
Some REST Design Patterns
(and Anti-Patterns)

Cesare Pautasso
Faculty of Informatics

University of Lugano, Switzerland

c.pautasso@ieee.org
http://www.pautasso.info

©2009 - Cesare Pautasso 2

Abstract
 The REST architectural style is simple to define, but

understanding how to apply it to design concrete
REST services in support of SOA can be more
complex. The goal of this talk is to present the main
design elements of a RESTful architecture and
introduce a pattern-based design methodology for
REST services.

 A selection of REST-inspired SOA design patterns
taken from the upcoming "SOA with REST" book will
be explained and further discussed to share useful
solutions to recurring design problems and to also
the foundational building blocks that comprise the
REST framework from a patterns perspective.

 We will conclude by introducing some common SOA
anti-patterns particularly relevant to the design of
REST services in order to point out that not all
current Web services that claim to be RESTful are
indeed truly so.

©2009 - Cesare Pautasso 3

Acknowledgements
 The following distinguished individuals have

contributed to the the patterns and reviewed some of
the material presented in this talk:
 Raj Balasubramanian
 Benjamin Carlyle
 Thomas Erl
 Stefan Tilkov
 Erik Wilde
 Herbjorn Wilhelmsen
 Jim Webber

 And all the participants, sheperds and sheeps
of the SOA Patterns Workshop

©2009 - Cesare Pautasso 4

About Cesare Pautasso
 Assistant Professor at the Faculty of Informatics,

University of Lugano, Switzerland (since Sept 2007)
Research Projects:
 SOSOA – Self- Organizing Service Oriented Architectures
 CLAVOS – Continuous Lifelong Analysis and Verification of

Open Services
 BPEL for REST

 Researcher at IBM Zurich Research Lab (2007)
 Post- Doc at ETH Zürich
 Software:

JOpera: Process Support for more than Web services
http://www.jopera.org/

 Ph.D. at ETH Zürich, Switzerland (2004)

 Representations:
http://www.pautasso.info/ (Web)
http://twitter.com/pautasso/ (Twitter Feed)

©2009 - Cesare Pautasso 5

REST Patterns - Outline

• Design Methodology
• Simple Doodle Service Example & Demo
• SOA Design Patterns

• Entity Endpoint
• Uniform Contract
• Endpoint Redirection
• Content Negotiation
• Idempotent Capability

• AntiPatterns
• Tunneling everything through GET
• Tunneling everything through POST

©2009 - Cesare Pautasso 6

Design Methodology for REST

1. Identify resources to be exposed as
services (e.g., yearly risk report, book
catalog, purchase order, open bugs,
polls and votes)

2. Model relationships (e.g., containment,
reference, state transitions) between
resources with hyperlinks that can be
followed to get more details (or perform
state transitions)

3. Define “nice” URIs to address the
resources

4. Understand what it means to do a GET,
POST, PUT, DELETE for each resource
(and whether it is allowed or not)

5. Design and document resource
representations

6. Implement and deploy on Web server
7. Test with a Web browser

/soap

?/order

/book

/client

/balance

/loan

D
ELETE

PO
ST

PU
T

G
ET

©2009 - Cesare Pautasso 7

Design Space

4 Methods (Fixed)
N

 R
es

ou
rc

es
 (V

ar
ia

bl
e)

M Representations (Variable)

©2009 - Cesare Pautasso 8

Simple Doodle API Example Design

1. Resources:
polls and votes

2. Containment Relationship:

?/poll/{id}/vote/{id}

/poll/{id}/vote

/poll/{id}

/poll

D
ELETE

PO
ST

PU
T

G
ET

poll

{id1}

3. URIs embed IDs of “child”
instance resources

4. POST on the container is used to
create child resources

5. PUT/DELETE for updating and
removing child resources

{id2}

{id3}

vote

{id4}

{id5}

©2009 - Cesare Pautasso 9

Simple Doodle API Example
1. Creating a poll

(transfer the state of a new poll on the Doodle service)

2. Reading a poll
(transfer the state of the poll from the Doodle service)

POST /poll
<options>A,B,C</options>

201 Created
Location: /poll/090331x

GET /poll/090331x

200 OK
<options>A,B,C</options>
<votes href=“/vote”/>

/poll
/poll/090331x
/poll/090331x/vote

©2009 - Cesare Pautasso 10

Simple Doodle API Example
 Participating in a poll by creating a new vote sub- resource

POST /poll/090331x/vote
<name>C. Pautasso</name>
<choice>B</choice>

201 Created
Location:
/poll/090331x/vote/1

GET /poll/090331x

200 OK
<options>A,B,C</options>
<votes><vote id=“1”>
<name>C. Pautasso</name>
<choice>B</choice>
</vote></votes>

/poll
/poll/090331x
/poll/090331x/vote
/poll/090331x/vote/1

©2009 - Cesare Pautasso 11

Simple Doodle API Example
 Existing votes can be updated (access control headers not shown)

PUT /poll/090331x/vote/1
<name>C. Pautasso</name>
<choice>C</choice>

200 OK

GET /poll/090331x

200 OK
<options>A,B,C</options>
<votes><vote id=“/1”>
<name>C. Pautasso</name>
<choice>C</choice>
</vote></votes>

/poll
/poll/090331x
/poll/090331x/vote
/poll/090331x/vote/1

©2009 - Cesare Pautasso 12

Simple Doodle API Example
 Polls can be deleted once a decision has been made

DELETE /poll/090331x

200 OK

GET /poll/090331x

404 Not Found

/poll
/poll/090331x
/poll/090331x/vote
/poll/090331x/vote/1

©2009 - Cesare Pautasso 13

Design Patterns

4 Methods (Fixed)
N

 R
es

ou
rc

es
 (V

ar
ia

bl
e)

M Representations (Variable)

Entity
Endpoint

Content
Negotiation

Uniform
Contract

Idempotent
Capability

Endpoint
Redirect

©2009 - Cesare Pautasso 14

Pattern: Uniform Contract

 How can consumers take advantage of multiple evolving
service endpoints?

 Problem: Accessing similar services requires consumers to
access capabilities expressed in service- specific contracts.
The consumer needs to be kept up to date with respect to
many evolving individual contracts.

Consumer Provider CH

Provider US

calculateRate()

retrieveTaxRate()

Provider IT

figureOutRateForTax()

©2009 - Cesare Pautasso 15

Pattern: Uniform Contract

 Solution: Standardize a uniform contract across alternative
service endpoints that is abstracted from the specific
capabilities of individual services.

 Benefits: Service Abstraction, Loose Coupling, Reusability,
Discoverability, Composability.

Consumer

Provider US

Provider CH

Provider IT

GET www.irs.gov/rate

GET www.admin.ch/tax/rate

GET www.tesoro.it/tasse/iva

©2009 - Cesare Pautasso 16

Example Uniform Contract

DELETE

UPDATE

READ

CREATE

CRUD

Clear a resource,
after the URI is no

longer valid

Initialize or update the
state of a resource

at the given URI

Retrieve the current
state of the resource

Create a
sub resource

DELETE

PUT

GET

POST

REST

©2009 - Cesare Pautasso 17

POST vs. GET

 GET is a read-only operation.
It can be repeated without
affecting the state of the
resource (idempotent) and
can be cached.

Note: this does not mean that
the same representation will
be returned every time.

 POST is a read-write
operation and may change
the state of the resource and
provoke side effects on the
server.

Web browsers warn
you when refreshing
a page generated
with POST

©2009 - Cesare Pautasso 18

POST vs. PUT
What is the right way of creating resources (initialize their state)?
PUT /resource/{id}
201 Created
Problem: How to ensure resource {id} is unique?
(Resources can be created by multiple clients concurrently)
Solution 1: let the client choose a unique id (e.g., GUID)

POST /resource
301 Moved Permanently
Location: /resource/{id}
Solution 2: let the server compute the unique id
Problem: Duplicate instances may be created if requests are
repeated due to unreliable communication

©2009 - Cesare Pautasso 19

Pattern: Endpoint Redirection

 How can consumers of a service endpoint adapt when service
inventories are restructured?

 Problem: Service inventories may change over time for
business or technical reasons. It may not be possible to
replace all references to old endpoints simultaneously.

 Solution: Automatically refer service consumers that access
the stale endpoint identifier to the current identifier.

Consumer Service Endpoint

Stale Reference

Consumer Old Endpoint New Endpoint

Redirect

©2009 - Cesare Pautasso 20

Endpoint Redirection with HTTP

GET /old

301 Moved Permanently
Location: /new

GET /new

200 OK

 HTTP natively supports
the Endpoint redirection
pattern using a
combination of 3xx
status codes and
standard headers:
 301 Moved Permanently
 307 Temporary Redirect
 Location: /newURI

/new/old

 Tip: Redirection responses can be chained.
 Warning: do not create redirection loops!

©2009 - Cesare Pautasso 21

Design Patterns

4 Methods (Fixed)
N

 R
es

ou
rc

es
 (V

ar
ia

bl
e)

M Representations (Variable)

Entity
Endpoint

Content
Negotiation

Uniform
Contract

Idempotent
Capability

Endpoint
Redirect

©2009 - Cesare Pautasso 22

Pattern: Entity Endpoint

 How can entities be positioned as reusable enterprise resources?
 Problem: A service with a single endpoint is too coarse-grained when its

capabilities need to be invoked on its data entities. A consumer needs to
work with two identifiers: a global one for the service and a local one for
the entity managed by the service. Entity identifiers cannot be reused and
shared among multiple services

Consumer
Provider
Endpoint

X
X Y Z

A B C

Z

Business Entities

©2009 - Cesare Pautasso 23

Pattern: Entity Endpoint

 Solution: expose each entitity as individual lightweight
endpoints of the service they reside in

 Benefits: Global addressability of service entities

Consumer Provider Entity Endpoints

X Z A B CY

©2009 - Cesare Pautasso 24

URI - Uniform Resource Identifier

 Internet Standard for resource naming and identification
(originally from 1994, revised until 2005)

 Examples:
http://tools.ietf.org/html/rfc3986

https://www.google.ch/search?q=rest&start=10#1

 REST does not advocate the use of “nice” URIs
 In most HTTP stacks URIs cannot have arbitrary length (4Kb)

URI Scheme Authority Path

Query Fragment

©2009 - Cesare Pautasso 25

What is a “nice” URI?

http://map.search.ch/lugano

http://maps.google.com/maps?f=q&hl=en&q=lugano,
+switzerland&layer=&ie=UTF8&z=12&om=1&iwloc=addr

http://maps.google.com/lugano

A RESTful service is much more than just a set of nice URIs

©2009 - Cesare Pautasso 26

URI Design Guidelines
 Prefer Nouns to Verbs
 Keep your URIs short
 If possible follow a

“positional” parameter-
passing scheme for
algorithmic resource query
strings (instead of the
key=value&p=v encoding)

 Some use URI postfixes to
specify the content type

 Do not change URIs
 Use redirection if you really

need to change them

GET /book?isbn=24&action=delete
DELETE /book/24

 Note: REST URIs are opaque
identifiers that are meant to
be discovered by following
hyperlinks and not
constructed by the client

 This may break the
abstraction

 Warning: URI Templates
introduce coupling between
client and server

©2009 - Cesare Pautasso 27

Pattern: Content Negotiation

 How can services support different consumers without
changing their contract?

 Problem: Service consumers may change their requirements in
a way that is not backwards compatible. A service may have to
support both old and new consumers without having to
introduce a specific capability for each kind of consumer.

Consumer

Service

New Consumer

?

©2009 - Cesare Pautasso 28

Pattern: Content Negotiation

 Solution: specific content and data representation formats to
be accepted or returned by a service capability is negotiated at
runtime as part of its invocation. The service contract refers to
multiple standardized “media types”.

 Benefits: Loose Coupling, Increased Interoperability, Increased
Organizational Agility

Consumer

Service

New Consumer

©2009 - Cesare Pautasso 29

Content Negotiation in HTTP
Negotiating the message format does not require to send more

messages (the added flexibility comes for free)
GET /resource
Accept: text/html, application/xml,

application/json
1. The client lists the set of understood formats (MIME types)

200 OK
Content-Type: application/json
2. The server chooses the most appropriate one for the reply
(status 406 if none can be found)

©2009 - Cesare Pautasso 30

Advanced Content Negotiation
Quality factors allow the client to indicate the relative

degree of preference for each representation (or
media-range).

Media/Type; q=X
If a media type has a quality value q=0, then content with

this parameter is not acceptable for the client.
Accept: text/html, text/*; q=0.1

The client prefers to receive HTML (but any other text format
will do with lower priority)

Accept: application/xhtml+xml; q=0.9,
text/html; q=0.5, text/plain; q=0.1
The client prefers to receive XHTML, or HTML if this is not
available and will use Plain Text as a fall back

©2009 - Cesare Pautasso 31

Forced Content Negotiation
The generic URI supports content negotiation
GET /resource
Accept: text/html, application/xml,

application/json

The specific URI points to a specific representation format using
the postfix (extension)

GET /resource.html
GET /resource.xml
GET /resource.json

Warning: This is a conventional practice, not a standard.
What happens if the resource cannot be represented in the

requested format?

©2009 - Cesare Pautasso 32

Multi-Dimensional Negotiation

Content Negotiation is very flexible and can be
performed based on different dimensions
(each with a specific pair of HTTP headers).

Content-Encoding:

Charset parameter fo the
Content-Type header

Content-Language:

Content-Type:

Response Header

compress,
gzip

Accept-Encoding:

iso-8859-5,
unicode-1-1

Accept-Charset:

en, fr, de, esAccept-Language:

application/xml,
application/json

Accept:

Example ValuesRequest Header

©2009 - Cesare Pautasso 33

Pattern: Idempotent Capability

 How can a service consumer recover from lost messages after network
disruption or server failure within a service cluster?

 Problem: Service oriented architectures are distributed systems. Failures
(such as the loss of messages) may occur during service capability
invocation. A lost request should be retried, but a lost response may cause
unintended side-effects if retried automatically.

Client Service

Timeout

Client Service

Timeout

!!!

©2009 - Cesare Pautasso 34

Pattern: Idempotent Capability

ESB Service

Timeout

Client ESB

 Solution: use an ESB, with support for reliable
messaging.
 Problem: do we always need this? Are there

some messages more critical than others?

©2009 - Cesare Pautasso 35

Pattern: Idempotent Capability

 Simpler Solution: if possible use idempotent
service capabilities, whereby services provide
a guarantee that capability invocations are
safe to repeat in the case of failures that could
lead to a response message being lost

ServiceClient

©2009 - Cesare Pautasso 36

Idempotent vs. Unsafe
 Unsafe requests modify the state of

the server and cannot be repeated
without additional (unwanted) effects:

Withdraw(200$) //unsafe

Deposit(200$) //unsafe

 Unsafe requests require special
handling in case of exceptional
situations (e.g., state reconciliation)

POST /order/x/payment

 In some cases the API can be
redesigned to use idempotent
operations:

B = GetBalance() //safe

B = B + 200$ //local

SetBalance(B) //idempotent

 Idempotent requests can be
processed multiple times
without side-effects

GET /book

PUT /order/x

DELETE /order/y

 If something goes wrong
(server down, server
internal error), the request
can be simply replayed until
the server is back up again

 Safe requests are
idempotent requests which
do not modify the state of
the server (can be cached)

GET /book

©2009 - Cesare Pautasso 37

Dealing with Concurrency

GET /balance

200 OK
ETag: 26

PUT /balance
ETag: 26

200 OK
ETag: 27

 Breaking down the API into a
set of idempotent requests
helps to deal with temporary
failures.

 But what about if another
client concurrently modifies
the state of the resource we
are about to update?

 Do we need to create an
explicit /balance/lock
resource? (Pessimistic
Locking)

 Or is there an optimistic
solution?

/balance

©2009 - Cesare Pautasso 38

Dealing with Concurrency

GET /balance

200 OK
ETag: 26

PUT /balance
ETag: 26

200 OK
ETag: 27

PUT /balance
ETag: 26

409 Conflict

The 409 status code can be used to inform a client that his
request would render the state of the resource inconsistent

/balance

©2009 - Cesare Pautasso 39

Antipatterns - REST vs. HTTP

REST HTTP

RESTful HTTP

REST

“RPC”

©2009 - Cesare Pautasso 40

Antipatterns – HTTP as a tunnel
 Tunnel through one HTTP Method

GET /api?method=addCustomer&name=Pautasso
GET /api?method=deleteCustomer&id=42
GET /api?method=getCustomerName&id=42
GET /api?method=findCustomers&name=Pautasso*

 Everything through GET
• Advantage: Easy to test from a Browser address bar

(the “action” is represented in the resource URI)
• Problem: GET should only be used for read-only

(= idempotent and safe) requests.
What happens if you bookmark one of those links?

• Limitation: Requests can only send up to approx. 4KB of data
(414 Request-URI Too Long)

©2009 - Cesare Pautasso 41

Antipatterns – HTTP as a tunnel
 Tunnel through one HTTP Method
 Everything through POST

• Advantage: Can upload/download an arbitrary amount of data
(this is what SOAP or XML-RPC do)

• Problem: POST is not idempotent and is unsafe (cannot cache
and should only be used for “dangerous” requests)

POST /service/endpoint

<soap:Envelope>
<soap:Body>

<findCustomers>
<name>Pautasso*</name>

</findCustomers>
</soap:Body>

</soap:Envelope>

Is this a resource?

©2009 - Cesare Pautasso 42

REST Design Patterns

1. Uniform Contract
2. Entity Endpoint
3. Entity Linking*
4. Content Negotiation
5. Distributed Response Caching*
6. Endpoint Redirection
7. Idempotent Capability
8. Message-based State Deferral*
9. Message-based Logic Deferral*
10.Consumer-Processed Composition*

*Not Included in this talk

© 43

 R. Fielding, Architectural Styles and the Design of Network-
based Software Architectures, PhD Thesis,
University of California, Irvine, 2000

 C. Pautasso, O. Zimmermann, F. Leymann, RESTful Web
Services vs. Big Web Services: Making the Right Architectural
Decision, Proc. of the 17th International World Wide Web
Conference (WWW2008), Bejing, China, April 2008

 C. Pautasso, BPEL for REST, Proc. of the 7th International
Conference on Business Process Management
(BPM 2008), Milano, Italy, September 2008

 C. Pautasso, Composing RESTful Services with JOpera,
In: Proc. of the International Conference on Software
Composition (SC2009), July 2009, Zurich, Switzerland.

References

©2009 - Cesare Pautasso 44

 Applying the SOA composition principle to
REST gives interesting results
 Thanks to hyperlinks, REST brings a new

(more dynamic and loosely coupled)
twist to SOA composition
 Composing RESTful services helps to build

mashups, but is different
 A RESTful API is the perfect abstraction for

publishing the state of a workflow

Conclusion

Raj Balasubramanian,
Benjamin Carlyle,
Thomas Erl,
Cesare Pautasso,
SOA with REST,
Prentice Hall,
to appear in 2010

