is not
crucial for the users to continue with their order.
The Shopping cart service is called both for logged-in users and not, using dif-
ferent parameters: the session ID for a non logged-in user, and the user ID for a
logged-in user. While the session ID is available from the start of the conversa-
tion, the hyperlink flow visual construct shows that the user ID is obtained from
the response of the Authentication service. This service, based on the validity of
the provided access token, can send the user ID or a 401 status code if the token
is no longer valid. As the Profile service stores the durable user data, when pro-
vided with the user ID it reveals whether the user is a prime member, and thus
whether the shipping microservice or the Prime shipping microservice should be
invoked to render the estimated shipping time and price on the web page. The
Marketing service also uses the user ID and the membership type data to cal-
culate different promotions available to the user. As this microservice requires
data which is obtained from the Authentication service and the Profile service it
cannot be called before receiving the response from both of these microservices.
As evident from the diagram in Fig. 6.34 each time a client makes a call to the
API Gateway for rendering the page of a product item at least 5 calls to different
microservices are made to render all the data for a non logged-in user, plus all
the optional calls needed for making the recommendations.
For our e-commerce example some possible user-stories would look like in
Fig. 6.35. The goal is to show the use of textual DSL constructs we have not
seen used before, such as stating interactions in parallel and continuing the flow

170 6.2 RESTalk Expressiveness

after as well as stating the sub-conversation construct. These are examples where
textual modeling is used as it is more efficient then deducing the constructs with
the mining algorithm as discussed in Sec. 4.2.3. It refers to a part of the conver-
sation instance when the user has valid log-in credentials and just states part of
the parallel interactions that happen after it is authenticated, the ones leading
to the Recommendation service. The other possible conversation instances that
need to be stated in order to generate the diagram in Fig. 6.34, are not shown
due to their length. However, they would follow the same syntax as the provided
examples in Fig. 6.35.
To conclude, in microservice architectures it might be easy to reason about the
behaviour of each individual component, but understanding the behaviour of the
entire system can become rather complex [39]. That said, visualizing the com-
munication flow between the microservices makes it possible to explain their
mutual dependencies and interactions to newbie developers, and helps develop-
ers to document the interactions in the existing architecture from a behavioral
viewpoint. While a RESTful conversation model complements existing structural
models, together they can be used to discuss any possible extensions in terms
of additional API usage scenarios. Furthermore, structured knowledge about
the inter-dependencies between microservices can help to identify patterns and
anti-patterns in this relatively new architectural style which still faces the issue
of communication optimization [11]. On another note, having a precise commu-
nication model is a needed step for building automatic testing frameworks that
test the communication behaviour of microservices [43].
The goal of the example is to show the expressiveness of RESTalk and its seman-
tics, but also to facilitate the discussion of the potential benefits of visualizing
the dynamic microservice communication. Namely, in the name of achieving
better scalability, performance and maintainability, the microservice architecture
introduces complexity in terms of microservices communication compared to a
monolith architecture. Encoding the knowledge about such – unavoidable by
design – interactions between the microservices helps in sharing that knowledge
and leveraging it to induce the discussion and application of best-practices. Al-
though this knowledge could be visualized and encoded also in existing general
purpose languages, such as UML, using a domain specific language, such as RE-
STalk, helps to emphasize important facets of REST and the underlying HTTP
protocol in the visualization. This work has been published as a book chapter in
the book “Microservices, Science and Engineering” [91].

171 6.2 RESTalk Expressiveness

Figure 6.35. Sample of textual DSL user stories for the e-commerce microser-
vice architecture

///condition based on data input

Access token?

Yes

GET /auth/accessToken Authentication Service 200 OAS userId

///different parallel interactions

GET /product/prodId Catalog Service 200 |

GET /user/userId Profile Service 200 OAS memberType |

GET /order/userId Order Service 200 OAS [prodId] |

GET /cart/userId Shopping Cart Service 200

...

///the flow from one of the above stated parallel interactions

...

GET /order/userId Order Service 200 OAS [prodId]

GET /related/prodId Recommendation Service 200 OAS [prodId]

forEach [prodId]

...

///the flow from another one of the above stated parallel interactions

...

GET /cart/userId Shopping Cart Service 200

GET /related/prodId Recommendation Service 200 OAS [prodId]

...

///defining what happens in the multi-instance sub-conversation

...

forEach [prodId]

GET /product/prodId Catalog Service 200 |

GET inventory/prodId Inventory Service 200

6.2.3 Multiple Clients - One Server Conversation

Reaching a certain resource state, frequently requires undertaking a predefined
sequence of interactions or choosing among different alternative paths, thus
shifting from the concept of a single RESTful interaction to the concept of a
RESTful conversation [81]. To show-case the appropriateness of RESTalk for
documenting real REST APIs, where the state of the resource matters, we model

172 6.2 RESTalk Expressiveness

the behaviour of Doodle, a well known scheduling Web service7 which depicts
RESTful conversations between multiple clients and one server [87]. Doodle’s
basic free offering is a Web service which facilitates event scheduling between
multiple participants. We have opted for modeling the basic service, where no
log-in is required. Due to the lack of detailed API documentation8, we have used
a prescriptive instead of descriptive approach in modeling its dynamics.

Figure 6.36. Doodle RESTful conversation with RESTalk

POST /poll

201 Created
Location: /poll/{id}
Link: /poll/{id}/vote

Poll State: ACTIVE

200 OK
Link: /poll/{id}; rel=edit
Link: /poll/{id}; rel=close

PUT /poll/{id}

204 No Content
Link: /poll/{id}; rel=reopen
Link: /poll/{id}; rel=result

Poll State: CLOSED

DELETE /poll/{id}

200 OK

Poll State: DELETED

GET /poll/{id}/vote/{id}

200 OK
Link: /poll/{id}/vote/{id}; rel=edit

PUT /poll/{id}/vote/{id}

204 No Content
Link: /poll/{id}/vote/{id}; rel=self

DELETE /poll/{id}/vote/{id}

200 OK

POST /poll/{id}/vote

201 Created
Location: /poll/{id}/vote/{id}

To: admin
Link: /poll/{id} To: participant

Link: /poll/{id}/vote

GET /poll/{id}/vote

200 OK
Link: /poll/{id}/vote

410 Gone

III

PUT /poll/{id}

204 No Content
Link: /poll/{id}; rel=self

To: participant
Link: /poll/{id}; rel=result

To: admin
Link: /poll/{id}

To: admin
Link: /poll/{id}

Admin Participant

GET /poll/{id}

200 OK

Poll State: ACTIVE

Poll State: CLOSED

Poll State: DELETED

GET /poll/{id}

PUT /poll/{id}

204 No Content
Location: /poll/{id}
Link: /poll/{id}/vote

Poll State: ACTIVE

To: admin
Link: /poll/{id}
Link: /poll/{id}; rel=close

200 OK

7http://doodle.com
8http://support.doodle.com/customer/en/portal/articles/664212

http://doodle.com

173 6.2 RESTalk Expressiveness

Figure 6.37. Textual DSL admin user story for the Doodle API

///specifying the role and state

Admin:POST /poll 201 /poll/id, /poll/id/vote <ACTIVE>

///specifying parallel email messages to admin and participant

send admin /poll/id | Participant:send participant /poll/id/vote

...

///the admin deleting the poll

...

admin:send admin /poll/id

DELETE /poll/id 200 <DELETED>

///the admin editing the poll

...

send admin /poll/id

GET /poll/id 200 /poll/id/edit, /poll/id/close

PUT /poll/id/edit 204

///the admin closing the poll

...

GET /poll/id 200 /poll/id/edit, /poll/id/close

PUT /poll/id/close 204 /poll/id/reopen, /poll/id/result <CLOSED>

send participant /poll/id/result ||

PUT /poll/id/reopen 204 /poll/id, /poll/id/vote <ACTIVE> ||

DELETE /poll/id 200 <DELETED>

...

///the admin sending results to participants

...

send participant /poll/id/result

Participant: GET /poll/id 200

///the admin reactivating the poll

...

Admin: PUT /poll/id/reopen 204 /poll/id, /poll/id/vote <ACTIVE>

GET /poll/id 200 /poll/id/edit, /poll/id/close

...

174 6.2 RESTalk Expressiveness

Following is the natural language description of the conversation modelled in
Fig. 6.36. The client can take two distinct roles leading to different privileges.
The admin role, assigned to the client who has created the poll, and the partici-
pant role, assigned to the clients who are invited to participate in the poll. After
the admin creates the poll, emails are sent to the admin, with a link to the poll
resource, and to all participants, with a link to the poll voting resource. Visualiz-
ing the email message required us to add a new construct to RESTalk which we
decided to show in gray, to depict it sends links which can be used in future re-
quests, and to add an envelope to it in order to achieve a certain level of semantic
immediacy [142].
The poll can have three states: active, closed, or deleted. To model the state of
the resource we had to add another new construct to the core RESTalk. Namely,
the interaction which results with entering in a certain state is marked with a
dashed line and the state variable is noted under the response box. We did not
want to change significantly the interaction shape used in the core RESTalk be-
cause it is essentially the interaction that causes the state change.
The admin can edit, close or delete the poll at any time, as well as reactivate
it if closed. When the poll is closed, an email notification may be sent to the
participants. The participants can only vote, change or delete their votes when
the poll is active, resulting with an email being sent to the admin. If the poll is
closed, the participants can only see the results, without editing them. If the poll
is deleted, they get an error message.
As the new added constructs in the language are in the admin role in Fig. 6.37
we show the textual DSL description of the admin user story.

6.2.4 Composite Conversation

Composite service providers, the ones which expose REST APIs implemented by
combining services from other providers, can make use of modeling their conver-
sations with the external service providers in order to understand the dependen-
cies of their API endpoints from the external service providers. Composite service
providers need such information for setting usage limitations of their APIs based
on the external service providers’ limitations. Determining the usage limitations
requires explicitly modeling developers’ knowledge regarding the Service-Level
Agreement (SLA) limitations based on the API structure and the implemented
RESTful conversation, which requires a holistic model uniting the three differ-
ent modeling perspectives (API’s structure, behaviour and SLA limitations). To
create such a holistic model, we have been approached by a research group at
the University of Seville who worked on SLA4OAI [64], an extension of the OAS

175 6.2 RESTalk Expressiveness

Figure 6.38. Simplified unified OAS (medium gray), RESTalk (light gray) and
SLA4OAI (white) metamodel

1..*

SLA4OAI_Document

*

*

Plan

Rate

Quota

1..*

OAS_Document

1...*

Path

*

Request

*Event

FlowNode
sourceRef*

targetRef*
SequenceFlow

Gateway

1..*

*

1..*

targetRef

1..*

sourceRef

HyperlinkFlow

*

*

1..*

*
Parameter

 name : String

Link

 operationId : String

Response

 statusCode : String

Operation

 method : Enum {
GET, POST, PUT, ...
}
 operationID : String

 type : Enum {
Exclusive, Parallel,
Inclusive
} type : Enum {

StartEvent, EndEvent,
TimerEvent
}

Limit

 max : Number
 period : String
 scope : Object

Context

Pricing

Validity
Infrastructure

Metrics

documentation with SLA details 9. To begin with, we have outlined a compre-
hensive meta-model of the three REST API modeling aspects emphasizing their
commonalities, i.e., the resource URI and the method (see Fig. 6.38). The el-
ements pertaining exclusively to the structural viewpoint (OAS) are colored in
medium grey, the ones pertaining exclusively to the conversational viewpoint
(RESTalk) in light grey and the ones pertaining exclusively to the the SLA view-
point (SLA4OAI) in white. Furthermore, for the common elements of the struc-
tural and conversational viewpoint a gradient is used, while the elements shared
by the three viewpoints are colored in dark grey. Only by combining the infor-
mation found in the different models it becomes possible to answer questions
concerning the impact of complex interaction sequences on the SLA limitations
of different usage plans.
The motivation behind our work in this field is a real problem faced by the Univer-
sity of Seville, who have a project called SABIUS that aims at generating reports

9https://github.com/isa-group/SLA4OAI-Specification

https://github.com/isa-group/SLA4OAI-Specification

176 6.2 RESTalk Expressiveness

needed for the internal evaluation of their researchers. Such reports rely on the
Scopus external API provided by Elsevier10 for gathering the required data about
authors and their publications.

Figure 6.39. Conversational model of a subset of the Scopus API for retrieving
an Author (top-left branch), an Affiliation (top-right branch) and a Publication
(bottom)

GET search/author?query=ORCID({orcid})

200 OK

GET author/author_id/{author_id}?view=STANDARD

200 OK

Link: search/scopus?query=AU-ID({author_id})

GET search/scopus?query=AU-ID({author_id})

200 OK
Link: next
Links: abstract/scopus_id/{scopus_id}

GET abstract/scopus_id/{scopus_id}

200 OK
"prims:doi" : {doi}
"prims:publicationName" : {title}

200 OK
"primis:doi" : {doi}
"prims:issn" : {issn}

GET serial/title/issn/{issn}

200 OK

GET serial/title?title={title}

200 OK

GET author/author_id/{author_id}?view=METRICS

200 OK

III
forEach {scopus_id}

GET search/affiliation?query=affil({affiliation})

200 OK

GET affiliation/affiliation_id/{affiliation_id}

200 OK

Link: search/scopus?query=AF-ID({affiliation_id})

GET search/scopus?query=AF-ID({affiliation_id})

200 OK
Link: next
Links: abstract/scopus_id/{scopus_id}

Link: search/scopus?query=AF-ID({affiliation_id})

Link: author/author_id/{author_id}

GET abstract/citation-count/{doi}

200 OK

GET abstract/citation/{doi}

200 OK

Link: {next}
Link: affiliation/affiliation_id/{affiliation_id}

For the time being, Scopus APIs are only documented from a structural viewpoint

10https://dev.elsevier.com/api_docs.html

https://dev.elsevier.com/api_docs.html

177 6.2 RESTalk Expressiveness

in Swagger11 and from an SLA limitation viewpoint in natural language12, while
the conversational viewpoint is not documented at all. Each API is documented
independently and there is no linking between related concepts across the APIs
(i.e., there is no explicit correspondence between different identifiers used in the
different APIs). In Fig.6.39 we use RESTalk to show a conversation of a subset
of the Scopus APIs which depicts different conversations a client might decide to
have regarding its final goal. For instance, a client can search only for an author
and based on the author id can search metrics or standard information about
the author and its publications. Or the client can search only for an affiliation
and based on its id retrieve the related publications. Based on the information
about the scopus id of the publication(s) of interest the client can search the
database for the publication’s abstract and identification metadata (such as doi
or issn) which can then be used to get information regarding the citations, or the
publication metadata (e.g., publishing venue).
Given the different available endpoints by Scopus and due to the lack of docu-
mentation regarding the conversational aspect of the Scopus APIs, the developers
of SABIUS had to invest time in discovering the appropriate sequence of requests
to the Scopus external API in order to get all the required data to generate the
R00 report that they need. This conversation with Scopus is shown in Fig. 6.40.
Given a set of ORCID with a certain size, each one is converted to an internal Sco-
pus identifier by calling /search/author (1). Next, two actions are carried out
in parallel, getting personal information about the author (affiliations, areas of
interest etc.) together with a link for searching author’s publications, and retriev-
ing some metrics about the author itself (2). The obtained link in the previous
step is used to retrieve the set of identifiers for the author’s publications by calling
/search/scopus, with a maximum of 200 results per page, which requires the
client to loop until it retrieves the ids of all the publications in case they are more
than 200 (3). Then, for each obtained identifier in the previous step the client col-
lects information about the publication itself, by calling /abstract/scopus_id

(4), and retrieving information whether it was published in a journal or in a
conference, depending on the available parameters in the response. If an issn
number is available, it means it was published in a journal so the client calls
/serial/title/issn to retrieve information about the journal (5), otherwise it
calls /serial/title to retrieve information for the conference (6). When avail-
able, the client can directly follow the links included in the response, otherwise,
such as for retrieving the publication venue, it can refer to the specified OAS link

11https://dev.elsevier.com/scopus.html
12https://dev.elsevier.com/api_key_settings.html

https://dev.elsevier.com/scopus.html
https://dev.elsevier.com/api_key_settings.html

178 6.2 RESTalk Expressiveness

Figure 6.40. RESTalk Conversation required to obtain the R00 report (en-
hanced with SLA metadata on quotas and rate limits for the Subscriber Plan,
OAS links for the hypermedia flow and branch probabilities extracted from the
actual data).

GET search/author?query=ORCID({orcid})

200 OK

GET author/author_id/{author_id}?view=STANDARD

200 OK
OAS Link: AuthorRetrievalid__ScopusSearch
 search/scopus?query=AU-ID({author_id})

GET search/scopus?query=AU-ID({author_id})

200 OK}

Link: next
OAS Link: ScopusSearch_AbstractRetrieval4
 abstract/scopus_id/{scopus_id}

GET abstract/scopus_id/{scopus_id}

200 OK200 OK

GET serial/title/issn/{issn}

200 OK

GET serial/title?title={title}

200 OK

GET author/author_id/{author_id}?view=METRICS

200 OK

OAS Link: [AuthorSearch_AuthorRetrieval]

OAS Link: [AbstractRetrieval4_SerialTitleMetadata] OAS Link: [AbstractRetrieval4_SerialTitleSearch]

III
forEach {scopus_id}

author/author_id/{author_id}

max 200 results, quota 5'000, 3 requests/second

max 25 results, quota 5'000, 3 requests/second max 25 results, quota 5'000, 3 requests/second

max 200 results, quota 20'000, 6 requests/second

quota 10'000, 6 requests/second

max 200 results, quota 20'000, 3 requests/second max 200 results, quota 20'000, 3 requests/second

65% 35%

1'512 researchers

avg 37 publications

111'888 (for 1'512 authors and avg 37 publications)

1

2

3

4

5 6

179 6.2 RESTalk Expressiveness

in the OAS documentation to retrieve the necessary parameters.
The RESTalk model in Fig. 6.40 is annotated with execution data and SLA data.
As the Scopus API keeps on evolving, it changes the SLA limitations (quotas and
rates), which impacts the number of authors SABIUS can generate the report for,
and the time it takes to generate the report for one author without violating the
invocation quotas and rate limitations set by Scopus. Thus, the SLA that SABIUS
imposes for its API needs to change as well. While Fig. 6.40 shows only one
possible use-case (client implementation) of the API provided by Scopus, it does
not show how the API endpoints provided by SABIUS are related to Scopus, nor
does it show the SABIUS API. Namely, SABIUS itself exposes a REST API with four
endpoints that can be used to build different reporting clients depending on the
type of reports that need to be generated. Those clients themselves could expose
their services as APIs, and so on. By having an integrated modeling approach,
the impact of the changes in the external provider is more evident and can be
automatically calculated by using a constraint satisfaction optimization problem
as shown in the demo tool by Gamez-Diaz [63] which was a result of our joint
work in the field. Namely, the structural and SLA aspects of the SABIUS API are
not sufficient to identify performance bottlenecks, to calculate the usage plans
that SABIUS should offer to its clients, or to determine which of the usage plans
offered by Scopus (subscriber or non-subscriber) it should commit to. Knowledge
about the behavior of both the SABIUS and the Scopus APIs is necessary, as some
calls are inside a loop (e.g., in case of pagination limits), and the conversation
sometimes contains alternative paths which affects the use of the quotas. Thus,
visualizing the bigger picture of how the SABIUS endpoints depend on the Scopus
endpoints and how the SABIUS API can be used by a client depending on its goals
can promote discussion in the SABIUS development team on which resources
to expose depending on different factors (e.g., susceptibility to change due to
changing SLA by Scopus, the different reports that can be generated etc.). To
enable RESTalk to support such architectural modelling of REST APIs’ behaviour
we had to expand it to visualize calls to external services. The visualization for
the above described example is provided in Fig. 6.41).
The external services do not necessarily need to come from the same provider,
different providers can be used for different SABIUS endpoints. The name of the
service provider is stated at the bottom of each pool in a gray box to be consistent
with the fact that we use gray to show responses, while the name of the client
is stated on the top of the pool in a white box to be consistent with the fact that
we use white to show requests. In case SABIUS decides to change the provider
for one of its endpoints only that pool will need to be changed in the diagram.
The hyperlink flow between pools shows the data that is needed in order to start

180 6.2 RESTalk Expressiveness

Figure 6.41. Interaction dependencies between the end-user, SABIUS and Sco-
pus APIs

GET /search/author?query=ORCID({orcid})

200 OK

GET /author/author_id/{author_id}?view=STANDARD

200 OK
OAS Link: [AuthorRetrievalid__ScopusSearch]

GET /search/scopus?query=AU-ID({author_id})

Link: next
OAS Link: [ScopusSearch_AbstractRetrieval4]

GET /abstract/scopus_id/{scopus_id}

200 OK200 OK

GET /serial/title/issn/{issn} GET /serial/title?title={title}

GET /author/author_id/{author_id}?view=METRICS

200 OK

OAS Link: [AuthorSearch_AuthorRetrieval]

OAS Link: [AbstractRetrieval4_SerialTitleMetadata] OAS Link: [AbstractRetrieval4_SerialTitleSearch]

III

forEach {scopus_id}

SCOPUS API
(Tier 3)

GET /v1/{snapshot}/authors?authorId={orcid}

+

+

+

OAS Link: [getAuthor_getAuthorId]

200 OK

200 OK

GET /v1/reports/r000?authorIds={orcids[]}

+
200 OK

[inputSLA:itemsPerPage]

percentageConferencespercentageJournls

*

REPORTS API
(Tier 1)

att = numberPublications*percentageConferences

att = numberPublications/itemsPerPage

att = numberPublications

att = numberPublications*percentageJournals

III

/author/author_id/{author_id}

/search/scopus?query=AU-ID({author_id})

/abstract/scopus_id/{scopus_id}

SABIUS API
(Tier 2)

*

SCOPUS API
(Tier 3)

GET /v1/{snapshot}/authors/{author_id}/metrics

GET /v1/{snapshot}/authors/{author_id}/documents

200 OK

SCOPUS API
(Tier 3)

SABIUS APIREPORTS APIUSER

SABIUS API

SABIUS API

max 200 results, quota 5'000, 3 requests/second

max 25 results, quota 5'000, 3 requests/second

max 25 results, quota 5'000, 3 requests/second

quota 10'000, 6 requests/second

200 OK

max 200 results, quota 20'000, 6 requests/second

200 OK 200 OK

max 200 results, quota 20'000, 3 requests/second max 200 results, quota 20'000, 3 requests/second

the conversation in the other pool (e.g., the ORCIDs from the end user), or the
data received in the external service response (e.g., the author_id received from
Scopus) that is needed for further calls in SABIUS. A sample of the textual DSL to
show the newly added elements of a call request and poll is provided in Fig. 6.42.
As before, not all the user stories are presented, but just the ones sufficient to
show the new constructs.

181 6.2 RESTalk Expressiveness

Figure 6.42. Sample textual DSL for the SABIUS-Scopus composite conversa-
tion

///specifying the client in pool1 and its call request

USER: CALL GET /v1/reports/r000??authorIds=orcids[] 200

///specifying the client in pool2 with multi-instance marker

///the new line before the OAS keyword is just for space reasons

REPORTS API(s): CALL GET /v1/snapshot/authors?authorId=orcid 200

OAS getAuthor_getAuthorId author_id

SABIUS API: GET /search/author?quiery=ORCID(ordid) 200

OAS AuthorSearch_AuthorRetrieval, /author/author_id/author_id

GET /author/author_id/author_id?view=STANDARD 200 OAS

AuthorRetrivalid_ScopusSearch, /search/scopus?query=AU-ID(author_id)

REPORTS API(s): CALL GET /v1/snapshot/authors/author_id/metrics 200 |

CALL GET /v1/snapshot/authors/author_id/documents 200

...

///mapping the clients to their servers

SERVERS

USER - REPORTS API(s)

REPORTS API(s) - SABIUS API

SABIUS API - SCOPUS API

182 6.3 Chapter Summary

6.3 Chapter Summary

As firm believers in the iterative design of RESTalk, in this chapter we have pre-
sented the formative research techniques we have used that enabled us to im-
prove and expand RESTalk to its current version. The exploratory survey results
showed that some standard or internally developed visual notations are already
used in industry which means that the need of modelling and discussing RESTful
interactions has already been identified. The comparison of the core version of
RESTalk to the visual notations in use has shown that RESTalk does not lag be-
hind in terms of conciseness, understandability or efficiency and that it is rather
intuitive, at least in its core version. Its ability to express domain specific con-
cepts is appreciated. The exploratory survey together with the different use cases
we have modelled with RESTalk allowed us to identify new constructs that we
added to the extended version of RESTalk to be able to express resource state,
sending email, logical grouping of interactions, multi-instance loops, multi-party
and composite conversations, etc. Being able to model the use cases mentioned
in this chapter verifies that RESTalk’s expensiveness is sufficient for its currently
intended use, but can be extended in case new use cases are identified.

Chapter 7

RESTalk Summative Evaluation

In this Chapter we present the design and the results of different research tech-
niques that we have applied in order to evaluate RESTalk from different aspects.
In Sec. 7.1 we use the Physics of Notation theory to evaluate the design of RE-
STalk as a visual notation. In Sec. 7.2 we compare RESTalk to other visual no-
tations which can be used to model REST API interactions. In Sec. 7.3 we show
the design and results of a mainly quantitative research technique, a controlled
experiment, which we conducted with bachelor students.

7.1 Design Validation of the Graphical RESTalk Rep-
resentation

Over the last years the Physics of Notation theory for the design of visual no-
tations gained on popularity [142]. It focuses on improving the cognitive ef-
fectiveness of a visual notation. Linden et al. [214] propose a framework for
improving the verifiability of notations based on this theory. They emphasise the
importance of explicitly documenting the design rationale to understand and as-
sess the choices made during the design phase and also provide guidance on
what needs to be reported in order to be able to verify the application of the dif-
ferent principles of the Physics of Notation theory. For instance, they state that
there are only three principles for which the design rational does not need to be
reported on: semiotic clarity, complexity management and graphical economy.
The critical part that they identify in the reporting requirements is a “complete
representation of the semantic and visual constructs”. We have a complete list
of the semantic constructs defined in a meta-model and discussed textually in
Sec. 4.2.1, while the visual constructs are enlisted in Sec. 4.2.2. To facilitate

183

184 7.1 Design Validation of the Graphical RESTalk Representation

the discussion in this section in Fig. 7.1 we report a summary of all the visual
constructs, differentiating between core constructs and extended RESTalk con-
structs. We will discuss bellow each principle and to what extent it has been

Figure 7.1. RESTalk full notation

Request

Response

Request

Hyperlink URI

Hyperlink URI

Alternative
Response

Alternative
Response

Exclusive XOR gateway

Inclusive OR gateway

Start event

End event

Sequence flow
Hyperlink flow

Request

Response
Hyperlink URI

State Variable

Client-Server
Interaction

Client-Server
Interaction With

Resource State Change

Alternative Server Decisions

To:
Link: Hyperlink URI

Sending Message
 Activity

III Multi-instance

Lane

RESTalk Core

Parallel AND gateway

Response timeout

Call Request

Response
Hyperlink URI

+

Call Request
Sub-conversation

Request

Response
Hyperlink URI
OAS Link:

Request with additional
information and
OAS link response

SLA information
simulation input

Hyperlink flow with
multiple parameter values

*

Pool

Client Name Client Name

Server Name

RESTalk Extended

DELETE

PUT

POST

GET

applied in RESTalk’s design.

Semiotic clarity refers to having one to one correspondence between seman-
tic constructs and visual constructs. Thus, the following situations should be
avoided: 1) one semantic construct represented by multiple visual constructs
(symbol redundancy), 2) multiple semantic constructs represented by the same
visual construct (symbol overload), 3) visual constructs that do not correspond

185 7.1 Design Validation of the Graphical RESTalk Representation

to any semantic construct (symbol excess), and 4) semantic constructs that do
not have any visual constructs (symbol deficit). In order for this principle to be
validated all semantic constructs and all visual constructs need to be stated. We
state the semantic constructs of RESTalk in Sec. 4.2.1 and the visual constructs in
Sec. 4.2.2. Generally we have applied the one to one correspondence for most of
the semantic constructs. Following are the exceptions: 1) the participant se-
mantic entity can refer to a client or a server and can be implicit or explicit in the
visual notation. The goal of allowing the participant to be implicitly stated by the
colour of the interaction box is to decrease the verbosity of the DSL when possi-
ble. When the participant is to be explicitly stated, in addition to the colour, also
the position in the lane/pool rectangle visual construct distinguishes between a
client and a server. We decided for a top position for the client as it is the client
who initiates the interaction throughout the conversation, and a bottom position
for the server. The selection of colours was inherited from the BPMN Choreog-
raphy initiator vs recipient color scheme; 2) the operation and the resource

entities are not visually represented, but rather defined via text in the request

visual construct; 3) The hyperlink-flow visual construct is used inside a con-
versation, to show the discovery of hypermedia in previous requests, but the
same construct is also used between conversations when there is a call request
to show the flow of data between different APIs. While this positively affects the
graphic economy principle (i.e., keeping the number of visual constructs mini-
mal), and allows for cognitive integration, i.e., linking different diagrams, it does
cause symbol overload. However, Moody [142] himself points out the possible
trade off between cognitive integration, and the one to one relationship between
semantic and visual constructs.
Perceptual discriminability refers to having clear difference between sym-
bols to allow for quick recognition. The primary discriminant proposed in the
theory is the shape of the symbols, but also redundant coding (e.g., shape
and color as discriminant) can be used. This principle is the most impor-
tant requirement for practitioners using visual notations according to a recent
survey [212]. In RESTalk, most of the visual elements (events, gateways,
sequence flow, lane, markers (collapsed call marker and multi-instance

marker), sub-conversation) have been borrowed from the BPMN standard no-
tation [101]. The adherence of BPMN to the principles of the Physics of Notation
theory has been analysed in [68]. BPMN uses different shapes for different types
of meta-classes, e.g., events are represented by a circle shape, gateways are rep-
resented by a diamond shape. The client-server interaction element has
been inspired by the choreography task element in the BPMN Choreography di-
agrams as explained in Sec. 4.2.2. The shape of the pool has been adjusted

186 7.1 Design Validation of the Graphical RESTalk Representation

from BPMN to be able to state both the client and the server, distinguishing them
based on the colour and position. We include the link/parameter entities in a
dashed rectangle as we also use a dashed line for the hyperlink flow to distin-
guish it from the sequence flow. We were inspired by relationships in a UML
class diagram for using the star symbol on the hyperlink flow to visualise

multiple parameters. We use dashed line of the client-server interaction el-
ement to visually distinguish interactions which lead to a change in the state.
We decided not to use a completely different shape for this purpose as resources
always have states and state change is always caused by a request (except for a
GET request), so it is up to the modeler to decide when such change is important
to be emphasized visually. We have designed the sending message activity

to have a similar shape to the response construct as it sends the links needed
to make the next request. As opposed to a response construct which uses sharp
edges in the upper angles, the sending message activity uses soft (round) edges
in all angles.

The semantic transparency principle requires that the appearance of the vi-
sual constructs should suggest their meaning. The theory distinguishes between
semantic opacity (arbitrary relationship between meaning and appearance), se-
mantic perversity (appearance suggests different meaning) and semantic imme-
diacy (meaning can be immediately inferred from appearance without explana-
tion). Most of the elements in the RESTalk graphical representation use semantic
opacity (they are not directly related to the REST domain or the semantic mean-
ing of the element). We borrow some BPMN elements which have semantic im-
mediacy such as the timer event showing response timeout which uses the clock
symbol, or the call request marker which uses a plus sign to show a concept that
has additional content and needs to be unrolled (opened). The sending message
activity also has some semantic immediacy due to the use of an envelope which
is intuitive for showing the sending of a message.

The complexity management principle requires that explicit mechanisms are in
place for dealing with complexity. Namely, the theory argues that the number
of elements in a diagram that a person can comprehend at a time is limited by
the working-memory capacity. Thus, to be cognitively effective a notation should
provide mechanisms for decreasing the size of diagrams by modularization (e.g.,
subsystems) and hierarchical structuring, i.e., levels of abstraction (e.g., decom-
posable constructs). In RESTalk two levels of abstraction are allowed. While
subcoversations are used as a logical grouping mechanism but at the same
level of abstraction as the rest of the conversation, call requests are used to

187 7.1 Design Validation of the Graphical RESTalk Representation

show the recursive decomposition of the diagram where the response to a call re-
quest will only be received when the conversation initiated with that call request
has finished.
The cognitive integration principle requires explicit mechanisms to be in place
to integrate information between diagrams in order to help the reader as-
semble the information into a “coherent mental representation of the system”
(conceptual integration) and to simplify navigation between diagrams (percep-
tual integration) [142]. RESTalk supports summary diagrams, i.e., multiple
conversations in the same diagram only in the case of composite conversa-
tions where the information flow between the different conversations is shown
via the hyperlink flow construct. However, currently the perceptual integra-
tion is missing as there is no way of linking different diagrams to represent a
system (like in the Imgur API use case in Sec. 6.2.2).
The visual expressiveness principle recommends the usage of the full range
of visual variables, such as shape, colour, size, brightness, orientation, texture
etc. Most software engineering notations use only the shape as a visual vari-
able [142]. In RESTalk, in addition to shape we decided to also use size, colour
and texture to support visual expressiveness. Exclusive gateways which show
different possible responses from the server are designed to be smaller in size
with respect to exclusive gateways which show a path divergence due to client’s
decision. To visually distinguish between requests and responses, as well as
between clients and servers we use colours, white for requests/clients and
gray for responses/servers. The decision to use these two colours was inspired
by the way these colours are use in BPMN Choreography diagram, where white
is used to show the party initiating the interaction and gray is used to show the
recipient party. Additionally, to distinguish between different methods in a re-
quest we allow for using colours for the request different from white, requiring
colours which are already used to distinguish against such methods in Postman.
We use different texture for the edges, dashed for hyperlink flow and solid line
for sequence flow. All of the nodes use solid line, except for the interactions
that lead to a change in state which use a dashed line. We also recommend a
vertical orientation of the diagram, when possible, so that in case of juxtapose in-
teraction the incoming sequence flow is connected to a request and the response
is followed by an outgoing sequence flow.
The dual coding principle refers to the usage of text to complete graphics. An
example would be using commonly understood words to complement the visual
constructs [213]. Both annotations (comments) and hybrid constructs (using
text inside a visual construct to both expand and reinforce the meaning) are sug-
gested as dual coding approaches. In RESTalk many of the constructs are hybrid

188 7.1 Design Validation of the Graphical RESTalk Representation

constructs. We use text to depict some semantical constructs such as operation
or resource, and we require text also to show the status code/links in the re-
sponse. We advise to use upper case letters for stating the operation (method)
and to start each URI with the “/” symbol as this is how method and URI are com-
monly used in frequently used API tools, such as Postman. Furthermore, adding
a state name in case of a state change is encouraged. A lane has to contain
a textual annotation of the name of the client, while a pool should also have
a textual annotation of the name of the server. A sending message activity

should have a textual annotation stating who the message is sent to and which
links are included. Furthermore, we allow text to be used to add additional rel-
evant information to the first-class citizens, i.e., the request/response constructs
depending on the goal of the diagram. By doing so we intend to make the DSL
more versatile to respond to different needs. Gateways do not have to labeled
with text, but users can label them if it helps the understanding of the diagram.

The cognitive fit principle refers to the usage of different dialects for different
audiences, thus ensuring that the notation fits with the cognitive background of
the targeted users. In RESTalk we do differentiate between the core constructs
which are sufficient to express simple one to one (client-server) conversations
and are thus suitable also for novice modelers, and extended constructs needed
to support multi-party conversations or more complex client-server conversations
more suited for expert modelers.

The graphical economy principle refers to keeping a cognitively manageable
number of visual constructs in a given notation. Software engineering notations
tend to increase the number of visual constructs over time in the effort to increase
their semantic expressiveness [142]. Miller [136] has established the upper limit
of 7± 2 as the maximum number of visual constructs which a person can effec-
tively memorise at a given time. RESTalk has 10 symbols in its core dialect, and
other 8 symbols in the extended RESTalk dialect as evident in Fig. 7.1. Our de-
sign decision aimed at keeping this number as low as possible to facilitate the
learnability of the language.

Following all of the above mentioned principles in the design of RESTalk, or
any other visual notations, is impossible due to the innate dependency between
the requirements of the principles themselves. A visual matrix of the trade-offs
between the principles presented by Van der Linden et al. [212] is shown in
Fig. 7.2.

189 7.2 RESTalk vs Non-domain Specific Languages

Figure 7.2. Trade-off between the Physics of Notation principles (presented
in [212])

7.2 RESTalk vs Non-domain Specific Languages

In addition to cognitive effectiveness of the visual notation discussed in Sec. 7.1,
the conciseness of the language, given its domain, is also an important aspect.
Our exploratory survey, discussed in Sec. 6.1, has pointed to the UML sequence
diagrams as the most frequently used in practice for modelling the interactions
with REST APIs. As a matter of fact, it was when using UML sequence dia-
grams [81], and later BPMN Choreography diagrams [151], to visualise RESTful
interactions that the idea of designing a DSL was born. When discussing the
results of our exploratory survey in Sec. 6.1.3 we also discussed the perceived
characteristics of RESTalk in terms of conciseness, expressiveness etc. compared
to UML Sequence diagrams and BPMN Choreography diagrams, with the results
being encouraging for the use of RESTalk (see Fig. 6.8). In this section we are
going to go into more technical analysis of these notations and discuss one sim-
ple and one slightly more complex RESTful interaction pattern modeled with all
three notations.
In Fig. 7.3 we show the very simple redirect pattern discussed in Sec. 6.2.1 as
well as in [81] using the UML and BPMN standard visual languages in addition
to RESTalk. This being an overly simplified example, any of the mentioned di-
agrams renders the idea of resource redirection as all three languages focus on
modeling interactions. However, in our opinion what changes between the dif-
ferent diagrams is the first class citizen, the visual elements that stand out from

190 7.2 RESTalk vs Non-domain Specific Languages

Figure 7.3. Redirect pattern modelled with UML Sequence diagram, BPMN
Choreography diagram and RESTalk

the rest of the diagram.
UML Sequence diagrams are one of the most popular UML notations for visual-
izing interactions [135]. The main focus is on showing who is talking to whom
and with what frequency. The participants and their lifelines are well visible as is
the nesting of the interactions, distinguishing clearly between synchronous and
asynchronous interactions. The execution specification can provide some notion
of time. However, all types of interaction convergence/divergence (e.g., choice,
iteration, parallelism) are visually presented with a fragment box and the type is
textually specified by a fragment operator, e.g., loop, al t, par etc. (see Fig. 7.4).
The respondents of our survey in Sec. 6.1.3 have pointed to conditions and loops
being challenging to use in UML Sequence diagrams. When used in a RESTful in-
teractions domain, the lifelines become representations of resources leaving less
space for visualizing or distinguishing participants in multiparty conversations
from resources.
While UML is intentionally not domain specific, BPMN targets business processes
with BPMN Choreographies focusing on the interaction coordination between
participants in cross-organizational settings. As such different types of control
flow convergence/divergence have dedicated visually distinctive constructs in
the language. The first hand citizen in BPMN Choreographies are the choreog-
raphy tasks which always have an initiator of the message and a recipient of the
message and they are designed to support multiple participants in the conver-
sations. The goal of the choreography task is summarised/contained in label
making the message content in the message construct optional. As both UML
Sequence diagrams and BPMN Choreographies are not specific to the REST do-
main they visually do not emphasize some important RESTful interaction facets,
for instance the details of the request/response pairs such as the method and
status codes combinations. In standard languages, such as UML or BPMN, these

191 7.2 RESTalk vs Non-domain Specific Languages

Figure 7.4. Long Running Operation with Polling pattern modelled with UML
Sequence Diagram

would need to be captured by adding domain-specific semantics to model anno-
tations and comments [81; 151], thus cluttering the readability of the diagram.
Of course such cluttering can be disregarded in simple models such as the one in
Fig. 7.3, but becomes more evident in even slightly more complex patterns such
as the Long Running Operation with Polling pattern also described in Sec. 6.2.1
which for comparison purposes we have designed using UML Sequence diagram
in Fig. 7.4, using BPMN Choreography diagram in Fig. 7.5 and using RESTalk in
Fig. 7.6. An important domain addition in RESTalk compared to the non-domain
specific languages is the visualization of resource discovery paths through the use
of hyperlinks.
REST can be defined as a set of constraints which we described in detail in

192 7.2 RESTalk vs Non-domain Specific Languages

Figure 7.5. Long Running Operation with Polling pattern modelled with
BPMN Choreographies

Sec. 2.2.1. Thus, in this section we will also discuss how RESTalk supports those
constraints in addition to comparing it to non-domain specific languages. The
client-server constraint requires that changes in the server do not break the client.
On the other hand the satelessness constraint requires the client to send all the
necessary data when making a request. A RESTalk model specifies where the
client can get the data in order to make the request, i.e., which prior requests
need to be made in order to obtain that data and thus respects the satelessness
constraint. On a model verification level the data flow and the satelessness con-
straint can also be verified in general purpose languages through the control flow,
however there is no visual construct to help the diagram reader to detect such
flows. On the other hand, the RESTalk model provides the API developer with
knowledge of the required data the client expects when making a set of requests.
Thus, the API developer can ensure backward compatibility in terms of API be-
haviour when changing the API in order not to break existing clients. RESTalk
requires the request to contain one of the accepted HTTP methods and a URI or
URI template, thus enforcing the uniform interface constraint. When designing
RESTalk we did not consider necessary to model the cacheability of a response
as this property does not change the sequence of needed requests, but just the

193 7.2 RESTalk vs Non-domain Specific Languages

place from where the response is being served. We also did not consider neces-
sary to model the different layers between the request from the client and the
response from the server to maintain diagram simplicity, as the goal of RESTalk is
not to show the system architecture for which other diagrams complementary to
RESTalk can be used. When it comes to the HATEOS constraint requiring clients
to follow links instead of hard-coding the business logic, RESTalk can help API
designers in the API Design First approach to reason on which links should be
included in which response depending on the state of the resource. HATEOS ap-
pears to be the most difficult REST constraint to be implemented, as most APIs
which claim to be RESTful do not actually enforce this constraint [178; 82]. In
such current state of the art reality, RESTalk can also help the API client devel-
opers to identify the right path to take to achieve the goal based on following
the hyperlink flow in the visual diagram when no hypermedia is available in the
responses.

Figure 7.6. Long Running Operation with Polling pattern modelled with RE-
STalk

194 7.3 Controlled Experiment

7.3 Controlled Experiment

In order to investigate the possible advantages of using RESTalk diagrams as a
complementary documentation to the OAS documentation of a given REST API
we have designed and conducted an in-class controlled experiment.

7.3.1 Experiment Design and Setup

Experiment Design

A good design of the controlled experiment is essential for the quality of the ex-
periment and the conclusions to be drawn from the same. Thus, when designing
our experiment we tried following the guidelines in [225; 224] when applicable
and when feasible. We also aimed at avoiding the sin of irreproducibility [21] by
documenting the design in detail.
As a baseline for our comparison we chose to compare the approach of using
RESTalk diagrams, in addition to the API provider documentation, to the ap-
proach of using only the API provider documentation. The research questions
we aimed at responding with the experiment are the following:

RQ1: Does RESTalk help to discover complete and correct sequences of requests
given a goal?

RQ2: Does RESTalk help to discover the required sequences of requests faster?

RQ3: What is the perceived usefulness of the RESTalk diagram?

Each scientific experiment involves two types of variables, independent variables,
which are manipulated by the researcher, and dependent variables, which are
measured to check the variability of their values as a result of the manipulation
of the independent variables [227]. In our experiment we use one independent
variable, i.e., the REST API documentation used to solve the tasks. The API
documentation variable has two levels, RESTalk and OAS documentation as one
level, and only OAS documentation as a second level or baseline. The depen-
dent variables used to answer RQ1 are: 1) completeness of the sequences of
calls to the REST APIs, i.e., given the task are all the required calls stated in the
participant’s answer; 2) correctness of the sequences of calls to the REST APIs,
i.e., given the task are the calls stated in the participant’s answer necessary and,
if they are, are they stated in the correct order. The completeness and correctness
are the measures of effectiveness of the proposed approach. For RQ2 on the other
hand we measure the completion time, i.e., the time it takes the participants to

195 7.3 Controlled Experiment

state their answer, which is a measure of efficiency of the proposed approach.
RQ3 is investigated by using a questionnaire where we ask participants to rate
their perceived helpfulness of the RESTalk diagrams.
The participants in the experiment were bachelor students taking the Web Ate-
lier course where, among other things, they also learn how to develop clients for
REST APIs. During the course the students were already working on an appli-
cation offering a canvas for drawing images. Therefore, for the experiment we
have decided to use an image sharing service provider, so that at a later point the
students could integrate the external service presented during the experiment to
their application to upload their canvas drawings as well as to find and save im-
ages from the service provider to their canvas application. After looking at the
APIs of different image sharing service providers we have decided to use the REST
API of Imgur as mentioned in Sec. 6.2.2 which provides OAS documentation and
is supported by Postman to facilitate testing.

Experiment Execution

The experiment designed as described above has been executed during lecture
hours in two consecutive years of the Web Atelier course (hereinafter called Ex-
periment 1 and Experiment 2). While the research questions and the content of
the tasks to be performed by the students remained unvaried, there were several
main differences between the two experiments.
The first difference refers to the experimental treatments, i.e., how the partic-
ipants were exposed to the independent variable. In Experiment 1 we used
between-subject design to minimise the notation learning effect. The students
were divided into two groups and Group A solved all tasks using only the OAS
documentation, while Group B solved the first (warm up) task using only the
OAS documentation and the rest of the tasks using the RESTalk diagrams as
complementary documentation to the OAS documentation. In Experiment 2, on
the other hand, in order to minimise the random noise created by different exist-
ing knowledge or interests of the participants, we have decided to use a within-
subject design, where the same participant tests both levels of the independent
variable. Namely, we have again divided the participants into two groups. Then,
to Group A only the OAS documentation was made available in order to com-
plete the first and fourth task, while to Group B also RESTalk diagrams were
made available for those tasks. For the second and third task, Group B could no
longer use the RESTalk diagrams, but they were made available to Group A. In
both experiments we did not use a random assignment of the participants to the
groups, but rather tried to balance the groups in terms of prior knowledge, using

196 7.3 Controlled Experiment

their grades in previous course assignments as a factor.
Another difference refers to the number of RESTalk diagrams available to the par-
ticipants in the relevant group. While in Experiment 1 the group which had the
RESTalk diagrams available always had all three diagrams available (as men-
tioned in Sec. 6.2.2 we have split the API conversations into three diagrams, one
showing the interactions which can be performed by an unauthenticated user,
one showing the available interactions for an authenticated user for publishing
and managing own content, and one showing the available interactions for an
authenticated user for discovering and interacting with other user’s content). It
was up to the participant to decide which diagram to use. In Experiment 2 we
have decided to only make available to the users the diagram that can help them
solve the tasks, instead of all three diagrams as in Experiment 1.
The third important difference between the experiments refers to the RESTalk
diagrams themselves. While in Experiment 1 they were static black and white
diagrams, in Experiment 2 we have introduced colour for the methods as a sec-
ondary notation and we have made the diagrams interactive and better inte-
grated with the OAS documentation. Namely, by clicking on any request element
in the diagram the user was redirected to the exact point of the OAS documenta-
tion dealing with that request. A short one sentence description of the semantics
of the request was provided when hoovering over it. When hovering over a pa-
rameter it was marked in red how it can be discovered (if it is in the request) or
what are the possible requests where the parameter can be used (if it is in the
response). The diagram was rendered searchable by a simple "command + F"
functionality of the browser. And last but not least, by clicking on the coloured
boxes in the order in which the user wants to state the requests in his task solution
they get copied in the text box thus facilitating the compilation of the solution.
In both experiments, given that the participants are novices in the use of REST
APIs, we have used only the core RESTalk constructs to create the diagrams.
The fourth difference between the experiments refers to the number of interaction
sequences that were required to be stated by the participants. While in Experi-
ment 1 the wording of the tasks left the possibility to state different possible
solutions open, in Experiment 2 the wording encouraged students to continue to
the next task once they have identified one possible solution.
The last difference refers to the exposure of the participants to the Imgur appli-
cation and RESTalk before the experiment. Namely, in Experiment 1 we did not
provide any introduction to Imgur as an image sharing community, thus the par-
ticipants had to discover Imgur during the experiment. We were simulating a
situation where a developer runs into a new service provider and has to discover
both the functionality it provides and its API. We also provided no introduction to

197 7.3 Controlled Experiment

RESTalk as we waned to test the intuitiveness of the semantics of the notation.
In Experiment 2, on the other hand, before the experiment we have provided
an introduction to the basic functionalities and the terminology used in Imgur,
as well as a short example of how the Imgur API can be used to add an image
to an album modelled in RESTalk. We also presented the interactive content of
the RESTalk diagrams discussed above. Thus, in Experiment 2 participants who
attended the lecture before the experiment were not completely new to Imgur
and RESTalk.
Before Experiment 1 we have conducted a test-run with Prof. Pautasso and the
teaching assistant of the Web Atelier course, Andrea Gallidabino, to verify the
estimated time needed to complete the experiment as well as the correct word-
ing of the tasks. Before Experiment 2 we have decided to conduct a larger pilot
study with the members of the Software Institute during one of their regular
seminar sessions. The Software Institute includes researchers, PhDs, Postdocs as
well as professors in different areas in computer science1. One day before the
pilot study, the members of the Software Institute were required to fill in a back-
ground survey regarding their experience with writing RESTful clients so that
they can be split into two groups with similar level of experience. The experi-
mental treatment in the pilot study was equal to the one in Experiment 2, i.e.,
a within-subject treatment. On the day of the pilot study, the participants were
provided a quick 5 min tutorial on Imgur, REST APIs and RESTalk. Then, they
had 30 min to solve the tasks to be followed by a discussion regarding the design
of the controlled experiment in terms of research questions, independent and de-
pendent variables, as well as the tasks content and understandability. Given the
limited time for conducting the pilot study itself, the goal was not to go through
all of the tasks in the experiment, but to give the participants a feeling of what
the tasks are like and obtain feedback on the general design, content and set up
of the experiment.
For the experiments no time limit was posed for completing the Experiment, but
the students were incentivised with a fail/pass/exceed grading for providing a
correct and fast solution.
The experiments have been conducted using USI’s e-learning platform, iCorsi,
which tracks participants IDs and records a timestamp of task submission. The
pilot study with the members of the Software Institute has been conducted using
Google Forms.

1https://www.si.usi.ch

https://www.si.usi.ch

198 7.3 Controlled Experiment

Experiment Structure

The experiment consisted of five parts. Part I gathers background information
on the experiment participants regarding their experience with using REST APIs
and Imgur. Part II was only present in Experiment 2 and aimed at evaluating the
understanding of Imgur and REST based on the warm-up introductory session in
the lecture prior to the experiment. It evaluates both perceived understanding
using a 10 point Likert scale and conceptual understanding using two multiple-
choice questions and one open-ended questions. Part III refers to functionalities
that can only be used by an authenticated user and consists of 3 tasks asking the
participants to state the correct sequence of interactions with the Imgur API in
order to achieve given goals using the available documentation. The goal in Task
1 is to search the Imgur gallery, vote an item and add it to favorites providing a
link to the same to the user, the goal in Task 2 is to upload an image, add it to
a new album, share it with the community and start following the tag used for
the image and add it to favorites, and the goal in Task 3 is to replace an existing
image in an album. The tasks had an increasing complexity when moving to the
next task and also contained some multiple-choice or open-ended subquestions.
Part IV refers to functionalities that can be used by unauthenticated users and
consists of true/false and open-ended questions. Part V is a survey aimed at
evaluating the perceived complexity of the tasks as well as the perception about
the usefulness of RESTalk for performing the tasks. All of the questions and
tasks as well as their solutions when applicable are available in Appendix B. The
Appendix also contains the treatment regarding the independent variable (API
documentation) for each part/task in each of the experiments. The treatment is
also summarized in Tab. 7.1.

Table 7.1. Experimental treatment in different experiment runs

Experiment 1 Pilot Study Experiment 2

Group A Group B Group A Group B Group A Group B

Part I - Background Information Ø Ø Ø Ø Ø Ø
Part II - General Understanding of Imgur and REST Ø Ø
Part III - Tasks Authenticated User Ø Ø Ø Ø Ø Ø
-Task 1: Vote, Favorite and link to the first search result OAS OAS OAS OAS+RESTalk OAS OAS+RESTalk
-Task 2: Publish in album and gallery, favorite and follow tags OAS OAS+RESTalk OAS+RESTalk OAS OAS+RESTalk OAS
-Task 3: Replace image by title OAS OAS+RESTalk OAS+RESTalk OAS OAS+RESTalk OAS
Part IV - Tasks Unauthenticated User OAS OAS+RESTalk OAS OAS+RESTalk OAS OAS+RESTalk
Part V - Survey Ø Ø Ø Ø Ø Ø

Participants

The pilot study with the Software Institute members consisted of 20 participants
out of which 65% stated that they have written a client that calls REST APIs

199 7.3 Controlled Experiment

before. However, most of them (38.5%) had up to two months of experience in
using REST APIs while 30.8% had more than 2 years of experience. 90% of them
have never used Imgur as an application.
In Experiment 1 there were total of 29 students, 14 in Group A and 15 in Group
B. There were just three students who had experience with writing clients for
REST APIs, two in Group A (one had between 2 and 6 months of experience and
the other one between 1 and 2 years) and one in Group B (less then one month
of experience). None of them had experience with the Imgur API. 6 participants
had used Imgur as a web application (3 in Group A and 3 in Group B).

Figure 7.7. Grading structure and REST API experience per groups per ex-
periment

In Experiment 2 there were total of 24 students, 12 in each group. The proportion
of students who had experience with writing clients for REST APIs was much
more important in this run with 9 students in total, 6 in Group A (4 had less then
6 months of experience, one had between 7 and 12 months of experience and
one between 3 and 4 years) and 3 in Group B (two with less then one month
of experience and one between 7 and 12 months of experience). None of them
had experience with the Imgur API. Only 4 participants had used Imgur as a web
application (3 in Group A and 1 in Group B).
As mentioned earlier, before the start of the experiment the participants in Ex-
periment 1 and Experiment 2 were divided into groups based on their grading
in the course with the scope of keeping the knowledge/interest balanced. In
Fig. 7.7 we present the grading structure and the REST API experience in each
of the groups in each experiment.

200 7.3 Controlled Experiment

Metrics and Analysis

The completeness and the correctness of the sequences of calls to the Imgur
API stated in participants’ answers was manually graded by myself, thus assigning
a single measure to the effectiveness of the proposed treatment regarding the
available API documentation. We have expressed this measure as a percentage,
with 100% referring to an answer which is both complete and correct and points
being deducted if some requests are incorrect or missing.
The finishing time for each of the tasks has been logged by iCorsi as the partici-
pants needed to submit a separate form for each task. We have then calculated
the completion time of each task as the difference between the finishing time
between two sequential tasks. We express the measured time in minutes.
We have measured the perceived helpfulness of the RESTalk diagrams based on
a 10 point Likert scale answers from the participants as well as based on open-
ended questions regarding the pros and cons of RESTalk.
In order to answer RQ1 and RQ2 of the controlled experiment, for the first two
metrics, completeness/correctness grade and completion time, we performed
statistical significance analysis to determine whether the identified differences
are statistically significant and thus whether they can be inferred for the popu-
lation as a whole. Determining statistical significance requires statistical tests,
the nature of which depends on different factors [125]. The first factor to con-
sider is the number, the size and the nature of the samples. In our case, one
sample is comprised of the results from a given treatment. As our independent
variable, i.e., the used API documentation, has two levels (level 1: OAS and level
2: combination of OAS and RESTalk) we have two samples in each experiment.
Next we need to consider the nature and the distribution of the collected data,
i.e., completeness/correctness grade and completion time. We are working with
quantitative continuous data, which is not normally distributed. Furthermore,
the sample size in our experiments is less then 30. These two factors require
the use of non-parametric tests. This type of tests are less powerful than para-
metric tests. The power of a statistical test refers to the probability that the test
will reject the null hypothesis when the alternative hypothesis is true. However,
parametric tests require the use of large samples and assume normal distribu-
tion [125], two assumptions which were not true in our experiment.
Although in Experiment 2 we exposed each participant to the two different levels
of the independent variable, the participant was not required to do the same
task once only with the OAS documentation and once with the combination of
OAS and RESTalk documentation which makes the samples in both experiments
unpaired as each participant resolves each task only once. The difference in the

201 7.3 Controlled Experiment

metrics between samples could go in any direction (increase or decrease), thus a
two-tailed test was required. Considering all of the above factors, the appropriate
test to run was the Mann-Whitney test which is the non-parametric alternative
for the independent t-test.
The Mann-Whitney test replaces all dependent variable measurements with their
rank numbers (1 to n for n sample size). Higher scores measured get higher rank
numbers. The H0 of this test is that the mean rank of the dependent variable
between the two samples is equal. If the grouping variable (in our case the use
of OAS or OAS + RESTalk) does not affect the ratings, then the mean ranks
should be roughly equal for both groups. The alternative hypothesis (H1) is that
the mean rank of the dependent variable is different across the two samples.
Thus, rejecting the H0 and accepting H1, when P − value < 0.05 = α, means
that there is statistically significant difference in the dependent variable (grade
or time) depending on the used API documentation. The level of significance
(P − value) refers to the accepted level of probability that the observed result is
a false positive, i.e., it is due to chance. It is usually conventionally set to 5% or
1% [27]. The power refers to the probability of false negative, i.e., accepting the
H0 when there is actually a difference between the results. The most commonly
accepted level of power is 80% or above [27].

7.3.2 Experiment Results

Before analysing the data we have preprocessed it to ensure its completeness and
correctness. We have removed the incomplete data from students submitting just
Part I and Part II of the experiment (we have removed 2 participants in Exper-
iment 1 and 5 participants in Experiment 2 on these grounds). The number of
participants stated above is after such data cleansing. We have also noticed miss-
ing data points due to system error resulting in some of the answers to tasks not
being recorded or being only partially recorded by iCorsi, as well as cases where
participants finished some tasks the day after the experiment thus invalidating
the completion time measure. In these cases, we have kept the valid participant
data points and only removed the missing data points from the analysis (pairwise
deletion). The missing data points can be classified as missing data at random
(MAR), i.e., the missing data is not connected with its hypothetical value or the
values of other variables. Using listwise deletion (deleting the complete case)
was not feasible due to the small sample size, neither was replacing the miss-
ing values with mean values due to the large number of missing data (6 data
points in Experiment 1 and 21 data points in Experiment 2 mainly referring to
the answers for determining the correctness/completeness grade) [232].

202 7.3 Controlled Experiment

In the next subsections, for each of the experiments and the pilot study we are
going to provide histograms and descriptive statistics measures to describe the
main features of the collected data in quantitative terms.

Experiment 1 Results

We use histograms to show the distribution of the data regarding the grading
of the correctness and completeness of the answers (see Fig. 7.8), as well as
the completion time per task (see Fig. 7.9). To show the differences between
Group A and Group B we use overlapping histograms where Group A, which
always used the OAS documentation to perform the tasks, is shown in blue and
Group B, which in addition to OAS documentation also had black&white non-
interactive RESTalk diagrams available from Task 2 on, is shown in light gray
with the overlap being shown in dark gray.

Figure 7.8. Distribution of Correctness and Completeness Grades per group in
different tasks in Experiment 1

To visualise the distribution of the correctness and completeness grade (see
Fig. 7.8), we use a histogram with each bin containing a range of 20% in the
grade. While in Tasks 1 and 2 the grades are distributed between all the bins
with some shift towards the right, i.e., higher correctness and completeness of
the answers, for Task 3 and Part IV the shift is more towards the middle/left
which shows lower correctness and completeness of the answers, with no an-
swer being more then 80% correct/complete. For Part IV particular aggregation

203 7.3 Controlled Experiment

of the responses in the 20%-40% bin is evident for Group B. If we analyse the
difference in distribution between the two groups, higher grades are noticeable
in Group A.

Figure 7.9. Distribution of Completion Time per group in different tasks in
Experiment 1

In the histograms regarding the task completion time (see Fig. 7.9), we have
used a range of 15 min per bin. Contrary to the histograms in Fig. 7.8, here the
desired result is greater shift towards the left, which is more noticeable after the
warm-up with Task 1 where the distribution for both groups is rather similar. For
Task 2, Group A has shorter completion time, while for the following two tasks
the distribution between the groups is rather similar.
In Tab. 7.2 we provide descriptive statistics metrics per group for each of the
tasks. We provide the mean with a 95% confidence interval, as well as the me-
dian, together with the minimum and maximum value. Although the RESTalk
diagrams were available from Task 2 on for Group B, 47% of the participants
stated that they have not used them to answer the tasks. Therefore, in Tab. 7.2
we also provide the descriptive statistics regarding participants who have used
the RESTalk diagrams and participants who did not use them (all participants
from group A as well as the ones from Group B who stated that they have not
made use of the diagrams).
From Tab. 7.2 we can notice that it is Task 2 the one with the highest mean
regarding the correctness/completion grade (82% ± 7% for Group A and 70% ±

204 7.3 Controlled Experiment

Table
7.2.

D
escriptive

statistics
about

the
correctness/com

pleteness
grade

m
etric

and
com

pletion
tim

e
m
etric

in
E
xperim

ent
1

Part
III

-
Task

1
Part

III
-

Task
2

Part
III

-
Task

3
Part

IV
Total

N
o.

Parti-
cipan

ts
C

orrectn
ess
/

C
om

pleten
ess

C
om

pletion
Tim

e
C

orrectn
ess
/

C
om

pleten
ess

C
om

pletion
Tim

e
C

orrectn
ess
/

C
om

pleten
ess

C
om

pletion
Tim

e
C

orrectn
ess
/

C
om

pleten
ess

C
om

pletion
Tim

e
C

orrectn
ess
/

C
om

pleten
ess

C
om

pletion
Tim

e

G
roup

A
-

O
A

S
14

M
ean

w
ith

95%
C

I
77%

±
11%

24
m

in
±

3
m

in
82%

±
7%

20
m

in
±

7
m

in
50%

±
7%

22
m

in
±

9
m

in
41%

±
9%

13
m

in
±

3
m

in
63%

±
5%

81
m

in
±

22
m

in
M

edian
75%

24
m

in
80%

12
m

in
50%

16
m

in
39%

13
m

in
61%

65
m

in
M

in
50%

13
m

in
60%

10
m

in
33%

7
m

in
18%

7
m

in
52%

37
m

in
M

ax
100%

39
m

in
100%

57
m

in
75%

70
m

in
71%

30
m

in
87%

196
m

in

G
roup

B
-

R
ESTalk

+
O

A
S

15

M
ean

w
ith

95%
C

I
57%

±
13%

25
m

in
±

6
m

in
70%

±
10%

20
m

in
±

4
m

in
43%

±
10%

27
m

in
±

11
m

in
34%

±
6%

12
m

in
±

3
m

in
51%

±
8%

85
m

in
±

13
m

in
M

edian
50%

24
m

in
80%

19
m

in
50%

15
m

in
32%

12
m

in
54%

74
m

in
M

in
13%

9
m

in
40%

11
m

in
17%

12
m

in
14%

4
m

in
27%

53
m

in
M

ax
100%

57
m

in
100%

40
m

in
75%

82
m

in
61%

30
m

in
71%

141
m

in

R
ESTalk

not
used

21

M
ean

w
ith

95%
C

I
N
/A

N
/A

79%
±

7%
20

m
in
±

5
m

in
50%

±
7%

23
m

in
±

7
m

in
38%

±
6%

13
m

in
±

2
m

in
56%

±
5%

55
m

in
±

9
m

in
M

edian
N
/A

N
/A

75%
21

m
in

33%
15

m
in

32%
10

m
in

58%
48

m
in

M
in

N
/A

N
/A

40%
13

m
in

25%
13

m
in

21%
4

m
in

24%
31

m
in

M
ax

N
/A

N
/A

96%
31

m
in

50%
82

m
in

61%
30

m
in

82%
105

m
in

R
ESTalk

used
8

M
ean

w
ith

95%
C

I
N
/A

N
/A

67%
±

15%
20

m
in
±

4
m

in
36%

±
8%

30
m

in
±

18
m

in
35%

±
10%

12
m

in
±

8
m

in
46%

±
9%

63
m

in
±

17
m

in
M

edian
N
/A

N
/A

80%
15

m
in

50%
15

m
in

36%
13

m
in

45%
50

m
in

M
in

N
/A

N
/A

40%
10

m
in

17%
7

m
in

14%
5

m
in

32%
40

m
in

M
ax

N
/A

N
/A

100%
57

m
in

75%
70

m
in

71%
30

m
in

64%
114

m
in

*O
nly

O
A

S
w

as
used

in
both

groups
for

Task
1

205 7.3 Controlled Experiment

10% for Group B), while Part IV has the lowest mean regarding the completion
time (13 min ± 3 min for Group A and 12 min ± 3 min for Group B). The average
correctness/completeness grade between all four tasks is 63% ± 5% for Group
A and 51% ± 8% for Group B. The average of the total completion time of the
experiment in Group A is 81 min ± 22 min, while in Group B it is 85 min ± 13
min. The relative situation does not change much if we split the participants
based on their actual declared use of the RESTalk diagrams instead of based on
their availability taking into consideration only the last three tasks. Also in this
case the group which did not use RESTalk has higher average grade of 56% ± 5%
and lower average completion time 55 min ± 11 min with respect to the group
of participants who claim to have used the diagrams (46% ± 9% and 63 min ±
17 min respectively).

Figure 7.10. Distribution of the Perceived Task Difficulty per group in different
tasks in Experiment 1 as well as rating of RESTalk’s helpfulness for solving
the tasks

After completing all the tasks, the participants were asked to evaluate the per-
ceived difficulty of discovering the appropriate sequence of interactions with the
Imgur API in the available documentation in each task. In Fig. 7.10 we show
the distribution of their answers in each group, with 1 meaning “very easy” and
10 meaning “very difficult”. We can see that in general the perceived difficulty
increases going from Task 1 to Task 3, especially for Group B which in general
evaluated the tasks as more difficult (average rate of 7) then Group A (average

206 7.3 Controlled Experiment

rate of 5). This is inline with the results shown in Fig. 7.8 and Fig. 7.9. In the
lower right corner in Fig. 7.10 we also show a histogram of the evaluation of the
helpfulness of RESTalk diagrams in solving the tasks by the 8 participants who
decided to use the available diagrams, with 1 meaning “not helpful at all” and 10
meaning “very helpful”. The average score of RESTalk based on this question is
6 and participants stated that the diagrams mostly helped them in solving Task 3
and Part IV. When one participant who decided not to use the RESTalk diagrams
was asked how the API documentation can be improved he stated “Probably,
recommend some methods that frequently follow other methods (i.e. linking
methods together) for instance when you create a gallery, you probably want to
add an image”, which at the end is the goal of RESTalk. But when asked why
he did not use the diagrams he answered that “the visual models were kinda
complicated at first, so I emphasized on the documentation”.
As in this experiment the participants were not provided any introduction to
RESTalk before the experiment, we asked them which visual constructs used in
the models they were unsure how to interpret. Their responses pointed to the
“X” in the exclusive gateways and the dotted lines of the hyperlink flow. When
asked for suggestions on how to improve the models one participant proposed
using colours and adding the state of the client after each response.

Pilot Study Results

As mentioned earlier, given the limited time for conducting the pilot study, the
goal was not running through all the tasks and obtaining data on the same, but
rather obtaining feedback. Nonetheless, we do present the data we have ob-
tained. All participants in the study, except for two participants from the RESTalk
group, managed to complete the first task. The distribution of the completeness
and correctness of the Task 1 and the time completion is available in Fig. 7.11.

Figure 7.11. Distribution of Correctness and Completeness Grades and Com-
pletion Time per group for Task 1 during the pilot study

207 7.3 Controlled Experiment

Regarding the results from Task 1, as noticeable in Fig. 7.11, most of the partici-
pants managed to identify the correct or almost correct sequence of interactions,
taking between 8 and 28 minutes to do so. The group who could use RESTalk for
the task (Group B) was faster in completing the task with an average completion
time of 16 min ± 4 min with 95% confidence interval, compared to the group
(Group A) who only had OAS documentation available which had an average
completion time of 21 min ± 2 min. The average correctness and completion
grade in the RESTalk group was 89% ± 9% while in the OAS group it was 85%
± 11%. Task 2 was completed by only one member of Group A and 7 members
of Group B.
The experiment was followed by a discussion as well as a formal survey which
has been filled in by 13 of the participants, out of which 61% stated to have used
the RESTalk diagrams when available. Out of the 8 participants who claimed to
have used RESTalk diagrams, 75% rated it with a grade over 7 on a 1 to 10 scale
where 1 stands for “not helpful at all” and 10 for “very helpful”. What they found
most useful regarding the models were the connections between the endpoints
and the one page overview of a vast API endpoints. The main reason for not
using the diagrams stated by the remaining 39% of the participants was the size
of the diagrams being characterised as “too big to navigate fast enough”.
During the discussion valid points have been brought out, which we implemented
when feasible before running Experiment 2. One of the constructive advises we
did implement was splitting the task description into a list of steps to facilitate
task understanding. Another one was adding a short title for the functionality of
each request. Another valuable feedback was that the amount of new informa-
tion to be processed in terms of REST APIs knowledge, Imgur domain knowledge,
RESTalk knowledge etc. can be too much for the students. To mitigate this risk,
contrary to Experiment 1 set up, we have decided to provide an introduction to
all of these fields during a lecture that preceded Experiment 2.

Experiment 2 Results

In Experiment 1 we used Task 1 as a baseline between the groups, however the
low actual use of the diagrams made us believe that as all the students got famil-
iar to the OAS documentation during the first tasks they just continued using it
for the next tasks as well to avoid the effort of learning a new visual documen-
tation. Therefore, in Experiment 2 we used as a baseline Part II in Appendix B,
where we asked one open-ended question and one multiple-choice question to
evaluate participants’ Imgur domain knowledge, as well as one multiple-choice
question to evaluate their REST APIs domain knowledge. The obtained knowl-

208 7.3 Controlled Experiment

edge is balanced enough between the groups with average grade of the three
questions of 6.4 ± 1.1 in Group A and 6.1 ± 1 in Group B on a scale of 10 (where
10 is the highest grade). The range of grades in Group A was between 3.5 and
9.5 while for Group B it was between 3 and 8.5. These numbers were similar
to the auto-evaluation of the participants’ understanding of the warm-up session
preceding the experiment, which was rated on average 6.2 ± 1.1 in Group A and
5.8 ± 1.5 in Group B.
As mentioned earlier, in Experiment 2 we used a within-subject design where
Group A used RESTalk diagrams for Tasks 2 and 3, while Group B used them
for Task 1 and Part IV. Thus, we do not show the results per group, but rather
per availability of RESTalk diagrams, as only three participants claimed that they
did not use the diagrams at all in resolving the tasks. In Fig. 7.12 we show
the distribution of the correctness and completeness grade when RESTalk is not
available (blue colour) vs. when it is available (gray colour) per task. Most of
the participants in both cases scored high in Task 1, while in Task 2 and Part IV
there is greater shift to the right for the participants who could use the RESTalk
diagrams. The distribution is rather balanced between the two cases regarding
Task 3.

Figure 7.12. Distribution of Correctness and Completeness Grades per avail-
ability of RESTalk diagrams in different tasks in Experiment 2

In Fig. 7.13 we show the distribution of the completion time per task for each
of the two cases. As evident from the histograms none of the participants took

209 7.3 Controlled Experiment

more then one hour for completing a task. In Task 3, as for the correctness and
completeness grade discussed before, also the distribution of the completion time
between the two cases is rather similar. In Task 2 all of the participants who had
the RESTalk diagram available finished the task in 15 to 30 min, while the ones
who did not have it available took up to 45 min. The fastest and rather balanced
completion time between the two cases is evident in Part IV.

Figure 7.13. Distribution of Completion Time per availability of RESTalk
diagrams in different tasks in Experiment 2

The descriptive statistics metrics for Experiment 2 are available in Tab. 7.3, again
divided in two cases based on the availability of the RESTalk diagrams. Due to
the mentioned missing data points we also report on the number of actual data
points for each task. The average correctness and completeness grade between
all four tasks is 77% ± 11% with average total completion time of 84 min ± 9
min for the participants who did not have RESTalk diagrams available, and 79%
± 7% and 81 min ± 9 min respectively for the participants who had RESTalk
diagrams available. The greatest difference in the correctness and completeness
grade between the two cases is noticeable for Task 2 where the average is 70% ±
20% for the participants who did not have RESTalk diagrams available, and 83%
± 14% for the participants who had RESTalk diagrams available, however this is
also the task with the greatest difference in the number of data points between
the two cases. Time-wise the greatest difference is evident in Task 1 with average
completion time of 28 min± 6 min when working without RESTalk diagrams and

210 7.3 Controlled Experiment

22 min ± 7 min when working with RESTalk diagrams.
The average perceived task difficulty when RESTalk diagrams are not available
is equivalent between different tasks and amounts to 6 points on a 10 point scale
where 10 stands for “very hard”. When RESTalk is available Tasks 2 and 3 are
perceived as more difficult (average grade of 7) compared to Task 1 (average
grade of 5). In Fig. 7.14 we show the distribution of the perceived difficulty.

Figure 7.14. Distribution of the Perceived Task Difficulty in different tasks in
Experiment 2 as well as rating of RESTalk’s helpfulness for solving the tasks

In the lower right of the same figure we also show the distribution of the per-
ceived helpfulness of RESTalk for solving the tasks. Nobody considered RESTalk
not helpful at all and just one participant give it a grade lower then 6 while
26% of the participants considered it very helpful with a grade of 10. The av-
erage grade of RESTalk’s helpfulness between all participants was 8. Based on
their open ended answers what they found most helpful regarding the RESTalk
diagrams was that they show sequences of requests, and flow of data. Many ap-
preciated the link to the documentation feature and the additional information
displayed when hoovering over a request. Two participants also mentioned that
they appreciated the colour coding in the diagrams. One participant commented
that “they were really easy to use and understand. They also gave a global vision
about the API in order to retrieve the data”. One interesting proposal for an im-
provement was: “I would group all the similar tasks under a labelled folder that
the user can expand since seeing everything together is a bit confusing”. From

211 7.3 Controlled Experiment

Ta
bl
e
7.
3.

D
es
cr
ip
ti
ve

st
at
is
ti
cs

ab
ou

t
th
e
co
rr
ec
tn
es
s/
co
m
pl
et
en
es
s
gr
ad

e
m
et
ri
c
an

d
co
m
pl
et
io
n
ti
m
e
m
et
ri
c
in

E
xp

er
im

en
t
2

Pa
rt

II
I

-
Ta

sk
1

Pa
rt

II
I

-
Ta

sk
2

Pa
rt

II
I

-
Ta

sk
3

Pa
rt

IV
To

ta
l

N
o.

Pa
rt

i-
ci

pa
n

ts
C

or
re

ct
n

es
s
/

C
om

pl
et

en
es

s
C

om
pl

et
io

n
Ti

m
e

C
or

re
ct

n
es

s
/

C
om

pl
et

en
es

s
C

om
pl

et
io

n
Ti

m
e

C
or

re
ct

n
es

s
/

C
om

pl
et

en
es

s
C

om
pl

et
io

n
Ti

m
e

C
or

re
ct

n
es

s
/

C
om

pl
et

en
es

s
C

om
pl

et
io

n
Ti

m
e

C
or

re
ct

n
es

s
/

C
om

pl
et

en
es

s
C

om
pl

et
io

n
Ti

m
e

A
ns

w
er

s
O

A
S

12

M
ea

n
w

it
h

95
%

C
I

81
%
±

13
%

28
m

in
±

6
m

in
70

%
±

20
%

24
m

in
±

6
m

in
74

%
±

21
%

23
m

in
±

7
m

in
75

%
±

14
%

10
m

in
±

3
m

in
77

%
±

11
%

84
m

in
±

9
m

in
M

ed
ia

n
90

%
24

m
in

67
%

21
m

in
80

%
19

m
in

80
%

10
m

in
79

%
86

m
in

M
in

40
%

10
m

in
20

%
9

m
in

37
%

10
m

in
10

%
1

m
in

30
%

41
m

in
M

ax
10

0%
46

m
in

10
0%

45
m

in
10

0%
58

m
in

10
0%

23
m

in
10

0%
10

6
m

in
N

o.
D

at
ap

oi
nt

s
10

12
7

12
7

12
12

11
12

12

A
ns

w
er

s
R

ES
Ta

lk
+

O
A

S
12

M
ea

n
w

it
h

95
%

C
I

77
%
±

16
%

22
m

in
±

7
m

in
83

%
±

14
%

23
m

in
±

2
m

in
73

%
±

18
%

24
m

in
±

7
m

in
81

%
±

15
%

14
m

in
±

5
m

in
79

%
±

7%
81

m
in
±

9
m

in
M

ed
ia

n
90

%
19

m
in

92
%

24
m

in
67

%
20

m
in

95
%

13
m

in
76

%
81

m
in

M
in

30
%

10
m

in
33

%
17

m
in

33
%

9
m

in
20

%
6

m
in

63
%

54
m

in
M

ax
10

0%
49

m
in

10
0%

29
m

in
10

0%
48

m
in

10
0%

31
m

in
10

0%
10

6
m

in
N

o.
D

at
ap

oi
nt

s
12

12
10

12
9

11
12

10
12

12

212 7.3 Controlled Experiment

the three participants who decided not to use the visual diagrams, two stated that
the reason was that they found enough information in the OAS documentation
and one stated that “It was easier to search the API docs than leverage the infor-
mation in the visual models. The visual model could have been more interactive
- auto zoom, collapse boxes, highlight specific sections (based on reachability of
flow)”.

7.3.3 Statistical Significance Analysis

While in the previous section we provided a quantitative summary of the exper-
iment results, in this section we show the results of the inferential statistics test
we have described in the Metrics and Analysis subsection in Sec. 7.3.1. On the
raw data for the correctness/completeness grade and completion time per task
and in total for each experiment, we have run the Mann-Whitney Test using IBM
SPSS Statistics Version 24. The goal was to test the significance of the differ-
ences between the different treatments. In Experiment 1 we excluded Task 1
from the analysis as it was used as baseline where both groups had only OAS
documentation available for solving the task.
The first research question that we wanted to answer is RQ1: Does RESTalk help
to discover complete and correct sequences of requests given a goal? Thus, our null
hypothesis H0 for RQ1 is that there is no difference in the mean completeness/-
correctness grade when OAS documentation is used and when OAS documenta-
tion is complemented with RESTalk diagrams.
The second research question that we wanted to answer is RQ2: Does RESTalk
help to discover the required sequences of requests faster? Thus, our null hypothesis
H0 for RQ2 is that there is no difference in the mean completion time when
OAS documentation is used and when OAS documentation is complemented with
RESTalk diagrams.
In Tab. 7.4 we show the mean rank per task and per group for both experiments.
The largest difference between the mean rank of the OAS and RESTalk groups
in Experiment 1 is noticeable in Task 3 Grade (difference of 6.73) and in the
Total Grade (6.21). However, as evident in Tab. 7.5, this difference is still not
statistically significant as the two-tailed test statistics is 0.053 for Task 3 Grade
and 0.081 for Total Grade. For the difference to be statistically significant, and
thus to reject the H0, the test statistics should be smaller then or equal to the
significance level which we have set to 0.05 to have a confidence interval of 95%.
The difference in the mean ranks is even less evident in Experiment 2 where the
largest difference is noticeable in Task 1 Time (3.66) and Task 2 Grade (2.91).
In this case as well the two-tailed test statistics of 0.213 for Task 1 Time and

213 7.3 Controlled Experiment

Table 7.4. Mann-Whitney mean ranks per group and per task for Experiments
1 and 2

Experiment 1 Group N Mean Rank Sum of Ranks Experiment 2 Group N Mean Rank Sum of Ranks

Task 1 Grade OAS 10 11.85 118.5
RESTalk 12 11.21 134.5
Total 22

Task 1 Time OAS 12 14.33 172
RESTalk 12 10.67 128
Total 24

Task 2 Grade OAS 21 16.43 345 Task 2 Grade OAS 7 7.29 51
RESTalk 8 11.25 90 RESTalk 10 10.2 102
Total 29 Total 17

Task 2 Time OAS 20 13.4 268 Task 2 Time OAS 12 12.13 145.5
RESTalk 8 17.25 138 RESTalk 12 12.88 154.5
Total 28 Total 24

Task 3 Grade OAS 21 16.86 354 Task 3 Grade OAS 7 8.5 59.5
RESTalk 8 10.13 81 RESTalk 9 8.5 76.5
Total 29 Total 16

Task 3 Time OAS 20 14.23 284.5 Task 3 Time OAS 12 11.42 137
RESTalk 8 15.19 121.5 RESTalk 11 12.64 139
Total 28 Total 23

Part IV Grade OAS 20 15 300 Part IV Grade OAS 12 11.25 135
RESTalk 8 13.25 106 RESTalk 12 13.75 165
Total 28 Total 24

Part IV Time OAS 19 14.66 278.5 Part IVTime OAS 11 9.68 106.5
RESTalk 8 12.44 99.5 RESTalk 10 12.45 124.5
Total 27 Total 21

Total Grade OAS 21 16.71 360 Total Grade OAS 12 12.67 152
RESTalk 8 10.5 75 RESTalk 12 12.33 148
Total 29 Total 24

Total Time OAS 20 13.6 284.5 Total Time OAS 12 13.33 160
RESTalk 8 16.75 121.5 RESTalk 12 11.67 140
Total 28 Total 24

Table 7.5. Mann-Whitney Test statistics for Experiments 1 and 2

Task 1
Grade

Task 1
Time

Task 2
Grade

Task 2
Time

Task 3
Grade

Task 3
Time

Part IV
Grade

Part IV
Time

Total
Grade

Total
Time

Experiment 1
Mann-Whitney U 54 58 45 74.5 70 63.5 48 62
Z -1.51 -1.121 -1.94 -0.281 -0.511 -0.666 -1.757 -0.917
Exact Sig. (2-tailed) 0.136 0.253 0.053 0.852 0.625 0.522 0.081 0.374

Experiment 2
Mann-Whitney U 56.5 50 23 67.5 31.5 59 57 40.5 70 62
Z -0.253 -1.273 -1.183 -0.26 0 -0.432 -0.892 -1.024 -0.116 -0.578
Exact Sig. (2-tailed) 0.8 0.213 0.255 0.788 1 0.662 0.383 0.322 0.921 0.58

214 7.3 Controlled Experiment

0.255 for Task 2 Grade is not smaller then the significance level. As evident
from Tab. 7.5 in both experiments, in none of the analysed tasks and metrics, the
identified difference is statistically significant which means that H0 is accepted for
both RQ1 and RQ2, i.e., based on the samples the use of the RESTalk diagrams as
complementary documentation to the OAS documentation does not significantly
affect the correctness and completeness of the identified sequence of interactions,
nor does it significantly affect the task completion time.

7.3.4 Discussion

As emphasised in [21], without a clear discussion of the evaluation results an
evaluation work is meaningless as the reader is left to decide for himself what
is the claim of the work. Avoiding the sin of reasoning and the sin of exposition
is not an easy task, but we try our best to make a sound claim regarding the
evaluation results.
In Fig. 7.15 we have plotted the metrics regarding RQ1 and RQ2 for each task de-
pending on the effectively used API documentation (note that this is not the same
as available API documentation in Experiment 1) for each experiment so that it
is easier to discuss the data both on experiment level and between experiments.
In Experiment 1 greater clustering based on the tasks both in terms of correct-
ness/completion grade and in terms of time is noticeable, with higher grades
for Task 2 and longer completion time for Task 3. The clustering tendencies are
similar between the OAS group and the RESTalk group. Although Fig. 7.15 as
well as Tab. 7.2 show what can seem as an important increase in correctness and
completeness of the solutions when RESTalk is not used, especially for Task 2
and Task 3 (mean of 79% ± 7% for OAS group Task 2 vs 67% ± 15% for RE-
STalk group Task 2 and mean of 50% ± 7% for OAS group Task 3 vs 36% ± 8%
for RESTalk group Task 3), the statistical analysis procedure has discarded these
differences as not significant. The observed actual difference can be due to dif-
ferent understanding of the REST domain and the Imgur domain between the
two groups, evident in Task 1 when everyone used only the OAS documentation
for the solution and Group A had a mean grade of 77% ± 11% compared to 57%
± 13% for Group B.
The mentioned clustering of the results per task is not evident in Experiment 2
as per Fig. 7.15. Completion time wise Task 1 seems a bit shifted to the right
compared to other tasks, but that can also be understood as a warm up task
where the participants were trying to understand how to use the available API
documentation. When it comes to comparing the results between the OAS and
the RESTalk group greater concentration of the data points in the top left angle is

215 7.3 Controlled Experiment

Figure 7.15. Scatterplot of the correctness/completeness grade and completion
time per task per group in Experiment 1 and Experiment 2

noticeable. From Tab. 7.3 this is especially evident for Task 2 regarding the grade
(79% ± 20% for the OAS group vs 83% ± 14% for the RESTalk group) and for
Task 1 regarding the completion time (28 min ± 6 min for the OAS group vs 22
min ± 7 min for the RESTalk group). However, as was the case with Experiment
1, also in Experiment 2 the statistical analysis procedure has shown that such
differences are circumstantial and are not statistically significant.
If we are to discuss the difference in results between the two experiments, better
results are evident in Experiment 2, both regarding correctness and completeness
of the solutions and regarding completion time (see Fig. 7.15), regardless of the
type of API documentation used. This is most probably due to higher experience
with the use of REST APIs among the participants in Experiment 2 (9 out of 24
students) compared to Experiment 1 (3 out of 29 students) as well as due to the
introductory lesson to REST APIs and RESTalk before the controlled experiment.
Both Experiment 1 and Experiment 2 show that the use of RESTalk as a comple-
mentary documentation to OAS documentation does not help in a statistically sig-
nificant way to discover complete and correct sequences of requests given a goal,
nor does it help to discover them in a time efficient way (RQ1 and RQ2). How-
ever, these conclusions are relevant for novice users of the REST API paradigm,
not of experienced REST API developers who might leverage more from the vi-
sual documentation. Such hypothesis needs to be tested with further empirical
evidence.
Regarding RQ3 which refers to the perceived usefulness of the RESTalk diagrams,
we have noticed that the interest of the participants to use the RESTalk diagrams
has significantly increased between Experiment 1 (only 8 out of 29 participants

216 7.3 Controlled Experiment

used them) and Experiment 2 (21 out of 24 participants used them). This can
be due to the introductory lesson on RESTalk provided to students before the
controlled experiment in Experiment 2, but it can also be due to the increased
interactivity of the diagrams themselves in Experiment 2 where they also con-
tained links to the OAS documentation and highlighted the parameter discovery
options when hoovered over, functionalities which were appreciated by the par-
ticipants based on their answers to the open ended questions. Another disincen-
tivizing factor in Experiment 1 could also have been the fact that three different
diagrams were provided to the participants and they were expected to identify
the correct one to follow, while in Experiment 2 only one diagram was provided.

Figure 7.16. Scatterplot of the relation between RESTalk’s helpfulness rating
and correctness/completeness grade and completion time in Experiment 1 and
Experiment 2

With the increased use also the RESTalk perceived helpfulness rates raised from
an average of 6 in Experiment 1 to an average of 8 in Experiment 2 on a scale
from 1 to 10 with 10 being very helpful. In Fig. 7.16 we have plotted the different
RESTalk helpfulness rating by different participants in Experiment 1 and Experi-
ment 2 with relation to their average correctness/completeness grade across the

217 7.3 Controlled Experiment

tasks and the total completion time. While in Experiment 1 it might seem like
lower RESTalk grades were coming form participants whose solutions received
lower grading (thus whose understanding of the correct solution was lower), this
does not seem to be the case in Experiment 2. However, due attention also needs
to be paid to the fact that the sample size of the participants who effectively used
RESTalk in Experiment 1 is rather small (8 participants). Nonetheless, almost
half of the participants in Experiment 2 rated RESTalk with 8 or higher.

Table 7.6. Mann-Whitney Test statistics for RESTalk’s Helpfulness rating
between Experiments 1 and 2

Experiment N Mean Rank Sum of Ranks

RESTalk Helpfulness 1 8 10.88 87
2 19 15.32 291

Total 27

Mann-Whitney U 51
Z -1.355
Exact Sig. (2-tailed) 0.187

Although comparing the difference in RESTalk ratings between the two exper-
iments was not our initial interest, we did run the Mann-Whitney test on the
rating. The results are shown in Tab. 7.6. As evident the two-tailed test statis-
tics of 0.187 is not smaller then the significance level of 0.05 which means that
the identified difference is not statistically significant. Further experiment, with
additional targeted questions would be needed to establish the impact of the
diagram interactiveness on the participants perceived helpfulness of the same.

Threats to Validity

“Threats to the validity of empirical studies and of their results are unavoid-
able” [78]. Thus, identification and clear documentation of the threats to valid-
ity of a controlled experiment is important for avoiding the sin of exposition and
ensuring good understanding of the claims of the experiment results. We have
identified the following threats to the controlled experiments we have conducted:
Threats to Construct Validity - For the controlled experiment we have used sec-
ond year bachelor students which might not be representative of professionals
due to their lack of REST API experience. Another threat comes from the selected
API used in the tasks whose OAS documentation might not be representative of
the REST API documentation population. The objectiveness of the participants
evaluating the helpfulness of the RESTalk diagrams might have been impacted

218 7.3 Controlled Experiment

by the fact that part of the research group conducting the experiment is directly
involved in the evaluation of their course work which in combination with the
non-anonymity of their answers might have made them reluctant to provide ob-
jective and sincere evaluation. Another threat comes from the inherent subjec-
tiveness of the grading used to determine the correctness and completeness of
the solutions of the participants. To mitigate this risk we created a systematic
grading scale and systematically applied it on all solutions.
Threats to Internal Validity - When planning for the experiment, we have tried
to mitigate the risk of the difference in the results being due to the heterogeneity
of the subjects by balancing the different groups based on their grading of pre-
vious course assignments. However, the results of the baseline evaluation (Task
1) during Experiment 1 show that background knowledge or maturation (learn-
ing speed) differences did exist. To mitigate this risk in Experiment 2 we have
used within-subject design and an introductory lesson. The baseline evaluation
results from Part II show rather balanced groups in this experiment. However,
an internal threat in Experiment 2, which does not hold in Experiment 1, is that
the participants might have had access to the task solutions from students taking
the course in the previous year.
Threats to Conclusion Validity - To mitigate this risk we have followed the
instructions regarding the selection of an appropriate statistical test provided
in [227] and checked that the assumptions for the use of the Mann-Whitney test
were met in our experiments. Of course using a small sample size decreases the
statistical power of the test. Furthermore, the missing data points due to system
data recording error may also impact the power of the test.
Threats to External Validity - The results we obtained present limited generaliz-
ability since: they depend on the previous REST APIs knowledge and experience
of the participants; the sample size of the population was rather small; all the
tasks ware based on only one API (the Imgur API) and can be seen as simplistic
for a real environment. Further experiments are needed to improve and delimit
the generalizability of our results.
Although when designing the experiment we did try to take into consideration
the different types of validity and mitigate the risks when possible, different
threats to validity can conflict each-other. For instance using students enabled us
to have a more controlled environment setting as opposed to using an online call
for participants, but it has reduced the heterogeneity of the sample and possibly
its representativeness of the real world targeted users of RESTalk.

219 7.4 Chapter Summary

7.4 Chapter Summary

In this chapter we have introspectively looked into RESTalk’s design both in terms
of its concrete graphical representation characteristics and in terms of its support
for the REST constraints, and then had it evaluated externally through a con-
trolled experiment. Although during the design of the visual notation we did our
best to follow state of the art best practices to improve the cognitive effectiveness
of the language, the summative analysis in terms of the 9 principles of the Physics
of Notation theory showed how hard it is to balance the trade-off between the
principles and that there is always room for improvement. In the current version
of RESTalk we do not support the perceptual integration principle and we do
introduce some level of symbol overload. However, our design decisions were
supported by design rational, which although might have been suboptimal in
some cases still lead to a language which some of the students defined as easy
to understand. It does reflect most of the REST constraints emphasizing visu-
ally facets which are important in RESTful interactions, i.e., the discovery of
resources, the respect of the uniform interface constrains with a predefined pairs
of http methods and status codes. The controlled experiment did not identify
statistically significant improvements in the quick identification of the correct se-
quence of interactions caused by the use of RESTalk in the API documentation.
Nonetheless, it did show that users are more propense to give RESTalk diagrams
a try when the diagrams dissect large APIs into smaller chunks thus pointing the
users to a subset of the API and when the diagrams embed interactivity and links
to the OAS documentation.

220 7.4 Chapter Summary

Chapter 8

Conclusions

8.1 Summary

We are living in a digital era, an era of interconnected systems where we are
used to having quick access to data. And this is both in our private lives and at
work. Interconnected systems can consist of multiple different technologies and
APIs provide the necessary abstraction to connect such different technologies
and make them exchange information. They allow developers not to reinvent
the wheel and efficiently focus on innovation and development of new function-
alities. The REpresentational State Transfer (REST) has gained its dominance as
an API architectural style due to the uniform interface it promotes, its support
of different data formats, among which the easily parsed and less verbose JSON,
as well as it scalability and lower use of bandwidth. It is rare that a single inter-
action between the client and the REST API is sufficient to achieve a given goal,
thus we witness real client to server conversations. Although such conversations
happen in reality, our state of the art survey has showed us that there is no exist-
ing domain specific solution to document RESTful conversations. Thus, we have
built this thesis around identifying and offering a possible solution for this gap.

8.1.1 Contributions

The nature of the contributions of this thesis goes from theoretical analysis of
the REST domain and the benefits of modeling the behaviour of REST APIs, to
more practical contributions through the design of a visual and textual DSL and
the possible ecosystem around it. We will look into them in detail through the
discussion of the individual research questions we have set in Chapter 1.

221

222 8.1 Summary

RQ1: What are the entities and constraints that are needed to model the inter-
actions with an API which is compliant with the REST architectural style?

In Chapter 2 we studied in detail REST as an architectural style to determine
which of its entities are strictly related to the behavioural aspect of REST APIs.
While one of the main entities in REST is the resource and its representation,
its importance in RESTful interactions is related to what is defined in OAS as an
operation (the pair of HTTP method and resource URI) and the importance of
the resource representation is related to the hyperlinks or parameters provided
in the representation which are needed for future requests. Thus, the first class
citizen entities in a RESTful interactions are the request and response. However,
interactions with a REST API are not entirely independent from each-other as
they need to happen in a given predefined order depending on the state of the
resource and the goal of the client. To depict these richer forms of interaction
Haupt, Leymann and Pautasso coined the term “RESTful conversation” which we
extended to include not only single client to single server conversations, but also
interactions where there can be multiple types of clients having an interrelated
conversation with a given server. We also introduce the notion of composite con-
versations where there are several layers of API communication each with its own
internal conversation, and the response of a request in the nth layer depends on
a sequence of responses from a server in the (n+ 1)th layer. That said, other im-
portant entities when modeling the behaviour of REST APIs are borrowed from
the modelling of interactions, in our case from BPMN Choreographies, and re-
fer to the control flow which determines the possible sequences of interactions
and their divergence/convergence referred to as sequence flow and gateways. We
provided a domain concept dictionary and a metamodel in Sec. 4.2.1.
Several of the REST architectural style constraints affect the properties of a
RESTful conversation. The stateless communication constraint results in the con-
versation always being initiated by the client, but also being driven by client’s de-
cisions on which path to follow and when to stop the conversation. The server can
influence the conversation through the resource representation it sends, but the
server cannot drive the conversation forward. The uniform interface constraint
determines the standardization of the form of the interactions taking place dur-
ing a RESTful conversation. It dictates the mandatory elements of an interaction,
such as the method, URI and response status code. The client-server constraint re-
quires independent evolution of the client and the server. This means that ideally
the evolution of the server should not change the RESTful conversation model
of the API, or if it does it should expand the possible paths without changing
existing paths which existing clients depend on.

223 8.1 Summary

RQ2: What are the shortcomings of existing solutions for modelling REST APIs
and how can those shortcomings be overcome?

As discussed in RQ1, modelling the behaviour of REST APIs is bound to certain
domain specific entities and constraints. As discussed in Sec. 3.1, domain specific
solutions do exist for modelling the structure of REST APIs, the one striving to
become a standard being the solution offered by the OpenAPI initiative, based on
the Swagger 2.0 specification, and revised to what is today known as the OpenAPI
Specification (OAS). The major revision of this specification to its version 3.0 in
mid 2017 has acknowledged the importance of behaviour information by adding
the new l inks object which can be specified for each operation. However this
new object, does not provide a human-readable ready to use behavioural model,
just possibly enough information to algorithmically build one. Thus, to the best
of our knowledge, apart from the DSL proposed in this thesis, there is not yet a
domain specific solution for modelling the behaviour of REST APIs. This is not
to say that the behaviour of REST APIs has never been modelled before, but that
non-domain specific standard notations, such as UML or BPMN Choreography
diagrams, have been used as evident both from our state of the art survey in
Sec. 3.1 and from our exploratory survey with industry practitioners described
in Sec. 6.1. The main drawback of such solutions as discussed in Sec. 7.2, is
the lack of REST specific constructs (such as the hyperlink flow) and the lack
of emphasis in the representation of the important REST facets of the first-class
citizens of a RESTful conversation, the request and response (such as the method,
URI, status codes).
That said, the most important contribution of this thesis is RESTalk, the REST
specific DSL which we have designed in an attempt to overcome the above stated
drawbacks, and with the aim to propose a more concise and less verbose alterna-
tive to the mentioned non-domain specific solutions. We designed RESTalk fol-
lowing an iterative approach, using the feedback from the mentioned exploratory
survey in Sec. 6.1 to improve and extend the language, but also by setting up
challenges to model different use cases as discussed in Sec. 6.2 which revealed
the need of new constructs. However, there is a well-known trade off between
the expressiveness of the language and its understandability. We tried to ad-
dress it by using the cognitive fit principle of the Physics of Notation theory and
splitting the language into core and extended RESTalk, where the core targets
novice users, while more experienced modelers who need to show more com-
plex conversations can use the extended RESTalk. The creation of RESTalk and
its constructs is explained in Chapter 4.

224 8.1 Summary

RQ3:What type of a tool support can be built around a DSL for modeling REST
APIs behaviour?

Our exploratory survey in Sec. 6.1 has shown us that different targeted users
have different preferences and requirements for adopting a DSL. While pen and
paper is good enough for some, others condition the use of a DSL to tool support.
Building an extensive tool support for a new DSL, such as RESTalk, is expensive
both in terms of time and in terms of resources. Thus, we limited ourselves to
contributing to the community an envisioned tooling ecosystem designed around
RESTalk which integrates related existing solutions in the domain as discussed
in Sec. 5.1. Naturally people are convinced more quickly to adopt the use of a
model which they get for free from an existing documentation, such as OAS, or
in the MDE spirit, a model which automatically generates code based on an input
of the conversation path to follow. Such tools can be developed in the future.
For the time being, we only invested in the implementation of proof of con-
cept tools that support the creation of RESTalk diagrams, i.e., RESTalk editors
(Sec. 5.2), and a tool that uses RESTalk diagrams to visualize actual use of a
REST API by mining its logs (Sec. 5.3).
In addition to the tools themselves, a valid contribution of this thesis is the inno-
vative design of the textual editor for RESTalk which leverages on the use of a
mining algorithm to facilitate the cognitive effort of the model designer who, in
addition to the identification of the interactions, also has to think of the control
flow and the graph layout of the RESTful conversation. The mining algorithm
deduces the control flow from the textual DSL, which was intentionally designed
to follow a log-like structure as described in Sec. 4.2.3. When used for sketch-
ing, such textual editor encourages the creation of user stories, which can come
in handy during brain-storming sessions with other developers or with potential
clients. The textual support of most of the core RESTalk is rather intuitive and
does not require any keyword memorisation. Each possible path is stated as a
list of interactions (method + URI + status code) with each interaction being
stated in a new line. Alternative paths are lists of interactions separated with an
empty line. The more visual constructs can be expressed with the textual DSL,
the more steep the learning curve becomes, but that is an unavoidable trade-off
as mentioned in RQ2.

225 8.1 Summary

RQ4: How can REST API developers and API client developers benefit from mod-
eling the API’s behaviour?

Designing and conducting controlled experiments with API developers to effec-
tively evaluate the actual benefits from modelling the REST API behaviour and
draw statistically valid conclusions is rather difficult in terms of reaching to the
right subjects for the experiment and convincing enough of them to participate.
Our attempt to reach to the REST API developers community at the beginning of
our research through the exploratory survey described in Sec. 6.1 resulted with
a total of 35 responses, out of which 26 were from industry, with a survey which
was opened for 3 months. Although the number of responses was low and by
design we did not aim at making statistical inference of the results, we did get
the sense that the need of and benefits from modeling the API’s behaviour have
already been identified in industry. In fact 38% of them are already using UML
sequence diagrams or in-house notations to visualize such models. Some of the
benefits they see is increased productivity and increased design discussions and
knowledge sharing.
As stated in the introduction in Chapter 1, the ultimate aim of the proposed DSL
is facilitating and improving the understanding, design, and usage of REST APIs.
The benefits stated by the survey respondents go in that direction. Additionally,
to answer to this question in Sec. 1.3.4 we reflect upon a number of potential ben-
efits which we have identified in different phases of the API life-cycle both when
developing the server and when developing the client. In addition to fostering
design discussions and common understanding during the API design phase, for
the API provider it is also important to limit the supported behavior of the API in
order to be able to ensure maintainability and evolution of the same. The number
of permutations in the possible order of interactions grows exponentially even
for a rather small API when there are no constraints on the allowed behaviour.
Modelling the accepted behaviour of an API allows the service provider to set
up such constraints. On the part of the client developers, behavioral models can
facilitate the learnability of the API as they can be used as a complementary doc-
umentation to the existing OAS documentation. In large APIs the benefits would
be even larger if instead of one behavioral models, there are several of them split
in the right logical granularity.

226 8.1 Summary

RQ5: How effective and efficient is the visual model created with RESTalk in
facilitating the understanding and the use of a given API?

While in RQ4 we discussed the abstract notion of modelling the behavior of
a REST API, with this research question we wanted to focus on RESTalk and
whether it can facilitate the understanding and the use of a given API. To that
end, we have designed and conducted a controlled experiment with second year
bachelor students as described in Sec. 7.3. As we were interested in the effect of
the use of RESTalk, as a complementary documentation to OAS documentation,
on the understanding and use of a given API we have set up tasks which required
to use the Imgur API to reach a certain goal (e.g., upload an image and place it in
a public gallery). We then measured the correctness and completeness of the re-
sponses as well as the completion time. We repeated the experiment twice, with
two different groups of students and with somewhat different experiment design.
Although the quantitative results did not show any statistically significant differ-
ence in the above stated metrics between the control group and the experimental
treatment group in any of the experiments, we did get positive feedback from the
students regarding the usefulness of RESTalk, with an average vote of 6 out of 10
in Experiment 1 and 8 out of 10 in Experiment 2. We are aware that such results
can be biased by the fact that the results of the experiment were considered as
an in-class assignment grade. Nonetheless, the increased perceived usefulness of
the diagrams and the increased actual use of the same in Experiment 2 compared
to Experiment 1, has provided us some useful insights. Namely, what changed in
Experiment 2 was that students were provided a quick RESTalk tutorial before
the experiment and the experimental treatment group was made available only
one diagram per task (as opposed to 3 diagrams to choose from in Experiment
1) which we believe has convinced more students to actually use the diagrams.
This has confirmed our theory that splitting up large diagrams into smaller log-
ical chunks has positive effect on the usability of the same. Another difference
between the two experiments was that in Experiment 2 the diagrams used colour
as a secondary notation and they also were more interactive with short natural
language descriptions when hovering over the request and a clickable link to the
relative OAS documentation. Students’ qualitative feedback showed us that they
have particularly appreciated the newly added diagram features.
The contributions discussed above can be used by the REST research commu-
nity as building blocks for future research work on the topic of modelling the
behaviour of REST APIs, as well as by REST practitioners in their daily work if
they realize and decide to embrace the discussed benefits of visualizing RESTful
conversations with a dedicated DSL.

227 8.2 Limitations

8.2 Limitations

Designing a DSL is a challenging task as there are many inherent trade-offs to be
considered. In Sec. 7.1 we discussed the trade-offs between the principles to be
followed when designing the constructs of a visual notation. The first version of
RESTalk, what we now call the core RESTalk, where the scope is limited to only
modelling conversations between a single client and a single server, could achieve
graphical economy with only 10 constructs. However, as we started increasing
the scope of the language to support modeling of multi-party conversations and
more complex conversations, the expressiveness of the language increased, but
this came with a cost. Having more language constructs means higher learn-
ing curve and thus higher cognitive burden for the model designer. Finding the
sweet-spot is not easy, but as Kelly and Pohjonen state in [105], a domain specific
modeling “isn’t about achieving perfection, just something that works in practice.
It will always be possible to imagine a case that the language can’t handle. The
important questions are how often such cases occur in practice, and how well
the language deals with common cases”. After all, we do not propagate using
RESTalk as the sole technique for documenting REST APIs. It merely focuses on
the API’s dynamic behaviour thus leaving out static details. They can be added to
RESTalk as textual annotations, notes disclosed on click when using a modeling
tool, or depending on modeler’s goal, RESTalk can be used as a complementary
technique to already existing techniques, which are more inclined to static and
structural viewpoints and simply provide link to them for more details.
Apart from the limitations related to the design of RESTalk, other limitations
come from the lack of evaluation of certain aspects of the language which we
will discuss in Sec. 8.3, as well as from the threats to validity to the existing
evaluations as discussed in Sec. 6.1.5 and Sec. 7.3.4.

8.3 Future Work

The iterative approach that we followed in the development of RESTalk depicted
in Fig. 4.1 makes RESTalk a living organism that continues evolving. As new
requirements and use cases get identified, the language gets expanded, which
should be reflected in the tooling support and evaluated accordingly. Thus, much
work is left to be done around RESTalk, and in this section we provide a non-
exhaustive list of ideas for future work.

228 8.3 Future Work

8.3.1 Requirements and Language Layers

Although as mentioned in Sec. 8.2 the scope of RESTalk was increasing as we
got further into our research, it still does not reflect all of the possible use-cases.
A multi-party conversations where multiple clients are interacting with multiple
servers in order to reach a common goal is not yet supported by the language.
As pointed out by one of the survey respondents, the language does not allow
to visually connect resources with their sub-resources, which can be important
in a conversation in cases where updating or deleting the resource results with
the automatic update or deletion of the sub-resource. However, as discussed in
Sec. 8.2 adding new constructs to the language has its costs, thus this pin-pointed
unsupported use-case in the language can be solved by interactive visualizations
in the editor, as discussed in Sec. 8.3.2.
Some formalism of RESTalk as a language has been provided by the meta-model
and its OCL constraints, as well as thorough the EBNF syntax of the textual repre-
sentation. However, further formalization of the semantics of the language could
provide a more rigorous method of reasoning about the language and more struc-
tured comparison of the graphical and textual representation of the same.

8.3.2 Tooling

In Chapter 5, in addition to the existing tools, we also discussed some envisioned
tooling and how the existing proof of concept tools can be improved. Regarding
the integration of RESTalk with the OAS documentation, the time is not mature
yet for obtaining a full RESTalk diagrams from OAS documentation regardless of
the support of the l inks object in OAS v3. Namely, many of the service providers
used automated tooling to transition from OAS v2 to OAS v3, without actually
augmenting the documentation with the new l inks object, so we leave it for
future work to see whether full RESTalk diagrams can actually be generated from
OAS documentation.
All the theoretical work behind RESTalk model verification with respect to the
metamodel and the OCL constraints as well as the tooling support for the same
has been out of scope for this research thesis and left as future work.
When it comes to the RESTalk editors, in addition to getting full textual DSL
support in the textual editor, an ideally envisioned future step is to merge the
graphical editor and the textual editor in a single web based tool with two-way
synchronization between the graphical and the textual model. To address some
of the feedback obtained during the controlled experiment different interactive
visualizations can be supported in the editor. Colors can be used not only for

229 8.3 Future Work

distinguishing between different methods, as we did in the Imgur API diagrams,
but also for marking all the available interactions with the same resource, or for
connecting resources with their sub-resources. As visualizing all of this different
aspects at the same time can be overwhelming, there should be an option in
the tool to decide which aspect to visualize, or another option is to use darker
coloring of all the interactions belonging to the same resource when hovering
over a given request.
Instead of links to OAS documentation, which force the user to navigate to a new
website, a tool can support a pop-up window on a request click which would
show all the detailed information about the request (e.g., request header data)
and the response (e.g., example resource representation).
On the other hand, to deal with large graphs, a tool can support dynamic graph
creation one interaction at a time based on user’s decision on which path to
follow. This would allow for gradual discovery of the entire graph, thus avoiding
the overwhelming effect of a big diagram. Another approach would be splitting
the diagrams into smaller chunks depending on the possible goals that can be
achieved with the same and providing appropriate means for linking diagrams
between them. The use of artificial intelligence can be explored for identifying
the right diagram granularity.

8.3.3 Evaluation Layer

As the textual DSL for RESTalk was added in the last stages of this PhD research,
the evaluations of the same remains as future work. Evaluations are needed for
the design and intuitiveness/understandability of the textual DSL, but also for
the benefits that the approach of textual modelling aided by mining can provide.
A controlled experiment can be conducted to evaluate whether the use of the
textual editor provides for greater accuracy and greater time efficiency in the
generation of the diagrams. The independent variable would be the creation of
a RESTalk diagram with two treatments: use of a textual editor and use of a
graphical editor with the same power of language expressiveness. Experiments
can also be done to test the impact of the approach of textual modelling aided
by mining approach on the cognitive effort of the modeller. As we mentioned
in Sec. 5.2.2, the RESTalk textual editor shares the same idea with the BPMN
Sketch Miner editor that we have developed, and the initial results of the evalu-
ation of the BPMN Sketch Miner DSL and tool have been encouraging [92]. The
controlled experiment conducted in [92] was not comparative and only included
the use of the textual editor, but it showed that novice modelers could identify
the needed traces to model a non-trivial business process with an average accu-

230 8.3 Future Work

racy of over 75% in less then an hour and a half. We also conducted a survey
using the questions of the standard System Usability Scale (SUS [23]) which in-
cluded both the novice participants (18 students) and industry practitioners (12
respondents) which resulted with overall score of 69 ± 5 and industry score of
76±7 (acceptability threshold are usually between 64 and 69, depending on the
source). A similar study should also be conducted for the RESTalk editor.
The evaluation work which we have done targeted the visual RESTalk and its
effectiveness and efficiency about facilitating the understanding and the use of
a given API. Thus, it targeted API client developers and the use of RESTalk di-
agrams as API documentation. However, the drawback is that the controlled
experiment has been done with students, who are not the primary target users
of RESTalk as they lack the domain specific experience. In the future, efforts
can be done to find industry practitioners and repeat the controlled experiment.
More complex experiment design can be used where multiple independent vari-
ables are added, such as the experience of the participants in developing REST
APIs, the size of the API etc. On the other hand, in the future, evaluation needs
to be done which targets API server developers and the use of RESTalk diagrams
in the design of the API to facilitate discussion and knowledge sharing.
Further evaluation and testing of the RESTalk Miner tool described in Sec. 5.3 is
also needed, both in terms of the perceived usefulness of the tool in general, as
well as in terms of the scalability of the tool for analysing larger API usage logs.
The challenge for such evaluation is to find such logs in the first place. Also the
logs should have a structure that allows to differentiate between requests which
belong to different conversations.

Appendices

231

Appendix A

Exploratory Survey Questions

233

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 1 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

Modeling RESTful Conversations (English version)
Welcome to the RESTful conversations survey. RESTful conversations are compex interactions between client(s) and server(s). For more details on the
conversation based approach for modeling RESTful APIs please refer to the following paper: http://design.inf.usi.ch/sites/default/files/biblio/wicsa2015.pdf.

*Please note that having in mind the exploratory goal of this survey, going back to the previous question is not an option in the same.

Thank you for agreeing to take part in this exploratory research about the existing practices in visualization and modeling of HTTP interactions between
clients and RESTful APIs. Regardless of whether you are a RESTful APIs designer or user, your answers will significantly contribute in directing our
research. Our ultimate goal is to facilitate the high-level communication within and between RESTful APIs development teams. We believe that using
efficient visualization tools and frequently used conversation patterns can improve teams’ productivity, promote reuse and leverage knowledge sharing. Clear
specification of the possible HTTP request-response sequences at the design stage can help avoid errors in the development.

Completing the whole survey will take about 30 to 40 minutes. You can skip some of the longer questions and complete the survey in about 20 minutes as
well, which we completely understand. Every answer is helpful
for us.

We assure you that the provided answers will be kept confidential.

There are 90 questions in this survey

Current experience

What is your current job title?

Please write your answer here:

Do you have experience designing RESTful APIs? If yes, how many months/years of experience do
you have?

Please write your answer here:

Do you have experience using RESTful APIs designed by others to integrate services into your
projects? If yes, how many months/years of experience do you have?

Please write your answer here:

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 2 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

Usage of existing visual notations

Do you use /have you ever tried using some visual notations to discuss the lifecycle of used
resources and allowed HTTP interactions with REST APIs? *

Please choose only one of the following:

 Yes, I use/have used visual notations

 No, I only use textual notations

Which visual notation(s) do you / have you used? *

Only answer this question if the following conditions are met:
Answer was 'Yes, I use/have used visual notations ' at question '4 [B1]' (Do you use /have you ever tried using some visual notations to discuss the
lifecycle of used resources and allowed HTTP interactions with REST APIs?)

Please choose all that apply:

 UML activity diagrams

 UML sequence diagrams

 BPMN choreography

 In-house developed notations

 Other standard notations

Which other standard notations do you / have you used? *

Only answer this question if the following conditions are met:
Answer was at question '5 [B11]' (Which visual notation(s) do you / have you used?)

Please write your answer here:

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 3 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

Usage of BPMN Choreography

Why did you decide to use BPMN Choreography?

Please write your answer here:

Which constructs of BPMN Choreography do you appreciate the most and you find core for depicting
RESTful conversations?

Please write your answer here:

Do you feel like certain flows or situations cannot be expressed with BPMN Choreography? If yes,
please elaborate on examples.

Please write your answer here:

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 4 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

What was the impact on your team’s productivity since you have started using BPMN
Choreography?

Please write your answer here:

What was the effort of learning BPMN Choreography?

Please write your answer here:

Which modeling tool do you use / have you used to create BPMN Choreography diagrams?

Please write your answer here:

Are you currently still using BPMN Choreography? *

Please choose only one of the following:

 Yes

 No

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 5 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

Why did you stop using BPMN Choreography?

Only answer this question if the following conditions are met:
Answer was 'No' at question '13 [B181]' (Are you currently still using BPMN Choreography?)

Please write your answer here:

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 6 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

Usage of in-house developed notation

Why did you decide to use an in-house developed notation?

Please write your answer here:

Which constructs of your in-house developed notation do you appreciate the most and you find core
for depicting RESTful conversations?

Please write your answer here:

Do you feel like certain flows or situations cannot be expressed with your in-house developed
notation? If yes, please elaborate on examples.

Please write your answer here:

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 7 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

What was the impact on your team’s productivity since you have started using your in-house
developed notation?

Please write your answer here:

What was the effort of learning your in-house developed notation?

Please write your answer here:

Which modeling tool do you use / have you used to create your in-house developed diagrams?

Please write your answer here:

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 8 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

Please provide a short description of the in-house developed notation you use / have used.

Please write your answer here:

We would appreciate an example of the in-house developed notation you use, if you have any available.
Please upload a file.

Please upload at most one file

Kindly attach the aforementioned documents along with the survey

When designing your in-house developed notation which of the following two approaches did you
follow? *

Please choose only one of the following:

 Extend/adapt a standard notation

 Build a completely new notation

Which standard notation did you extend/adapt?

Only answer this question if the following conditions are met:
Answer was 'Extend/adapt a standard notation ' at question '23 [B172]' (When designing your in-house developed notation which of the following two
approaches did you follow?)

Please write your answer here:

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 9 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

Why did you decide to extend/adapt the notation?

Only answer this question if the following conditions are met:
Answer was 'Extend/adapt a standard notation ' at question '23 [B172]' (When designing your in-house developed notation which of the following two
approaches did you follow?)

Please write your answer here:

What type of extensions/adaptations did you do?

Only answer this question if the following conditions are met:
Answer was 'Extend/adapt a standard notation ' at question '23 [B172]' (When designing your in-house developed notation which of the following two
approaches did you follow?)

Please write your answer here:

Are you currently still using your in-house developed notation? *

Please choose only one of the following:

 Yes

 No

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 10 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

Why did you stop using your in-house developed notation?

Only answer this question if the following conditions are met:
Answer was 'No' at question '27 [B182]' (Are you currently still using your in-house developed notation?)

Please write your answer here:

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 11 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

Usage of UML sequence diagrams

Why did you decide to use UML sequence diagrams?

Please write your answer here:

Which constructs of UML sequence diagrams do you appreciate the most and you find core for
depicting RESTful conversations?

Please write your answer here:

Do you feel like certain flows or situations cannot be expressed with UML sequence diagrams? If
yes, please elaborate on examples.

Please write your answer here:

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 12 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

What was the impact on your team’s productivity since you have started using UML sequence
diagrams?

Please write your answer here:

What was the effort of learning UML sequence diagrams?

Please write your answer here:

Which modeling tool do you use / have you used to create UML sequence diagrams?

Please write your answer here:

Are you currently still using UML sequence diagrams? *

Please choose only one of the following:

 Yes

 No

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 13 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

Why did you stop using UML sequence diagrams?

Only answer this question if the following conditions are met:
Answer was 'No' at question '35 [B183]' (Are you currently still using UML sequence diagrams?)

Please write your answer here:

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 14 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

Usage of UML activity diagrams

Why did you decide to use UML activity diagram?

Please write your answer here:

Which constructs of UML activity diagrams do you appreciate the most and you find core for
depicting RESTful conversations?

Please write your answer here:

Do you feel like certain flows or situations cannot be expressed with UML activity diagrams? If yes,
please elaborate on examples.

Please write your answer here:

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 15 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

What was the impact on your team’s productivity since you have started using UML activity
diagrams?

Please write your answer here:

What was the effort of learning UML activity diagrams?

Please write your answer here:

Which modeling tool do you use / have you used to create UML activity diagrams?

Please write your answer here:

Are you currently still using UML activity diagrams? *

Please choose only one of the following:

 Yes

 No

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 16 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

Why did you stop using UML activity diagrams?

Only answer this question if the following conditions are met:
Answer was 'No' at question '43 [B184]' (Are you currently still using UML activity diagrams?)

Please write your answer here:

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 17 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

Usage of other standard notations

Why did you decide to use this/these standard notations?

Please write your answer here:

Which constructs of this/these standard notation(s) do you appreciate the most and you find core
for depicting RESTful conversations?

Please write your answer here:

Do you feel like certain flows or situations cannot be expressed with this/these notation(s)? If yes,
please elaborate on examples.

Please write your answer here:

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 18 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

What was the impact on your team’s productivity since you have started using this/these
notation(s)?

Please write your answer here:

What was the effort of learning this/these notation(s)?

Please write your answer here:

Which modeling tool do you use / have you used to create diagrams with this/these standard
notation(s)?

Please write your answer here:

Are you currently still using this/these standard notation(s)? *

Please choose only one of the following:

 Yes

 No

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 19 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

Why did you stop using this/these standard notation(s)?

Only answer this question if the following conditions are met:
Answer was 'No' at question '51 [B185]' (Are you currently still using this/these standard notation(s)?)

Please write your answer here:

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 20 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

RESTful conversation example

Could you briefly explain your understanding of the following diagram?

Please write your answer here:

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 21 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

Understanding RESTful conversations
Given the following RESTful conversation, please answer the following questions:

The goal of this RESTful conversation is:

Please choose only one of the following:

 Editing an existing resource

 Creating a new resource

 Creating multiple new resources

 None of the above

In this RESTful conversation the client can send the POST request multiple times.

Please choose only one of the following:

 True

 False

 I don’t know

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 22 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

In this RESTful conversation, by sending multiple POST requests multiple resources are being
created.

Please choose only one of the following:

 True

 False

 I don’t know

In this RESTful conversation, the client knows the link to the created resource before the start of
the conversation.

Please choose only one of the following:

 True

 False

 I don’t know

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 23 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

BPMN knowledge

Do you have basic knowledge of BPMN? *

Please choose only one of the following:

 Yes

 No

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 24 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

BPMN Choreography vs RESTful Choreography

To render the BPMN Choreography domain specific and more concise we propose the following
extensions:

Extension 1:

Replacing the BPMN activity with a more compact two band request/response element with
embedded message content. Since the participants in all RESTful interactions are always the client
and the server we do not need to explicitly name them. This way the focus is on the content of the
exchanged messages.

Extension 2:

Since in a RESTful interaction a request is always followed by a response, the request / response
bends always go together, except when there is path divergence due to different possible responses
from the server to a given client’s request. In this case the request response bends are separated
by an exclusive gateway to show the alternative responses that can be sent by the server.

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 25 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

Extension 3:

Replacing the standard horizontal flow with a vertical flow and adding a hyperlink flow element.
This element indicates how URIs are discovered from hyperlinks embedded in the preceding
response. The purpose is to clarify how clients discover and navigate among related resources.

Extension 4:

Using the timer event to model situations where the server takes too long to respond and thus the
client decides to resend the request.

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 26 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

BPMN vs. RESTful Choreography evaluation

Following is a generic RESTful conversation modeled:

a) using BPMN Choreography

b) using our extended version of the BPMN Choreography

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 27 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

Which of the above mentioned notations do you find more concise?

Please write your answer here:

Which of the above mentioned notations do you find more expressive?

Please write your answer here:

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 28 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

Which of the above mentioned notations do you find easier to understand?

Please write your answer here:

Which of the two notations would you prefer using and why?

Please write your answer here:

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 29 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

RESTful Choreography

For visualizing and modeling RESTful conversations we propose an extended version of the BPMN
Choreography comprised of the following elements:

1) Start event (to mark the beginning of the conversation)

2) An activity containing the content of the request and response messages

3) Hyperlink flow to show the flow of discovery and usage of hyperlinks

4) Control flow split gateways to show path divergence due to client’s decisions:

 XOR – exclusive gateway that allows only one of the outgoing paths to be taken

 OR – inclusive gateway that allows one, some or all of the outgoing paths to be taken

 AND – parallel gateway that requires all outgoing paths to be taken

5) Control flow merge gateways to show path convergence:

 XOR – exclusive gateway that allows the conversation to continue once a request from one of
the incoming flows has been received

 OR – inclusive gateway that allows the conversation to continue once the requests from one
or more of the incoming flows have been received

 AND – parallel gateway that requires all irequests from incoming flows to be received

6) Exclusive split due to different possible responses from the server

7) Response timeout to model situations where the server takes too long to respond and thus
the client decides to resend the request.

8) End event (to mark the end of the conversation)

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 30 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

Reading task

Following is a diagram of a RESTful conversation modeled with the proposed notation:

Reminder about the RESTful Choreography syntax can be found at the provided link.

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 31 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

How many resources are created during this conversation?

Please choose only one of the following:

 None

 One

 Two

 One or two

 More than two

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 32 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

You can access the job output without having a link to the job itself.

Please choose only one of the following:

 True

 False

 I don’t know

What happens when you try to access the job resource while the job has not completed yet?

Please choose only one of the following:

 You get a 200 OK status code and a placeholder link to where the output will be saved once the job has completed.

 You get a 200 OK status code and can try to access the job again later.

 You cannot send a GET job request before the job has completed.

For each one of the following statements determine whether it is true or false:

Please choose the appropriate response for each item:

 True False I don’t know
The job output resource
gets automatically
deleted once the client
has read it.
The client must delete
the job output resource
after it reads it.
The client can read the
job output multiple times.
The client can decide to
delete the job output
resource only after it has
read it.
The job resource can be
deleted without deleting
the job output resource.

When can you delete the job resource?

Please choose only one of the following:

 Only after the job has completed.

 Only before the job has completed.

 Only after having read the output.

 Only before having read the output.

 Only after the job has completed and you have read the output.

 Only after the job has completed, but before you have read the output.

 At any time after the creation of the job resource.

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 33 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

Do you find the notation easy to understand?

Please write your answer here:

Do you find it more or less time consuming compared to the notation (textual or visual) you have
used before?

Please write your answer here:

Do you find it more concise in terms of detecting all the possible paths interactions can take,
compared to the notation (textual or visual) you have used before?

Please write your answer here:

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 34 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

Modeling task

Using the proposed notation model on a piece of paper a RESTful conversation that describes the
lifecycle of a collection item, i.e., the possible CRUD (Create, Read, Update, Delete) operations on it. We
would appreciate you uploading an image of your diagram if possible.

Please upload at most one file

Kindly attach the aforementioned documents along with the survey

Reminder about the RESTful Choreography syntax can be found at the provided link.

Please tell us what problems you have discovered while drawing the diagram or why you have
decided not to do the task.

Please write your answer here:

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 35 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

RESTful Choreography evaluation

Do you find the proposed notation intuitive to use? If not, what seems complex, ambiguous or
unclear?

Please write your answer here:

Do you think some elements are missing from the proposed notation?

Please write your answer here:

Please describe a RESTful conversation you have used which you believe cannot be described with
the proposed notation.

Please write your answer here:

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 36 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

Would you use this modeling notation in your projects and why (not)?

Please write your answer here:

Do you find the used HTTP details (methods, URIs, status codes, links) sufficient for understanding
what the RESTful conversations is aiming at? Would you add or delete some details?

Please write your answer here:

Would you prefer a tool for developing such diagrams? Do you think it is suitable for white board
usage or manual sketches?

Please write your answer here:

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 37 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

RESTful conversation patterns

Please provide a short description of some reoccurring RESTful conversations that you have
encountered during your professional experience.

Please write your answer here:

Do you think that identifying and naming RESTful conversation patterns can facilitate the high-level
design of RESTful APIs? In which way?

Please write your answer here:

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 38 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

General comments

We would be happy to hear about any comments, suggestions or questions you might have.

Please write your answer here:

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 39 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

Thank you!

Thank you for you time. Your contribution to our research is highly appreciated. If you would like to
be contacted in the future with updates or surveys on this research topics please provide us with
your contact details:

Please write your answer(s) here:

Name:

Surname:

E-mail address:

30/11/15 14:30LimeService - Your online survey service - Modeling RESTful Conversations (English version)

Page 40 of 40http://restfulconversations.limequery.com/index.php/admin/printablesurvey/sa/index/surveyid/215135

You can find a recent paper we have published regarding the proposed RESTful Choreography notation on the following link:

http://design.inf.usi.ch/publications/2015/ecsa

We remain available for any clarifications or discussions. Please do not hesitate to contact us at:

Ana Ivanchikj: ana.ivanchikj@usi.ch

Cesare Pautasso: c.pautasso@ieee.org

Silvia Schreier: silvia.schreier@innoq.com

Submit your survey.
Thank you for completing this survey.

274

Appendix B

Controlled Experiment Tasks and
Survey

275

Part I – Background Information

Both Experiment 1 and 2 both groups

(1) Have you ever written a program to call a RESTful API?

Yes/No

(1a) If yes: For how long have you been using RESTful APIs?

 0-1month, 2-6 months, 7-12 months, 1-2 years, 3-4 years, >4 years

(1b) If yes: Have you ever used Imgur’s API?
 Yes/No

(2) Have you ever used Imgur as a Web application?
 Yes/No

Part II – General Understanding of Imgur and REST

Only Experiment 2 both groups

(1) How would you rate your understanding on yesterday's warm up session on Imgur's API
on a scale from 1 (I did not understand it) to 10 (I understood it very well)?

(2) What is a gallery in Imgur and what is a galleryHash?
 Solution: A gallery is a set of public images and albums, the ones that have been

shared with the community. It is searchable by keyword or title or tag. The
galleryHash is the unique identifier for each album or image in the gallery and is
equivalent to the imageHash/albumHash. Remember that a galleryHash is not an id
for a specific gallery, there is only one gallery in Imgur.

(3) What can you vote on in Imgur? (Solutions in italics)
 Only on images; Only on albums; Any uploaded image; Any uploaded album;
 Only images posted in the gallery; Only albums posted in the gallery;
 Comments; Replies to comments

(4) Where can we use parameters in a RESTful interaction? (Solutions in italics)
 URL; Request body; Request headers; Response body; Response headers

Part III – Tasks Authenticated User

For all of the tasks assume that:
- your user is authenticated with the Imgur API
- you have the user credentials (you can use your own Imgur profile for testing purposes).
At this phase you do not need to implement anything, but just to reason about the design of
an application which uses Imgur as a service provider. If necessary, you could use Postman
or the Advanced REST Client to test some of the endpoints and check your assumptions.

To answer the questions you can use:

1) the Imgur's user interface (https://imgur.com) to get familiar with the
terminology and the basic actions available,

2) the following documentation on Imgur’s API https://apidocs.imgur.com/#intro
to discover the available resources, the methods they support and their purpose,

3) any other source that you find helpful

Task 1: Vote, Favorite and link to the first search result – Equal for both groups

Experiment 1:
Group A: only OAS documentation
Group B: only OAS documentation

Experiment 2:
Group A: only OAS documentation
Group B: OAS documentation and one RESTalk diagram available at:
http://design.inf.usi.ch/restalk-experiment/ImgurAuthExternal.html

Just for group B experiment 2:

Remember that:

- by clicking on the URL of the request in the diagram you get redirected to the API
documentation
- by hovering over the coloured request box you get a short description of the semantics of
the request
- by hovering over a parameter you get marked in red how it can be discovered (if it is in the
request) or what are the possible requests where the parameter can be used (if it is in the
response)
- you can use the "command + F" functionality of the browser to search the diagram
- by clicking on the coloured boxes in the order in which you want to state the requests in
your answer they get copied in the text box (lower left angle) and you can copy-paste them
to your answer (remember to add the parameters manually to your answer)

Imagine that you need to implement the following functionality in your application. Based
on user’s string input, your application should:

- search the Imgur gallery for related albums or images,

- vote with “up” the first item found in the gallery,

- put it in user's favorites and,

- provide the user a URL link to the gallery item that has been favored.

(1) Given the API’s documentation and the description above what is a possible sequence
of requests that your application should make to Imgur’s API in order to achieve the above-
stated goal?

For each request that you need to make, please provide the Method (GET, POST, PUT,
DELETE..), the URL of the endpoint and the parameters to be sent in the body of the
request, if any.

Please list the requests in the right ordered sequence to achieve your goal.

(If different/alternative sequences are plausible, please enumerate them separately – this
was only requested in Experiment 1).

For instance, if your goal is to add a comment to an existing gallery post your answer could
have the following format:

 1. -> GET /gallery/search/q={{searchItem}}

 <- (response body parameter: galleryHash)

 2. -> POST /gallery/{{galleryHash}}/comment

 <- (response body parameter: commentId)

SOLUTION:

1. To find the gallery post related to user’s input:

-> GET /gallery/search/{{sort}}/{{window}}/{{page}}?q={{userInput}}
<- (response parameter: galleryHash which is equal to imageHash / albumHash)

2. To vote up the gallery post:
-> POST /gallery/{{galleryHash}}/vote/up

3. The gallery post that you find can be an image or an album. To add it to favorites,
if it is an image you should use:

3a. POST /image/{{imageHash}}/favorite

If it is an album you should use:
3b. POST /album/{{albumHash}}/favorite

(2) Which resource(s) did you use to achieve your goal? (Solution in italics)
 Account, Comment, Album, Gallery, Image

(3) On a scale from 1 (low) to 10 (high), how confident are you that your solution will work?

(4) If you have any doubts or uncertainties regarding your proposed solutions please state
them here.

Task 2: Publish in album and gallery, favorite and follow tags

Experiment 1:
Group A: only OAS documentation
Group B: OAS documentation + RESTalk (all Imgur models without colors and interactivity)

Experiment 2:
Group A: OAS documentation and one RESTalk diagram available at:
http://design.inf.usi.ch/restalk-experiment/ImgurAuth.html
Group B: only OAS documentation

Just for group A experiment 2:

Remember that:

- by clicking on the URL of the request in the diagram you get redirected to the API
documentation
- by hovering over the coloured request box you get a short description of the semantics of
the request
- by hovering over a parameter you get marked in red how it can be discovered (if it is in the
request) or what are the possible requests where the parameter can be used (if it is in the
response)
- you can use the "command + F" functionality of the browser to search the diagram
- by clicking on the coloured boxes in the order in which you want to state the requests in
your answer they get copied in the text box (lower left angle) and you can copy-paste them
to your answer (remember to add the parameters manually to your answer)

Just for group B experiment 2:

For this task, please DO NOT use the link to the RESTalk visual model that you received in
the previous task as it DOES NOT contain the solution!!! Just use the following
documentation resources: https://apidocs.imgur.com/#intro.

Imagine that you need to implement the following functionality in your application. Your
application should allow the user to:

- upload a new image,

- place the new image in a new album,

- share the image to the community adding a tag to the same,

- start following the tag the user has added in the gallery post,

- add the image to favorites.

(1) As in Task 1, please describe a possible sequence of requests your application should
send to the Imgur API in order to achieve the above-stated goal.

For each request that you need to make, please provide the Method (GET, POST, PUT,
DELETE..), the URL of the endpoint and the parameters to be sent in the body of the
request, or received in the response, if any.

Please list the calls in the right ordered sequence to achieve your goal.

For instance, if your goal is to add a comment to an existing gallery post your answer could
have the following format:

 1. -> GET /gallery/search/q={{searchItem}}

 <- (response body parameter: galleryHash)

 2. -> POST /gallery/{{galleryHash}}/comment

 <- (response body parameter: commentId)

SOLUTION:

The assumption is that the user is authenticated and thus with each request in the
header we send the accessToken.

You can choose to first upload the image or first create the album, both solutions are
correct. In the following we explain the one where we first create the album.

1. To create the new album. If you had crated the image before, here you would use
its id (imageHash) as a parameter in the body of the request in order to add it to the
album.

-> POST /album (request body parameter: title)
<- (response body parameter: albumHash)

2. To upload the new image, if you had crated the album before, here you would use
its id (albumHash) as a parameter in the body of the request in order to add it to
the album.

-> POST /upload (request body parameters: albumHahs, image)
<- (response body parameter: imageHash)

3. To add the image to the public gallery, this is also the only way to add tags to the
image as you cannot add tags when uploading the image.

-> POST /gallery/image/{{imageHash}} (request body parameters: title, tags)

4. To follow the tag provided by the user ({{tagName}})

-> POST /account/me/follow/tag/{{tagName}}

5. To add the image to the user’s favorites

-> POST /image/{{imageHash}}/favorite

(2) What input would you need from the user to perform the whole sequence(s)?

Solution: The necessary input from the user is the title of the album, the image to be
upload, as well as the title and the tag(s) for the gallery post.

(3) On a scale from 1 (low) to 10 (high), how confident are you that your solution will work?

(4) If you have any doubts or uncertainties regarding your proposed solutions please state
them here.

Task 3: Replace image by title

Experiment 1:
Group A: only OAS documentation
Group B: OAS documentation + RESTalk (all Imgur models without colors and interactivity)

Experiment 2:
Group A: OAS documentation and one RESTalk diagram available at:
http://design.inf.usi.ch/restalk-experiment/ImgurAuth.html
Group B: only OAS documentation

Just for group A experiment 2:

Remember that:

- by clicking on the URL of the request in the diagram you get redirected to the API
documentation
- by hovering over the coloured request box you get a short description of the semantics of
the request
- by hovering over a parameter you get marked in red how it can be discovered (if it is in the
request) or what are the possible requests where the parameter can be used (if it is in the
response)
- you can use the "command + F" functionality of the browser to search the diagram
- by clicking on the coloured boxes in the order in which you want to state the requests in
your answer they get copied in the text box (lower left angle) and you can copy-paste them
to your answer (remember to add the parameters manually to your answer)

Just for group B experiment 2:

For this task, please DO NOT use the link to the RESTalk visual model that you received in
the previous task as it DOES NOT contain the solution!!! Just use the following
documentation resources: https://apidocs.imgur.com/#intro.

Imagine that you need to implement the following functionality in your application.

Your application should allow the user to publish a new version of an existing image he has
uploaded previously. To do so, the user should provide the title of the existing image in
order to search the existing image and the album it is placed in.

Then the previous version of the image should be deleted. The new version should be
uploaded in the same album as the old image.

Note: The existing image can but does not have to be present in the gallery.

The user should get a report on the number of views and votes that the old version of the
image had (this was only a requirement in Experiment 1).

(1) As in previous Tasks, please describe a possible sequence of requests your application
should make to Imgur's API in order to achieve the above-stated goal.

For each request that you need to make, please provide the Method (GET, POST, PUT,
DELETE..), the URL of the endpoint and the parameters to be sent in the body of the
request, or received in the response, if any.

Please list the calls in the right ordered sequence to achieve your goal.

For instance, if your goal is to add a comment to an existing gallery post your answer could
have the following format:

 1. -> GET /gallery/search/q={{searchItem}}

 <- (response body parameter: galleryHash)

 2. -> POST /gallery/{{galleryHash}}/comment

 <- (response body parameter: commentId)

SOLUTION:

The assumption is that the user is authenticated and thus with each request in the
header we send the accessToken.

1. To get the ids of all albums that the user has created so that you can iterate over
them to see where the image is. The response to this request will not reveal to you
the title and the id of the images that are in each album.

-> GET /account/{{username}}/albums/
<- (response body parameter: albumHash(s))

2. To get the id of the image to be replaced. This request should be in a loop based on
the list of ids from the previous request. The goal is to check whether the image we
are searching for is in this particular album based on the title provided by the user.

-> GET /album/{{albumHash}}
<- (response body parameter: imageHash)

3. To delete the existing image based on the imageHash that you have found with the
previous request.

-> DELETE /image/{{imageHash}}

4. To upload the new image. The body of the request should contain as a parameter
the albumHash of the album where the existing image used to be, which you have
discovered when executing the loop in step 2.

-> POST /upload (request body parameter: albumHash, title, image)

Note that if you use GET /gallery/search/{{sort}}/{{window}}/{{page}}?q=title:{{title}}
to find the image with the title provided by the user, you will only be searching the
gallery, and the specification states that the image does not have to be in the gallery.
Furthermore, the gallery will contain images from other users as well, so you would
also need to check the accountId or the username in order to make sure that it is the
image that the user is searching for. On another note, the response would provide
the id of the album where the image is located. So a possible approach would be to
use this request, checking against the username, and if you do not find the image

here to use the solution above. This would save you from retrieving and iterating over
all of the albums.

(2) What input would you need from the user to perform the whole sequence(s)?

Solution: The necessary input from the user is the image to be upload, as well as the
title of the existing image which is supposed to be deleted. Note that as per the
specification the user does not provide the id of the existing image, but its title, and
he also does not provide the id of the album where the existing image is placed. You
should discover these two ids yourself.

(3) Is there a difference between the methods DELETE /image/{{imageHash}} and DELETE
gallery/{{galleryHash}}? If yes, what is the difference?

Solution: DELETE /image/{{imageHash}} will delete the image both from the gallery
and the user account, while DELETE /gallery/{{galleryHash}} will delete the image
only from the gallery. Note that the second DELETE will not delete the entire gallery
and all the images/albums in it.

(4) On a scale from 1 (low) to 10 (high), how confident are you that your solution will work?

(5) If you have any doubts or uncertainties regarding your proposed solutions please state
them here.

Part IV – Tasks Unauthenticated User

Experiment 1:
Group A: only OAS documentation
Group B: OAS documentation + RESTalk (all Imgur models without colors and interactivity)

Experiment 2:
Group A: only OAS documentation
Group B: OAS documentation and one RESTalk diagram available at:
http://design.inf.usi.ch/restalk-experiment/ImgurUnauth.html

Just for group A experiment 2:

For this task, please DO NOT use the link to the RESTalk visual model that you received in
the previous task as it DOES NOT contain the solution!!! Just use the following
documentation resources: https://apidocs.imgur.com/#intro.

Just for group B experiment 2:

Remember that:

- by clicking on the URL of the request in the diagram you get redirected to the API
documentation

- by hovering over the coloured request box you get a short description of the semantics of
the request
- by hovering over a parameter you get marked in red how it can be discovered (if it is in the
request) or what are the possible requests where the parameter can be used (if it is in the
response)
- you can use the "command + F" functionality of the browser to search the diagram
- by clicking on the coloured boxes in the order in which you want to state the requests in
your answer they get copied in the text box (lower left angle) and you can copy-paste them
to your answer (remember to add the parameters manually to your answer)

(1) Can an unauthenticated (unregistered) user (Yes / No):

(a) create an album? - Yes
(b) get a list of all the images that he has added to the album? - Yes
(c) upload an image? - Yes
(d) add a comment or vote to a post? - No

(2) How can an unauthenticated user add images to an album? Only in experiment 1: If
there are multiple options, please mention them all.

Solution: Following are some of the ways in which an unauthenticated user can add
images to an album:
- POST /album,
- POST /album/{{albumDeleteHash}},
- POST /album/{{ albumDeleteHash}/add, - POST /image,
- PUT /album/{{albumHash}}.
Note that he will always need to use the deleteHash of the image in order to add it.

(3) What is the difference in managing images on Imgur between an authenticated and
unauthenticated user?

Solution: In addition to some functionalities being available only to authenticated
users (such as sharing with the community, adding to favorites, commenting, voting
etc.), an important distinction is that unauthenticated users need to use the
imageDeleteHash for deleting or editing images they have uploaded, while registered
users can use the imageHash to do so.

(4) As an unauthenticated user, how can you discover the albumHash you need in order to
GET an album? Please name all the endpoints (method + URI) which can give you back
information about the albumHash.

Solution: Following are some of the ways in which an unauthenticated user can
discover the albumHash to be used to GET an album (requests whose response body
can contain an albumHash):
- GET /gallery/{{section}},
- GET /gallery/t/{{tagName}},
- GET /gallery/search/q={searchedItem},
- POST /album,
- GET /account/{{username}}/albums/ids/{{page}}

(5) On a scale from 1 (low) to 10 (high), how confident are you that your solution will work?

(6) If you have any doubts or uncertainties regarding your proposed solutions please state
them here.

Part V – Survey

Experiment 1:
Group A: only questions 1 to 5
Group B: all questions

Experiment 2:
All questions for both Group A and Group B

(1) Given your goal in task 1 (searching for a related item), on a scale from 1 (very easy) to
10 (very hard), how hard was it to understand the sequence of calls you need to make based
on the available documentation?

(2) Given your goal in task 2 (posting a new image), on a scale from 1 (very easy) to 10 (very
hard), how hard was it to understand the sequence of calls you need to make based on the
available documentation?

(3) Given your goal in task 3 (posting a new version of existing image), on a scale from 1
(very easy) to 10 (very hard), how hard was it to understand the sequence of calls you need
to make based on the available documentation?

(4) What would you change in the documentation to make it more understandable and
easier to use? (only in Experiment 1)

(5) Did you use PostMan/Advanced REST Client to test some of the API endpoints?
 Yes/No

(6) (When available) Did you use the visual models to complete any of the tasks?
 Yes/No

(6a1) If yes: On a scale from 1 (not helpful at all) to 10 (very helpful), how helpful did
you find the visual models in answering the questions in this survey?

(6a2) If yes (only in Experiment 2): What did you like /found helpful regarding the

models/visual language?

(6a3) If yes: What would you change in the visual models/visual language to make

them more understandable and easier to use?

(6B) If no (only in Experiment 2): Why did you not use the visual models to complete

the tasks?

(7) (Only in Experiment 1) For which task did you find the visual models the most helpful and
why?

(8) (Only in Experiment 1) Which visual construct of the language used in the visual models
you were unsure how to interpret?

288

Bibliography

[1] Disco. https://fluxicon.com/disco/. Last accessed: 2018-08-20.

[2] The history of REST APIs. https://blog.readme.io/the-history-of-
rest-apis/, 2016.

[3] Adaptive et al. Meta Object Facility. OMG, October 2016. https://www.
omg.org/spec/MOF/2.5.1/.

[4] Lorenzo Addazi, Federico Ciccozzi, Philip Langer, and Ernesto Posse. To-
wards seamless hybrid graphical–textual modelling for UML and profiles.
In European Conference on Modelling Foundations and Applications, pages
20–33, 2017.

[5] Saeed Aghaee. End-user development of mashups using live natural lan-
guage programming. PhD thesis, Università della Svizzera italiana, 2014.

[6] Rosa Alarcon and Erik Wilde. Linking Data from RESTful Services. In Third
Workshop on Linked Data on the Web, Raleigh, North Carolina, 2010.

[7] Subbu Allamaraju. RESTful Web Services Cookbook: Solutions for Improv-
ing Scalability and Simplicity. " O’Reilly Media, Inc.", 2010.

[8] Thomas Allweyer. BPMN 2.0: Introduction to the Standard for Business
Process Modeling. BoD–Books on Demand, 2010.

[9] Youseef Alotaibi and Fei Liu. Survey of business process management:
challenges and solutions. Enterprise Information Systems, 11(8):1119–
1153, 2017.

[10] Areeb Alowisheq, David E Millard, and Thanassis Tiropanis. Resource
oriented modelling: Describing RESTful web services using collaboration
diagrams. In e-Business (ICE-B), 2011 Proceedings of the International Con-
ference on, pages 1–6. IEEE, 2011.

289

https://fluxicon.com/disco/
https://blog.readme.io/the-history-of-rest-apis/
https://blog.readme.io/the-history-of-rest-apis/
https://www.omg.org/spec/MOF/2.5.1/
https://www.omg.org/spec/MOF/2.5.1/

290 Bibliography

[11] Nuha Alshuqayran, Nour Ali, and Roger Evans. A systematic mapping
study in microservice architecture. In Service-Oriented Computing and Ap-
plications (SOCA), 2016 IEEE 9th International Conference on, pages 44–
51. IEEE, 2016.

[12] Mike Amundsen. Building Hypermedia APIs with HTML5 and Node.
O’Reilly, 2011.

[13] Thomas Baar. Correctly defined concrete syntax. Software & Systems Mod-
eling, 7(4):383–398, 2008.

[14] Tavmjong Bah. Inkscape: guide to a vector drawing program (Digital Short
Cut). Pearson Education, 2010.

[15] Wasana Bandara, Guy G Gable, and Michael Rosemann. Factors and mea-
sures of business process modelling: model building through a multi-
ple case study. European Journal of Information Systems, 14(4):347–360,
2005.

[16] Pranit Bari and PM Chawan. Web usage mining. Journal of Engineering,
Computers & Applied Sciences (JEC&AS), 2(6):34–38, 2013.

[17] Alistair Barros, Marlon Dumas, and Arthur H.M. ter Hofstede. Service In-
teraction Patterns. In WilM.P. van der Aalst, Boualem Benatallah, Fabio
Casati, and Francisco Curbera, editors, Business Process Management, vol-
ume 3649 of LNCS, pages 302–318. Springer, 2005.

[18] Boualem Benatallah, Fabio Casati, and Farouk Toumani. Web service con-
versation modeling: A cornerstone for e-business automation. Internet
Computing, IEEE, 8(1):46–54, 2004.

[19] Matthias Biehl. API Architecture-The Big Picture for Building APIs. CreateS-
pace, 2015.

[20] Matthias Biehl. RESTful API Design, volume 3. API-University Press, 2016.

[21] Stephen M Blackburn, Amer Diwan, Matthias Hauswirth, Peter F Sweeney,
José Nelson Amaral, Tim Brecht, Lubomír Bulej, Cliff Click, Lieven Eeck-
hout, Sebastian Fischmeister, et al. The truth, the whole truth, and noth-
ing but the truth: A pragmatic guide to assessing empirical evaluations.
ACM Transactions on Programming Languages and Systems (TOPLAS),
38(4):1–20, 2016.

291 Bibliography

[22] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Soft-
ware Engineering in Practice: Second Edition. Morgan & Claypool Publish-
ers, 2nd edition, 2017.

[23] John Brooke. SUS-a quick and dirty usability scale. Usability evaluation
in industry, 189(194):4–7, 1996.

[24] Ricardo Buettner. Analyzing mental workload states on the basis of the
pupillary hippus. NeuroIS, 14:52, 2014.

[25] Frederik Bülthoff and Maria Maleshkova. RESTful or RESTless – cur-
rent state of today’s top web APIs. In Valentina Presutti, Eva Blomqvist,
Raphael Troncy, Harald Sack, Ioannis Papadakis, and Anna Tordai, edi-
tors, The Semantic Web: ESWC 2014 Satellite Events, pages 64–74, Cham,
2014. Springer International Publishing.

[26] Jordi Cabot and Martin Gogolla. Object constraint language (OCL): a
definitive guide. In International School on Formal Methods for the Design
of Computer, Communication and Software Systems, pages 58–90. Springer,
2012.

[27] Jacob Cohen. A power primer. Psychological bulletin, 112(1):155, 1992.

[28] Mike Cohn. User stories applied: For agile software development. Addison-
Wesley Professional, 2004.

[29] Mario Cortes-Cornax, Sophie Dupuy-Chessa, Dominique Rieu, and Marlon
Dumas. Evaluating choreographies in BPMN 2.0 using an extended quality
framework. In Business Process Model and Notation, volume 95 of LNBIP,
pages 103–117. Springer, 2011.

[30] Ira W Cotton and Frank S Greatorex Jr. Data structures and techniques
for remote computer graphics. In Proceedings of the December 9-11, 1968,
fall joint computer conference, part I, pages 533–544. ACM, 1968.

[31] Ward Cunningham and Kent Beck. Using pattern languages for object-
oriented programs. In Proceedings of OOPSLA, volume 87, 1987.

[32] Rafael Corveira da Cruz Gonçalves and Isabel Azevedo. RESTful web ser-
vices development with a model-driven engineering approach. In Code
Generation, Analysis Tools, and Testing for Quality, pages 191–228. IGI
Global, 2019.

292 Bibliography

[33] Alberto Rodrigues da Silva. Model-driven engineering: A survey sup-
ported by the unified conceptual model. Computer Languages, Systems
and Structures, 43:139 – 155, 2015.

[34] Robert Daigneau. Service Design Patterns:Fundamental Design Solutions
for SOAP/WSDL and RESTful Web Services. Addison-Wesley, 2011.

[35] Andrea D’Ambrogio. A model-driven WSDL extension for describing the
QoS of web services. In International Conference on Web Services, 2006.
ICWS’06, pages 789–796. IEEE, 2006.

[36] Nadja Damij. Business process modelling using diagrammatic and tabular
techniques. Business process management journal, 13(1):70–90, 2007.

[37] Florian Daniel and Maristella Matera. Mashups: Concepts, Models and
Architectures. Springer, 2014.

[38] Christopher J Date and Edgar F Codd. The relational and network ap-
proaches: Comparison of the application programming interfaces. In Pro-
ceedings of the 1974 ACM SIGFIDET (now SIGMOD) workshop on Data de-
scription, access and control: Data models: Data-structure-set versus rela-
tional, pages 83–113, 1975.

[39] Shahir Daya, Nguyen Van Duy, Kameswara Eati, Carlos M Ferreira, Dejan
Glozic, Vasfi Gucer, Manav Gupta, Sunil Joshi, Valerie Lampkin, Marcelo
Martins, et al. Microservices from Theory to Practice: Creating Applications
in IBM Bluemix Using the Microservices Approach. IBM Redbooks, 2016.

[40] Peter de Lange, Petru Nicolaescu, Ralf Klamma, and Matthias Jarke. En-
gineering web applications using real-time collaborative modeling. In
CYTED-RITOS International Workshop on Groupware, pages 213–228.
Springer, 2017.

[41] Gero Decker and Alistair Barros. Interaction Modeling Using BPMN. In
Business Process Management Workshops, volume 4928 of LNCS, pages
208–219. Springer, 2008.

[42] Krista E DeLeeuw and Richard E Mayer. A comparison of three measures of
cognitive load: Evidence for separable measures of intrinsic, extraneous,
and germane load. Journal of educational psychology, 100(1):223, 2008.

293 Bibliography

[43] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Maz-
zara, Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Microservices:
yesterday, today, and tomorrow. In Present and Ulterior Software Engineer-
ing, pages 195–216. Springer, 2017.

[44] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A. Reijers. Es-
sential Process Modeling. Springer Berlin Heidelberg, Berlin, Heidelberg,
2018.

[45] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A. Reijers. Fun-
damentals of Business Process Management. Springer, 2013.

[46] Hamza Ed-Douibi, Gwendal Daniel, and Jordi Cabot. OpenAPI Bot: A
chatbot to help you understand REST APIs. In International Conference on
Web Engineering, pages 538–542. Springer, 2020.

[47] Hamza Ed-Douibi, Javier Luis Cánovas Izquierdo, Francis Bordeleau, and
Jordi Cabot. Wapiml: towards a modeling infrastructure for web apis.
In 2019 ACM/IEEE 22nd International Conference on Model Driven Engi-
neering Languages and Systems Companion (MODELS-C), pages 748–752.
IEEE, 2019.

[48] Hamza Ed-Douibi, Javier Luis Cánovas Izquierdo, and Jordi Cabot.
Example-driven web api specification discovery. In European Conference on
Modelling Foundations and Applications, pages 267–284. Springer, 2017.

[49] Sebastian Erdweg, Tijs Van Der Storm, Markus Völter, Meinte Boersma,
Remi Bosman, William R Cook, Albert Gerritsen, Angelo Hulshout, Steven
Kelly, Alex Loh, et al. The state of the art in language workbenches. In
International Conference on Software Language Engineering, pages 197–
217. Springer, 2013.

[50] Dirk Fahland and Matthias Weidlich. Scenario-based process modeling
with greta. In Marcello La Rosa, editor, Proceedings of the Business Process
Management 2010 Demonstration Track, volume 615 of CEUR Workshop
Proceedings, pages 52–57. CEUR-WS.org, 2010.

[51] Roy Fielding et al. Hypertext transfer protocol – http/1.1 method defini-
tions. https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html,
1999.

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

294 Bibliography

[52] Roy Fielding and Julian Reschke. Hypertext Transfer Protocol–HTTP/1.1.
Request for Comments: 7230, 2014.

[53] Roy T Fielding, Richard N Taylor, Justin R Erenkrantz, Michael M Gorlick,
Jim Whitehead, Rohit Khare, and Peyman Oreizy. Reflections on the REST
architectural style and principled design of the modern web architecture
(impact paper award). In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, pages 4–14. ACM, 2017.

[54] Roy Thomas Fielding. Architectural Styles and the Design of Network-based
Software Architectures. PhD thesis, University of California, Irvine, 2000.

[55] Marcus Fontoura and CJP De Lucena. Extending UML to improve the rep-
resentation of design patterns. Journal of Object Oriented Programming,
13(11):12–19, 2001.

[56] Martin Fowler. Language workbenches: The killer-app for do-
main specific languages. https://martinfowler.com/articles/

languageWorkbench.html, 2005.

[57] Ulrich Frank. Domain-specific modeling languages: requirements analysis
and design guidelines. In Domain Engineering, pages 133–157. Springer,
2013.

[58] Mirco Franzago, Davide Di Ruscio, Ivano Malavolta, and Henry Muccini.
Collaborative model-driven software engineering: a classification frame-
work and a research map. IEEE Transactions on Software Engineering,
44(12):1146–1175, 2017.

[59] Andre Freitas, Edward Curry, Joao Gabriel Oliveira, and Sean O’Riain.
Querying heterogeneous datasets on the linked data web: challenges, ap-
proaches, and trends. IEEE Internet Computing, 16(1):24–33, 2012.

[60] Nicole Freund. Development of a Text-Based Representation of BPMN
Models. Master’s thesis, Leibniz Universität Hannover, Hannover, Ger-
many, 2018.

[61] Carsten Friedrich and Falk Schreiber. Flexible layering in hierarchical
drawings with nodes of arbitrary size. In Proceedings of the 27th Aus-
tralasian conference on Computer science-Volume 26, pages 369–376, P.O.
Box 319 Darlinghurst, NSW 2010Australia, 2004. Australian Computer
Society, Inc.

https://martinfowler.com/articles/languageWorkbench.html
https://martinfowler.com/articles/languageWorkbench.html

295 Bibliography

[62] Ana Funes, Aristides Dasso, Carlos Salgado, and Mario Peralta. UML tool
evaluation requirements. In Argentine Symposium on Information Systems
ASIS, pages 29–30, 2005.

[63] Antonio Gamez-Diaz, Pablo Fernandez, Cesare Pautasso, Ana Ivanchikj,
and Antonio Ruiz-Cortes. ELeCTRA: Induced usage limitations calculation
in RESTful APIs. In International Conference on Service-Oriented Comput-
ing, pages 435–438. Springer, 2018.

[64] Antonio Gamez-Diaz, Pablo Fernandez, and Antonio Ruiz-Cortes. Au-
tomating SLA-Driven API Development with SLA4OAI. In International
Conference on Service-Oriented Computing, pages 20–35. Springer, 2019.

[65] Emden R Gansner and Stephen C North. An open graph visualization
system and its applications to software engineering. Software: practice
and experience, 30(11):1203–1233, 2000.

[66] Matthias Geiger, Simon Harrer, Jörg Lenhard, and Guido Wirtz. BPMN
2.0: The state of support and implementation. Future Generation Com-
puter Systems, 80:250–262, 2018.

[67] Andrew Gemino and Yair Wand. A framework for empirical evaluation
of conceptual modeling techniques. Requirements Engineering, 9(4):248–
260, 2004.

[68] Nicolas Genon, Patrick Heymans, and Daniel Amyot. Analysing the cog-
nitive effectiveness of the BPMN 2.0 visual notation. In International con-
ference on software language engineering, pages 377–396. Springer, 2010.

[69] Alan Glickenhouse. What are the recommended roles for an API
initiative? https://developer.ibm.com/apiconnect/2017/05/19/

recommended-roles-api-initiative/, 2018.

[70] Thomas Goldschmidt, Steffen Becker, and Axel Uhl. Classification of con-
crete textual syntax mapping approaches. In Ina Schieferdecker and Alan
Hartman, editors, Model Driven Architecture – Foundations and Applica-
tions, pages 169–184, Berlin, Heidelberg, 2008. Springer Berlin Heidel-
berg.

[71] Harish Goteti. API Driven Development, Bridging the gap between
Providers and Consumers. Technical report, CA Technologies, 2015.

https://developer.ibm.com/apiconnect/2017/05/19/recommended-roles-api-initiative/
https://developer.ibm.com/apiconnect/2017/05/19/recommended-roles-api-initiative/

296 Bibliography

[72] Giona Granchelli, Mario Cardarelli, Paolo Di Francesco, Ivano Malavolta,
Ludovico Iovino, and Amleto Di Salle. Towards recovering the software
architecture of microservice-based systems. In Software Architecture Work-
shops (ICSAW), 2017 IEEE International Conference on, pages 46–53. IEEE,
2017.

[73] Thomas R. G. Green and Marian Petre. Usability Analysis of Visual Pro-
gramming Environments: A Cognitive Dimensions Framework. Journal of
Visual Languages & Computing, 7(2):131–174, 1996.

[74] Joe Gregorio, R Fielding, Marc Hadley, Mark Nottingham, and David Or-
chard. URI Template. Request for Comments: 6570, 2012.

[75] Hans Grönninger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Völkel. Textbased modeling. In Proc. of the 4th International Work-
shop on Software Language Engineering, 2007.

[76] Hans Grönninger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Völkel. Textbased modeling. In Proc. of the 4th International Work-
shop on Software Language Engineering. Springer-Verlag, 2007.

[77] Volker Gruhn and Ralf Laue. Reducing the cognitive complexity of busi-
ness process models. In 2009 8th IEEE International Conference on Cogni-
tive Informatics, pages 339–345. IEEE, 2009.

[78] Yann-Gaël Guéhéneuc and Foutse Khomh. Empirical software engineer-
ing. In Handbook of Software Engineering, pages 285–320. Springer, 2019.

[79] C.A. Gurr. Effective diagrammatic communication: Syntactic, semantic
and pragmatic issues. Journal of Visual Languages and Computing, 10:317–
342, 1999.

[80] Florian Haupt, Dimka Karastoyanova, Frank Leymann, and Benjamin
Schroth. A model-driven approach for REST compliant services. In Inter-
national Conference on Web Services (ICWS 2014), pages 129–136. IEEE,
2014.

[81] Florian Haupt, Frank Leymann, and Cesare Pautasso. A conversation
based approach for modeling REST APIs. In Proc. of the 12th Working
IEEE / IFIP Conference on Software Architecture (WICSA 2015), Montreal,
Canada, May 2015.

297 Bibliography

[82] Florian Haupt, Frank Leymann, and Karolina Vukojevic-Haupt. Api gov-
ernance support through the structural analysis of REST APIs. Computer
Science - Research and Development, 33(3):291–303, Aug 2018.

[83] Pat Helland. Data on the Outside Versus Data on the Inside. Conference
on Innovative Data Systems Research (CIDR), pages 144–153, 2005.

[84] Ian Hickson, R Berjon, S Faulkner, T Leithead, ED Navara, E O’Connor,
and Silvia Pfeiffer. HTML5. A vocabulary and associated APIs for HTML
and XHTML. W3C Recommendation, 2014.

[85] Gregor Hohpe. Let’s have a conversation. Internet Computing, IEEE,
11(3):78–81, 2007.

[86] Gregor Hohpe and Bobby Woolf. Enterprise integration patterns: Design-
ing, building, and deploying messaging solutions. Addison-Wesley, 2004.

[87] Ana Ivanchikj. RESTful conversation with RESTalk -the use case of
Doodle-. In Proceedings of the International Conference on Web Engineering
(ICWE’16), pages 583–587. Springer, 2016.

[88] Ana Ivanchikj, Ilija Gjorgjiev, and Cesare Pautasso. RESTalk miner: Min-
ing restful conversations, pattern discovery and matching. In Interna-
tional Conference on Service-Oriented Computing, pages 470–475. Springer,
2018.

[89] Ana Ivanchikj and Cesare Pautasso. Modeling REST API behaviour with
text, graphics or both? Boston, USA, November 2018.

[90] Ana Ivanchikj and Cesare Pautasso. Sketching process models by mining
participant stories. In International Conference on Business Process Man-
agement, pages 3–19. Springer, 2019.

[91] Ana Ivanchikj and Cesare Pautasso. Modeling microservice conversations
with RESTalk. In Microservices, Science and Engineering, pages 129–146.
Springer, 2020.

[92] Ana Ivanchikj, Souhaila Serbout, and Cesare Pautasso. From text to visual
BPMN process models: Design and evaluation. In ACM/IEEE 23rd Inter-
national Conference on Model Driven Engineering Languages and Systems
(MODELS ’20), pages 229–239. ACM, 2020.

298 Bibliography

[93] P. Jamshidi, C. Pahl, N. C. Mendonca, J. Lewis, and S. Tilkov. Microser-
vices: The journey so far and challenges ahead. IEEE Software, 35(3):24–
35, May 2018.

[94] Sven Jannaber, Dennis M Riehle, Patrick Delfmann, Oliver Thomas, and
Jörg Becker. Designing a framework for the development of domain-
specific process modelling languages. In International Conference on De-
sign Science Research in Information System and Technology, pages 39–54.
Springer, 2017.

[95] David Janzen and Hossein Saiedian. Test-driven development concepts,
taxonomy, and future direction. Computer, 38(9):43–50, 2005.

[96] Claus T Jensen. APIs for dummies. John Wiley & Sons, Inc, 2015. IBM
Limited Edition.

[97] Kurt Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and
Practical Use, volume 1. Springer Science & Business Media, 2013.

[98] Tom Johnson. OpenAPI specification and Swagger. https:

//idratherbewriting.com/learnapidoc/restapispecifications.

html, 2018.

[99] Rodi Jolak, Maxime Savary-Leblanc, Manuela Dalibor, Andreas Wort-
mann, Regina Hebig, Juraj Vincur, Ivan Polasek, Xavier Le Pallec,
Sébastien Gérard, and Michel RV Chaudron. Software engineering whis-
pers: The effect of textual vs. graphical software design descriptions on
software design communication. Empirical Software Engineering, pages
1–45, 2020.

[100] Rodi Jolak, Andreas Wortmann, Michel Chaudron, and Bernhard Rumpe.
Does distance still matter? revisiting collaborative distributed software
design. IEEE Software, 35(6):40–47, 2018.

[101] Diane Jordan and John Evdemon. Business Process Model And Notation
Version 2.0. OMG, January 2011. http://www.omg.org/spec/BPMN/2.

0/.

[102] Gökhan Kahraman and Semih Bilgen. A framework for qualitative as-
sessment of domain-specific languages. Software & Systems Modeling,
14(4):1505–1526, 2015.

https://idratherbewriting.com/learnapidoc/restapispecifications.html
https://idratherbewriting.com/learnapidoc/restapispecifications.html
https://idratherbewriting.com/learnapidoc/restapispecifications.html
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/

299 Bibliography

[103] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin
Schindler, and Steven Völkel. Design guidelines for domain specific lan-
guages. In Proceedings of the 9th OOPSLA Workshop on Domain-Specific
Modeling (DSM’ 09), New York, NY, USA, 2009. Association for Comput-
ing Machinery.

[104] Piotr Karwatka, Mariusz Gil, Mike Grabowski, Aleksander Graf, Pawel
Jedrzejewski, Michal Kurzeja, Antoni Orfin, and Bartosz Picho. Micro-
sevice Architecture for eCommerce. https://divante.co/books/PDFy/
microservices-architecture-for-ecommerce.pdf, 2017.

[105] Steven Kelly and Risto Pohjonen. Worst practices for domain-specific mod-
eling. IEEE software, 26(4):22–29, 2009.

[106] Redona Kembora. APISymphony: a tool to measure and visualize static
metrics of RESTful APIs. Master’s thesis, Software Institute, Univresita
della Svizzera italiana, Lugano, Switzerland, 2019.

[107] Anneke Kleppe, Jos Warmer, and Wim Bast. MDA explained. the practice
and promise of the model driven architecture. Boston Pearson Education,
Inc, pages 1–31, 2003.

[108] Holger Knoche and Wilhelm Hasselbring. Drivers and barriers for mi-
croservice adoption–a survey among professionals in germany. Enterprise
Modelling and Information Systems Architectures (EMISAJ), 14:1–1, 2019.

[109] Ryan KL Ko. A computer scientist’s introductory guide to business process
management (BPM). Crossroads, 15(4):4, 2009.

[110] Jana Koehler, Rainer Hauser, Jochen Küster, Ksenia Ryndina, Jussi Van-
hatalo, and Michael Wahler. The role of visual modeling and model trans-
formations in business-driven development. Electronic Notes in Theoretical
Computer Science, 211:5–15, 2008.

[111] Dimitrios S Kolovos, Richard F Paige, Tim Kelly, and Fiona AC Polack.
Requirements for domain-specific languages. In Proc. of ECOOP Workshop
on Domain-Specific Program Development (DSPD), volume 2006, 2006.

[112] Jacek Kopeckỳ, Paul Fremantle, and Rich Boakes. A history and future of
Web APIs. it-Information Technology, 56(3):90–97, 2014.

[113] Dirk Krafzig, Karl Banke, and Dirk Slama. Enterprise SOA: service-oriented
architecture best practices. Prentice Hall Professional, 2005.

https://divante.co/books/PDFy/microservices-architecture-for-ecommerce.pdf
https://divante.co/books/PDFy/microservices-architecture-for-ecommerce.pdf

300 Bibliography

[114] Daniel Le, Nathaniel Neudecker, Diana Winckler, Heiko Dosch,
Anastasija Nikitin, Stefanie Auge-Dickhut, Christian Betz, and
Katharina Schache. Understanding the business relevance of
Open APIs and open banking for banks, informaton paper,
2020. https://developer.commerzbank.com/shared/documents/

commerzbank-open-banking-whitepaper-2020.pdf.

[115] Lucas Leal, Leonardo Montecchi, Andrea Ceccarelli, and Eliane Martins.
Exploiting mde for platform-independent testing of service orchestrations.
In 2019 15th European Dependable Computing Conference (EDCC), pages
149–152. IEEE, 2019.

[116] Henrik Leopold, Jan Mendling, and Oliver Günther. Learning from quality
issues of BPMN models from industry. IEEE Software, 33(4):26–33, 2015.

[117] Li Li and Wu Chou. Design and Describe REST API without Violating
REST: A Petri Net Based Approach. In Web Services (ICWS), 2011 IEEE
International Conference on, pages 508–515, July 2011.

[118] Li Li and Wu Chou. Designing Large Scale REST APIs Based on REST
Chart. In Web Services (ICWS), 2015 IEEE International Conference on,
pages 631–638, June 2015.

[119] O.I. Lindland, G. Sindre, and A. Solvberg. Understanding quality in con-
ceptual modeling. Software, IEEE, 11(2):42–49, March 1994.

[120] Olga Liskin, Leif Singer, and Kurt Schneider. Teaching Old Services New
Tricks: Adding HATEOAS Support as an Afterthought. In Proceedings of
the Second International Workshop on RESTful Design, pages 3–10. ACM,
2011.

[121] Jerome Louvel. A Short History of OAI and API Specifica-
tions. http://restlet.com/company/blog/2017/04/26/a-short-

history-of-oai-and-api-specifications/, 2017.

[122] Daniel Lübke, Olaf Zimmermann, Cesare Pautasso, Uwe Zdun, and Mirko
Stocker. Interface evolution patterns: balancing compatibility and ex-
tensibility across service life cycles. In Proceedings of the 24th European
Conference on Pattern Languages of Programs, pages 1–24, 2019.

[123] Divyanand Malavalli and Sivakumar Sathappan. Scalable microservice
based architecture for enabling dmtf profiles. In 2015 11th International

https://developer.commerzbank.com/shared/documents/commerzbank-open-banking-whitepaper-2020.pdf
https://developer.commerzbank.com/shared/documents/commerzbank-open-banking-whitepaper-2020.pdf
http://restlet.com/company/blog/2017/04/26/a-short-history-of-oai-and-api-specifications/
http://restlet.com/company/blog/2017/04/26/a-short-history-of-oai-and-api-specifications/

301 Bibliography

Conference on Network and Service Management (CNSM), pages 428–432.
IEEE, 2015.

[124] Salome Maro, Jan-Philipp Steghöfer, Anthony Anjorin, Matthias Tichy,
and Lars Gelin. On integrating graphical and textual editors for a UML
profile based domain specific language: an industrial experience. In Proc.
of the International Conference on Software Language Engineering, pages
1–12. ACM, 2015.

[125] Marius Marusteri and Vladimir Bacarea. Comparing groups for statistical
differences: how to choose the right statistical test? Biochemia medica,
20(1):15–32, 2010.

[126] Mark Masse. REST API Design Rulebook: Designing Consistent RESTful Web
Service Interfaces. " O’Reilly Media, Inc.", 2011.

[127] Florent Masseglia, Pascal Poncelet, and Maguelonne Teisseire. Incremen-
tal mining of sequential patterns in large databases. Data & Knowledge
Engineering, 46(1):97–121, 2003.

[128] Tony Mauro. Adopting Microservices at Netflix: Lessons for Architectural
Design, 2015.

[129] Martin Mazanec and Ondrej Macek. On general-purpose textual modeling
languages. In Proc. of the International Workshop on DAtabases, TExts,
Specifications and Objects, volume 837, pages 1–12, 2012.

[130] Mehdi Medjaoui, Erik Wilde, Ronnie Mitra, and Mike Amundsen. Continu-
ous API Management: Making the Right Decisions in an Evolving Landscape.
O’Reilly Media, 2018.

[131] Santiago Meliá, Cristina Cachero, Jesús M. Hermida, and Enrique Apari-
cio. Comparison of a textual versus a graphical notation for the maintain-
ability of MDE domain models: an empirical pilot study. Software Quality
Journal, 24(3):709–735, 2016.

[132] Peter Mell and Tim Grance. The NIST Definition of Cloud Computing,
2011.

[133] Marjan Mernik, Jan Heering, and Anthony M Sloane. When and how
to develop domain-specific languages. ACM computing surveys (CSUR),
37(4):316–344, 2005.

302 Bibliography

[134] Gerard Meszaros and Jim Doble. A pattern language for pattern writing.
Pattern languages of program design, 3:529–574, 1998.

[135] Zoltán Micskei and Hélène Waeselynck. The many meanings of UML 2
Sequence Diagrams: a survey. Software & Systems Modeling, 10(4):489–
514, 2011.

[136] George A Miller. The magical number seven, plus or minus two: Some
limits on our capacity for processing information. Psychological review,
63(2):81, 1956.

[137] Ronnie Mitra. Rapido: A Sketching Tool for Web API Designers. In Pro-
ceedings of the 24th International Conference on World Wide Web, WWW
’15 Companion, pages 1509–1514, Florence, Italy, 2015.

[138] Parastoo Mohagheghi and Øystein Haugen. Evaluating domain-specific
modelling solutions. In International Conference on Conceptual Modeling,
pages 212–221. Springer, 2010.

[139] Thomas Molka, David Redlich, Marc Drobek, Artur Caetano, Xiao-Jun
Zeng, and Wasif Gilani. Conformance checking for BPMN-based process
models. In Proceedings of the 29th Annual ACM Symposium on Applied
Computing, pages 1406–1413, 2014.

[140] Jefferson Seide Molléri, Kai Petersen, and Emilia Mendes. CERSE-catalog
for empirical research in software engineering: A systematic mapping
study. Information and Software Technology, 105:117–149, 2019.

[141] Anna Monus. SOAP vs REST vs JSON comparison. https://raygun.com/
blog/soap-vs-rest-vs-json/, 2019.

[142] Daniel Moody. The “Physics” of Notations: Toward a Scientific Basis for
Constructing Visual Notations in Software Engineering. IEEE Trans. Softw.
Eng., 35(6):756–779, November 2009.

[143] Gavin Mulligan and Denis Gračanin. A comparison of SOAP and REST im-
plementations of a service based interaction independence middleware
framework. In Proceedings of the 2009 Winter Simulation Conference
(WSC), pages 1423–1432. IEEE, 2009.

[144] Brad A Myers. Visual programming, programming by example, and pro-
gram visualization: a taxonomy. ACM sigchi bulletin, 17(4):59–66, 1986.

https://raygun.com/blog/soap-vs-rest-vs-json/
https://raygun.com/blog/soap-vs-rest-vs-json/

303 Bibliography

[145] Rahul Narain, Alex Merrill, and Eric Lesser. Evolution of the API economy-
adopting new business models to drive future innovation. https://www.
ibm.com/downloads/cas/XG8RYO63, 2016. Last accessed: 2019-07-01.

[146] Andy Neumann, Nuno Laranjeiro, and Jorge Bernardino. An analysis of
public REST Web service APIs. IEEE Transactions on Services Computing,
2018.

[147] Eric Newcomer and Greg Lomow. Understanding SOA with Web services.
Addison-Wesley, 2005.

[148] Sam Newman. Building Microservices. O’Reilly, 2015.

[149] Adriatik Nikaj. RESTful Choreographies. PhD thesis, Business Process Tech-
nology Group, Hasso Plattner Institute, Digital Engineering Faculty, Uni-
versity of Potsdam, Germany, 2019.

[150] Adriatik Nikaj, Marcin Hewelt, and Mathias Weske. Towards implement-
ing REST-enabled business process choreographies. In International Con-
ference on Business Information Systems, pages 223–235. Springer, 2018.

[151] Adriatik Nikaj, Sankalita Mandal, Cesare Pautasso, and Mathias Weske.
From Choreography Diagrams to RESTful Interactions. In The Eleventh In-
ternational Workshop on Engineering Service-Oriented Applications, pages
3–14, 2015.

[152] Adriatik Nikaj and Mathias Weske. Formal Specification of RESTful Chore-
ography Properties. In Proceedings of the International Conference on Web
Engineering (ICWE’16), pages 365–372. Springer, 2016.

[153] Adriatik Nikaj, Mathias Weske, and Jan Mendling. Semi-automatic deriva-
tion of RESTful choreographies from business process choreographies.
Software & Systems Modeling, pages 1–14, 2017.

[154] Mark Nottingham. Web Linking. Request for Comments: 5988, October
2010.

[155] Joshua Ofoeda, Richard Boateng, and John Effah. Application program-
ming interface (api) research: A review of the past to inform the future.
International Journal of Enterprise Information Systems (IJEIS), 15(3):76–
95, 2019.

https://www.ibm.com/downloads/cas/XG8RYO63
https://www.ibm.com/downloads/cas/XG8RYO63

304 Bibliography

[156] Avner Ottensooser, Alan Fekete, Hajo A Reijers, Jan Mendling, and Con
Menictas. Making sense of business process descriptions: An experimental
comparison of graphical and textual notations. Journal of Systems and
Software, 85(3):596–606, 2012.

[157] Richard F Paige, Dimitrios S Kolovos, and Fiona AC Polack. A tutorial on
metamodelling for grammar researchers. Science of Computer Program-
ming, 96:396–416, 2014.

[158] Srikanta Patanjali, Benjamin Truninger, Piyush Harsh, and
Thomas Michael Bohnert. Cyclops: a micro service based approach
for dynamic rating, charging & billing for cloud. In Telecommunications
(ConTEL), 2015 13th International Conference on, pages 1–8. IEEE, 2015.

[159] Sanjay Patni. Pro RESTful APIs. Springer, 2017.

[160] Cesare Pautasso, Ana Ivanchikj, and Silvia Schreier. Modeling RESTful
conversations with extended BPMN choreography diagrams. In Danny
Weyns, Raffaela Mirandola, and Ivica Crnkovic, editors, Proc. of the 9th Eu-
ropean Conference on Software Architecture, volume 9278 of Lecture Notes
in Computer Science, pages 87–94. Springer, 2015.

[161] Cesare Pautasso, Ana Ivanchikj, and Silvia Schreier. A pattern language
for RESTful conversations. In Proceedings of the 21st European Conference
on Pattern Languages of Programs, page 4. ACM, 2016.

[162] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. RESTful web
services vs." big"’web services: making the right architectural decision. In
Proceedings of the 17th international conference on World Wide Web, pages
805–814, 2008.

[163] Marian Petre. Why looking isn’t always seeing: readership skills and
graphical programming. Communications of the ACM, 38(6):33–44, 1995.

[164] Marian Petre. UML in practice. In Proceedings of the 2013 International
Conference on Software Engineering (ICSE), pages 722–731. IEEE Press,
2013.

[165] Ivan Porres and Irum Rauf. Modeling behavioral RESTful web service
interfaces in UML. In Proceedings of the 2011 ACM Symposium on Applied
Computing, pages 1598–1605, 2011.

305 Bibliography

[166] Postman. 2020 state of the API report. https://www.postman.com/

state-of-api-report-2020.pdf, 2020.

[167] Mageswari Rajoo and Noor Maizura Mohamad Noor. Important evalua-
tion factors of UML tools for health informatics. Journal of Telecommuni-
cation, Electronic and Computer Engineering, 9(3-3):191–195, 2017.

[168] Luke V Rasmussen, Will K Thompson, Jennifer A Pacheco, Abel N Kho,
David S Carrell, Jyotishman Pathak, Peggy L Peissig, Gerard Tromp,
Joshua C Denny, and Justin B Starren. Design patterns for the develop-
ment of electronic health record-driven phenotype extraction algorithms.
Journal of biomedical informatics, 51:280–286, 2014.

[169] D. M. Rathod, S. M. Parikh, and B. V. Buddhadev. Structural and behavioral
modeling of RESTful web service interface using UML. 2013 International
Conference on Intelligent Systems and Signal Processing (ISSP), pages 28–
33, 2013.

[170] Irum Rauf. Design and validation of stateful composite RESTful web services.
PhD thesis, Turku Centre for Computer Science, 2014.

[171] Iris Reinhartz-Berger, S Cohen, J Bettin, T Clark, and A Sturm. Domain
engineering: Product Lines, Languages, and Conceptual Models. Springer,
2013.

[172] Chris Richardson. Microservices Patterns: With examples in Java. Manning,
2018.

[173] Leonard Richardson, Mike Amundsen, and Sam Ruby. RESTful Web APIs.
O’Reilly, 2013.

[174] Leonard Richardson and Sam Ruby. RESTful Web Services. O’Reilly, 2007.

[175] Erkuden Rios, Teodora Bozheva, Aitor Bediaga, and Nathalie Guilloreau.
MDD maturity model: A roadmap for introducing model-driven develop-
ment. In European Conference on Model Driven Architecture-Foundations
and Applications, pages 78–89. Springer, 2006.

[176] Martin P Robillard. What makes APIs hard to learn? Answers from devel-
opers. Software, IEEE, 26(6):27–34, 2009.

https://www.postman.com/state-of-api-report-2020.pdf
https://www.postman.com/state-of-api-report-2020.pdf

306 Bibliography

[177] Stewart Robinson, Roger Brooks, Kathy Kotiadis, and Durk-Jouke Van
Der Zee. Conceptual Modeling for Discrete-Event Simulation. CRC Press,
Inc., 2010.

[178] Carlos Rodríguez, Marcos Baez, Florian Daniel, Fabio Casati, Juan Car-
los Trabucco, Luigi Canali, and Gianraffaele Percannella. REST APIs: a
large-scale analysis of compliance with principles and best practices. In
International conference on web engineering, pages 21–39. Springer, 2016.

[179] Manuel Caeiro Rodríguez, Martín Llamas Nistal, and Luis Anido Rifón. To-
wards a benchmark for the evaluation of ld expressiveness and suitability.
Journal of Interactive Media in Education, 2005(1), 2005.

[180] Rolando Rodríguez, Roberto Espinosa, Devis Bianchini, Irene Garrigós,
Jose-Norberto Mazón, and Jose Jacobo Zubcoff. Extracting models from
web API documentation. In International Conference on Web Engineering,
pages 134–145. Springer, 2012.

[181] Michael Rosen, Boris Lublinsky, Kevin T Smith, and Marc J Balcer. Applied
SOA: service-oriented architecture and design strategies. John Wiley & Sons,
2012.

[182] Margaret Rouse. RESTful API? https://searchmicroservices.

techtarget.com/definition/RESTful-API?src=5919398&asrc=EM_

ERU_115532474&utm_content=eru-rd2-rcpC&utm_medium=EM&utm_

source=ERU&utm_campaign=20190703_ERU%20Transmission%20for%

2007/03/2019%20(UserUniverse:%20559842), 2019.

[183] Safdar Aqeel Safdar, Muhammad Zohaib Iqbal, and Muhammad Uzair
Khan. Empirical evaluation of UML modeling tools–a controlled exper-
iment. In European Conference on Modelling Foundations and Applications,
pages 33–44. Springer, 2015.

[184] Gerald Schermann, Jürgen Cito, and Philipp Leitner. All the services large
and micro: Revisiting industrial practice in services computing. In Alex
Norta, Walid Gaaloul, G. R. Gangadharan, and Hoa Khanh Dam, edi-
tors, Service-Oriented Computing – ICSOC 2015 Workshops, pages 36–47,
Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[185] Douglas C Schmidt. Model-driven engineering. Computer, 39(2):25,
2006.

https://searchmicroservices.techtarget.com/definition/RESTful-API?src=5919398&asrc=EM_ERU_115532474&utm_content=eru-rd2-rcpC&utm_medium=EM&utm_source=ERU&utm_campaign=20190703_ERU%20Transmission%20for%2007/03/2019%20(UserUniverse:%20559842)
https://searchmicroservices.techtarget.com/definition/RESTful-API?src=5919398&asrc=EM_ERU_115532474&utm_content=eru-rd2-rcpC&utm_medium=EM&utm_source=ERU&utm_campaign=20190703_ERU%20Transmission%20for%2007/03/2019%20(UserUniverse:%20559842)
https://searchmicroservices.techtarget.com/definition/RESTful-API?src=5919398&asrc=EM_ERU_115532474&utm_content=eru-rd2-rcpC&utm_medium=EM&utm_source=ERU&utm_campaign=20190703_ERU%20Transmission%20for%2007/03/2019%20(UserUniverse:%20559842)
https://searchmicroservices.techtarget.com/definition/RESTful-API?src=5919398&asrc=EM_ERU_115532474&utm_content=eru-rd2-rcpC&utm_medium=EM&utm_source=ERU&utm_campaign=20190703_ERU%20Transmission%20for%2007/03/2019%20(UserUniverse:%20559842)
https://searchmicroservices.techtarget.com/definition/RESTful-API?src=5919398&asrc=EM_ERU_115532474&utm_content=eru-rd2-rcpC&utm_medium=EM&utm_source=ERU&utm_campaign=20190703_ERU%20Transmission%20for%2007/03/2019%20(UserUniverse:%20559842)

307 Bibliography

[186] Douglas C. Schmidt, Mohamed Fayad, and Ralph E. Johnson. Software
patterns. Commun. ACM, 39(10):37–39, October 1996.

[187] Silvia Schreier. Modeling RESTful applications. In Proceedings of the Sec-
ond International Workshop on RESTful Design, pages 15–21. ACM, 2011.

[188] Ambler Scott. Simple tools for software modeling -or- it’s "use the simplest
tool" not "use simple tools". http://www.agilemodeling.com/essays/

simpleTools.htm, 2008. Last accessed: 2018-08-20.

[189] Stephan Seifermann and Henning Groenda. Survey on the applicability
of textual notations for the unified modeling language. In International
Conference on Model-Driven Engineering and Software Development, pages
3–24. Springer, 2016.

[190] Bran Selic. The pragmatics of model-driven development. IEEE software,
20(5):19–25, 2003.

[191] Cristian Sepulveda, Rosa Alarcon, and Jesus Bellido. QoS aware descrip-
tions for RESTful service composition: security domain. World Wide Web,
18(4):767–794, 2015.

[192] Zohreh Sharafi, Alessandro Marchetto, Angelo Susi, Giuliano Antoniol,
and Yann-Gaël Guéhéneuc. An empirical study on the efficiency of graph-
ical vs. textual representations in requirements comprehension. In 2013
21st International Conference on Program Comprehension (ICPC), pages
33–42. IEEE, 2013.

[193] James Snell, Doug Tidwell, and Pavel Kulchenko. Programming web ser-
vices with SOAP: building distributed applications. " O’Reilly Media, Inc.",
2001.

[194] Ellis Solaiman, Wenzhong Sun, and Carlos Molina-Jimenez. A tool for
the automatic verification of BPMN choreographies. In 2015 IEEE inter-
national conference on services computing, pages 728–735. IEEE, 2015.

[195] EBNF Syntaxt Specification Standard. EBNF: ISO/IEC 14977: 1996 (e).
https://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf, 1996.

[196] Thomas Steiner and Jan Algermissen. Fulfilling the Hypermedia Con-
straint Via HTTP OPTIONS, the HTTP Vocabulary In RDF, And Link Head-
ers. In Proceedings of the Second International Workshop on RESTful Design,
pages 11–14. ACM, 2011.

http://www.agilemodeling.com/essays/simpleTools.htm
http://www.agilemodeling.com/essays/simpleTools.htm
https://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf

308 Bibliography

[197] Harald Störrle. On the impact of size to the understanding of UML dia-
grams. Software & Systems Modeling, 17(1):115–134, 2018.

[198] Michael Stowe. Undisturbed REST: A guide to designing the perfect API.
mulesoft.com, 2015.

[199] Andrzej Stroinski, Dariusz Dwornikowski, and Jerzy Brzezinski. Resource
mining: Applying process mining to resource-oriented systems. In Busi-
ness Information Systems: 17th International Conference, BIS 2014, Lar-
naca, Cyprus, May 22-23, 2014, Proceedings, volume 176, page 217.
Springer, 2014.

[200] Andrzej Stroinski, Dariusz Dwornikowski, and Jerzy Brzezinski. RESTful
web service mining: Simple algorithm supporting resource-oriented sys-
tems. In Proc. of ICWE, pages 694–695. IEEE, 2014.

[201] Andrzel Stroinski, Dariusz Dwornikowski, and Jerzy Brzezinski. REST-
ful web service mining: Simple algorithm supporting resource-oriented
systems. In 2014 IEEE International Conference on Web Services, pages
694–695, June 2014.

[202] John Sweller. Element interactivity and intrinsic, extraneous, and ger-
mane cognitive load. Educational psychology review, 22(2):123–138,
2010.

[203] Daniel Szmukler. Understanding the business relevance of Open
APIs and open banking for banks, informaton paper, 2016. https:

//www.abe-eba.eu/media/azure/production/1522/business-

relevance-of-open-apis-and-open-banking-for-banks.pdf.

[204] Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. Software Ar-
chitecture: Foundations, Theory, and Practice. Wiley, 2009.

[205] Stefan Tilkov, Martin Eigenbrodt, Silvia Schreier, and Oliver Wolf. REST
und HTTP: Entwicklung und Integration nach dem Architekturstil des Web
(in German). dpunkt.verlag, 3rd edition, 2015.

[206] Giovanni Toffetti, Sandro Brunner, Martin Blöchlinger, Florian Dudouet,
and Andrew Edmonds. An architecture for self-managing microservices.
In Proceedings of the 1st International Workshop on Automated Incident
Management in Cloud, pages 19–24. ACM, 2015.

https://www.abe-eba.eu/media/azure/production/1522/business-relevance-of-open-apis-and-open-banking-for-banks.pdf
https://www.abe-eba.eu/media/azure/production/1522/business-relevance-of-open-apis-and-open-banking-for-banks.pdf
https://www.abe-eba.eu/media/azure/production/1522/business-relevance-of-open-apis-and-open-banking-for-banks.pdf

309 Bibliography

[207] Francisco Valverde and Oscar Pastor. Dealing with REST services in model-
driven web engineering methods. V Jornadas Científico-Técnicas en Servi-
cios Web y SOA, JSWEB, pages 243–250, 2009.

[208] Wil van der Aalst. Process Mining: Discovery, Conformance and Enhance-
ment of Business Processes. Springer, 2011.

[209] Wil Van Der Aalst, Arya Adriansyah, Ana Karla Alves De Medeiros, Franco
Arcieri, Thomas Baier, Tobias Blickle, Jagadeesh Chandra Bose, Peter Van
Den Brand, Ronald Brandtjen, Joos Buijs, et al. Process mining manifesto.
In International Conference on Business Process Management, pages 169–
194. Springer, 2011.

[210] Wil MP Van der Aalst and Minseok Song. Mining social networks: Uncov-
ering interaction patterns in business processes. In International confer-
ence on business process management, pages 244–260. Springer, 2004.

[211] Wil MP van der Aalst and HMW (Eric) Verbeek. Process mining in web
services: The WebSphere case. IEEE Data Eng. Bull., 31(3):45–48, 2008.

[212] Dirk van der Linden, Irit Hadar, and Anna Zamansky. What practitioners
really want: requirements for visual notations in conceptual modeling.
Software & Systems Modeling, 18(3):1813–1831, 2019.

[213] Dirk van der Linden, Anna Zamansky, and Irit Hadar. How cognitively ef-
fective is a visual notation? on the inherent difficulty of operationalizing
the physics of notations. In Rainer Schmidt, Wided Guédria, Ilia Bider,
and Sérgio Guerreiro, editors, Enterprise, Business-Process and Informa-
tion Systems Modeling - 17th International Conference, BPMDS 2016, 21st
International Conference, EMMSAD 2016, Held at CAiSE 2016, Ljubljana,
Slovenia, June 13-14, 2016, Proceedings, volume 248 of Lecture Notes in
Business Information Processing, pages 448–462. Springer, 2016.

[214] Dirk Van Der Linden, Anna Zamansky, and Irit Hadar. A framework for im-
proving the verifiability of visual notation design grounded in the physics
of notations. In 2017 IEEE 25th International Requirements Engineering
Conference (RE), pages 41–50. IEEE, 2017.

[215] Oliver van Porten. Development and Evaluation of a Graphical Notation
for Modelling Resource-Oriented Applications. Master’s thesis, FernUni-
versität, Hagen, Germany, 2012.

310 Bibliography

[216] HMW Verbeek, JCAM Buijs, BF Van Dongen, and Wil MP van der Aalst.
ProM 6: The process mining toolkit. Proc. of BPM Demonstration Track,
615:34–39, 2010.

[217] Ruben Verborgh, Michael Hausenblas, Thomas Steiner, Erik Mannens, and
Rik Van de Walle. Distributed Affordance: An Open-World Assumption for
Hypermedia. In Proceedings of the 4th International Workshop on RESTful
Design, pages 1399–1406. ACM, 2013.

[218] John Vester. RESTful API lifecycle management. https:

//unityconstruct.org/media/doc/coding/dzone-ref-cardz/

4960646-dzone-rc238-restfulapilifecyclemanagement.pdf, 2017.

[219] Markus Voelter, Bernd Kolb, Tamás Szabó, Daniel Ratiu, and Arie van
Deursen. Lessons learned from developing mbeddr: a case study in lan-
guage engineering with MPS. Software & Systems Modeling, 18(1):585–
630, 2019.

[220] Markus Völter, Michael Kircher, and Uwe Zdun. Remoting Patterns: Foun-
dations of Enterprise, Internet and Realtime Distributed Object Middleware.
Wiley, 2013.

[221] Kishor Wagh and Ravindra Thool. A comparative study of SOAP vs REST
web services provisioning techniques for mobile host. Journal of Informa-
tion Engineering and Applications, 2(5):12–16, 2012.

[222] Sawitree Weerapong, Parham Porouhan, and Wichian Premchaiswadi.
Process mining using α-algorithm as a tool (a case study of student reg-
istration). In 2012 Tenth International Conference on ICT and Knowledge
Engineering, pages 213–220. IEEE, 2012.

[223] Mathias Weske. Business Process Management: Concepts, Languages, and
Architectures. Springer, 2nd edition, 2012.

[224] RICHARD Wettel, M Lanza, and R Robbes. Empirical validation of
codecity: A controlled experiment. Tech Report 2010/05, 2010.

[225] Richard Wettel, Michele Lanza, and Romain Robbes. Software systems as
cities: A controlled experiment. In 2011 33rd International Conference on
Software Engineering (ICSE), pages 551–560. IEEE, 2011.

https://unityconstruct.org/media/doc/coding/dzone-ref-cardz/4960646-dzone-rc238-restfulapilifecyclemanagement.pdf
https://unityconstruct.org/media/doc/coding/dzone-ref-cardz/4960646-dzone-rc238-restfulapilifecyclemanagement.pdf
https://unityconstruct.org/media/doc/coding/dzone-ref-cardz/4960646-dzone-rc238-restfulapilifecyclemanagement.pdf

311 Bibliography

[226] Petia Wohed, Marlon Dumas, Arthur HM Ter Hofstede, and Nick Russell.
Pattern-based analysis of BPMN-an extensive evaluation of the control-
flow, the data and the resource perspectives. 2006.

[227] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn
Regnell, and Anders Wesslén. Experimentation in software engineering.
Springer Science & Business Media, 2012.

[228] HyunKyung Yoo, YooMi Park, and Hyunjoo Bae. Semi-automatic semantic
service annotation for SOAP and REST web services. In Digital Enterprise
and Information Systems, pages 70–77. Springer, 2011.

[229] Johannes Maria Zaha, Alistair Barros, Marlon Dumas, and Arthur ter Hof-
stede. Let’s dance: A language for service behavior modeling. In On
the Move to Meaningful Internet Systems 2006: CoopIS, DOA, GADA, and
ODBASE, pages 145–162. Springer, 2006.

[230] Uwe Zdun and Mark Strembeck. Reusable architectural decisions for DSL
design: Foundational decisions in DSL projects. In Michael Weiss, editor,
EuroPLoP 2009: 14th Annual European Conference on Pattern Languages
of Programming, Irsee, Germany, July 8-12, 2009, volume 566 of CEUR
Workshop Proceedings. CEUR-WS.org, 2009.

[231] Andreas Zeller, Thomas Zimmermann, and Christian Bird. Failure is a
four-letter word: a parody in empirical research. In Proceedings of the
7th International Conference on Predictive Models in Software Engineering,
pages 1–7, 2011.

[232] Zhongheng Zhang. Missing data imputation: focusing on single imputa-
tion. Annals of translational medicine, 4(1), 2016.

[233] Olaf Zimmermann. Microservices tenets. Computer Science - Research and
Development, 32(3):301–310, Jul 2017.

[234] Olaf Zimmermann, Mirko Stocker, Daniel Lübke, and Uwe Zdun. Interface
representation patterns: Crafting and consuming message-based remote
apis. In Proceedings of the 22nd European Conference on Pattern Languages
of Programs, page 27. ACM, 2017.

[235] Michael Zimoch, Rüdiger Pryss, Thomas Probst, Winfried Schlee, and
Manfred Reichert. The repercussions of business process modeling no-
tations on mental load and mental effort. In Proc. BPM, pages 133–145.
Springer, 2018.

312 Bibliography

[236] Michael zur Muehlen, Jeffrey V. Nickerson, and Keith D. Swenson. Devel-
oping web services choreography standardsâĂŤthe case of REST vs. SOAP.
Decision Support Systems, 40(1):9 – 29, 2005.

[237] Michael Zur Muehlen, Jan Recker, and Marta Indulska. Sometimes less
is more: Are process modeling languages overly complex? In 2007
Eleventh International IEEE EDOC Conference Workshop, pages 197–204.
IEEE, 2007.

[238] Ivan Zuzak, Ivan Budiselic, and Goran Delac. A Finite-State Machine Ap-
proach for Modeling and Analyzing RESTful Systems. Journal of Web En-
gineering, 10(4):353–390, December 2011.

	Contents
	List of Figures
	List of Tables
	I Motivation and Context
	Introduction
	Context
	Problem Statement
	Research Questions
	RESTful Conversations
	Modelling REST APIs
	Modelling Techniques Support
	DSL Benefits

	Outline
	Publications Overview

	REST APIs
	APIs, Web APIs and Service oriented architecture
	REST Architectural Style
	REST Constraints
	REST Architectural Entities

	RESTful Conversations
	REST APIs Description Languages
	Chapter Summary

	State of the Art
	Modeling REST APIs
	Modelling REST APIs Structure and Behaviour
	Modelling RESTful Interactions in Microservice Architecture

	Designing Domain Specific Languages
	Designing Modelling Tools
	Existing Tool Studies
	Maturity Model and Reference Architectures
	Textual DSL Syntax
	Textual Editor's Features

	Evaluating DSLs and DSL Tooling
	Chapter Summary

	II RESTalk
	RESTalk Language
	RESTalk Requirements Layer
	Language Scope and Purpose
	Language Requirements

	RESTalk Language Layer
	RESTalk Abstract Syntax and Semantics
	RESTalk Graphical Representation
	RESTalk Textual Representation

	Chapter Summary

	RESTalk Tooling
	RESTalk Envisioned Ecosystem
	Design First Approach - RESTalk Modeler
	RESTalk Graphical Editor
	RESTalk Textual Editor

	Code First Approach - RESTalk Miner
	RESTalk Graph and Comparative Statistics Visualization
	Pattern Matching, Discovery and Visualization

	Chapter Summary

	III RESTalk Evaluation
	RESTalk Formative Evaluation
	Exploratory Survey
	Survey design
	Survey sample
	Survey results
	Discussion
	Threats to Validity

	RESTalk Expressiveness
	Modelling RESTful Conversation Patterns
	One Client - One Server Conversation
	Multiple Clients - One Server Conversation
	Composite Conversation

	Chapter Summary

	RESTalk Summative Evaluation
	Design Validation of the Graphical RESTalk Representation
	RESTalk vs Non-domain Specific Languages
	Controlled Experiment
	Experiment Design and Setup
	Experiment Results
	Statistical Significance Analysis
	Discussion

	Chapter Summary

	Conclusions
	Summary
	Contributions

	Limitations
	Future Work
	Requirements and Language Layers
	Tooling
	Evaluation Layer

	Appendices
	Exploratory Survey Questions
	Controlled Experiment Tasks and Survey
	Bibliography

