The Atomic Web Browser

Cesare Pautasso
Faculty of Informatics
University of Lugano, Switzerland

c.pautasso@ieee.org

ABSTRACT

The Atomic Web Browser achieves atomicity for distributed
transactions across multiple RESTful APIs. Assuming that

the participant APIs feature support for the Try-Confirm/Cancel

pattern, the user may navigate with the Atomic Web Browser
among multiple Web sites to perform local resource state
transitions (e.g., reservations or bookings). Once the user
indicates that the navigation has successfully completed, the
Atomic Web browser takes care of confirming the local tran-
sitions to achieve the atomicity of the global transaction.

Categories and Subject Descriptors

H.4.3 [Information Systems|: Information Systems Ap-
plications

Keywords
Atomic Transactions, Distributed Systems, REST

1. INTRODUCTION

The REST architectural style [1] features excellent sup-
port for the reliable interaction of clients with a single re-
source. Considering that GET, PUT, DELETE requests are by
definition idempotent, any failure during these interaction
can be addressed by simply repeating the request. However,
no guarantees can be made for more complex interactions
which require to atomically transfer state among resources
distributed across multiple RESTful Web services [6]. For
example, when a Web browser interacts with more than one
e-commerce service, we want to ensure that all interactions
can be performed atomically in order to complete the reser-
vation of all the purchased goods as a single step.

The goal of this poster is to present a browser extension
that solves the problem of achieving atomicity within dis-
tributed RESTful APIs within the constraints of: 1) Using a
lightweight transaction model (e.g., ATOMIKOS TCC [4]);
2) Avoiding changes to the HTTP protocol; 3) Keeping the
services unaware that they are part of the transaction; 4)
Focusing on the atomicity property of transactions.

The problem about how to transparently deal against fail-
ure scenarios within workflows spanning multiple RESTful
services is an important one. Our solution provides the abil-
ity to group multiple RESTful interactions and treat them
as a single logical step, as well as to ensure that it is possible

Copyright is held by the author/owner(s).
WWW 2013 Companion, May 13-17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2038-2/13/05.

Masiar Babazadeh
Faculty of Informatics
University of Lugano, Switzerland

masiar.babazadeh@usi.ch

to guarantee the consistency of a set of resources which are
distributed over multiple servers.

2. PROTOCOL

1) The Atomic Web Browser goes about interacting with
multiple RESTful service APIs.

2) Interactions may lead to a state transition of the service
identified by some URI. We assume that this URI can be
later used to confirm (or cancel) it within a given time.

3a) Once the workflow successfully completes, the set of
confirmation URIs is used to confirm the state transitions
of the services with idempotent requests (e.g., PUT).

3b) If the workflow fails, the set of cancellation URIs that
have been collected until the failure occurs are used to signal
each of the services with idempotent messages (e.g., DELETE)
to cancel their state transition.

Very briefly, as shown in [4], the protocol guarantees atom-
icity because if it stops before steps 3a/3b the result is a can-
cel performed independently by each participant after a suffi-
ciently long timeout. Otherwise each participant receives an
idempotent request for confirmation (step 3a)/cancellation
(step 3b) sent during the final phase.

3. EXAMPLE

In the following example, we show how a Web browser can
implement the protocol while interacting with two airline
reservation services that make use of standard HTTP.

Clients can inquire about the availability of flights at the
URI: /flight/{flight-no}/seat/{seat-no}. For example,
the GET /flight/LX101/seat/ request will return a hyper-
link to the next available seat on the flight LX101 or none if
the flight is fully booked. A POST request to the /booking
URI will create a new booking resource by returning a hyper-
link identifying it such as /booking/{id}/. The body of the
request can contain a reference to the chosen flight and seat
(i.e., <flight number="LX101" seat="33F"/>). The book-
ing can be updated with additional information using a PUT
/booking/{id}/ request.

Seats on a flight are only reserved for a limited amount
of time, during which the client should proceed with the
payment to confirm the reservation. To do so, it can follow
the confirmation hyperlink returned by the RESTful API
(e.g., in response to a GET /booking/{id} the service re-
turns <flight number seat><payment href="/payment/X"

rel="confirm" deadline="24h"></flight>). Thus, the reser-

vation can be confirmed with a PUT /payment/X <VISA ...>
request issued within the given deadline, or canceled with
the corresponding DELETE /booking/{id} request.

® O 6 /" &7 Book flights at low price onl X \

< C

| www.swiss.com/web/EN/Pages/index.aspx?Country=US

~| United States of America: english

AT SWISS

"> Book flight -

Book~ Information ~

% @ =
Service Resource Deadline
swiss.com /booking/A 24:00:00
easyjet.com /booking/B 10:45:32

Confirm

Cancel Continue Navigation

Figure 1: Checking the state of the current transaction with the Atomic Web Browser extension

The example shows that a RESTful service API compli-
ant with the uniform interface constraints can make use of
hypermedia to support the interaction with clients following
the Try-Cancel/Confirm pattern. Clients initialize the state
of a reservation with a standard POST request, which returns
a URI identifying the resource that has been initialized. By
querying the resource (with GET) clients can discover a hy-
perlink to confirm the reservation (with PUT) or to cancel it
(with DELETE). Additionally, the state of the newly created
resource should be discarded if a confirmation is not received
by the service within a given timeout (the duration of which
can be discovered by the client with a GET request).

Here we show a possible successful run of the protocol
guaranteeing the atomicity of multiple HTTP interactions:

1 GET swiss.com/flight/LX101/seat -> 200
1 GET easyjet.com/flight/EZ999/seat -> 200
2 POST swiss.com/booking -> 302 (Location: /booking/A)
2 POST easyjet.com/booking -> 302 (Location: /booking/B)
2 GET swiss.com/booking/A -> 200 (Confirm URI: /payment/A)
2 GET easyjet.com/booking/B -> 200 (Confirm URI: /payment/B)
3a PUT swiss.com/payment/A -> 200
3a PUT easyjet.com/payment/B -> 200
The following shows a failed run of the workflow, where

the protocol will perform the cancellation of the successfully
completed state transitions:

1 GET swiss.com/flight/LX101/seat -> 200

2 POST swiss.com/booking -> 302 (Location: /booking/A)
1 GET easyjet.com/flight/EZ999/seat

-> 204 (No seat available)

3b DELETE swiss.com/booking/A -> 200

4. ARCHITECTURE & USER INTERFACE

The Web browser extension we have developed intercepts
all HTTP requests made by the browser and looks for the
presence of confirmation/cancellation links in the responses
to unsafe requests (such as POST). To do so, the URI must
be annotated with a confirm (or a cancel) link relationship
and can either be found in the HTTP response header or in
the body. The confirmation URI are collected transparently
as the user navigates among different sites.

The extension user interface is kept very minimalistic with
a single button in the browser toolbar. This button indicates
the presence of an ongoing transaction (when it is activated).
As shown in Fig. 1, clicking on the button opens a dialog
which lists the set of resources that have been reserved and
gives the user three options: 1) Continue with the naviga-
tion to perform more bookings; 2) Confirm all bookings and
commit the distributed transaction; 3) Cancel the transac-
tion. In our experience users are familiar with the notion of
shopping carts where they can accumulate a set of items to
be purchased within each site. The user interface we provide
mimicks the same concept, even if the items accumulated in

the atomic browser “shopping cart” correspond to resources
across multiple sites.

If the user performs a POST request and the confirmation
link cannot be detected the browser extension warns the user
that the interaction cannot be added to the current trans-
action. The set of confirmation URIs are stored persistently
within the browser local storage so that they can survive
browser restarts. Also, a timestamp is associated with each
URI to indicate to the user how much time is left before the
reservations will begin to expire.

S. RELATED WORK & CONCLUSION

In addition to several threads on the rest-discuss mailing
list, summarized by [2], the problem of transactional inter-
actions for RESTful services has started to attract some
interest also in the research community. For example, [5]
proposed an approach to RESTful transactions based on
isolation theorems. The RETRO [3] transaction model also
complies with the REST architectural style.

In this poster we propose a browser-centric approach based
on the Try-Cancel/Confirm pattern. The pattern fits well
with the business requirements of many service providers
that need to participate within long running transactions
that do not require isolation. Thus, they offer services al-
lowing clients to issue requests triggering state transitions
(or resource reservations) which can later be canceled and
have to be confirmed within a given time window.

If an agreement can be reached on the common usage of

link relations to indicate the presence of confirmation/cancellation

links as well as the appropriate media type representation
for the confirmation payloads, we believe our lightweight
approach to atomic distributed transactions for RESTful
APIs has the potential to find widespread applicability due
to its minimal impact on the Web architecture itself, and
the great benefits it provides to users that need to complete
e-commerce transactions across multiple sites atomically.

6. REFERENCES

[1] R. Fielding. Architectural Styles and The Design of
Network-based Software Architectures. PhD thesis,
University of California, Irvine, 2000.

M. Little. REST and transactions?, 2009.
http://www.infoq.com/news/2009/06/rest-ts.

A. Marinos, A. R. Razavi, S. Moschoyiannis, and P. J.
Krause. RETRO: A consistent and recoverable RESTful
transaction model. In ICWS 2009, pages 181-188, 2009.
G. Pardon and C. Pautasso. Towards distributed atomic
transactions over RESTful services. In REST: From
Research to Practice, pages 507-524. Springer, 2001.

A. R. Razavi, A. Marinos, S. Moschoyiannis, and P. J.
Krause. RESTful transactions supported by the isolation
theorems. In ICWE’09, pages 394-409, 2009.

L. Richardson and S. Ruby. RESTful Web Services.
O’Reilly, May 2007.

(2]

(3]

(4]

http://www.infoq.com/news/2009/06/rest-ts

	Introduction
	Protocol
	Example
	Architecture & User Interface
	Related Work & CONCLUSION
	References

