
RESTful Business Process Management
in the Cloud

Alessio Gambi∗†

a.gambi@infosys.tuwien.ac.at
† Vienna University of Technology, Austria

Cesare Pautasso∗

cesare.pautasso@usi.ch
∗ University of Lugano, Switzerland

Abstract—As more and more business processes are migrated
into cloud-based runtimes, there is a need to manage their
state to provide support for quality attributes such as elasticity,
scalability and dependability. In this paper we discuss how the
REST architectural style provides a sensible choice to manage
and publish service compositions under the Platform as a
Service paradigm. We define the design principles of RESTful
business process management in the cloud and compare several
architectural alternatives to support elastic processes which can
be monitored and dynamically adapted to workload changes.

Index Terms—Cloud PaaS, RESTful BPM, elasticity

I. INTRODUCTION

Composition as a Service (CaaS) [26], WorkFlow as a
Service (WFaaS) [19] and Business Process as a Service
(BPaaS) [30] are all emerging technologies that enable clients
to outsource the modeling and execution of processes into the
Cloud. Such dedicated runtime platforms for service compo-
sition have a need to manage the state of a very large number
of process instances and provide support for quality attributes
such as elastic scalability and dependability that have come to
be expected by existing Platform as a Service (PaaS) offerings.
Existing centralized and distributed business process execution
architectures only provide limited support for exploiting the
potential offered by large Cloud infrastructures [2], [7].

The main focus of this paper is the investigation on how
composite services can be run on Clouds while exploiting the
full potential of Clouds, that is, what design principles and
architectural choices can be followed to implement “native”
Cloud composite services [28]. In this paper we discuss how
the notion of RESTful business process management (RESTful
BPM), derived from the application of the REST architectural
style to the composition of multiple services into business
processes, can provide a fresh look at how to design the
architecture of business process execution engines so that
these can better fit with the requirements and constraints of
modern Cloud runtimes. In particular, the goal is to distill
the design principles behind a novel execution platform for
Business Processes to be delivered as a Service (BPaaS) that is
compliant with the constraints of the REST architectural style
and to discuss the consequences on the elasticity, dependability
and performance of the possible architectural alternatives that
can be derived from these principles.

This paper makes the following contributions. It makes the
case for using REST to publish business processes in the Cloud

(so that clients may have full access to the state and full
control over the execution of their processes) but also within
the Cloud (so that the BPaaS infrastructure may efficiently
replicate, migrate and consolidate their state) to deliver the
expected elastic scalability and dependability. It presents the
design space for a BPaaS platform with different concrete
architectures trading off performance against dependability
and illustrating the variety of options that become available
to effectively manage the state and the execution of RESTful
business processes.

The rest of this paper is structured as follows. After in-
troducing background concepts of REST services, RESTful
BPM, and Cloud, we identify main design principles of REST-
ful business process management in the Cloud. We compare
several architectural alternatives to support elastic processes
which can be monitored and dynamically adapted to workload
changes, and discuss their impact on the quality attributes.
Before drawing our conclusions we survey existing related
work.

II. REST, PROCESSES AND CLOUDS

A. On REST and Web Service composition

The REpresentational State Transfer is an architectural style
that recently gained a lot of attention in the field of Web
service design [12]. By defining architectural constraints such
as stateful resources, stateless interactions, global identifi-
cation of unique resources, uniform interfaces and multiple
resource representations, the REST style promotes the design
of resource-oriented architectures [31]. These architectures are
characterized by their intrinsic interoperability, loose coupling,
high scalability and flexibility.

The REST style can also be suitably employed in the de-
sign of service-oriented architectures (SOA) (e.g., [9]). When
REST and SOA meet, a novel, light-weight form of services is
obtained: RESTful Web services [25]. RESTful Web services
differ in several aspects from the abstractions provided by
other styles. As opposed to promoting stateless services that
interact by means of synchronous or asynchronous message
exchanges, REST emphasize a uniform approach to access
stateful services by means of well defined methods [33].
Interactions with RESTful services are compliant with the
REST style: all the interactions between client and services
are stateless, while the state of the system is either persisted
at the service (associated with a resource identifier) or kept

978-1-4673-6435-5/13 c© 2013 IEEE PESOS 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

1



BPEL P2PRESTful BPM

REST invocation

SOAP invocationClient

Composition engine

Atomic service

State

Fig. 1. Different styles of Web service compositions (BPEL-like, centralized; RESTful BPM, client-side; P2P, decentralized)

on the client-side. Services publish resources, whose state is
externalized to clients that can retrieve it (and in general,
modify it) according to the uniform interface semantics and
their representation preferences. Clients can navigate across
related resources by following hyperlinks (resource identifiers
found within representations of the service state). For example,
the result of a client request can be asynchronously published
as a resource so that multiple clients can refer to it by sharing
its resource identifier (URI).

Concerning the composition of multiple services into pro-
cesses, Figure 1 exemplifies some of these differences. BPEL-
like services are characterized by a centralized architecture,
usually implemented as an orchestration engine, that manages
the state of the composition and invokes the atomic services
that are bound to it. Choreography-style services are fully
decentralized. The state of the composition is shared among
the participants and directly forwarded along the execution
path of the composition. The client initiates the composition by
sending a message to the first component and will eventually
receive the result from the last component at the end of the
process. Unlike the centralized approach, with P2P composi-
tions there is no single place where the composition state can
be found at one time [27]. Since services communicate directly
with each other, the communication and scalability bottleneck
of the centralized engine is removed [24].

RESTFul service compositions introduce a different ap-
proach, whereby the state of the composition is managed
by the client. As the client follows the hyperlinks provided
by each participant, it dynamically discovers the process
composing them without the need for a dedicated engine [1].
The execution of the process is driven by the client that directly
contacts all the atomic services involved [32].

B. RESTful Business Process Management

RESTful services enable a novel form of business process
management, namely RESTful BPM, that exploits the pecu-
liarities of the REST style not only to invoke and orchestrate
a set of RESTful Web services, but also to publish processes
on the Web as resources [16], [21]. More in detail, the process
followed by a client that interacts with multiple resources
can be published itself as a resource, thus shifting once

again its execution from the client to the server. However,
as opposed to a traditional process execution engines, which
provide a stateless, message-oriented interface to invoke the
process published as a service, the state of the execution of a
business process can be published with a RESTful Web service
interface [20].

To do so, unique resource identifiers are minted and as-
sociated with the process, its instances, its tasks and sub-
processes and clients are offered a rich and expressive interface
abstraction to interact with and control the execution of each
of their process instances, whose state is dependably offloaded
onto the server (running in the Cloud). For example, basic
HTTP verbs, such as GET, POST, PUT, DELETE are mapped
to the lifecycle of processes and their tasks. POST requests to a
process template URI result in the instantiation of new process
instances; DELETE may be used to cancel the execution
of a process instance; GET may retrieve its current state,
which – depending on the chosen representation – can include
hyperlinks to its active tasks and to retrieve its execution
results. These links can be shared among multiple clients and
can be protected with various forms of authentication and
access control. More in detail, the state of individual tasks can
also be manipulated by means of PUT requests that can drive
forward the execution of the process published as a RESTful
service.

In this paper, we argue that RESTful BPM can be used
to provide a suitable design for runtime environments to run
composite services on the Cloud. Qualities such scalability,
flexibility, and explicit management of state resource, which
RESTful BPM inherits from the REST style, fit the require-
ments on elasticity, monitorability and scalability that are
characteristics of Cloud applications.

C. On Cloud computing

Cloud computing is the game changing technology that
is supposed to deliver significant advantages for final users
and service providers, mainly through enabling strong costs
savings and increased agility in the dynamic provisioning of
IT infrastructures. The basic principles of the Cloud computing
paradigm are: i) outsource and automate all the management
activities that are not related to the primary application busi-

2



ness logic, ii) access elastic infrastructures where a potentially
unlimited set of remote resources can be allocated on-demand
and on-the-fly to scale applications, and iii) pay for what is
actually used.

Depending on what it is outsourced to the Cloud, three main
delivery paradigms are identified [3]. Under the Infrastructure
as a Service (IaaS) paradigm, Clouds deliver computing, stor-
age and networking resources and take care of their runtime
management. With Platform as a Service (PaaS), Clouds offer
complete runtime environments where application providers
can run their applications if they are developed according the
cloud-specific architectural constraints and framework APIs
(e.g. no direct calls to OS, no threads, and so on). Clouds, in
turn, take care of deploying these applications to computing
nodes, dynamically allocate the “right” amount of resources
to them depending on their actual workload, and manage a
series of background activities to support them. For example,
Cloud providers offer secure communications, data privacy in
multi-tenant environments, periodic backups of data, and so
on. Under the Software as a Service (SaaS) paradigm, Clouds
offer fully fledged applications to clients that access them
thought thin clients, usually their browsers. In this case, Clouds
take care of maintaining the whole software/hardware stack as
well as providing storage for user data.

Usually, Clouds are organized in layers, where upper layers
exploit the functionalities of lower layers. Accordingly, SaaS is
implemented using PaaS, and PaaS “underneath” exploits IaaS.
However, to fully benefit from Clouds, applications running
at the different layers must be designed according to specific
principles and patterns [10], [11]. Otherwise, Clouds may be a
double-edged weapon as applications consume more resources
than expected, scale less than expected, and inelastically retain
resources after peaks in the load passed away [15]. In other
words, running elastic systems based on the Cloud is not a
simple matter of installing software components inside virtual
machines, and deploy them on the Cloud. The same holds for
frameworks and runtime systems for Web service composition.

III. SERVICE COMPOSITION ON THE CLOUD

The main requirements and features that Cloud users expect
from a Cloud provider of a runtime platform for the deploy-
ment and execution of composite services are dependability
and elastic scalability within a given quality of service enve-
lope. In the next sections, we will show how RESTful BPM
can address these requirements and discuss several alternative
architectures for the implementation of the required features.

We argue that the PaaS layer is where business processes
and Clouds can show the most suitable combination: Service
providers and service aggregators reason in terms of high level
composition languages, such as BPEL [17] or JOpera [22]
or ROsWeL [5], and would rather focus on the declarative
definition of the business processes, workflows and service
compositions as opposed to ensuring they can be implemented
with the appropriate level of dependability and scalability. The
necessary runtime management capabilities are delivered by
the Cloud infrastructure, providing for the elastic scalability

and dependability of the composite services. Merging the two,
we obtain platforms where service providers send to Clouds
high level specifications of their composite services, and the
Cloud takes care of publishing, running, and managing them.
These activities are complementary to the ones provided in
the context of Composition as a Service (CaaS) tools [26],
[4]. CaaS targets the SaaS abstraction level with applications
where users provide partial service compositions and speci-
fications which are then used to generate recommendations
about composed services, and public service fragments that
are available to be reused.

An ideal Cloud-based platform for the management of
composite services under the PaaS paradigm should provide
a runtime environment that is able to correctly run user
provided service compositions by dynamically optimizing its
internal infrastructure for minimal resource consumption and
maximum performance. Service providers should be able to
specify high level conditions, in terms of Quality of Service
(QoS) guarantees and cost models that will drive the runtime
management of the Cloud, i.e., the elasticity of their services,
without explicitly describe how these can be achieved [8]. For
example, a service provider can specify a given response time
for a service and the Cloud may dynamically allocate the
right amount of resources to provide it in face of workload
fluctuations. Likewise, the Cloud may time-shift the execution
of low priority processes as well as run dependent services in
co-located computing nodes, or move services compositions
close to the external Web services that they depend on [13].
Alternatively to specify high-level properties, service providers
may assume a best effort management where the Cloud is
entirely responsible to balance the trade off between costs,
resources and QoS. This is similar to what the Google PaaS
platform, Google App Engine1, actually does.

Composite services provided by users must be able to
invoke other services. These can be both atomic or again
composite services. In any case, these may be running in the
same Cloud, in a separate Cloud or outside any Cloud. If
both atomic services and the compositions composing them
are run by the same PaaS, Cloud providers may perform op-
timizations that exploit their co-location, i.e., atomic services
can be dynamically provisioned by means of migration and
replication. If some of the services involved in a composition
run in different infrastructures, there may be more limited
opportunities for optimizations and these may depend on the
actual characteristics of the atomic services, e.g. composed
services can be moved towards external services to reduce
latency, or specific caching solutions may be introduced at the
boundary of the Cloud.

Cloud providers may also act on the runtime structure of
composed service as long as the final semantic is preserved.
For example, if a service contains a variable number of
independent subprocesses (or tasks) that can be run in parallel,
the Cloud provider may autonomously decide on the number
of concurrently active subprocesses on the base of cost and

1https://cloud.google.com/products/index

3



QoS constraints, and find a balance between them. This is
similar to what is done currently to dynamically optimize Map-
Reduce or Hadoop2 based systems [14]. In our context, sub-
processes and tasks that enable such a runtime behavior can be
defined as elastic sub-processes and elastic tasks. We discuss
in the next section, how we can design them within the context
of RESTful business process management.

IV. DESIGN PRINCIPLES FOR RESTFUL BPM INSIDE
CLOUDS

In native Cloud applications, qualities like scalability, elas-
ticity and dependability are provided by resorting to tailored
software architectural decisions, design principles, and pat-
terns [28], [11]. Native cloud applications employ modular
architectures that allow application components to scale in-
dependently; they leverage loose coupling of components,
asynchronous communications, and stateless interactions to
enable scalability and to increase the overall system depend-
ability. They are usually implemented over backbone queue-
based messaging systems that maintain the decoupling of
components and absorb communication spikes with distributed
buffers. Components externalize their states, are organized
according in a shared-nothing fashion, and make heavily use
of multi-threading and parallelism [29].

We acknowledge that similar architectural choices and de-
sign principles should be applied in the design of Cloud
runtime environments for running composite services. In par-
ticular, we stress the fact that the REST architectural style pro-
motes stateless interactions and enhances the loose coupling
of distributed components. Therefore it enables, through the
abstraction of RESTful Web services, a design where services
can be flexibly provisioned and deployed over a set of elastic
computing nodes almost for free. However compared to other
kinds of Cloud native applications, business processes have
some peculiarities that must be considered with particular care.

In our context, long-livedness of composed services is one
of the most important peculiarities to consider as it strongly
impacts the system elasticity. With long-lived processes de-
livered as a service, it may happen that the Cloud cannot
quickly free up computing nodes because active processes,
tasks and services are distributed across them. For example,
a task instance that is waiting for user input, or is blocked
while retrieving the result of a remote service invocation, may
prevent a server to be de-allocated even if its resource usage
is below the minimum usage threshold. Compared to ordinary
applications where sessions have shorter duration and where
transactions can be easily rolled back and repeated, removing
computing nodes that run long-lived services may result in
aborting entire process instances. The resulting revenue losses
may offset the cost reductions obtained with the resource
consolidation in the Cloud.

Long-livedness therefore demands for proper primitives to
manage the state of composite services, including their sub-
processes and tasks. In particular, there is a need to replicate,

2http://hadoop.apache.org/

migrate, and consolidate the state of composed services across
computing nodes, in a way that is similar to the live-migration
of virtual machines at the infrastructure level, but which also
takes into account the state of the external interactions. In this
work, we argue that by explicitly representing services, tasks,
and sub-processes as resources under the RESTful Web service
abstraction, we can leverage RESTful BPM for their runtime
management, i.e., for suitably dealing with their long-lived
nature. In particular, we propose to implement the migration
of the state of services, tasks and sub-processes by means of
elastic URIs and REST distributed transactions [18].

Elastic URIs provide a concept similar to Amazon’s Elastic
IP3 applied to REST resources. Resources are exposed to
users outside the Cloud using public URIs that are mapped
to private resources by means of a private URI. The mapping
is managed by the Cloud and dynamically updated every time
a resource, e.g. the state of a composite service, is migrated
inside the Cloud. The fact that states representing running
service instances must be dynamically managed by the Cloud
motivates the coupling of RESTful BPM and PaaS.

Depending on the actual state of the resource and its type,
the Cloud may decide to keep it on a computing node, or
may delegate its management to data services provided by
the Cloud itself. For example, a resource referring to an
active service composition can be placed on a running virtual
machine first, and moved to the persistent layer of the Cloud
once the process ends, thus freeing computing resources. The
resource representing the service instance is available from
the data store until a valid DELETE request is received. The
private URIs that located the resources inside the Cloud are
different, but the public URI remains the same. The public
URI is elastic because it can be adapted dynamically. It must
be noted however that not all the public URIs must be elastic.

RESTful BPM makes it possible to adopt the same approach
to manage service compositions that are in an idle state:
as long as the process is waiting for some external event,
its state may be managed by the persistence service to free
up computing resources; once a request is issued on its
public URI, the waiting resource can be migrated back to a
compute node before letting it process the request and evolve
to its new state. RESTful BPM enables also the migration
of resource state across computing nodes while processes are
active, as long as the migration is scheduled while there are no
active or pending interactions with external services. In fact,
interactions are stateless, and in between them the resource
state does not change. At this point, a resource that refers to
an active composition instance can be moved to a different
computing node, and the process can continue from there.
Elastic URIs maintain a consistent view from outside the
BPaaS. In any case, distributed REST transactions are used to
atomically migrate resources across locations while preserving
state consistency.

3http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
elastic-ip-addresses-eip.html

4



Similar primitives can be used to perform the live cloning
of compositions and tasks, further improving system scala-
bility and effectively implementing elasticity at service level.
Whenever the semantics of tasks and sub-processes allows
it, these resources can be duplicated and distributed around
the infrastructure to parallelize computations on-demand, and
according to the high-level directives contained in the business
process model. This can be implemented inside the Cloud by
allowing the Cloud to issue POST and DELETE requests for
tasks and subprocess, and by delegating shared dependencies,
e.g., big inputs data sets, to the Cloud data services. The actual
number of active task or sub-process instances is entirely
managed by the Cloud and it remains transparent from the
client of the process.

Dependability can be achieved by ensuring that the Cloud
persistent storage service keeps a consistent and possibly
redundant copy of the state of the process at each step. In case
of failures and crashes of the computing nodes responsible
for executing a given process or task instance, its state can
be rolled back to the one managed by the underlying Cloud
storage and the execution can be restarted from there without
any intervention of the client of the process. Parallel and con-
current access to the state of the process instance is managed
accordingly to the semantics of the REST uniform interface,
in which read-only safe operations are clearly marked as such.

Effective elasticity requires prompt reactions to changes in
the environment, specifically in the workload, that in turn
require efficient monitoring of the service, task and sub-
process state. RESTful BPM enables this by means of push
notifications [23]. Furthermore, RESTful BPM also enables
an easy recording of the evolution of compositions, for de-
bugging or mining activities, by allowing state versioning. To
improve storage and management of service history, compact
or differential representations of multiple states can be chosen.

V. ARCHITECTURAL ALTERNATIVES

We identify and discuss some basic design alternatives, and
as a second step combine them into possible architectures
that emphasize different trade-offs among specific quality at-
tributes.The architectural alternatives concern two dimensions:
the management of the state and the actual execution of
instances of composite services as well as their sub-processes
and tasks.

1) State: The state of a RESTful business process is usually
stored and managed by the clients executing the process itself.
Alternatively, the execution of the process can be delegated
to the Cloud. Furthermore, as an independent, orthogonal
decision, the state can be co-located with the processing units
that evolve it, or it can be externalized through a data storage
abstraction provided by a Cloud service provider.

Figure 2 shows three possible state locations when clients
manage the process execution: Client C1 keeps the state
locally, while clients C2 and C3 externalize the state man-
agement to Clouds. C2 is connected to the state by means
of an elastic URI (depicted with a coil spring icon) that
is transparently implemented by the PaaS. C3 uses a Cloud

Client C1

Client C2

Client C3

PaaS

External Cloud

Data service
Elastic URI

State

Persistency
invocation

Fig. 2. Client-based state management: C1 co-located, C2 elastic cloud
storage, C3 cloud storage

data service provider which does not support this feature.
Still, it may enable features such as distributed caching, state
replication and redundant persistent storage transparently with
respect to the client. In the case of C2, the Cloud provider for
the state storage and the service invoked by the composition
is the same. This may also be a source of optimizations
concerning the data flow of the process and help to reduce
runtime operational costs due to network transfers.

Figure 3 shows the available alternatives when clients out-
source to PaaS the execution of the processes. For client C1 the
state is managed locally by the same process engine (identified
by a gears icon) that interacts with the atomic services inside
and outside the Cloud. For client C2 the state is externalized to
a local data service provided by the PaaS, and for client C3 the
state is externalized to another Cloud provider. As composed
services are entirely managed by the PaaS, clients can access
service state and other service-generated resources by means
of elastic URIs. The Figure for example shows clients C2 and
C3 accessing the service states using elastic URIs. For the case
of client C3 in particular, the PaaS can hide from the client
the fact that an external Cloud provider is being used to store
the state of its process. Alternatively, we can envision PaaS
which can let the client control the choice and location of the
storage service provider used to persist the process execution
state of the client. Assuming that the external Cloud is more
dependable than the PaaS, the elasticity of the URI in this
case lets the PaaS provide a dynamically varying level of
dependability to its clients.

2) Execution: Instances of composed services, their tasks
and subprocess, as well as the RESTful services participating
in the composition may run in different places by different
actors. Composite services may run on client premises or
inside the PaaS. If they run in the PaaS, they can be run
elastically with computing resources dynamically adjusted
to their demands. RESTful services that are bound by the
compositions can be either atomic or complex, and can run
inside or outside the PaaS Clouds. If they run in the PaaS,
they can be made elastic and their runtime management can
be aligned to the one of calling compositions. Tasks and sub-
processes running in the PaaS and can be made elastic as well.

5



Client C1

Client C2
Client C3

Fig. 3. PaaS-based state management: C1 co-locate, C2 elastic cloud storage
(in the PaaS), C3 elastic cloud storage (through the PaaS)

Client C1

Client C2

Process engine

Elastic process engine
Elastic task

Fig. 4. Distribution of running instances of the composite service: C1 co-
located, C2 elastic process engine

Composite services, tasks and sub-processes that run in the
PaaS are implemented according to the same REST principles,
therefore can be uniformly managed with RESTful BPM by
the Cloud provider. The basic pattern adopted in the PaaS is
to have parallel processes that run RESTful processes (and
process fragments), and to dynamically allocate processes to
computing nodes. As a matter of fact, the PaaS provider com-
bines RESTful BPM with the management of the infrastructure
layer, which in turns is implemented using REST. Moreover,
thanks the use of standard technologies to implement REST
architectures, all of these elements can easily interoperate
provided that they can reach each other across the network.

Figure 4 shows two alternative architectures with respect
to running service instances. In the first case, client C1 runs
locally the composite service, and invokes other composite and
atomic services deployed under different settings. In particular,
the PaaS runs a composite service that invoke an elastic task
and an atomic, but external, service. In the second case, client
C2 delegates to the PaaS the execution of the composite
service and the Cloud can exploit further optimizations: As

the PaaS runs both the process and the one of the services
bound to it, the Cloud can align their runtime management
policies and thus facilitate achieving the elasticity of the
process engine [13].

3) Architectures for Cloud-based RESTful BPM: The basic
alternatives presented in the previous section can be combined
to create different system architectures. However, not all their
possible combinations may result in valid PaaS design, even
if they can be implemented and run by leveraging Cloud
technologies and RESTful BPM. A valid design for a PaaS
system must have both states of composite services and their
running instances managed by the Cloud. If the execution of
the composite service is managed by the Cloud but the state is
managed by the client, the design represents a weak form of
PaaS. If the execution of the composite services is managed
outside the Cloud then the design does not represent a valid
form of PaaS for composite service.

Figure 5 shows representative architectures that belong to
the different classes. The composite service depicted in the
Figure is meant to call an atomic service and a composed
service (i.e., a sub-process) inside the PaaS, and one ser-
vice outside the PaaS. The bound composed service has a
dependency outside the Cloud. The PaaS can execute a task
elastically, and this task publishes its results as a resource
that the client wants to retrieve. The architectures on top of
Figure 5 are valid designs for PaaS because in both cases
clients delegate the execution of their composite services and
the state management to the PaaS. The bottom part of the
Figure reports on the left a weak PaaS architecture where
clients delegate the execution of the composite to the Cloud but
maintain the state co-located; and on the right, an architecture
that is not a valid PaaS design because the clients manage
locally both the state and the execution of composite services.

In the rest of the section, we describe and compare the
qualities only of the three valid PaaS designs shown in
Figure 5.

The first alternative emphasizes the elasticity and depend-
ability of the design. The PaaS runs the composite service on
behalf of client C1 using an elastic engine that externalizes the
state of the service composition to the data service offered by
the same PaaS platform. The same pattern is adopted by the
elastic task that externalize to the data service both its state and
the resources its outputs. The bound composed service instead
keeps the state locally to its own processing node. Clients take
advantage of elastic URIs to access the state of the composite
service, the state of its elastic tasks and their output. Their
requests are transparently routed to the data service.

The second alternative emphasizes the performance of the
processes by keeping their execution state as close as possible
to the processing node that runs them, thus reducing the time
to access the state and to update it. In particular, the PaaS
runs the composite service using an elastic engine that 1)
maintains the state of the composition locally and 2) also runs
and keeps the process and its sub-process locally. The elastic
task instead adopts a slightly different solution: it keeps the
state of the execution locally, but externalizes its output to a

6



Client C1

1. Managed execution and 
remote state

Client C2

2. Managed execution and 
co-located state 

3. Managed execution and 
client side state 

(weak) 

4. Client side execution and 
 co-located state

(not valid) 

Client C4

PaaS

External Clouds

Data service

REST invocation

Persistency invocation

Resource URI

Elastic URI

Atomic service/task

Elastic task

States

Client

Process engine

Elastic process engine

Client C3

Fig. 5. Architectural alternatives for RESTful BPM in the Cloud: C1 managed process execution and remote state management (full), C2 managed process
execution and co-located state management (full), C3 managed process execution and client-side state (weak), C4 local process execution and co-located state
management (not a valid PaaS design).

data service provided by a different Cloud. In this case the
client C1 interacts with the PaaS cloud to access the state
of the composite service, its sub-process and its elastic tasks.
However, it will be redirected to the external cloud provider
when it attempts to read their output. In this way, the PaaS
is offloaded from the management of service results, which is
advantageous in cases where the composite services generate
big amount of data, and, in turn, can use additional resources
into the execution of process instances.

The third alternative emphasizes composite service adapt-
ability by keeping the state of the composed service in control
of clients. In this case, client C3 uses the PaaS to execute
the process instance and can decide, between different inter-
actions with the PaaS, to customize the service composition
by partially changing its state. States of tasks, sub-processes,
and the results are managed by the Cloud, and the client can
access them via elastic URIs as in the previous architectures.
The client however takes the full responsibility over the state
of its process instance, which – e.g., for privacy concerns –
cannot be deferred to Cloud data services as in the previous
architectures.

In the following, the three architectures are compared in
terms of their non functional quality attributes. The first ar-
chitecture provides elastic scalability for the composite service
deployed by the client and for its elastic task. Since their
states are managed explicitly by the PaaS platform storage
abstraction, the processing nodes remain completely stateless,
and this makes easy to add and remove processing nodes,
i.e., virtual machines on which the process engine is running.
In particular, no state migration between processing nodes is
needed. Furthermore, the data service of the PaaS is designed
to handle big amounts of parallel requests, as long as they
access independent objects and do simple put and get. And
this is in line with what happens in the system: Process
executions of different service instances work on independent
set of resources and access their state in parallel. This ar-
chitecture provides also dependability because by delegating
the persistent storage of the execution state, a failure of a
processing node does not have a big impact on the stored
states. If the processing node fails the Cloud can allocate a
new processing node and recover all the processes that were
running on it from their currently stored states. However, there
is a cost in terms of access time and latency: In general both

7



are longer than accessing the state information locally. For this
reason, the composite service that is invoked as a sub-process
by the composition may provide better performance because
its state is managed locally on the processing node. In general
the state co-location is less flexible and dependable because the
service cannot exploit a dynamically variable set of resources
without migrating its state between different processing nodes,
and because in case of failure of the processing node all the
states of the sub-processes running on it may be lost. The
first architecture also provides elastic access to the processing
outputs. Depending on the user requirements, output data
can be moved towards the client for faster access, and can
be replicated for fault tolerance. Persistence of data is also
guaranteed, therefore all these resources can be found in the
Cloud also after the service instances terminate, but before a
DELETE request is issued on them.

Compared to the first architecture, the second one may
provide increased performance because all the states are
managed locally with the processing nodes that access and
update them. Moreover both process and sub-process run
within the same elastic processors that improve performance
and scalability of the composed services, as this may further
reduce communication latency between running instances.
This architecture however is less elastic than the former one
because the state of the services must be explicitly migrated
between computing nodes to consolidate the load and free up
the resources of some of the processing nodes. Depending on
the semantic of the composition and the size of the service
state, live-migration of services may be time and resource
consuming. This architecture is less dependable as failures
to processing nodes, for services and tasks, may result in
the corruption of their states and failure of the composition.
However, the operational cost of consuming a dedicated data
service of the PaaS platform is removed. By using an external
provider for persisting the outputs of the process and having
the client directly accessing it, the PaaS is offloaded as the
burden of delivering the data to the client is shifted entirely
on the external provider. In this case, the PaaS cannot provide
strong guarantees about the delivery of the data, and cannot
provide elastic URIs, making the infrastructure more rigid.
Nevertheless, the resources originally devoted to deliver results
to clients can now be allocated to run processing nodes if the
system needs additional process execution capacity.

Compared to the others, the third architecture has increased
flexibility because the client can dynamically change the
composed service by manipulating its state. Its performance
and dependability are similar to the first architecture when
considering the execution of the elastic tasks and sub-processes
because their state is fully managed by the Cloud. However,
this architecture may show degraded performance and depend-
ability at the level of main process. Performance degradation
happens because making progress with the service composi-
tion involves the interaction between the Cloud and the client,
since part of the state of the process needs to be shipped back
and forth at every step of the execution. Since the client is
driving the execution of the process, it is also responsible for

making branching and – in general – adaptation and binding
decisions that make it challenging for the Cloud to perform
optimizations based on assumptions about the structure of the
process. Finally, the dependability of the composed service
depends on the client’s ability to manage the state reliably
and consistently during the process life-span. The process may
fail, or even worse, its state may simply be lost if the client
crashes and lacks the ability to recover the process state. Thus,
for a dependable execution the client also needs to implement
all state management activities, such as persistence, backup,
recovery, checkpointing as well as state history logging and
versioning that are usually provided within the PaaS.

These architectures differ also in how they deal with the
long-livedness of service compositions. The first architecture
can easily deal with long running processes provided by the
user, as processing nodes are completely stateless. Since the
state is maintained by the Cloud data service, processing nodes
need only to be kept alive while processing requests and can
be deallocated when idle, which for long running processes is
likely to be most of the time.

The second architecture is the least flexible, and long
running processes may make it impossible to deallocate any
processing node if state migration is not available. This hap-
pens because the whole state of processes is co-located with
the processing nodes executing them, therefore, processing
nodes can only be stopped after the instances running on them
have completed running or they have been pre-empted and
migrated on a different processing node.

In the third architecture, the state of the composition is
managed entirely by the client, hence the problem of long-
lived service composition is moved outside the Cloud; this
means that whenever the process completes its ongoing inter-
actions, the processing node that are running the composite
service can be deallocated, which is similar to what happens
in the first architecture. Subsequent requests from the client to
continue with the process execution will be routed to available
processing nodes or will result in the allocation of additional
processing nodes depending on the current workload.

It must be noted that the architectures presented here are
some of the possible combinations to combine RESTful BPM
and Clouds, and should be considered only as examples. In
fact, by leveraging state migration, elastic URIs and elastic
process engine nodes, one can dynamically reconfigure the
infrastructure based on runtime monitoring: For example, one
can keep the state of a service in the processing elements
when several changes of the state must be committed, or
while the service is active, but then can move the state to
the data service when state updates become less frequent to
trade performance against dependability. Likewise, the PaaS
may create checkpoints of the locally managed state, either
at regular time intervals or upon significant state changes,
and then use these to recover from failures of the processing
nodes.

8



VI. RELATED WORK

This work investigate the combination of Cloud and com-
posite services under the perspective of REST architectural
style. In particular, we argue that RESTful BPM is a sensible
choice to fully exploit Clouds as the backbone infrastructure
to run and manage composite services that are truly elastic.

Related work in this area clusters around the concepts of
Business Process as a Service (BPaaS), Workflow as a Service
(WFaaS), and Composition as a Service (CaaS).

BPaaS and WFaaS mainly target traditional BPEL-based
service compositions and tackle the problems to port them to
the Cloud. This is usually achieved by extending some state-
of-the-art engine to run over a cluster of virtualized serves. The
preliminary work by Anstett et al. [2] studies the feasibility
of running BPEL compositions under the different delivery
paradigms that are enabled by Clouds. The focus lies on the se-
curity implications and in defining suitable trust requirements
for multi-tenant BPEL engines. Pathirage et al. [19] present
the design of a multi-tenant runtime system that runs BPEL
service compositions in isolation, as clients use their own pri-
vate instance of the composition execution engine. Damasceno
et al. [6] propose the SSC4Cloud framework that provides a
shared environment for designing service compositions, and
executing them on the Cloud. Composite services modeled
with a Cloud-based tool are then automatically translated to
WS-BPEL and deployed to virtual computing nodes for the
execution. Isolation is achieved by allocating all the processes
of a client to one or more replicas of a private virtual machine.
In our approach, multi-tenancy is achieved by means of public
URIs and isolated service states: each composition is tied to
unique and distinct resources and its state is evolved by one
processing node at the time. All the executions are independent
and the execution of a service acts on a separated set of
resources, e.g. tasks, subprocesses, that have again unique
URIs inside the PaaS. The hierarchical nature of URIs also
helps to provide scoping for identifiers so that users can
only instantiate and interact with processes, tasks and services
within their scope. Isolation is provided at process level: each
processing node is able to maintain separate executions, i.e.,
processes, for different services. As pointed out by Anstett et
al., this may be detrimental to performance isolation because
several processes share the same processing node. This can be
mitigated by means of elastic processing nodes that align their
capacity with the current load.

A different approach is proposed by Dörnemann et al. [7]
with the cloud-bursting of BPEL tasks on the Amazon Cloud
depending on the current load of the infrastructure. Instead
of replicating the business engine across several virtual ma-
chines, the authors extend the BPEL engine architecture with
a provisioning module to allocate VMs on-the-fly, a flexible
request dispatching module, a load-balancer and a load ana-
lyzer, and define policies that dynamically scale the system
and redistributed the load. In this work, the authors discuss
the difficulties to enable elasticity for BPEL based service
compositions that suggests – as we propose in this paper –

the use of more flexible and light-weight architectures for
composite services and business process management such as
the ones based on REST.

In the same domain, Görlach and Leymann [13] discuss
the potential of dynamic service provisioning for the Cloud.
They propose models to support a flexible runtime man-
agement of the composite services at PaaS level for the
replication and placement of composite services, and for the
distribution of service tasks based on the structure of the
service compositions. Similarly to our approach, scalability
and elasticity are considered as the primary quality attributed
to be delivered. However, their approach focuses more on the
design of runtime management activities within the Cloud
infrastructure, while we have directed our attention to ana-
lyze the architectural alternatives that can enable elastic and
scalable execution of business processes in the Cloud.

Amazon recently launched the Amazon Simple Workflow
service (SWF)4, a PaaS offering that fits within the conceptual
framework we have outlined. Even if details on its design are
not public, from the available documentation we can argue
that they make use of the processing nodes that store the
execution state locally, while store the output results in the
data service. They can send for execution tasks on external
processing nodes, but provide also elastic processing nodes
for implementing elastic tasks. In summary, their architecture
may resemble the second alternative presented in the previous
section, with the exception that the data service used is inside
the PaaS instead of outside. The main limitation is that SWF
does not take care of elastically running the workflow. Instead,
users of the SWF need to explicitly define the rules to scale and
distribute their composite service and tasks that the platform
executes at runtime.

Work on CaaS focus on the SaaS offering and proposes
rapid modeling tools delivered as a service for the design,
deployment and execution of composite services. Thanks to
the Cloud-based approach, process fragments and service
composition knowledge can be easily shared and reused [26],
[4]. CaaS tools offer advanced capabilities for the discovery
of services that may fit within an incomplete composition,
or have overlapping service specifications. The CaaS pro-
vides recommendations to users about their compositions that
might include a completed workflow, process fragments, or
modifications to the current workflow. Given the higher level
of abstraction, also such CaaS tools may benefit from the
PaaS architecture for RESTful BPM we have presented in this
paper.

VII. CONCLUSIONS

Delivering Business Process as a Service (BPaaS) requires
to design a specialized form of Platform as a Service (PaaS)
which is optimized for elastic and dependable service com-
positions. In this paper we have discussed the most critical
architectural alternatives concerning the management of the

4http://aws.amazon.com/swf/

9



state of the execution and the invocation of the tasks, sub-
processes and services within the process. We have shown
that the abstractions and concepts of RESTful business process
management give a clear design strategy to manage the state
of processes, tasks and services deployed in the Cloud and
published to clients as resources, each with its unique identifier
and each responding to the same uniform interface. These
properties are also beneficial within the PaaS infrastructure to
support the elastic execution of the processes which requires
to efficiently replicate, migrate and consolidate their state. As
part of the tradeoff between performance against dependability
we have discussed and compared two alternative architectures,
one which makes usage of the internal data storage services
provided by the same PaaS platform, and another which relies
on an external data storage service only used to publish the
final results of the process. These are just the extreme cases
of a continuum, whose sweet spot can also vary depending on
the operational costs and the business model chosen by the
particular BPaaS platform provider.

ACKNOWLEDGMENTS

This work is partially supported by the Swiss National
Science Foundation under the “Fellowship for Prospective
Researches” contract PBTIP2-142337. We would like also to
thank Prof. Schahram Dustdar and the Distributed System
Group of the Technical University of Vienna for hosting
Alessio Gambi and for providing great support for this re-
search.

REFERENCES

[1] R. Alarcón, E. Wilde, and J. Bellido. Hypermedia-driven RESTful
service composition. In Proceedings of the International Conference on
Service-Oriented Computing - Workshops, ICSOC’10 Workshops, pages
111–120, 2010.

[2] T. Anstett, F. Leymann, R. Mietzner, and S. Strauch. Towards BPEL
in the Cloud: Exploiting different delivery models for the execution
of business processes. In Proceedings of the Congress on Services,
SERVICES’09, pages 670–677, 2009.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above the
Clouds: A Berkley view of Cloud Computing. Technical Report No.
UCB/EECS-2009-28, University of California at Berkley, 2009.

[4] M. B. Blake, W. Tan, and F. Rosenberg. Composition as a Service.
IEEE Internet Computing, 14(1):78–82, 2010.

[5] J. Brzeziński, A. Danilecki, J. Flotyński, A. Kobusińska, and
A. Stroiński. ROsWeL workflow language: A declarative, resource-
oriented approach. New Generation Computing, 30:141–164, 2012.

[6] J. C. Damasceno, F. A. A. Lins, R. W. A. Medeiros, B. L. B. Silva,
A. R. R. Souza, D. Aragão, P. R. M. Maciel, N. S. Rosa, B. Stephenson,
and J. Li. Modeling and executing business processes with annotated
security requirements in the cloud. In Proceedings of the International
Conference on Web Services, ICWS’11, pages 137–144, 2011.

[7] T. Dörnemann, E. Juhnke, and B. Freisleben. On-demand resource
provisioning for BPEL workflows using Amazon’s Elastic Compute
Cloud. In Proceedings of the International Symposium on Cluster
Computing and the Grid, CCGRID’09, pages 140–147, 2009.

[8] S. Dustdar, Y. Guo, B. Satzger, and H.-L. Truong. Principles of elastic
processes. IEEE Internet Computing, 15(5):66–71, Sept 2011.

[9] T. Erl, B. Carlyle, C. Pautasso, and R. Balasubramanian. SOA with
REST - Principles, Patterns and Constraints for Building Enterprise
Solutions with REST. The Prentice Hall service technology series.
Pearson Education, 2013.

[10] C. Fehling, T. Ewald, F. Leymann, M. Pauly, J. Rütschlin, and
D. Schumm. Capturing Cloud computing knowledge and experience
in patterns. In Proceedings of the International Conference on Cloud
Computing, CLOUD’12, pages 726–733, 2012.

[11] C. Fehling, F. Leymann, J. Rütschlin, and D. Schumm. Pattern-based
development and management of Cloud applications. Future Internet,
4(1):110–141, 2012.

[12] R. Fielding. Architectural styles and the design of network-based
software architectures. PhD thesis, University of California, 2000.

[13] K. Görlach and F. Leymann. Dynamic service provisioning for the
Cloud. In Proceedings of the International Conference on Services
Computing, SCC’12, pages 555–561, 2012.

[14] H. Herodotou, F. Dong, and S. Babu. No one (cluster) size fits all:
automatic cluster sizing for data-intensive analytics. In Proceedings of
the Symposium on Cloud Computing, ACM SOCC’11, page 18, 2011.

[15] S. Islam, K. Lee, A. Fekete, and A. Liu. How a consumer can measure
elasticity for Cloud platforms. In Proceedings of the International
Conference on Performance Engineering, ICPE’12, pages 85–96, 2012.

[16] S. Kumaran, R. Liu, P. Dhoolia, T. Heath, P. Nandi, and F. Pinel. A
RESTful architecture for service-oriented business process execution. In
Proceedings of the International Conference on e-Business Engineering,
pages 197–204. ICEBE’08, 2008.

[17] OASIS. Web Service Business Process Execution Language Version 2.0
Specification, april 2007. OASIS standard.

[18] G. Pardon and C. Pautasso. Towards distributed atomic transactions over
RESTful services. In E. Wilde and C. Pautasso, editors, REST: From
Research to Practice, pages 507–524. Springer, 2011.

[19] M. Pathirage, S. Perera, I. Kumara, and S. Weerawarana. A multi-
tenant architecture for business process executions. In Proceedings of
the International Conference on Web Services, ICWS’11, pages 121–
128, 2011.

[20] C. Pautasso. RESTful Web service composition with BPEL for REST.
Data & Knowledge Engineering, 68(9):851–866, 2009.

[21] C. Pautasso. BPMN for REST. In Proceedings of the International
Workshop on Business Process Model and Notation, BPMN’11, pages
74–87, 2011.

[22] C. Pautasso and G. Alonso. The JOpera visual composition language.
Journal of Visual Languages and Computing, 16(1–2):119–152, 2005.

[23] C. Pautasso and E. Wilde. Push-enabling RESTful business processes.
In Proceedings of the International Conference on Service-Oriented
Computing, ICSOC’11, pages 32–46, 2011.

[24] M. Pereira, M. Fernandes, and J. Martins. Web service and business
process execution on peer-to-peer environments. In Proceedings of The
International Conference on Advances in P2P Systems, AP2PS’11, pages
19–26, 2011.

[25] L. Richardson and S. Ruby. RESTful web services. O’Reilly Media,
Incorporated, 2007.

[26] F. Rosenberg, P. Leitner, A. Michlmayr, P. Celikovic, and S. Dustdar.
Towards Composition as a Service - a quality of service driven approach.
In Proceedings of the International Conference on Data Engineering,
ICDE’09, pages 1733–1740, 2009.

[27] N. Stojnić and H. Schuldt. OSIRIS-SR: A Safety Ring for Self-
Healing Distributed Composite Service Execution. In Proceedings of
the International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, SEAMS’12, 2012.

[28] J. Varia. Cloud architectures. White paper, Amazon, 2008.
[29] J. Varia. Best practices in architecting Cloud applications in the aws

cloud. In R. Buyya, J. Broberg, and A. Goscinski, editors, Cloud
Computing: Principles and Paradigms, pages 459–490. Wiley Press,
2011.

[30] M. Wang, K. Y. Bandara, and C. Pahl. Process as a Service. In
Proceedings of the International Conference on Services Computing,
SCC’10, 2010.

[31] J. Webber, S. Parastatidis, and I. Robinson. REST in Practice: Hyper-
media and Systems Architecture. O’Reilly, 2010.

[32] X. Xu, I. Weber, L. Zhu, J. Liu, P. Rimba, and Q. Lu. BPMashup:
Dynamic execution of RESTful processes. In Proceedings of the
International Conference on Service Oriented Computing, ICSOC’12-
DEMO, 2012.

[33] M. zur Muehlen, J. V. Nickerson, and K. D. Swenson. Developing
web services choreography standards: the case of rest vs. soap. Decis.
Support Syst., 40(1):9–29, 2005.

10


