
Atomic Transactions for the 
REST of us

Cesare Pautasso
Faculty of Informatics

University of Lugano, Switzerland

c.pautasso@ieee.org
http://www.pautasso.info

@pautasso

http://www.pautasso.info/�


©2010 - Cesare Pautasso 2

Acknowledgements
 This is joint work with Guy Pardon, Atomikos

http://www.atomikos.com

http://www.atomikos.com/�
http://www.atomikos.com/�


©2010 - Cesare Pautasso 3

Does REST need transactions?
 If you find yourself in need of a distributed 

transaction protocol, then how can you possibly say 
that your architecture is based on REST? I simply 
cannot see how you can get from one situation (of 
using RESTful application state on the client and 
hypermedia to determine all state transitions) to the 
next situation of needing distributed agreement of 
transaction semantics wherein the client has to tell 
the server how to manage its own resources.

 ...for now I consider "rest transaction" to be an 
oxymoron.

Roy Fielding, REST discuss, June 9th, 2009



©2010 - Cesare Pautasso 4

Does REST need transactions?
 The typical conversation thread, real or virtual, about 

transactions over HTTP goes something like this 
(elided for brevity): 
 "You don't want transactions over HTTP" 
 But I need to organize number of steps into a single unit I 

can deal with easily. 
 "OK, but you don't need transactions over HTTP" 
 But I need the ability to back out changes in multiple 

locations safely and consistently. 
 "OK, but you can't do transactions over HTTP!" 
 Really? 

 And here the topic usually dies or descends into a 
heated debate. 

Mike Amudsen, 
http://amundsen.com/blog/archives/1024



©2010 - Cesare Pautasso 5

Context

Adapted from Stefan Tilkov, Using REST for SOA, QCon SFO 2010

RESTful Web Service

RESTful Web Service

Backend 1

Backend 2

Persistent 
Storage

Database 3

R
PUT

DELETE

GET

POST

S
PUT

DELETE

GET

POST

?






©2010 - Cesare Pautasso 6

The problem

Thanks to the idempotency of GET/PUT, 
each individual state transfer is reliable and atomic

RESTful Web Service

RESTful Web Service

R
PUT

DELETE

GET

POST

S
PUT

DELETE

GET

POST

Client State transfer

State transfer



©2010 - Cesare Pautasso 7

The problem

How to we make both interactions atomic?

RESTful Web Service

RESTful Web Service

R
PUT

DELETE

GET

POST

S
PUT

DELETE

GET

POST

Client

State transfer

State transfer



©2010 - Cesare Pautasso 8

Constraints
 Interoperability:
 No changes/extensions to HTTP
• No additional verbs
• No special/custom headers

 Loose Coupling:
 REST shifts all the “work” to the client
 RESTful Web services should remain unaware 

they are participating in a transaction

 Simplicity:
 Transactions will not be adopted in practice 

unless they can be made simple enough



©2010 - Cesare Pautasso 9

Assumption: Try-Confirm/Cancel
 Resource state transitions follow the TCC pattern

 Before they are made permanent state transitions 
go through an intermediate “reserved” state
which either will be confirmed or canceled 
by a client within a given time

 Hint: Cancel/Confirm are idempotent

Initial
State Reserved

State

Final
State

Try

Timeout

Cancel

Confirm



©2010 - Cesare Pautasso 10

Example: Flight Booking Resource
Try
 POST /booking
 302 Location: /booking/X

Confirm
 PUT /booking/X
 200

Cancel
 DELETE /booking/X
 200

Reserve the flight

Pay and confirm 
the flight

Cancel the 
reservation

URI of the 
reserved state



©2010 - Cesare Pautasso 11

Protocol
1. A client interacts with multiple RESTful Web services. 

Interactions may lead to state transitions 
(the intermediate state is identified by a URI known to 
the client)

2. Once the client has completed all interactions, it uses 
the URIs identifying the intermediate states to 
confirm the state transitions (and thus commit the 
transaction)

Note: If the client stops before step 2, the state 
transitions will eventually be undone by the services 
themselves (after a timeout). 
As an optimization, the client can use the same URIs 
to cancel the state transitions (and thus explicitly 
rollback the transaction).



Confirm©2010 - Cesare Pautasso 12

Simple Example
POST www.swiss.ch/booking
302 Location: /booking/1

POST www.ezyj.com/booking
302 Location:/booking/X

PUT www.swiss.ch/booking/1
200

PUT www.ezyj.com/booking/X
200

1.

2.

http://www.swiss.ch/booking�
http://www.ezyj.com/booking�
http://www.swiss.ch/booking/1�
http://www.ezy.com/booking/X�


Confirm©2010 - Cesare Pautasso 13

What if something fails?
POST www.swiss.ch/booking
302 Location: /booking/1

POST www.ezy.com/booking
302 Location:/booking/X

PUT www.swiss.ch/booking/1
200

PUT www.ezy.com/booking/X
200

1.

2. Only idempotent 
methods

are allowed in the 
confirmation

phase.

Whatever 
happens, these 
state transitions 
are temporary.

If something fails, 
stop before moving 

to phase 2

If something fails, 
retry as many times 

as necessary

http://www.swiss.ch/booking�
http://www.ezy.com/booking�
http://www.swiss.ch/booking/1�
http://www.ezy.com/booking/X�


©2010 - Cesare Pautasso 14

A matter of timing

1. 
Try

2. 
Confirm

Timeouts
St

at
e 

tra
ns

iti
on

s

Time

Agreement is reached if the confirmation phase ends before the 
resources undo the state transitions because of the timeouts



©2010 - Cesare Pautasso 15

A matter of timing

1. 
Try

2. 
Confirm

Timeouts
St

at
e 

tra
ns

iti
on

s

Time

If the confirmation runs longer than the earliest timeout we 
cannot guarantee agreement



©2010 - Cesare Pautasso 16

Timeouts and heuristics
 Bad News: As with every distributed agreement 

protocol, it is impossible to avoid heuristics
 Good News: 
 thanks to the REST uniform interface we can always 

do a GET on the URI of the reserved resource to see 
how much time we have left before it cancels
 Avoid starting phase 2 if there is not enough time 

left to confirm with every service
 More complex preparation: if the resource allows it, 

extend the reservation time (also idempotent) before 
starting phase 2.

 In any case, use a lightweight transaction coordinator 
to log everything for recovery and human diagnosis of 
heuristics



©2010 - Cesare Pautasso 17

Architecture (Client-side Transaction)

Client
TCC

Resources

Client
Application

Transaction
Library

Try

Try

Try

Confirm

Confirm

Confirm

Confirm

1
2

2

2

1

1

4

4

4

3

5



©2010 - Cesare Pautasso 18

Architecture (Service Composition)

Composite
RESTful
Service

TCC
Resources

Client

Transaction
Coordinator

Workflow
Engine

Try

Try

Try

Confirm

Confirm

Confirm

Confirm

0

6

1
2

2

2

1

1

4

4

4

3

5



©2010 - Cesare Pautasso 19

Conclusion
 The protocol guarantees atomicity in the 

event of failures among multiple interactions 
with RESTful Web services that comply with 
the TCC pattern.

 (We are not interested in isolation)
 No HTTP extension is required
 Fits very nicely with the REST uniform 

interface and the idempotency of the 
PUT/DELETE methods

 Hypermedia can be easily built in to guide 
the discovery of the 
cancellation/confirmation URIs 
(e.g., with HTTP Link Headers)



©2010 - Cesare Pautasso 20

References
 G. Pardon, C. Pautasso, Towards Distributed Atomic Transactions over 

RESTful Services, in: REST: from Research to Practice, Springer (to appear)
 Cesare Pautasso, RESTful Web Service Composition with JOpera, Proc. Of 

the International Conference on Software Composition (SC 2009), Zurich, 
Switzerland, July 2009.

http://www.jopera.org/docs/publications/2009/doodlemap�


©2010 - Cesare Pautasso 21

WS-REST 2011

http://ws-rest.org/2011

 @WWW2011, Hyderabad, India
 28 March 2011 
 Paper Submission is open (deadline: 31 Jan 2011)

http://ws-rest.org/2011�


©2010 Cesare Pautasso 22

http://ecows2011.inf.usi.ch/�
http://twitter.com/ecows2011�

	Slide Number 1
	Acknowledgements
	Does REST need transactions?
	Does REST need transactions?
	Context
	The problem
	The problem
	Constraints
	Assumption: Try-Confirm/Cancel
	Example: Flight Booking Resource
	Protocol
	Simple Example
	What if something fails?
	A matter of timing
	A matter of timing
	Timeouts and heuristics
	Architecture (Client-side Transaction)
	Architecture (Service Composition)
	Conclusion
	References
	WS-REST 2011
	Slide Number 22

