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Microservices: An Eventually
Inconsistent Architectural Style?

Microservices by definition let each service independently
manage its own database. In this talk we illustrate the
ultimate consequences of the Polyglot persistence principle,
which can be summarized using the BAC theorem: When
Backing up a microservice architecture, it is not possible to
have both Consistency (after recovery) and full Availability
(while backing up the system). In other words, loosely
coupled Microservice architectures are doomed to become
Inconsistent after disaster strikes. We will present and
compare several coping strategies to deal with this limitation
and discuss how they impact the monolith decomposition
process and the corresponding service APl boundary design.
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Microservices

The microservice architectural style is an approach to
developing a single application as a suite of small
services, each running in its own container and
communicating with lightweight mechanisms, often an
HTTP resource API. These services are built around
business capabilities and independently deployable by
fully automated deployment machinery. There is a bare
minimum of centralized management of these services,
which may be written in different programming
languages and use different data storage technologies.
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Microservices

The microservice architectural style is an approach to
developing a single application as a suite of small
services, each running in its own container and
communicating with lightweight mechanisms, often an
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Customer Order

Monolith Microservices
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Order Product
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How to connect two microservices with
HTTP?

Please enter your answer and click submit
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The Web as a Software Connector
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grpc+proto over HTTP/2
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For us service orientation means encapsulating
the data with the business logic that operates
on the data, with the only access through a
published service interface. No direct database
access Is allowed from outside the service, and
there’s no data sharing among the services.

Werner Vogels,
, ACM Queue, 4(4), June 30, 2006
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Do you:

O Operate more than one microservice?

O Use polyglot persistence?

O Avoid storing everything in the same database?
O Assume eventual consistency?

SUBMIT
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Stateful Microservices

Microservices prefer letting each service manage its own
database, either different instances of the same database
technology, or entirely different database systems - an
approach called Polyglot Persistence.

M. Fowler, ). Lewis
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Eventual Inconsistency

Microservice architectures are doomed to
become inconsistent after disaster strikes
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How do you back up
an entire microservice
architecture?
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Example

Customer Order

Product Shipment

Data relationships across microservices =
Hypermedia
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new C/1

C/1/name

new C/2

C/2/name

(@) B o B o Y % I N6 Y

new C/1

C/1/name

new C/2

C/2/name

new C/3

C/3/name
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new O/1 1 new O/1
0/1-> C/1 2 0/1-> C/1
new O/2 3[ newQ/2
0/2->C/2 4 0/2->C/2
new O/3 5] new 0/3
0/3->C/3 6l 0/3->C/3

Backups taken independently at different times
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Disaster Strikes
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new C/1 1 1 new 0/1 1 new 0/1
C/1/name 2 2l 0/1~> C/1 2l 0/1-> C/1
new C/2 3 3 newOQ/2 3 new0Q/2
C/2/name 4 4 02> C/2 4 0/2 > C/2
> 3] new 0/3 5| new 0/3
6 6 O/3 > C/3 6| 0/3~> (C/3

One microservice is lost
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Recovery from Backup
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new C/1 | new C/1 1 new 0/1 1 new 0/1
C/1/name 2l C/1/name 2l O/1~>C/1 2l O/1~> C/1
new C/2 3] newC/2 3] newO/2 3] newO/2
C/2/name 4 C/2/name 4 02> C/2 4 0/2-> C/2
> 3] new 0/3 5| new 0/3
6 6| 0/3~> C/3 6| 0/3~> (C/3

Broken link after recovery
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Eventual Inconsistency
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Broken link after recovery
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new C/1

C/1/name

new C/2

C/2/name
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Customer

new C/1

C/1/name

new C/2

C/2/name

Order

new O/1 1 new 0/1
0o/1->C/1 2l O/1~>C/h
new 0/2 3 new Q/2
0/2->C/2 4 0/2 > C/2
5
6

Backups of all microservices taken at the same time.
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new C/1

C/1/name

new C/2

C/2/name

Customer

new C/1

C/1/name

new C/2

C/2/name

Order

new O/1 1 new 0/1
0o/1->C/1 2l O/1~>C/h
new 0/2 3 new Q/2
0/2->C/2 4 0/2 > C/2
5
6

No updates allowed anywhere while backing up the
microservices
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The BAC theorem

When Backing up a
microservice architecture,
It Is not possible to have

both
Consistency and Availability
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Consistency

During normal operations, each microservice
will eventually reach a consistent state

Referential integrity: links across microservice
boundaries are guaranteed eventually not to be
broken
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Availability

It is possible to both read and update the state
of any microservice at any time
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Backup

While backing up the system, is it possible to
take a consistent snapshot of all microservices
without affecting their availability?

No.
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Backup + Availability

Backing up each microservice independently
will eventually lead to inconsistency after
recovering from backups taken at different

times
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Backup + Consistency

Taking a consistent backup requires to:

= disallow updates anywhere during the backup
(limited availability)

= wait for the slowest microservice to complete
the backup

= agree among all microservices on when to
perform the backup (limited autonomy)
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Shared Database

Customer Order

Product Shipment

A centralized, shared database would require
only one backup

Is this still a microservice architecture?
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Product Shipment

A centralized, shared database would require only one
backup

Each microservice must use a logically separate schema

What happened to polyglot persistence? WS-REST

2018
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Links can break

Customer Order

Product / Shlpment

%‘%

No guarantees for references crossing
microservice boundaries

Microservices inherit a fundamental property of
the Web
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new O/1 1 new 0/1
0/1-> C/1 2l O/1~> C/1
new 0/2 3 new Q/2
0/2->C/2 4 0/2->C/2
5
6

Orphan state is no longer referenced after recovery
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Order Product Shipment
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An expensive, replicated database with high-availability for
every microservice
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Risaster Strikes

Eventual Consistency Recovery Eventual
Consistency Inconsistency
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Eventual Consistency

Retries are enough to deal with temporary
failures of read operations, eventually the
missing data will be found
Risaster Strikes

Eventual Consistency Recovery Ever
Consistency Incons
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Eventual Consistency

Retries are enough to deal with temporary
failures of read operations, eventually the
missing data will be found

Risaster Strikes

Eventual Consistency Recovery Eventual
Consistency Inconsistency

Eventual Inconsistency

Retries are useless to deal with permanent
failures of read operations, which used to work
just fine before disaster recovery




Backup Disaster Strikes
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Backup Disaster Strikes
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Eventual Consistency Recovery

Consistency
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new C/1

C/1/name

new C/2

C/2/name

Customer

new C/1

C/1/name

new C/2

1
2
3
4 C/2/name
5
6

Order

new O/1 1 new 0/1
0/1-> C/1 2[ O/1-> C/1
new 0/2 3[ new Q/2
0/2~>CJ2 4 0/2->CJ2
5
6

Take snapshots only when all microservices are consistent

Avoid eventual consistency
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Microservices

Distributed transactions are notoriously difficult to
implement and as a consequence microservice architectures
emphasize transactionless coordination between services,
with explicit recognition that consistency may only be
eventual consistency and problems are dealt with by
compensating operations.

M. Fowler, ). Lewis https://www.martinfowler.com/articles/microservices.html




Keep data together for microservices that
cannot tolerate eventual inconsistency
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Does it apply to you?
0 More than one stateful microservice
O Polyglot persistence
0 Eventual Consistency
0 (Cross-microservice references)

0 Disaster recovery based on backup/restore

O Independent backups

= Eventual inconsistency (after disaster recovery)
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Does it apply to you?
0 More than one stateful microservice
O Polyglot persistence
0 Eventual Consistency
0 (Cross-microservice references)

0 Disaster recovery based on backup/restore

0 Synchronized backups (limited availability/autonomy)

= Consistent Disaster Recovery
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The BAC Theorem

Not Available

Not Backed Up for updates

Availability
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new C/1

C/1/name

new C/2

C/2/name

O BN

No Backup

new C/1

C/1/name

new C/2

C/2/name

(@) NS » T — B 5 Y NG RS

new O/1 N new 0/1
0/1->C/1 2l 0/1-> C/1
new O/2 3 newQ/2
0/2-> C/2 4 0/2->C/2
new O/3 5 new 0/3
0/3~>C/3 6l 0/3->(C/3
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new C/1

C/1/name

new C/2

C/2/name

(@) TIN5 B o Y % B NG Y

No Backup

new C/1

C/1/name

new C/2

C/2/name

O Ul W N

new O/1 1 new O/1
0/1-> C/1 2[ O/1~> C/1
new O/2 3 new0/2
0/2->C/2 4 0/2>CJ/2
5] new 0/3
6] 0/3-> (/3

Trim to the oldest backup

Loose even more data!
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The BAC Theorem

When Backing up a whole microservice architecture, it is not
possible to have both Consistency and Availability

Corollaries

. Microservice architectures eventually become inconsistent
after disaster strikes when recovering from independent
backups

. Achieving consistent backups can be attempted by limiting
the full availability/autonomy of the microservices and

synchronizing their backups
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1. Eventual Consistency.breeds Eventual
Inconsistency

i

i Trade off: Cost of Recovery vs. Prevention

Cluster microservices to be backed up together
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THEME ARTICLE: Fortifying the Cloud

Consistent Disaster
Recovery for
Microservices:

the BAC Theorem

Guy Pardon How do you back up a microservice? You dump its
o database. But how do you back up an entire

Ex:;::m“ rer application decomposed into microservices? In this

Italiana, Lugano, Switzerland article, we discuss the tradeoff between the
Olaf Zimmermann availability and consistency of a microservice-based

Hochschule fiir Technik - . PP
R wil (HSR FHO), architecture when a backup of the entire application is
Switzerland being performed. We demonstrate that service

designers have to select two out of three qualities:
backup, availability, and/or consistency (BAC). Service designers must also consider
how to deal with consequences such as broken links, orphan state, and missing state.

Microservices are about the design of fine-grained services, which can be developed and oper-
ated by independent teams, ensuring that an architecture can organically grow and rapidly
evolve.! By definition, each microservice is independently deployable and scalable; each stateful
one relies on its own polyglot persistent storage mechanism. Integration at the database layer is
not recommended, because it introduces coupling between the data representation internally used
by multiple microservices. Instead, microservices should interact only through well-defined
APIs, which—following the REST architectural style’ —provide a clear mechanism for manag-
ing the state of the resources exposed by each microservice, Relationships between related enti-
ties are implemented using hypermedia,’ so that representations retrieved from one microservice
API can include links to other entities found on other microservice APIs. While there is no guar-
antee that a link retrieved from one microservice will point to a valid URL served by another, a
basic notion of consistency can be introduced for the microservice-based application, requiring
that such references can always be resolved, thus avoiding broken links. As the scale of the sys-
tem grows, such a guarantee can be gradually weakened, as is currently the case for the World

e WS-REST
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