
The Liquid.js Framework for Migrating and Cloning
Stateful Web Components across Multiple Devices

Andrea Gallidabino
Faculty of Informatics, USI Lugano

via Buffi 13, 6900 Lugano
andrea.gallidabino@usi.ch

Cesare Pautasso
Faculty of Informatics, USI Lugano

via Buffi 13, 6900 Lugano
c.pautasso@ieee.org

ABSTRACT
We are heading toward an era in which users own more
than one single Web-enabled device. These devices range
from smart phones, tablets and personal computers to smart
Web-enabled devices found in houses and cars. The ac-
cess mechanisms and usage patterns of Web applications
are changing accordingly, as users interact more and more
with Web applications through all their devices, even if the
majority of Web applications are not ready to offer a good
user experience taking full advantage of multiple devices.
In this demonstration we introduce Liquid.js, a framework
whose goal is to enable Web developers to take advantage
of multiple heterogeneous devices and offer to their users a
liquid user experience, whereby any device can be used se-
quentially or concurrently with Web applications that can
effortlessly roam from one device to another. This way, as
highlighted in the demonstration users do not need to stop
and resume their work on their Web application as they mi-
grate and clone them across different devices. The demo will
also show how developers can easily add such liquid behavior
to any Polymer Web component.

Keywords
Web Components, Liquid Software, Liquid Web Applica-
tions, Stateful Web Components, Multi-Device Environments

1. INTRODUCTION
The term Liquid Software is derived from a metaphor: like

a liquid adapts to the shape of its container, liquid software
can adapt to take full advantage of every device it is deployed
on [1]. A liquid Web application [8] is able to flow between
multiple devices following the attention focus of its users [7].

The concept of liquid software was first introduced in 1999
in the context of active network research. Hartman et al. [6]
tie the notion of liquid software to code mobility [3] and
injected code. The methaphor has evolved over the years
into the liquid software manifesto [10] to emphasize specific

Copyright is held by the author/owner(s).
WWW’16 Companion, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4144-8/16/04.
http://dx.doi.org/10.1145/2872518.2890538.

properties of the user experience. The manifesto takes into
consideration the fact that nowadays end users own multiple
devices and that they wish to use all of them together to run
their applications.

As a first step towards achieving this vision, this demo
presents the novel architecture and API of the Liquid.js
framework. We describe its main abstractions (the Liquid
component and Liquid variable) to share storage resources
in order to transparently maintain the state of a liquid Web
application synchronized.

2. MOTIVATION
Nowadays users own two or more Web-enabled devices [5],

usually a smart phone, a tablet and a personal computer.
The design of the majority of the Web applications does not
yet take into consideration the scenario in which users ac-
cess applications with all the devices they possess [4]. Those
devices may be used sequentially – where the work made on
one devices needs to be transferred to the other as the user
continues to use the same application there – or simultane-
ously. Traditional Web 1.0 applications, which do not use
sessions, make it possible to simply transfer them across de-
vices by sharing the link to the page currently open by the
user. As soon as sessions are introduced (e.g., when the
user needs to be authenticated) more effort is required to
make the application flow between different Web browsers
on multiple devices. Modern Web applications, which keep a
significant amount of state on the client, make it even more
complex for developers to achieve a liquid user experience
as their architecture was not designed to withstand the in-
teraction of the same user using multiple Web browsers on
different devices, possibly at the same time.

The goal of the Liquid.js framework is to help developers
build Web applications that can take full advantage of all
devices owned by their users, what has been identified as
the Liquid User Experience [8].

3. THE LIQUID.JS FRAMEWORK
The idea behind the Liquid.js framework is to give to de-

velopers the tools to easily create applications transparently
running on multiple heterogeneous devices. There are three
different use-cases of the Liquid.js framework: sequential
screening: applications run on different devices at differ-
ent times; simultaneous screening: applications run on
different devices of the same user at the same time; col-
laboration: two or more users collaborate using the same
application running on all of their devices at the same time.

183



The framework enables the transparent creation of dis-
tributed Web applications running on multiple devices, which
need to operate on a shared decentralized state. The as-
sumption is that these applications are developed using Web
components, which provide the necessary level of granular-
ity to structure the application user interface and its state.
Liquid.js takes care of the state synchronization by using
Yjs [9], a concurrency control and conflict resolution frame-
work.

3.1 Liquid components
The Liquid component is a piece of mobile code [2] which

encapsulates behaviors (JavaScript) and UI (HTML/CSS).
Whenever a Liquid component is needed, it is dynamically
loaded in the Web browser’s currently open page through
HTML imports.

We decided to build Liquid components on top of Web
Components, specifically using the Polymer syntax. Thanks
to the Web components standard the instances of a Liquid
component are isolated from each other, making it possible
to effectively componentize and build applications with mul-
tiple instances of the same component, while also making it
possible to explicitly describe which part of the component
state needs to be synchronized.

Figure 1 shows the architecture of the Liquid component.
A component is defined by its Application specific HTML
and behavior implemented by the developers using the Liq-
uid.js framework API to manage the replication and syn-
chronization of its state. The Liquid Component Library
takes care of propagating and synchronizing changes of the
state for each component instance. The developer of the
component does not need to worry about how many in-
stances are running or keep track of the set of devices that
are connected to the application on behalf of the user. The
communication with the other Liquid components is also
managed transparently from the developer perspective. Our
current implementation uses direct browser-to-browser con-
nections through WebRTC Datachannels, if it is available
on the Web browser, or through WebSockets relayed by a
Web Server (called Liquid Server in Figure 1) otherwise.

In addition to establishing the WebRTC/WebSocket com-
munication channel, the Liquid Server is used for device dis-
covery and pairing as well as for storing the repository of
Liquid components that will be downloaded and instantiated
on the Web browsers used to run the liquid Web application.

3.2 Liquid variables
The State of a liquid Web application is decomposed into

Liquid variables, which are associated to the data model of
each Liquid components. A variable is identified by its name
and stores its current value, which can be of any JSON-
serializable JavaScript data type.

While each Liquid component instance always holds the
current value of a Liquid variable, the Liquid.js framework
may choose to replicate and manage the state outside the
Liquid component. Values of Liquid variables are automat-
ically synchronized among paired component instances, ac-
cording to the permissions associated to each variable.

3.3 Permissions
The permissions of a variable affect how its state can be

changed and propagated among paired components. There
are two Boolean permissions: publish and subscribe. The

Liquid Component
Liquid Behavior

Application 
Specific

HTML and 
Behavior

Liquid
Component

API

Liquid
Component 

Library
State

Liquid Component
Liquid Behavior

Application 
Specific

HTML and 
Behavior

Liquid
Component

API

Liquid
Component 

Library
State

Liquid
Server

WebSocket

WebSocket

WebRTC
DataChannel

Web Component

Web Component

Figure 1: Liquid component architecture

publish permission defines if a component is allowed to prop-
agate changes to the state of a variable to other paired com-
ponent. The subscribe permission defines if a component is
allowed to accept changes from another paired component.

4. DEMO

4.1 Liquid User Experience
We will show several Web applications built with the Liq-

uid.js framework. They will show the effect of different shar-
ing policies associated to the liquid variables (global, shared,
and local) and the two permissions publish and subscribe.
For example, Figure 2 shows one of the possible applications
composed by three different Liquid components: Presenter
Screen which shows in a text-area all the letters input by a
keyboard; the Keyboard which is used to input letters; and
the Viewer Screen which shows the same text shown inside
the Presenter Screen. In this application Presenter Screen
pairs itself with a Keyboard component. Since they both
define an Input Letter variable they share it. The keyboard
publishes the input letter in the presenter screen, which al-
lows subscription to the keyboard. Similarly the Presen-
ter Screen pairs with many Viewer Screens. The viewer
screens allows subscription to the variable Screen, the pre-
senter screen publishes any new value to all viewers.

The components can be scattered among multiple devices
as the user pleases without compromising their state syn-
chronization. Figure 3 shows two screenshots of the Key-
board component and the Presenter Screen component en-
capsulated in the liquid frame implemented in the current
version of Liquid.js. The Liquid frame default implementa-
tion can be overridden. Not only the Liquid frame is op-
tional, but the developer can completely redefine it by using
the component deployment lifecycle API. In particular, we
will demonstrate a push-based approach, where users inter-
act with existing instances of a component to move them

184



Presenter Screen

Keyboard

Input Letter
subscribe = false

publish = true

Input Letter
subscribe = true
publish = false

Screen
subscribe = false

publish = true

Viewer Screen

Screen
subscribe = true
publish = false

Viewer Screen

Screen
subscribe = true
publish = false

Viewer Screen

Screen
subscribe = true
publish = false

Figure 2: Presenter - Viewer application

elsewhere. We are also experimenting with pull-based ap-
proaches, where the target device is used to choose the com-
ponent instance that should be migrated on it.

We will also demonstrate the liquid experience with real
Web applications, such as: peer to peer picture sharing
by grabbing frames from WebRTC video feeds; collabora-
tive trip planning over a Google Map component, where
the planned route can be configured on a desktop and then
shared with a mobile device.

4.2 Liquid.js API
Liquid.js provides two APIs: the Component Deployment

Lifecycle API, which provides the primitives to manage the
creation, pairing and removal of Liquid components; and the
Liquid State Storage API, which lets developers control how
the state of the components is synchronized.

In particular we will show that whenever the Liquid.js li-
brary is loaded it automatically creates an unique identifier
deviceID. This id identifies devices connected to the Liquid
application. The Component Deployment Lifecycle API ex-
poses the following four primitive methods:

• create(componentType [, deviceID] [, state]):
The create method creates a new instance of a com-
ponent and returns its URI identifier componentID.
The type of the component is chosen with the compo-
nentType parameter (e.g. liquidKeyboard, liquidWeb-
cam). If the optional parameter deviceID is defined,
the method will create the Liquid component on the
specified device. In both cases, the component will be
attached to the Web page DOM as a child of a con-
tainer element which can be configured when Liquid.js
is loaded. The default initial state of the newly cre-
ated component can be overridden with the optional
parameter state.

• pair(componentID 1, componentID 2):
The pair method makes componentID 1 and compo-
nentID 2 share the state of their liquid variables. As
we are going to discuss, depending on the permissions
associated with the variables, pairing can be symmet-
ric (state changes flow in both directions) or asymmet-

ric (one component will follow changes in the other
one).

• unpair(componentID 1, componentID 2):
The unpair method stops the synchronization between
the two components. The state of the components is
not affected, but future changes will not be synchro-
nized.

• remove(componentID):
The remove method removes a component instance
from the device it is currently running on. The user
will no longer see the component. If the component
was paired with any other Liquid component, the other
components are automatically unpaired with it.

The Component Deployment Lifecycle API also exposes
the following utility methods (migrate, clone, and fork) which
are a composition of the previously defined primitives.

• migrate(component, deviceID) =
create(component.type, deviceID, component.state) +
remove(component.ID)

• clone(component, deviceID) =
create(component.id, deviceID, component.state) + pair
(component.ID, createdComponent.ID)

• fork(component, deviceID) =
create(component.type, deviceID, component.state)

The second API provided is called Liquid State Storage
API. The Liquid State Storage API is used during liquid
components development in order to declare which state
variables should be managed by Liquid.js so that their val-
ues get automatically synchronized. The API exposes the
following three methods that are accessible from inside a
Liquid component:

• registerVariable(name, init[, permissions])
The registerVariable method registers a variable as
Liquid. This method notifies the Liquid behavior in-
side the Liquid component that a variable called name
should me monitored and is initialised with value init.
Whenever the component is paired with another com-
ponent, this variable will be automatically synchro-
nized following the permissions passed as parameter.

• variableChange(name, value)
The variableChange method updates the value of the
variable called name. Liquid.js propagates the change
to all components sharing this variable.

• unregisterVariable(name)
The unregisterVariable method unregisters variable name
so that it will not be synchronized anymore with other
paired components.

4.3 Liquid Web Component Development
Based on the previously shown APIs, we will show a step

by step tutorial on how to liquefy any Polymer element in
the Polymer element catalog1. Listing 1 shows the final
code derived by the liquefaction of the Polymer paper-input2

component. The demo will go through the following steps:
1. Create a new component.
2. Define a new template in the newly created component

and insert the Polymer component (e.g., paper-input)
we want to liquefy.

1https://elements.polymer-project.org/
2https://elements.polymer-project.org/elements/
paper-input

185

https://elements.polymer-project.org/
https://elements.polymer-project.org/elements/paper-input
https://elements.polymer-project.org/elements/paper-input


Figure 3: Paired Liquid Screen and Liquid Keyboard work-
ing together

3. Define a new property and bind it to the Polymer Com-
ponent we chose in the previous step. Include an ob-
server function in the property.

4. Register the new property as a Liquid variable by pass-
ing its name and a default value (and optionally its
permissions) to the API method registerVariables.

5. Inside the observer function call the API method vari-
ableChange by passing the name of the variable and
the changed value.

6. Run the liquid component and show that it can be dy-
namically deployed and migrated on different devices.
When cloning the component its state gets automati-
cally synchronized.

Listing 1: Liquid Polymer Paper-Input Component

1 <link rel="import" href="/liquid -behavior/
liquid -behavior.html">

2 <link rel="import" href="/paper -input/
paper -input.html">

3 <dom -module id="liquid -page -example">
4 <template >
5 <paper -input label="Insert Text Here"

value="{{ liquefyVariable }}"/>
6 </template >
7 <script >
8 Polymer ({
9 is: ’liquid -page -example ’,

10 behaviors: [LiquidBehavior],
11 properties: { liquefyVariable: {

observer: ’textChanged ’}},
12
13 attached: function () {
14 this.registerVariables ([{
15 name:’liquefyVariable ’,
16 init: ’Insert Text Here’
17 }])
18 },
19
20 textChanged: function (newValue ,

oldValue) {
21 this.variableChange(’liquefyVariable ’,

newValue)
22 }
23 });
24 </script >
25 </dom -module >

5. CONCLUSION AND FUTURE WORK
While developers can take advantage of existing techniques

to make their components responsive so that they can adapt
and take advantage of the capabilities provided by heteroge-
neous devices [11], we are currently improving the support
for automatic adaptation in the Liquid.js framework. We
plan to further extend the liquid concept beyond the visi-
ble components of the user interface of a Web application.
Currently, every device on which a component is deployed
is running its behavior using local resources. Paired devices
share the state of liquid components, but perform compu-
tations over it separately. This in some cases may lead to
redundant computations being performed and unnecessary
conflicts over the shared state. We are working to make it
possible for non-visual components of liquid Web applica-
tions to transparently share the computational power of all
connected devices.

6. REFERENCES
[1] D. Bonetta and C. Pautasso. An architectural style for

liquid web services. In Proc. of the 9th Working
IEEE/IFIP Conference on Software Architecture
(WICSA), pages 232–241, 2011.

[2] A. Carzaniga, G. P. Picco, and G. Vigna. Designing
distributed applications with mobile code paradigms.
In Proceedings of the 19th international conference on
Software engineering, pages 22–32. ACM, 1997.

[3] A. Fuggetta, G. P. Picco, and G. Vigna.
Understanding code mobility. Software Engineering,
IEEE Transactions on, 24(5):342–361, 1998.

[4] Google. The new multi-screen world: Understanding
cross-platform consumer behavior.
http://services.google.com/fh/files/misc/

multiscreenworld_final.pdf, 2012.

[5] Google. The connected consumer.
http://www.google.com.sg/publicdata/explore?

ds=dg8d1eetcqsb1_, 2015.

[6] J. J. Hartman, P. Bigot, P. Bridges, B. Montz,
R. Piltz, O. Spatscheck, T. Proebsting, L. L. Peterson,
A. Bavier, et al. Joust: A platform for liquid software.
Computer, 32(4):50–56, 1999.

[7] M. Levin. Designing Multi-device Experiences: An
Ecosystem Approach to User Experiences Across
Devices. O’Reilly, 2014.

[8] T. Mikkonen, K. Systä, and C. Pautasso. Towards
liquid web applications. In Proc. of ICWE, pages
134–143. Springer, 2015.

[9] P. Nicolaescu, K. Jahns, M. Derntl, and R. Klamma.
Yjs: A framework for near real-time p2p shared
editing on arbitrary data types. In Proc. of ICWE,
pages 675–678. Springer, 2015.

[10] A. Taivalsaari, T. Mikkonen, and K. Systa. Liquid
software manifesto: The era of multiple device
ownership and its implications for software
architecture. In Computer Software and Applications
Conference (COMPSAC), 2014 IEEE 38th Annual,
pages 338–343. IEEE, 2014.

[11] J.-P. Voutilainen, J. Salonen, and T. Mikkonen. On
the design of a responsive user interface for a
multi-device web service. In Proceedings of the Second
ACM International Conference on Mobile Software
Engineering and Systems, pages 60–63, 2015.

186

http://services.google.com/fh/files/misc/multiscreenworld_final.pdf
http://services.google.com/fh/files/misc/multiscreenworld_final.pdf
http://www.google.com.sg/publicdata/explore?ds=dg8d1eetcqsb1_
http://www.google.com.sg/publicdata/explore?ds=dg8d1eetcqsb1_

	Introduction
	Motivation
	The LIQUID.JS framework
	Liquid components
	Liquid variables
	Permissions

	Demo
	Liquid User Experience
	Liquid.js API
	Liquid Web Component Development

	Conclusion and Future work
	References



