The Blockchain as a Software Connector

Sherry Xu, Cesare Pautasso
Liming Zhu, Vincent Gramoli, Alexander Ponomarev, An Binh Tran, Shiping Chen

Data61@CSIRO | University of Lugano (USI)
www.csiro.au design.inf.usi.ch
Contribution

• Characterizing blockchain from software architecture perspective

• Rationales to support the architectural decision on whether to employ a blockchain as opposed to other software connectors

• Implications of using the blockchain as a software connector
 • Design trade-offs regarding quality attributes
 • Experience harvested from real-world projects
Blockchain

Background
Blockchain 1.0 – Cryptocurrency

Blockchain*

Cesare Pautasso

1.0*

Cryptocurrency**

A. Antonopoulos, Mastering Bitcoin: unlocking Digital cryptocurrencies, 2014

Bitcoin Network
Benefits of Using Blockchain

Centralized Trusted Authority

Traditional trusted environment

Organization 1 → Organization 2

Trusted market

Trusted authentication

Trusted payment

Organization 1

Organization 2
Benefits of Using Blockchain

• Centralization
 • Single point failure
• Access control across systems
 • System internal status is opaque
• Collaboration/interoperability
 • Fragmented internal systems centralized in their own way
 • Costly to interoperate and collaborate

Traditional trusted environment
Benefits of Using Blockchain

Traditional trusted environment

Blockchain trustless environment

Organization 1

Centralized Trusted Authority

Organization 2

Blockchain network

Organization 1

Organization 2

Sherry Xu
Why?

Blockchain network
- Gossip protocol for propagation
- Consensus protocol for agreement

- Immutable public ledger
 - Audit trail of what happened
- Every node hosts a replica
 - Distributed consensus
 - No central owner of consensus
- Transaction is verified by every node
Blockchain Evolution

• Blockchain 1.0
 • Bitcoin transactions are financial transfers
 • Blockchain ledger can store/transact any kind of data
• Blockchain 2.0 – “Smart contract”
 • Global computational infrastructure for programs
 • Event-driven program (with state) that runs on a replicated, shared ledger
 • Can enact decisions on complex business conditions
 • Coordination with business processes through APIs
 • Can hold and transfer assets held by the contract itself
Blockchain Evolution

• Blockchain 1.0
 • Bitcoin transactions are financial transfers
 • Blockchain ledger can store/transact any kind of data
• Blockchain 2.0 – “Smart contract”
Blockchain as Connector
Characterizing Blockchain from Architecture Perspective
Software Connectors

- Building blocks of software component interaction
 - Performance
 - Reliability
 - Security

- Services
 - **Communication**: transfer data
 - **Coordination**: transfer control
 - **Facilitation**: enable and optimise component’s interactions
 - Conversion: adjust the interactions between incompatible interfaces
Example Software Connectors

- File Transfer
- Stream
- Remote Procedure Call
- Shared Database
- Message Bus
- Blockchain
Blockchain used in a Web application

Blockchain

Applications

API

Smart Contracts

Tokens/Currencies

Shared Data Ledger (meta-data, small data)

Database (big data)
Blockchain as a Software Connector

- Communication
- Coordination
- Facilitation
Blockchain as a Software Connector

- Communication
 - Arbitrary data within transaction
 - Contract storage

- Coordination
 - Transactions
 - From external owners
 - From contract accounts
 - Call functions defined in contracts
 - Create new contracts
 - Oracle

- Facilitation
Blockchain as a Software Connector

- Communication
- Coordination
- Facilitation
 - Transaction validation
 - Mining mechanism
 - Secure clearing payment
 - Incentive mechanism
 - Permission management
Blockchain Limitations

• Limited scalability of public blockchain
 • The public blockchain processes 3-20 transactions per second
 • VISA handles around 2000 transactions per second
 • Improving transaction processing rate
 • Larger blockchain size
 • Off-chain transactions
 • Smaller transaction
 • Remove signature
• Privacy of public blockchain
 • Encryption
Blockchain configuration decision

Placement: on-chain vs. off-chain
- Enable verification of computational result, limited computation power and data storage, publicly available
- More computation power and data storage, less cost, additional trust required, integrate with existing systems

Oracle placement: Internal vs. External
- Inject external state into the blockchain, increase latency
- Introduce a trusted third party

Public chain vs. Private chain
- Information transparency, scalability, trustworthy
- Information isolation, easier asset-specific auditability

Permissionless vs. Permissioned
- Worse performance, more cost, Sybil attack
- Better performance, less cost, easy reverse

Single chain vs. Multiple chains
- Heterogeneous dataset, information isolation, harder chain and permission management

Calculated from Ethereum
- Store 1kb data costs around $0.32
- Read 1 kb data costs $0.015
Blockchain vs. Shared DB: **Operations**

- Insert Transaction (Append Only)
- Create
- Read
- Update
- Delete
Blockchain vs. Shared DB: **Replication**

- Full Replication on every peer
- Master-Slave
- Multi-master
Blockchain vs. Shared DB: **Consensus**

- Majority of peers agree on the outcome of transactions
- Tolerant of Byzantine Generals’ problem
- Distributed Transactions (2 Phase Commit, Paxos)
- Synchronization
Blockchain vs. Shared DB: **Invariants**

- Transactions validated everywhere
- Global rules enforced on the whole blockchain
 - No extra money created during a spending transaction
- Integrity Constraints
Project Retrospective
Open Data Registry
Data Prosumption Chain

Raw data with no value added → Incremental or value-added data → Incremental or value-added data → Commercial data

Data Evolution Provenance

• Provenance
 • How dataset evolves from raw data to value-added data
 – Raw Data
 – Government open data, individual device data
 – Priced at zero, or at marginal cost
 – Value-added data
 – Private weather services
 • Who, when, what, how (Metadata)

Blockchain

[Metadata]
Data Monetization

- Payback based on the dataset contribution and value

Data owner 1

Dataset

Raw data + Metadata

Data Consumer (Joint Analytics)

Data owner 2

Dataset

Raw data + Metadata

Blockchain, Sherry Xu
Process Perspective

Data Consumer

1. Post an analytics job
2. Select dataset
3. Policy compliance checking
4. Pay
5. Run analytics

Data Owner

- Register a dataset
- Select job
- Paid

Related data:
- Policy checking result
- When and what job
- Who pay how much to whom
- Dataset requirement and measurement criteria
- Dataset metadata and usage policy address

Data types:
- On-chain information
- Off-chain computation
- On-chain computation

Blockchain:
- Sherry Xu
Open Data Registry

Powered by Ethereum blockchain, Open Data Registry is an open platform for individuals and organisations to share and trade data, as well as performing analytics on data.

- Statistics
- Provenance
Scenario

- Negotiation is controlled by a third party or one of the organizations get involved.

- Which organisation should control the negotiation process?
Secure Contract Negotiation

- Blockchain replaces a centralized trusted third party
Secure Contract Negotiation

On-chain
- Key distribution
- Authentication
- Tamper-proof log of events
 - Proposal of new value
 - Agree/disagree
 - Amendment

Off-chain
- Key generation
- Federated authentication
- Contract Template
- Mobile gateway
- Contract generator

Initiate, negotiate, sign
- Bind smart contract with physical contract
 - Address of smart contract
Conclusion

- Integration projects sometime struggle to find a central party trusted by all participants
- The blockchain offers a trusted shared transaction log built on top of an untrusted and decentralized network of peers.
- Software components may read the transaction history (immutable) and add transactions to extend the blockchain
- Given its fully replicated nature, the blockchain has some limitations (performance, data size)
- We have applied the blockchain as a software connector in several integration projects (open data registry, legal contract negotiation, smart meters)
Thank you

WICSA2016

www.csiro.au
Focus on ETL (extract, transform, load) phase
Assumption 1: ETL is before every data pipe
Assumption 2: SQL/Hive/SparkSQL is used to do ETL
Limitation: tabular data only