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Does REST need transactions?
 If you find yourself in need of a distributed 

transaction protocol, then how can you possibly say 
that your architecture is based on REST? I simply 
cannot see how you can get from one situation (of 
using RESTful application state on the client and 
hypermedia to determine all state transitions) to the 
next situation of needing distributed agreement of 
transaction semantics wherein the client has to tell 
the server how to manage its own resources.

 ...for now I consider "rest transaction" to be an 
oxymoron.

Roy Fielding, REST discuss, June 9th, 2009
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Does REST need transactions?
 The typical conversation thread, real or virtual, about 

transactions over HTTP goes something like this 
(elided for brevity): 
 "You don't want transactions over HTTP" 
 But I need to organize number of steps into a single unit I 

can deal with easily. 
 "OK, but you don't need transactions over HTTP" 
 But I need the ability to back out changes in multiple 

locations safely and consistently. 
 "OK, but you can't do transactions over HTTP!" 
 Really? 

 And here the topic usually dies or descends into a 
heated debate. 

Mike Amudsen, 
http://amundsen.com/blog/archives/1024
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Context

Adapted from Stefan Tilkov, Using REST for SOA, QCon SFO 2010
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The problem

Thanks to the idempotency of GET/PUT, 
each individual state transfer is reliable and atomic
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The problem

How to we make both interactions atomic?
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Constraints
 Interoperability:
 No changes/extensions to HTTP
• No additional verbs
• No special/custom headers

 Loose Coupling:
 REST shifts all the “work” to the client
 RESTful Web services should remain unaware 

they are participating in a transaction

 Simplicity:
 Transactions will not be adopted in practice 

unless they can be made simple enough
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Assumption: Try-Confirm/Cancel
 Resource state transitions follow the TCC pattern

 Before they are made permanent state transitions 
go through an intermediate “reserved” state
which either will be confirmed or canceled 
by a client within a given time

 Hint: Cancel/Confirm are idempotent
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Example: Flight Booking Resource
Try
 POST /booking
 302 Location: /booking/X

Confirm
 PUT /booking/X
 200

Cancel
 DELETE /booking/X
 200

Reserve the flight

Pay and confirm 
the flight

Cancel the 
reservation

URI of the 
reserved state
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Protocol
1. A client interacts with multiple RESTful Web services. 

Interactions may lead to state transitions 
(the intermediate state is identified by a URI known to 
the client)

2. Once the client has completed all interactions, it uses 
the URIs identifying the intermediate states to 
confirm the state transitions (and thus commit the 
transaction)

Note: If the client stops before step 2, the state 
transitions will eventually be undone by the services 
themselves (after a timeout). 
As an optimization, the client can use the same URIs 
to cancel the state transitions (and thus explicitly 
rollback the transaction).
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Simple Example
POST www.swiss.ch/booking
302 Location: /booking/1

POST www.ezyj.com/booking
302 Location:/booking/X

PUT www.swiss.ch/booking/1
200

PUT www.ezyj.com/booking/X
200

1.

2.

http://www.swiss.ch/booking�
http://www.ezyj.com/booking�
http://www.swiss.ch/booking/1�
http://www.ezy.com/booking/X�
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What if something fails?
POST www.swiss.ch/booking
302 Location: /booking/1

POST www.ezy.com/booking
302 Location:/booking/X

PUT www.swiss.ch/booking/1
200

PUT www.ezy.com/booking/X
200

1.

2. Only idempotent 
methods

are allowed in the 
confirmation

phase.

Whatever 
happens, these 
state transitions 
are temporary.

If something fails, 
stop before moving 

to phase 2

If something fails, 
retry as many times 

as necessary

http://www.swiss.ch/booking�
http://www.ezy.com/booking�
http://www.swiss.ch/booking/1�
http://www.ezy.com/booking/X�
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A matter of timing
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Agreement is reached if the confirmation phase ends before the 
resources undo the state transitions because of the timeouts
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A matter of timing
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If the confirmation runs longer than the earliest timeout we 
cannot guarantee agreement
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Timeouts and heuristics
 Bad News: As with every distributed agreement 

protocol, it is impossible to avoid heuristics
 Good News: 
 thanks to the REST uniform interface we can always 

do a GET on the URI of the reserved resource to see 
how much time we have left before it cancels
 Avoid starting phase 2 if there is not enough time 

left to confirm with every service
 More complex preparation: if the resource allows it, 

extend the reservation time (also idempotent) before 
starting phase 2.

 In any case, use a lightweight transaction coordinator 
to log everything for recovery and human diagnosis of 
heuristics
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Architecture (Client-side Transaction)
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Architecture (Service Composition)
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Conclusion
 The protocol guarantees atomicity in the 

event of failures among multiple interactions 
with RESTful Web services that comply with 
the TCC pattern.

 (We are not interested in isolation)
 No HTTP extension is required
 Fits very nicely with the REST uniform 

interface and the idempotency of the 
PUT/DELETE methods

 Hypermedia can be easily built in to guide 
the discovery of the 
cancellation/confirmation URIs 
(e.g., with HTTP Link Headers)
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