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Abstract
JavaScript, the most popular language on the Web, is rapidly
moving to the server-side, becoming even more pervasive.
Still, JavaScript lacks support for shared memory paral-
lelism, making it challenging for developers to exploit mul-
ticores present in both servers and clients. In this paper we
present TigerQuoll, a novel API and runtime for parallel pro-
gramming in JavaScript. TigerQuoll features an event-based
API and a parallel runtime allowing applications to exploit a
mutable shared memory space. The programming model of
TigerQuoll features automatic consistency and concurrency
management, such that developers do not have to deal with
shared-data synchronization. TigerQuoll supports an inno-
vative transaction model that allows for eventual consistency
to speed up high-contention workloads. Experiments show
that TigerQuoll applications scale well, allowing one to im-
plement common parallelism patterns in JavaScript.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel Programming

General Terms Languages, Performance

Keywords JavaScript, Event-based Programming, Paral-
lelism, Eventual Transactions

1. Introduction
JavaScript was initially designed as a single-threaded pro-
gramming language for executing small client-side scripts
within Web browsers. To support increasingly complex Web
applications such as Facebook or GMail, recent research
has focused on increasing the performance of JavaScript en-
gines. As a result, modern engines such as Google’s V8
and Mozilla’s SpiderMonkey feature advanced optimiza-
tions such as just-in-time compilation and inline caching.

Despite of these advancements, one fundamental issue
with JavaScript-based applications remains unsolved, that
is, the poor support for parallelism. As the Web continues
evolving towards a mature application-hosting platform, the
lack of parallelism in JavaScript would eventually corre-
spond to a serious technological barrier. Furthermore, the
wide-spread deployment of JavaScript-based frameworks
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for server-side development has increased the pervasiveness
of the language, making JavaScript a central language for
the entire Web development stack. As a result, frameworks
such as Microsoft Azure and Node.JS [2] offer a convenient
solution to develop Cloud-hosted Web applications using
JavaScript as the sole language for both the client and the
server.

The limited support for parallelism in JavaScript con-
strains the class of applications which can be executed in the
browser, thus preventing Web developers from fully exploit-
ing parallel infrastructures such as multicore machines com-
monly available both on the client and on the server. Cur-
rent actor-based solutions such as WebWorkers [1] limit the
way developers can exploit parallelism, as they force them to
reason in terms of parallel processes, message passing, and
share-nothing parallelism. Although well suited for master-
worker parallelism, the Actor model of concurrency appears
to be too limited for algorithms and applications that can
benefit from more complex parallel patterns [24]. Moreover,
share-nothing parallelism represents a strong limitation for
JavaScript developers, as it clashes with the programming
style of JavaScript, based on single-threaded asynchronous
programming and shared memory for accessing the Docu-
ment Object Model (DOM) of a Web page.

We advocate a different solution, claiming that the paral-
lel support for JavaScript should come without violating the
programming style of JavaScript, that is, asynchronous pro-
gramming [16]. To substantiate our claim, in this paper we
present TigerQuoll, a fully JavaScript-compatible execution
engine which allows scripts to be executed in parallel using
a flexible event-based API.

TigerQuoll makes the following contributions to advanc-
ing the state-of-the-art in the field of parallel programming
for the Web:

(1) Programming Model. The TigerQuoll API extends
single-threaded event-based JavaScript programming with
support for parallelism. The resulting programming model
allows the developer to exploit parallelism by means of par-
allel event handlers. Executing multiple event handlers in par-
allel allows the JavaScript developer to adopt a familiar pro-
gramming style based on asynchronous callback invocation.

(2) Eventual Transactions. Parallel execution is protected
using a software transactional memory (STM). In addition,
TigerQuoll introduces a novel form of transactions called
eventual transactions which ensure that the parallel execu-
tion of event handlers accessing mutable global shared state
through a controlled mechanism always succeed. Eventual
transactions help improve scalability for certain workloads.

(3) Parallel JavaScript Engine. JavaScript applications are
executed by the TigerQuoll parallel execution engine. Its run-



time executes multiple event handler functions in parallel,
ensuring a consistent view of the shared memory.

To the best of our knowledge, TigerQuoll is the first par-
allel JavaScript engine supporting mutable shared state. Fur-
thermore, we are the first introducing eventual transactions
for software transactional memory.

This paper is structured as follows. Section 2 introduces
the main design goals of TigerQuoll. Section 3 introduces
the event-based API, while Section 4 describes how events
can be used to build high-level parallel constructs. Section 5
provides a detailed description of the TigerQuoll memory
model. Section 6 provides details about the architecture of
the TigerQuoll engine. Section 7 presents an initial perfor-
mance evaluation of the engine, whose results are discussed
in Section 8. Section 9 presents related work, and Section 10
concludes.

2. Parallelizing JavaScript
Introducing parallelism in a language that has not been de-
signed for it is a challenging task. Our solution preserves
compatibility with existing JavaScript applications allow-
ing developers to write parallel code adopting a program-
ming style familiar with the one of single-threaded sequen-
tial asynchronous programming. In more detail, TigerQuoll
has been designed to meet the following requirements:

(1) Backward compatibility. Existing applications de-
signed to run on single-threaded JavaScript engines shall be
fully compatible with TigerQuoll. To guarantee strict com-
patibility the sequential semantics shall be enforced by the
runtime, which needs to execute existing legacy code strictly
sequentially (i.e., in the same thread).

(2) Forward compatibility. Applications developed for
parallel execution on the TigerQuoll parallel engine shall also
be executable by existing single-threaded JavaScript engines
(at the cost of losing the performance benefits coming from
parallelism).

(3) Implicit parallel entities. The complexity of the pro-
gramming model of JavaScript shall not be increased by
adding explicit parallel entities such as threads or processes.
Therefore, no coordination mechanisms (e.g., locks, barriers,
or message queues) need to be exposed to the developer.

(4) Event-based concurrency. The only concurrency con-
trol mechanism supported by the programming model shall
be the one already present in single-threaded JavaScript, that
is, event-based concurrency. Asynchronous event-based pro-
gramming is therefore extended (through a novel API) to ex-
press parallel computations.

(5) Shared memory space. To preserve the existing
single-threaded JavaScript programming model, a mutable
global state shall be supported by the programming model.
However, the developer shall not be responsible for ensuring
thread-safety and liveness. Instead, the programming model
shall automatically guarantee atomicity, consistency, and iso-
lation. Such properties shall be guaranteed transparently, as
the developer shall not be in charge of adding explicit atomic
blocks.

The main difference of the TigerQuoll programming
model over existing solutions for parallel JavaScript is that
it is conveniently compatible with the programming style
JavaScript developers are already familiar with, not requir-
ing developers to reason in terms of either share-nothing
parallelism (as in WebWorkers [1]) or immutable shared
state (as in Intel’s River Trail [19] or Parallel Closures [23]).
Indeed, the TigerQuoll programming model allows devel-

opers to write parallel JavaScript applications adopting a
parallelism model with mutable shared-memory and asyn-
chronous event-based concurrency, allowing applications to
transparently benefit from the presence of multiple cores.

3. The Programming Model of TigerQuoll
The programming model of TigerQuoll is based on event
production and consumption. Every JavaScript object in
TigerQuoll can produce and consume events. The resulting
event-based model is a set of low-level APIs which can be
directly used for parallel programming, or as basic building
blocks for developing convenient higher-level parallel prim-
itives. This is discussed in the next section, where common
high-level parallel constructs are illustrated.

3.1 Core Event API

The two main primitives for event-based programming in
the TigerQuoll API are on and emit. Using the on primi-
tive, any object can specify an event handler callback func-
tion to be associated with any event. Events are specified us-
ing strings (called event labels). The emit primitive is used
to notify the runtime that an event has happened. It is a non-
blocking primitive which immediately returns. The on prim-
itive is memory-less, meaning that it is not triggered by any
event emitted before the callback was registered. Events can
also be associated with parameters, like in this example call-
back registration:

1 obj.on('connection', function(fd) {
2 // open the 'fd' descriptor and handle the request
3 });

which can be triggered by the following event emission:

1 // somewhere in the connection handling code...
2 obj.emit('connection', 33)

The two pieces of code correspond to how incoming con-
nections are handled by a JavaScript server (e.g., the Node.JS
socket server). An object responsible for accepting the incom-
ing request (obj) is registered to listen for an incoming con-
nection using on. When the runtime receives a new connec-
tion on a listening socket the ’connection’ event is emit-
ted, and the socket descriptor on which the connection has
been accepted is passed to the event handler. The callback
associated with the ’connection’ event is then invoked
with the actual value of the fd variable as argument (i.e., 33
in the example). Multiple calls to emit correspond to multi-
ple invocations of the callback function handling the event.

To ensure that a callback is executed only once, and is then
immediately unregistered, the API provides the once()
primitive:

1 obj.once('fireAndForget', function() {
2 // do something...
3 })
4 obj.emit('fireAndForget')
5 obj.emit('fireAnotherEvent')
6 obj.emit('fireAndForget')

The once() primitive registers the callback to be executed
only once. Hence, the second time emit is called with
’fireAndForget’ as argument (line 6) it will not cause
the callback to be re-executed again. The emit primitive is
asynchronous and does not offer any ordering guarantees.
As a consequence, the two events (’fireAndForget’ and
’fireAnotherEvent’) in the example may be executed in
any order.



The dual primitive is never():
1 obj.never('ev')

which is used to remove the callback handler for a specific
event identifier.

3.2 Event-based Parallelism

The on/emit API is similar to the one found in server-side
event-based frameworks à la Node.JS as well as many client-
side libraries for JavaScript (e.g., JQuery or Async.JS). Differ-
ently from such frameworks, event handlers (i.e., callbacks)
are executed by the runtime in parallel. Consider the follow-
ing example:

1 var stats = { tot : 0, found : [] }
2 obj.on('data', function(n) {
3 if(isPrime(n)) {
4 stats.tot++
5 stats.found.push(n)
6 }
7 })
8

9 var inArr = new Array(1, 2, 3, 4, ...)
10 for(var i=0; i<inArr.length; i++)
11 obj.emit('data', inArr[i])

The example corresponds to a simple primes checker. The
checker operates on an array of numbers (inArr) and asyn-
chronously evaluates for every element whether the given
number is prime by calling the isPrime(n) function. When
a prime number is found, it is saved.

When executed by an event-driven JavaScript framework
such as Node.JS, the code above will process all the ele-
ments of the array sequentially, because JavaScript is single-
threaded by design, and so are the existing JavaScript execu-
tion engines. Conversely, the code in the example is executed
in parallel by the TigerQuoll runtime, using all the cores in
the system. This is made possible by the TigerQuoll engine,
which executes multiple event handlers (i.e., the callback for
the ’data’ event) in parallel. Furthermore, event handlers
are guaranteed to run atomically with respect to other han-
dlers. Therefore, the counter in the example is guaranteed to
have a consistent value at the end of the computation. As the
whole event emitter is guaranteed to execute atomically, also
the array keeping track of all the prime numbers found dur-
ing the parallel computation will eventually be consistent.

3.3 Event Handler Synchronization

Asynchronous, event-based programming is the default ab-
straction for dealing with I/O in JavaScript. Thanks to the
event-based programming model, a single-threaded applica-
tion can trigger multiple downloads sequentially and wait
for multiple transfers to happen in parallel, thus overlap-
ping the download of multiple remote resources thanks to
mechanisms such as select or epoll (implemented either
by the OS Kernel or by the browser). With single-threaded
JavaScript, the asynchronous interaction with multiple re-
sources (for instance, multiple ongoing downloads) requires
that the single JavaScript thread never blocks.

The ability to execute multiple event handlers asyn-
chronously and in parallel introduces a more stronger need
for event synchronization. In such a context it makes sense
to provide the developer with a mechanism to automatically
synchronize specific event execution with other events com-
pletion. Such mechanism could then be exploited to schedule
the execution of certain event handlers upon the completion
of other events. This is made possible in TigerQuoll through
the waitall primitive, which can be used to register event
guards. Consider the following example:

1 // register an event handler for 'compute'
2 obj.on('compute', function() {
3 // do something...
4 })
5

6 // trigger the 'compute' event N times
7 for(var i=0; i<N; i++)
8 obj.emit('compute')
9

10 // register an event guard for 'compute'
11 obj.waitall('compute', function() {
12 // all the 'compute' events have been emitted
13 // and all the corresponding event handlers
14 // have returned
15 })

In the code above an event is emitted several times, caus-
ing the engine to execute the corresponding callbacks in
parallel. The waitall primitive is used to register another
event handler which is executed after all the compute events
have been processed (i.e., when all the parallel callbacks have
been executed and have returned). One important consider-
ation about the waitall primitive is that it allows to wait
for any number of events emitted by the currently running
event handler, thus allowing for event composition.

As for the on primitive, waitall is memory-less: if the
event it is required to wait for has been emitted and exe-
cuted before a call to waitall, the event emission cannot
be tracked, and the callback associated with the event guard
will not be executed. In particular, event guards are guaran-
teed to track the event emission of all the events emitted by
the currently running event handler. As a consequence, event
guards cannot guarantee to track events emitted by multiple
event handlers concurrently.

4. High-level Parallelism
The TigerQuoll Core Event API offers a relatively low ab-
straction level. This low-level substrate can be conveniently
used to build high-level mechanisms and constructs that
Web developers can use to exploit parallelism in their every-
day life. In this section we introduce some of the possible
high-level constructs (i.e., asynch, finish, map/reduce) that
can be built upon the Core Event API of TigerQuoll.

4.1 Futures and Task Parallelism

Many programming languages feature a notion of future
tasks [17]. These can be introduced in JavaScript with the
spawn method :

1 // Execute the 'fun' function with argument 'arg'
2 // in parallel, and get a future as the result
3 var future = spawn(fun, arg)
4 // register a callback to get the result
5 future.get(function(result) {
6 // 'result' contains the return value
7 // for 'fun(args)'
8 })

In the example, the fun function is executed asyn-
chronously in parallel, and the result is fetched calling get,
which will call the given callback with the function return
value once its execution has completed.

Another task parallelism construct many languages fea-
ture is lightweight tasks for immediate parallel execution.
Such tasks are usually spawned through an asynchronous
function call, and the runtime provides a way for synchroniz-
ing on task completion. For example, in X10 [7] such primi-
tives are called async and finish. Having such primitives
in JavaScript would simplify the way parallel computations
can be developed. They can be used as in the following ex-



1 var spawn = function(f, arg) {
2 // Create an object to track the state of the async call
3 var _A = {}
4 // Register the function for async execution
5 _A.on('go!', function() {
6 // Call the function
7 _A.result = f(arg)
8 })
9 // Register the future callback

10 .on('get!', function(cb) {
11 cb(_A.result)
12 })
13 // Fire the event to call the function
14 .emit('go!')
15 // Return the future object
16 return {
17 get: function(callback) {
18 // Register the callback to be called once the
19 // result has been computed, or return it
20 if (_A.result)
21 return callback(_A.result)
22 _A.emit('get!', callback)
23 } }
24 }

1 var async = function(fun, a, b) {
2 // schedule 'fun' for asynchronous execution
3 // using the 'finish' global object as the
4 // event emitter
5 finish.emit('go', fun, a, b)
6 }
7 var finish = function(f) {
8 // register a callback for executing functions
9 // in parallel using the 'finish' (this) object

10 finish.on('go', function(fun, a, b) {
11 fun(a, b)
12 })
13 // execute the function, which will call
14 // async multiple times
15 f()
16 // Return the ondone function
17 return {
18 ondone : function(callback) {
19 // register a wait guard for the
20 // 'go' event
21 finish.waitall('go', function() {
22 callback()
23 })
24 }}

Figure 1. Simplified implementation of spawn, async, and finish using the TigerQuoll API

ample, which applies a function fun to all the elements of an
array (data) in parallel:

1 var data = [...] // the array to be processed
2

3 var fun = function(index) {
4 data[index] = someProcessing(data[index])
5 }
6 finish(function() {
7 for(var i in data)
8 async(fun, i)
9 }).ondone(function() {

10 // since all the parallel tasks have completed,
11 // now the data array contains the result
12 })

As shown in Figure 1, the JavaScript version of spawn
makes use of the TigerQuoll API by means of an auxiliary
object to keep track of the state of the parallel tasks’ execu-
tion (called A). The spawn primitive makes use of the aux-
iliary object to register an event to trigger the asynchronous
invocation of the function (’go!’), and returns an object rep-
resenting the future. When the get method of the future is
called, a callback is registered which will eventually be called
with the result of the asynchronous function execution.

The implementation of the async and finish primitives
uses another shared object (i.e., the finish function itself) to
associate the emission of all the parallel tasks being executed
by async with a same event emitter object. In this way, the
waitall primitive can be used to postpone the ondone
callback execution until all the tasks have been executed.
Support for nested finish invocations could be achieved
by using a stack of shared objects instead of the finish
function itself (not shown in the Figure).

4.2 Structured Parallelism

Another example of high-level parallelism constructs which
can be built with the event-based API is represented by some
very common structured parallelism patterns (a.k.a. Algo-
rithmic Skeletons [9, 24]). Such patterns simplify the way
common parallel patterns can be programmed by introduc-
ing the notion of structured parallel patterns. Very popular
examples of such patterns are Map/Reduce [11] and Scat-
ter/Gather [8].

Building such patterns on top of the TigerQuoll API is
straightforward. Consider the following implementation of a
MapReduce-like computation for processing all the elements
of a given array in parallel:

1 Array.prototype.mapred = function(map, reduce) {
2 var obj = {}
3 obj.waitall('go', function() {
4 var result = reduce(this)
5 obj.emit('donePar', result)
6 })
7 // register an event for parallel processing
8 obj.on('go', function(fun, x) {
9 fun(x)

10 })
11 // emit an event for
12 for(var v=0; v<this.length; v++)
13 obj.emit('go', map, this[v])
14

15 return {
16 ondone : function(fincb) {
17 obj.on('donePar', fincb)
18 }}
19 }

As in common MapReduce computations, the example
above applies a given map function to all the elements of
a fixed size array, and eventually calls a reduction function
returning the result. The event-based parallel MapReduce
can be easily invoked in the following way:

1 // declare an array
2 var a = new Array(1,2,...)
3

4 // execute the mapreduce using two arbitrary functions
5 a.mapred(map, reduce)
6 .ondone(function(result) {
7 // the variable 'result' contains the
8 // result of the computation
9 })

5. Shared Memory Model
Unlike existing approaches to parallelize JavaScript which
are either based on message-passing (i.e., share-nothing) or
on shared but immutable data, TigerQuoll parallel event
handlers can access and also modify shared data. Global un-
controlled heap access requires the developer to deal with



synchronization mechanisms (e.g., locks or barriers [21])
which often result in complex and error-prone programming
techniques. Access to heap objects can be mediated by us-
ing atomic blocks, usually implemented through Software
Transactional Memory (STM) or Lock Inference, but such
approaches would again require the developer to explicitly
identify which portion of the code is to be protected with an
atomic block, and data races or race conditions would still be
possible for unprotected code.

TigerQuoll adopts a radically simplified solution, with the
goal of keeping the programming model as close as pos-
sible to the one of single-threaded JavaScript. The goal is
not to completely hide parallelism from the developer. In-
stead, the developer must be aware of the fact that event
handlers are executed in parallel, but all the data consis-
tency issues are automatically handled by the runtime. To
this end, TigerQuoll executes automatically and transpar-
ently every parallel event handler shielded behind an STM-
mediated atomic block. This has the advantage of giving the
developer the impression that every handler has a consistent
view of the global shared state as it would have when being
executed by a single-threaded execution engine. As opposed
to introducing an explicit atomic block construct, we chose
to associate atomic semantics with the event handlers, which
are already the basic unit of parallelization in TigerQuoll.

5.1 Eventual Transactions

Despite the benefit of keeping the programming model of
TigerQuoll as close as possible to the one of single-threaded
JavaScript, STMs offer poor performance for certain work-
load types [18]. Apart from the fixed cost of managing a
transaction’s metadata, one of the problems with STM’s per-
formance lies in the fact that for high-contention workloads
transactions are forced to abort frequently, reducing effi-
ciency and wasting computing resources. Although the de-
bate on the maturity of STMs is still ongoing [6, 14], there is
some general consensus that STM-based solutions have scal-
ability limits. For certain workloads, TigerQuoll offers the
possibility to relax the default transactional isolation allow-
ing to modify shared data using a different, more efficient
transactional mechanism. This novel mechanism, called even-
tual transactions, corresponds to a class of transactions which
never fail to commit, and always succeed in updating the
global state after their execution.

The key consideration for speeding up transactional
workloads in TigerQuoll is that some algorithms do not re-
quire shared data to be consistent during the execution of
the transaction, but only after commit has happened. For in-
stance, this is the common case when parallel tasks are per-
forming computations on partial results on a shared data
structure. This consideration can be used to implement trans-
actions which never fail to commit, as data inconsistencies on
the same shared value during the transaction do not mean
any incorrect semantics, as long as the transactional system
is given a way to solve the conflict when the transaction com-
pletes.

Consider the case of a JavaScript word counter, that is, a
function to count the frequency of the words within a text.
The function consumes a stream of data by tokenizing each
input chunk in order to count the number of occurrences of
each word. Such functions are very common in server-side
applications for buildings systems such as Web crawlers or
to generate trending topics for services such as Twitter.

As every event handler is executed atomically and with
isolation, there is no way to let event handlers communicate

1 // shared object to collect the statistics
2 var stats = {
3 total : 0 // total number of words
4 word : new Array() // occurrences of each word
5 }
6 finish(function() {
7 // open and scan the input file
8 open(url, function(chunk) {
9 // spawn a parallel task for each chunk

10 async(function() {
11 var tokens = tokenize(chunk)
12 // for each token update the statistics
13 for(var i=0; i<tokens.length; i++) {
14 var word = tokens[i]
15 if( ! stats.word[word]) {
16 stats.total++
17 stats.word[word] = 0
18 }
19 stats.word[word]++
20 } }) }) })
21 .ondone(function() {
22 // once all chunks have completed return the statistics
23 console.log(stats.total)
24 })

Figure 2. Parallel word count function in TigerQuoll

partially computed values. In other words, the result of the
execution of any event handler (including eventual transac-
tions) become visible to other handlers only when the han-
dler terminates (and commits its result). This execution se-
mantics can be combined with the waitall primitive, which
guarantees that a given event handler is executed once a set
of other parallel events have been successfully executed. For
instance, this is the case for the MapReduce example in Sec-
tion 4.2 where the result variable is always guaranteed to
be consistent.

The code in the example (Figure 2) reads from a data
stream by opening a URL (which could correspond to a
remote Web resource or a file stored locally). The URL is
opened through the open function, which invokes its call-
back as soon as a data chunk is available. As the callback
uses async, the chunks will be processed in parallel. For
each chunk, the parallel callbacks will tokenize the string and
will update the global shared object containing the statistics
(stats).

One important consideration about the example is that
the stats object (more precisely, its fields) is not required
to be consistent during the execution of the parallel event
handlers, as what really matters for the word counter is to
produce a consistent result, i.e., to return a consistent (and
correct) value of stats. In other words, the fields of the
stats object need to be consistent only eventually, i.e., after
all parallel callbacks have completed.

This property can be explicitly specified by the developer
by marking certain fields of an object as eventual. In the exam-
ple this can be done using the markEventual() primitive
provided by the TigerQuoll API:

1 // The 'total' field is eventual
2 stats.markEventual('total', sum)
3 // All the elements of the array are eventual
4 stats.word.markEventual('*', sum)

Marking a field as eventual tells the runtime not to fail in
case it detects an inconsistent value of the field at commit-
time. This implies that the runtime needs to know how to
deal with inconsistent values. More precisely, it needs to
know how to accumulate the partial value of an eventual field
when committing its value to the global shared state. This
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is done by passing another argument to markEventual(),
called the accumulator function. In the example above the
accumulator function only has to add the partially computed
value of field to the global value. This can be specified as
follows:

1 function sum(global, initial, final) {
2 return global+(final-initial)
3 }

Accumulator functions receive three arguments as input,
and return the new value to be stored in the global object. The
three input arguments are (1) the value of the global field at
the moment the accumulator function is called, (2) the initial
value of the field before the parallel event handler was called,
and (3) the final value of the field at the end of the execution
of the event handler.

In the example, eventual fields are used to count, and
therefore the accumulator function corresponds to a sim-
ple sum function adding the partial result as evaluated by
the event handler to the global value. This is natural for
fields with numeric values. Since the TigerQuoll program-
ming model does not constrain the type of fields which can
be marked eventual, other kinds of accumulator functions
may be specified by the developer. The only constraint for
accumulator functions is that they must be side-effect free
and they should not access any shared object different from
the ones they are passed as arguments.

6. Architecture
In this section we describe the principal design decisions be-
hind the TigerQuoll parallel engine architecture. The engine
is a prototype JavaScript engine derived from Mozilla Spi-
derMonkey [4]. The most relevant changes include modifica-
tions to the native implementation of the JavaScript Object
class to associate every object with the needed transactional
metadata. Moreover, the Object class has also been modi-
fied to enable objects with support for event emission, con-
sumption and synchronization through the on, emit and
waitall primitives. Every object also holds a private table
of event handlers registration. The TigerQuoll runtime runs
multiple threads accessing the same memory heap mediated
by an STM layer.

The TigerQuoll runtime features an event-based execu-
tion system based on a simple master-worker pattern for pro-
cessing multiple events in parallel. The system is composed
of multiple threads holding a pointer to a shared double-
ended queue containing references to event objects. Events
are consumed nondeterministically by the threads, therefore
allowing for parallelism.

To guarantee compatibility with existing JavaScript ap-
plications, the TigerQuoll engine behaves as a standard
non-parallel engine as long as the TigerQuoll runtime is
not explicitly activated. Once active, JavaScript applica-
tions can run parallel tasks only through the event-based
API (e.g., through on/emit) or through higher-level con-
structs already present in the TigerQuoll runtime (for in-
stance async). This ensures that existing applications that
use neither the event-based API nor the TigerQuoll runtime
will always run sequentially.

To guarantee TigerQuoll applications to run in non-
parallel JavaScript engines, the TigerQuoll event-based API
can be implemented in pure JavaScript by extending the pro-
totype of the Object object. All the event emissions and con-
sumptions can be therefore made asynchronous just by us-
ing a global queue shared by all the objects within the same
application. Indeed, this is the same execution model as in
Node.JS, which handles event consumption and emission in
the JavaScript space.

6.1 Transactional Support

The TigerQuoll runtime features a STM with global version-
ing clock, lazy version management, and commit-time lock-
ing [18]. Conflicts are detected both at commit-time and dur-
ing transactions’ execution. The versioning management al-
gorithms implemented by the TigerQuoll STM are similar to
the ones of the TL2 STM [12], with the main difference that
TigerQuoll features per-field versioning (as opposed to per-
object versioning) with per-object locking.

The commit-time locking with redo logs fits well with the
event-based design of the TigerQuoll engine, as state changes
are made persistent only after the transaction has completed.
This also guarantees that read-only transactions (i.e., read-
only event handlers) can operate in parallel without any
lock acquisition. The per-field version management prevents
transactions operating on different fields of the same object
from failing because of versioning conflicts.

Transactions are committed in three distinct steps, namely
(1) non-eventual fields commit, (2) eventual fields commit,
and (3) deferred event emission. The whole process is sum-
marized in Figure 3, while the three phases are described in
detail in the following sections.

6.1.1 Non-eventual Fields Commit

Read and write operations on non-eventual fields are medi-
ated through a redo log and two sets tracking field reads and
field writes, respectively. The redo log keeps a thread-local
copy of global objects as locally computed by each parallel
event handler. The redo log is managed with a lazy strategy,



1 // tx struct which holds all the logs
2 Transaction tx;
3 // start the transaction
4 do {
5 // event handler execution: the redo_log
6 // is created and modified as well as the
7 // read set, the write set, the eventual log
8 // and the events log
9 } while( ! Tx_Commit_redo(&tx) );

10 // redo_log committed: eventual fields can be processed
11 foreach(JS_OBJECT obj in eventual_log)
12 // Get a reference to the global shared object
13 JSObject *global = tx->eventual[obj]->global;
14 // --- (1) Lock the object --- //
15 Lock(&global)
16 // scan all its eventual fields
17 foreach(EV_FIELD f in global->ev_fields) {
18 // Get the accumulator for this field
19 jsval accFun = global->acc_fun[f];
20 // prepare the arguments for the accumulator
21 jsval *argv;
22 argv[0] = JS_ReadField(global, f)
23 argv[1] = tx->eventual[iter]->delta
24 argv[2] = tx->eventual[iter]->snapshot
25 // --- (2) Execute the accumulator function --- //
26 jsval result = JS_Execute(&accFun, argv)
27 // store back the result
28 JS_WriteField(global, f, result)
29 }
30 // Release the lock
31 UnLock(&global)
32 }

Figure 4. Eventual transactions commit-phase pseudocode.

meaning that global object fields are copied to the redo log
only when accessed for the first time.

Conflicts are resolved using per-field versioning. Each
time a transaction is executed, it reads the most recent value
of a shared global clock (a 64-bit integer), obtaining a Read
Version number (RV) which is used to validate both the read
and write sets. Both during the transaction and at commit
time, the RV of the transaction is compared against the ver-
sion of the fields as stored in the corresponding global state
field. When a field with a more recent version is found,
the transaction is aborted, as the current value of the field
has been changed by another transaction in the meanwhile.
Modifications to the object structure (i.e., field additions and
deletions) are treated as special cases of transactional write
operations. At commit-time, the STM (1) acquires all the per-
object locks of all the fields in the write set; (2) validates the
the read set against the RV; (3) in case of no conflicts (either
with lock acquisition or read version management), com-
mitts and updates the shared objects writing the new values.
(4) Eventually it releases all the locks.

6.1.2 Eventual Fields Commit

Eventual transactions have the property of never failing.
They always commit by accumulating data in shared fields
marked as eventual through a user-given function called ac-
cumulator. This is made possible by operating on a thread-
local copy of the value of local fields which is managed by
the STM runtime through a separate log, called eventual log.

During an event handler execution, all the accesses of
eventual fields are mediated by the eventual log, and no ac-
tual access to the global object’s fields is performed. Similarly
to regular transactions, the eventual log keeps track of all the
operations performed on eventual fields. Conversely, the log
is not used for validating the consistency of the field neither
during the transaction’s execution nor at commit-time. As

any operation happens on the local copy of every eventual
field, any operation on such data structures happens with
snapshot isolation from the event handler perspective.

At the end of the event handler execution, the eventual log
holds the locally computed value of the eventual field (called
the delta) plus the initial value of the field, called snapshot.
Together with the current global value, these two values are
then passed to the accumulator function as arguments.

The commit phase for eventual fields (Figure 4) is per-
formed in two steps:

(1) Locking of objects with eventual fields. The eventual log
is scanned and for every eventual field, a lock is acquired on
the corresponding objects. Locks on different objects are not
acquired all-at-once, as in the commit phase of the standard
STM. Instead, it is safe to acquire only one lock at a time, as
eventual fields do not need to guarantee atomicity. The even-
tual log is sorted so as to acquire only one lock per object,
thus allowing to commit all the eventual fields belonging to
the same object at the same time.

(2) Accumulator function execution. Once the lock is ac-
quired, the accumulator function corresponding to the even-
tual field is called passing as arguments the current value of
the global object, the delta value, and the snapshot value. The
value returned by the function is written back to the global
value. The lock on the object can be released once all its even-
tual fields have been updated.

6.1.3 Deferred Event Emission and I/O

In a system with everything mediated by an STM it becomes
crucial to properly treat all the deterministic blocking opera-
tions which cannot be re-executed in case of commit failure.
This is usually the case with I/O operations such as blocking
file read/write operations as well as standard output opera-
tions. Fortunately, the case for JavaScript is simpler, as all the
I/O operations already happen asynchronously. Therefore,
all I/O operations in JavaScript naturally play well with the
transactional system, as they are already happening outside
of event handlers.

The asynchronous nature of JavaScript is of great ad-
vantage for including an STM support in the runtime, as
the only operation which has to be treated as a special
case is event emission. In fact, a failed transaction which
emits an event immediately before committing will be re-
executed by the runtime and will likely re-emit the same
event. This could easily lead to inconsistencies. To avoid
this, the TigerQuoll event-based programming model does
not assume that events are actually emitted immediately af-
ter emit is called. The emission of events is asynchronous
by design (there is no guarantee that a thread will be ready
for executing the corresponding callback at the moment the
event is emitted), and therefore event emission can be safely
postponed. Hence, during the execution of an event han-
dler, emitted events are buffered in another thread-local log,
called event log. Only after the transaction has successfully
committed the event log is processed and deferred events are
safely emitted for parallel processing.

7. Evaluation
To evaluate the performance of the TigerQuoll engine we
have performed two distinct classes of experiments. First,
we evaluated the performance of the engine to assess the
performance overhead of the TigerQuoll engine compared
to the most popular existing share-nothing parallelism so-
lution (i.e., WebWorkers). Second, we evaluated the engine
in the context of shared-memory applications, to observe
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Figure 5. Share-nothing scalability. The graph shows the scalability
of TigerQuoll for the Primes ( ) and Mandelbrot ( ) bench-
marks compared with the equivalent WebWorkers Primes ( )
and Mandelbrot ( ) benchmarks.

the performance of eventual transactions for high- and low-
contention workloads. All the experiments have been exe-
cuted on a 32 cores AMD-Bulldozer machine with support
for 64 parallel (hyper-threaded) threads. The machine has
a total of four CPUs connected to four NUMA nodes. All
the results presented in this Section are average values com-
puted over five independent runs of each experiment. The
standard deviation is negligible.

7.1 Share-nothing Scalability

To assess the performance of the engine in comparison with
existing share-nothing solutions, we have parallelized some
existing JavaScript benchmarks using TigerQuoll and Web-
Workers, and we have measured how the execution time de-
creases when adding more parallel threads to the engine. Re-
sults are depicted in Figure 5.

The algorithms selected for the evaluation are the paral-
lel calculation of a 1024x1024 Mandelbrot Set and a parallel
primes checker scanning 106 integers looking for prime num-
bers. As clearly depicted in the figure, the TigerQuoll engine
has performance comparable to the ones of WebWorkers, and
scales linearly with almost ideal scalability up to the num-
ber of physical cores (32) in the system (lines and ).
This shows that the event-emission, routing and consump-
tion mechanism of the engine as well as its transactional sup-
port do not prevent share-nothing applications from scaling.
This also means that share-nothing algorithms can be par-
allelized using the on/emit primitives of TigerQuoll in ad-
dition to using explicit parallel entities such as WebWorkers
and message passing coordination.

7.2 Shared Memory Scalability

Of the algorithms presented in the previous section one can
be easily modified to become a shared memory algorithm. In
fact, the primes number calculator can be modified to use
a shared object to keep track of the prime numbers it has
found. In more detail, the algorithm implements a traditional
divide-and-conquer scheme by partitioning the space of in-
teger numbers to check, and by assigning each parallel event
handler a partition of the space for processing. Each handler
thus receives an interval to scan and searches for primes in
its local partition only, eventually updating the global object
with the number of prime numbers it has found once done
with its job.
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Figure 6. Shared Memory Scalability: Primes checker with shared
counter. The graph presents TigerQuoll scalability in case of high
contention with regular transactions ( ) and eventual transac-
tions ( ), as well as low contention with regular transactions
( ) and eventual transactions ( ).

As in many data-parallel computations with shared state,
the size of the task assigned to parallel workers is a crucial
performance parameter. In fact, tasks with a too small size
can easily degrade performance because of data contention,
while tasks with an outsized dimension tend to degrade
scalability (especially when the tasks are not homogeneous
in terms of processing time). To measure the impact of task
size in the case of the primes checker we have performed
an additional experiment measuring the performance of the
algorithm using the shared counter with different task size.
Results depicted in Figure 6 describe how with a small task
size (102 numbers per event) the STM is forced to abort very
often (see line , where the STM aborts are on average
more than 10% of the total started transactions), while with a
bigger task size (103 numbers per event) the STM is still able
to scale (line , with a failure rate of less than 5%).

Fortunately, this is the classic case in which the partial
result of the computation (i.e., updating the counter) is not
needed by the parallel task. Therefore, we could mark the
field of the shared object counting the number of primes as
eventual, and specify that we need an accumulator function
which just sums the delta to the global value of the counter.
The performance of the TigerQuoll runtime using the even-
tual counter are depicted in the same figure (lines
and ). Using eventual fields significantly out-performs
the version using regular transactions, since the presence of
the eventual field saves the transaction from aborting and re-
starting.

The impact of contention on shared-memory algorithms
can in some cases dramatically affect the performance of an
STM system. This is the case for the experiment depicted in
Figure 7, where a data intensive workload with high and low
contention has been evaluated. The experiment corresponds
to the word-counter example presented in Figure 2. In the ex-
periment, the parallel word-counter is given a text file of 4MB
to parse. The file contains a variety of equally distributed
words which corresponds to the creation of thousands of
items on the shared array. The experiment has been executed
with two chunk sizes to vary the contention on the shared
array. As expected, using regular transactions will not scale,
since the abort rate of the transactions is very high as soon as
multiple threads are handling events in parallel (lines
and ). With almost certain probability two parallel event
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Figure 7. Shared Memory Scalability: word counter. The graph
presents TigerQuoll scalability in case of high contention with reg-
ular transactions ( ) and eventual transactions ( ), as well as
low contention with regular transactions ( ) and eventual trans-
actions ( ).

handlers will try to create or update the same element of
the shared array, and all but one transaction will have to be
aborted and re-executed. By marking all the fields of the ar-
ray as eventual, this effect is mitigated and the system scales
when adding more parallel threads (lines and ).

8. Discussion
The results from the initial evaluation of our VM confirm
that shared-memory parallelism can be safely brought to
JavaScript with an event-based model of parallelism. Our
approach succeeds in keeping the programming model as
close as possible to existing single-threaded JavaScript and in
maintaining compatibility with existing applications. These
two goals represent key factors for introducing parallelism
in the domain of JavaScript, as the language has a very wide
and heterogeneous user community spanning from client-
side Web application developers to server-side developers.

Our event-based approach to parallelism is not competing
with emerging parallel solutions for JavaScript (e.g., Web-
Workers and RiverTrail), but instead should be considered as
complementary. In particular, our approach does not prevent
developers from using such solutions, but offers them an al-
ternative for developing applications using a parallel pro-
gramming model other than message passing or immutable
shared data, still without introducing the complexity of
programming with locks, and giving good speedup (ideal
speedup, indeed, when falling back to the case of share-
nothing computations). Other solutions such as WebWorkers
can still be used in all the circumstances in which a master-
worker parallelism pattern is more natural to be expressed.
However, we think that shared-memory event-based paral-
lelism represents a suitable solution for parallelizing several
problems peculiar to the domain of JavaScript, like for in-
stance the real-time parallel processing of data streams from
sources such as RESTful services [5] or WebSockets. In terms
of programming model, it would be interesting to explore
how to combine multiple models, having for instance Web-
Workers which internally execute multiple events in parallel.

The design decisions underlying eventual transactions
have similar rationale. Our goal is to propose a novel, con-
venient programming-model abstraction, which provides
transactions which never abort, at the cost of ensuring only

eventual consistency. As implemented in TigerQuoll, the
model is complementary to existing STM-based approaches
and allows us to speed-up transactional event handlers when
strong consistency is not needed. The metadata overhead for
managing eventual fields is equivalent to the overhead of
standard transactions, as all the operations on each field have
to be tracked. Similarly, the consistency management over-
head of eventual fields is similar to the one of transactions, as
eventual fields are made consistent by acquiring a lock. Per-
formance benefits come from the fact that the commit phase
never forces a transaction to re-execute, therefore eventual
transaction’s performance is comparable to the one of regu-
lar transactions which always commit.

The TigerQuoll engine has been developed and tested
with the workloads presented in Section 7, and is being cur-
rently improved. As of now, the overhead introduced by the
event-based system is negligible. In other words, a single-
threaded event-based execution performs almost identically
to the equivalent code executed on a unmodified engine. The
overhead introduced by STM metadata is proportional to the
size of the transaction’s logs.

9. Related Work
Several efforts are being directed towards overcoming cur-
rent limitations of JavaScript concerning its support for par-
allelism. As part of the HTML5 standardization, WebWork-
ers [1] offer a simple message-passing abstraction for imple-
menting the Actor model in JavaScript. This technology has
been used in [15] to develop an event-based programming
model for parallelizing JavaScript applications, which hides
WebWorkers from the developer’s perspective but still as-
sumes a share-nothing memory model. On the server-side,
Cluster [2] is a process-based parallelism library for Node.JS
implementing a programming model similar to Actor-based
concurrency. On the client-side, River Trail [19] offers an
API for developing data-parallel computations by means
of automatic compilation of JavaScript code to OpenCL [3]
so that parts of the computation is offloaded on the GPU.
Only applications using static immutable data structures
are supported. Another interesting solution for parallelizing
JavaScript is Parallel Closures [23]. The approach attempts
to bring fork/join-like parallelism to JavaScript through
constructs similar to async and finish. Differently from
TigerQuoll, Parallel Closures operate on immutable (read-
only) shared data, and support only fork/join parallel pat-
terns [22].

All of these approaches show the importance and the
need for offering simple parallelism support in JavaScript ap-
plications. The TigerQuoll engine is based on an alternative,
complementary approach, which allows developers to ex-
ploit a protected, shared, mutable, global address space. Fur-
thermore, TigerQuoll can express share-nothing parallelism
(as with WebWorkers) without messages and explicit par-
allel entities, and allows to implement any arbitrary data-
parallel algorithm over mutable shared-memory. Develop-
ers used to asynchronous programming can directly use the
TigerQuoll Core Event API, while others can take advantage
of the higher level constructs that are built on top of it.

Out of the realm of JavaScript, other languages feature a
task-parallelism programming model. Some notable exam-
ples are X10 [7], F# [28] and [20]. Each language provides dif-
ferent ways of controlling and interacting with parallel tasks,
but none of them is based on explicit event emission and con-
sumption.



Software Transactional Memory is the most prominent
way of enabling atomic blocks-based programming. STMs
are used in several languages and libraries (e.g., the Akka
framework in Scala [26] or [10, 13]). A notable attempt to
bring STM-based solutions to JavaScript has been presented
in [25] where the authors describe a system for automatic
parallelization of existing legacy single-threaded applica-
tions through STM-based speculation. The approach differs
from TigerQuoll in that our goal is not to parallelize existing
applications, but instead to offer a programming model for
building new parallel applications.

To the best of our knowledge, we are the first to introduce
eventual transactions. Out of the realm of transactions asso-
ciative and commutative operations are used in some par-
allel programming languages and models to speed-up cer-
tain computations. Piccolo [27], for instance, allows to spec-
ify lightweight associative functions to be automatically ap-
plied by the runtime when modifying the parallel elements
in a shared table.

10. Conclusion
In this paper we introduced TigerQuoll, an execution en-
gine and an event-based API for parallel programming in
JavaScript. TigerQuoll features transactional support for pro-
gramming using a mutable shared memory model through
the execution of multiple asynchronous parallel event han-
dlers. TigerQuoll brings an alternative to share-nothing par-
allelism to JavaScript with a programming model already
familiar to JavaScript developers, ensuring compatibility.
TigerQuoll features an STM-based protection of shared mem-
ory accesses, and features an innovative class of transaction,
called eventual transactions, to speed-up high-contention
workloads. Our initial evaluation confirms that the engine
is able to fully exploit the underlying parallelism in mod-
ern multicore machines while preserving the programming
model of single-threaded JavaScript.
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