
JULY/AUGUST 2012 1089-7801/12/$31.00 © 2012 IEEE Published by the IEEE Computer Society 11

G
ue

st
 E

di
to

rs
’
In

tr
od

uc
ti

on

e Bay’s launch of its API in Novem-
ber 2000 marked the beginning of
an era in which Web applications

offer services for third-party appli-
cation integration. The rapid growth
of programmatic interfaces for Web
applications has recently revolution-
ized online content integration and
created new opportunities for vendors
to build developer ecosystems. Accord-
ing to ProgrammableWeb, a leading
service and mashup directory (www.
programmableweb.com), the number of
open Web APIs has steadily increased
since 2008 (see Figure 1). Although it
took eight years to reach 1,000 APIs
in 2008, and two years to reach 3,000
in 2010, it took only 10 months to
reach 5,000 by the end of 2011 (http://
vitvar.com/events/aaai-ss12/slides/
jmusser-keynote.pdf).

Today, programmatic Web interfaces
have become a core feature that devel-
opers expect from any Web application.
Services let application vendors track
who is using applications, as well as
how and why, allowing them to more
effectively foster affiliates and drive
traffic back to applications. By offering

services, vendors provide application
functionality and start charging for
it. A small fee per service call is accept-
able for many subscribers, while big
opportunities exist for profiting from
usage volume. The volume of API calls
Google and Facebook report exceeds
5 billion daily. Twitter, meanwhile,
reports more than 13 billion API calls
per day, with 75 percent of all Twit-
ter traffic coming from third-par ty
applicat ions v ia the Twit ter API
(www.slideshare.net/raff ikrikorian/
twitter-by-the-numbers).

Challenges and Opportunities
The increasing popularity of program-
matic Web interfaces and the growth of
third-party applications that use them
raise questions about how developers
should design services and maintain
those services’ levels of performance
and scalability. Of the services in the
ProgrammableWeb service directory,
75 percent claim to use REST and
25 percent use SOAP, XML-RPC, and
other technologies. REST APIs, or REST-
ful APIs implemented with HTTP, inher-
ently adopt Web architecture principles

Tomas Vitvar
Oracle

Steve Vinoski
Basho Technologies

Cesare Pautasso
University of Lugano, Switzerland

Programmatic Interfaces
for Web Applications

IC-16-04-GEI.indd 11 6/4/12 2:50 PM

Guest Editors’ Introduction

12 www.computer.org/internet/ IEEE INTERNET COMPUTING

and can exploit already existing Web technol-
ogy. It isn’t unusual, however, for APIs claim-
ing to be RESTful to actually fail to fulfill such
claims. They overload the meaning of HTTP
methods, for example, or they lack hypermedia
support for representing relationships among
application states. Most programmatic interfaces
also don’t fully take advantage of dynamic nego-
tiation among various Web data formats, caching
metadata, or design principles for ensuring loose
coupling, scalability, extensibility, and version-
ing of services. A growing number of Ajax
applications that use Web APIs from JavaScript
in a browser also require them in order to sup-
port new protocols to better manage cross-origin
communications. For example, a Web API that
implements the Cross-Origin Resource Sharing
protocol (CORS; www.w3.org/TR/cors/) can bet-
ter control clients that come from domains other
than the Web API’s domain.

Developing a programmatic Web interface
also requires tight integration with already exist-
ing back-end applications and infrastructures,
and sometimes needs a new, highly dependable
back-end technology. For example, to deliver
the real-time message traffic at peaks of more
than 12,000 tweets per second to a social graph
of more than 140 million users (http://mashable.
com/2012/03/21/history-of-twitter-timeline/),

Twitter has developed its own distributed data-
base called FlockDB that supports a high rate of
database operations (http://engineering.twitter.
com/2010/05/introducing-flockdb.html).

Public and Enterprise Services
Any Web application vendor’s ultimate goal
is to enable the visibility of its Web APIs and
increase their reuse, eventually leading to prof-
its. ProgrammableWeb is the largest repository
of Web APIs that adopts the characteristics of
a social-Web platform. Web application vendors
can use it to publish, share, and discuss, thereby
increasing the visibility of their APIs. Enter-
prises, on the other hand, build service-oriented
architectures (SOAs) with additional goals. Not
only do they want to maximize service reuse,
they also have requirements to shorten the time
to deliver new services, control and track ser-
vices’ reuse, ensure compliance with IT poli-
cies, or measure dependencies and the impact of
change. SOA governance and its core enterprise
repository technology define a methodologi-
cal and technological framework for building
the enterprise SOA that supports such require-
ments. Enterprises can use SOA governance for
centralized asset management (such as manage-
ment of services, applications, runtime envi-
ronments, design patterns, projects, and users)

Figure 1. Total APIs over time. The number has steadily increased since 2008. (Figure courtesy John
Musser, from http://vitvar.com/events/aaai-ss12/slides/jmusser-keynote.pdf; reprinted with permission.)

0

6,000

5,000

4,000

3,000

2,000

1,000

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

8 years

18 months

9 months

6 months

4 months

IC-16-04-GEI.indd 12 6/4/12 2:50 PM

Programmatic Interfaces for Web Applications

JULY/AUGUST 2012 13

and to build the service environment through a
well-defined service life cycle.

Web technologies’ evolution has enabled
RESTful Web APIs to grow while the Web has
brought many improvements that, if properly
used, can ease Web application development
and integration. On the other hand, many ser-
vices in enterprise environments still use tra-
ditional technologies based around SOAP and
the Web Services Description Language (WSDL).
Today’s stack of SOA technologies provides a
comprehensive set of tooling that, in contrast,
eases the development and integration of enter-
prise applications. For example, making a ser-
vice available in an enterprise service bus is
only a matter of importing a WSDL document.
It’s also possible to generate code for a Web ser-
vice client from a WSDL document, gather vari-
ous service endpoint metrics from a running
SOA, and manage service security, scalability,
and performance.

Note, however, that organizations today are
looking at how they can use RESTful services
to integrate applications exposed on the Web in
conjunction with their enterprise SOA technology.
For instance, within the public administration
sector, running a very complex enterprise SOA
means performing systems integration span-
ning several domains, such as transport, police,
revenue, and citizen registries. A robust, indus-
trial SOA solution is required to effectively man-
age this integration. However, for opening up the
data and exposing e-government services on
the Web to enable third-party applications to
reuse them, Web API technology is better suited
to take advantage of all available dissemina-
tion channels the Web offers. Integration and
better cooperation among SOA technologies,
SOA governance, public Web API directories,
and social Web platforms is thus another step
toward connecting the enterprise service and Web
API worlds.

In This Issue
Given the increasing popularity of program-
matic interfaces for Web applications, we
invited researchers and practitioners to submit
articles to this special issue that describe top-
ics related to emerging technologies and best
development practices that underpin any mod-
ern programmatic Web interface.

In “Toward an Open Cloud Standard,” Andy
Edmonds, Thijs Metsch, Alexander Papaspyrou,

and Alexis Richardson present a case for an
open standards-based approach to APIs for pro-
grammatic access and control of cloud comput-
ing infrastructures. The authors argue that a
standards-based approach can reduce the risk of
vendor lock-in and increase the potential reach
of cloud computing technology. Technical work
for reaching an agreement on an actual stan-
dard is still under way, but the proposed open
cloud API the article describes will be based
on HTTP.

Web services are delivered and supported
via software framework stacks, with each stack
designed with a specific service model in mind.
For RESTful HTTP services, many competing
frameworks unfortunately interpret REST’s
constraints in different ways. In “ArRESTed
Development: Guidelines for Designing REST
Frameworks,” Ivan Zuzak and Silvia Schreier
distill several valuable guidelines for designing
frameworks that encourage developers to make
full and correct use of HTTP. The article also
provides a comparison on how well four exist-
ing server- and client-side frameworks fit with
the guidelines.

In “Welcome to the Real World: A Notation
for Modeling REST Services,” Olga Liskin, Leif
Singer, and Kurt Schneider propose using a sim-
plified version of UML state charts as a notation
to support the design process and enable the
documentation of REST services. Their intent
is to create a notation that promotes the design
of services that conform to the constraints of
the REST architectural style. The authors have
applied the notation to describe a set of ran-
domly selected public services and bring new
evidence that not all services claiming to be
RESTful really are. The proposed notation thus
also helps to detect whether services explic-
itly or implicitly use resources, and whether
resources are preferable to methods. It also
identifies isolated resources that aren’t reach-
able by navigating through a service’s hyperme-
dia graph.

As more and more Web services provide
access to streaming data sources, selecting
the appropriate interaction protocol and pat-
terns becomes important so that the resulting
application architecture can satisfy real-time
requirements. In “Communicating and Display-
ing Real-Time Data with WebSocket,” Victoria
Pimentel and Bradford G. Nickerson compare the
impact of stateless, poll-based interactions,

IC-16-04-GEI.indd 13 6/4/12 2:50 PM

Guest Editors’ Introduction

14 www.computer.org/internet/ IEEE INTERNET COMPUTING

supported by standard HTTP, with stateful,
push-based protocols, such as WebSocket, that
have recently appeared. The result is that Web-
Socket outperforms techniques such as HTTP
polling and long polling, especially if the
latency between the Web service and its client
exceeds the interval between successive stream
elements.

In “SOAP-Based vs. RESTful Web Services:
A Case Study for Multimedia Conferencing,”
Fatna Belqasmi, Jagdeep Singh, Suhib Bani
Melhem, and Roch H. Glitho compare two kinds
of Web services technology in the context of
a real-world case study. Both SOAP and REST
are expressive enough to support the design
and construction of an API for a conferenc-
ing gateway. Still, when it comes to evaluating
the performance of the alternative approaches,
measurements indicate that avoiding SOAP will
signifi cantly reduce delay.

E ven with the recent explosive growth of
programmatic interfaces across industry

websites — and the advances and achievements
in programmatic Web interface research and
development these articles describe — much
investigation and implementation work remains.
Signifi cant attention and effort is still needed
to address numerous problems and questions
remaining in areas such as protocols, media
formats, agent-server communication patterns,
caching, scalability, operations, versioning, and
development tools and languages.

Tomas Vitvar is a senior technical architect at Oracle and

an associate professor in the Faculty of Information

Technology at the Czech Technical University in

Prague. His research interests are in distributed sys-

tems and applications, including service discovery,

REST architectures, Semantic Web, and SOA gover-

nance. Vitvar has a PhD in computer science from the

Czech Technical University in Prague. He’s codeveloped

architectures and technologies for Web services and

middleware in numerous international projects and

contributed to standardization at the W3C and OASIS.

Contact him at tomas@vitvar.com or on Twitter at

@tomasvitvar.

Steve Vinoski is an architect at Basho Technologies in

Cambridge, Massachusetts. He writes the “Functional

Web” column for IEEE Internet Computing. Vinoski

is a senior member of IEEE and a member of ACM.

You can read his blog at http://steve.vinoski.net/blog,

and contact him at vinoski@ieee.org or on Twitter at

@stevevinoski.

Cesare Pautasso is an assistant professor in the Faculty of

Informatics at the University of Lugano, Switzerland.

His research group focuses on the design of experi-

mental, self-adaptive systems to explore the intersec-

tion of service- and resource-oriented architectures.

Pautasso has a PhD in computer science from ETH Zurich,

Switzerland. He was the general chair of the 9th IEEE

European Conference on Web Services (ECOWS),

coedited a book on REST, From Research to Prac-

tice (Springer, 2011), and is a senior member of IEEE.

Contact him at c.pautasso@ieee.org and on Twitter at

@pautasso.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

Register today!
http://compsac.cs.iastate.edu/

16-20 July 2012

Izmir, Turkey

IEEE COMPSAC 2012
36th IEEE International Computer Software and
Applications Conference

IC-16-04-GEI.indd 14 6/4/12 2:50 PM

