Microservices:
An Eventually Inconsistent
Architectural Style?

Cesare Pautasso

c.pautasso@ieee.org

eeeeeeeeee

WS-REST

2018

—

Faculty of Informatics

= . Opened 2004

"= 30 Professors
150+ PhD/Postdoc researchers

New Software Institute

g

Architecture, Design and Web
Information Systems Engineering E
=
=

RESTful Business Process Management

RESTalk - RESTful Conversation Modeling/Mining
BenchFlow - a benchmark for workflow engines

ASQ - Interactive Web Lectures

Parallel JavaScript/Multicore Node.)S

ey PN WS-REST
c Bewae s A 2018 ©

[AIS]Al

Microservices: An Eventually
Inconsistent Architectural Style?

Microservices by definition let each service independently
manage its own database. In this talk we illustrate the
ultimate consequences of the Polyglot persistence principle,
which can be summarized using the BAC theorem: When
Backing up a microservice architecture, it is not possible to
have both Consistency (after recovery) and full Availability
(while backing up the system). In other words, loosely
coupled Microservice architectures are doomed to become
Inconsistent after disaster strikes. We will present and
compare several coping strategies to deal with this limitation
and discuss how they impact the monolith decomposition
process and the corresponding service APl boundary design.

WS-REST
2018 @

Microservices

The microservice architectural style is an approach to
developing a single application as a suite of small
services, each running in its own container and
communicating with lightweight mechanisms, often an
HTTP resource API. These services are built around
business capabilities and independently deployable by
fully automated deployment machinery. There is a bare
minimum of centralized management of these services,
which may be written in different programming
languages and use different data storage technologies.

SIM37 SawWe(pue 13)Mo4 uijiep

Microservices

The microservice architectural style is an approach to
developing a single application as a suite of small
services, each running in its own container and
communicating with lightweight mechanisms, often an
HTTP resource API. These services are built around
business capabilities and

. There is a bare
minimum of centralized management of these services,
which may be written in different programming
languages and use different data storage technologies.

[AIS]Al

WS-REST
2018 @

.s;ma'| Sawe(pue 43)Mmo4 uilep

Powered
ATS]d)

WS-REST
2018

eeeeeeeeee

Customer Order

=

Monolith Microservi

WS-REST

2018

[AIS]Al

Customer Order

Monolith Microservices

WS-REST
2018 @

Order Product

=

How to connect two microservices with
HTTP?

Please enter your answer and click submit

SUBMIT

WS-REST

2018 @

Powered by

[AlSIq]

eeeeeeeee

Remote Procedure
Call (Poll)

call()

SI

WS-REST

2018

Powered by

[AlSIq]

callback(s")

eeeeeeeee

callback(s")

Remote Procedure
Callback (Push)

WS-REST

2018

Powered by

[AlSIq]

receive send

|

eeeeeeeee

receive send

l

Message
Bus

WS-REST

2018

Powered by

[AlSIq]

eeeeeeeeee

Representational
State Transfer

GET PUT

[

WS-REST

2018

eeeeeeeeee

The Web as a Software Connector

GET PUT

"/EU/T//

___________ - 2007
................. b

k//i&)/

WS-REST

2018

eeeeeeeeee

grpc+proto over HTTP/2

WS-REST
2018 @

[AfS]A]

The Web as a Tunnel
Jec%’e send
FJit ‘
‘/’P/O’S,L/
ot
"""""" 200

WS-REST
2018 @

Representational
State Transfer

=

GET
4 —\

receive

PUT
/
|8

send

sene

Message

Bus

A

Remote Procedure
Call (Poll)

call()

>

%4

HTTP-*

B

.

SI

< callback(s")

-

-

>

=

Remote Procedure
Callback (Push)

WS-REST

2018

Representational Remote Procedure

(:)uﬂsv>

Bus

Callback (Push)

State Transfer Call (Poll)
ot e 1 al)
" 8| (el @|
Coupling (Time) 3
receive send callback(s')
\/
2T a] e
Message Remote Procedure

WS-REST

2018

Representational
State Transfer

=

GET
4 —\

PUT
/
|8

A

Remote Procedure
Call (Poll)

call()

>

%4

SI

-

@ Cardinality @

receive

send

sene

Message

Bus

B

.

< callback(s")

-

>

=

Remote Procedure
Callback (Push)

WS-REST

2018

eeeeeeeeee

Shared Web Resource

GET PUT

WS-REST

2018

[AIS]Al

Multicast

receive send

I
B

receive receive

WS-REST
2018 @

[AIS]Al

Representational
State Transfer

GET PUT

-.\"\ ‘(

E% |
receive send
E%
: |

receive receive

Hies

Message

| |
e =] ==

Bus
(Multicast)

REST/WWW

o

Shared Memory

MEST/ESB

A
ES
:
-

send

receive

recelve
.‘7
recelve

e

Message Passing

eeeeeeeee

WS-REST

2018

eeeeeeeeee

How not to connect two
microservices

Order

X

WS-REST

2018

[AlSIq]

For us service orientation means encapsulating
the data with the business logic that operates
on the data, with the only access through a
published service interface. No direct database
access Is allowed from outside the service, and
there’s no data sharing among the services.

Werner Vogels,
, ACM Queue, 4(4), June 30, 2006

WS-REST

2018

Powered by

Do you:

O Operate more than one microservice?

O Use polyglot persistence?

O Avoid storing everything in the same database?
O Assume eventual consistency?

SUBMIT

WS-REST
2018

Stateful Microservices

Microservices prefer letting each service manage its own
database, either different instances of the same database
technology, or entirely different database systems - an
approach called Polyglot Persistence.

M. Fowler,). Lewis

WS-REST

2018

Eventual Inconsistency

Microservice architectures are doomed to
become inconsistent after disaster strikes

[

StatetTuniy

N

Microseiifices preferletting = la BT g (R EL ET-LR EXOT]

~, either different instar
technology, or entirely d ifferent database
approach calted - [O& IS E E TS

=iV Vi = e i [A= T e mYnn =l (e
e -'.""-l >} | | S PAAAAYNY Tl TTHELECIAAL {

WS-REST
2018

eeeeeee

Devops meets Disaster
Recovery

WS-REST

2018 @

Powered by

T

Howl#do you back up a
O‘Q,.,Iith.?

L .

WS-REST
2018

Powered by

[AIS]Q]

How you back up one

L .

diflicroservice?

micro
service

WS-REST
2018

eeeeeeeeee

How do you back up
an entire microservice
architecture?

iii -
set]ilse

Are you sure? WS-REST

2018

[AIS]Al

Example

Customer Order

Product Shipment

Data relationships across microservices =
Hypermedia

o T I S T I\ =Y

new C/1

C/1/name

new C/2

C/2/name

(@) B o B o Y % I N6 Y

new C/1

C/1/name

new C/2

C/2/name

new C/3

C/3/name

O Ul WN A

new O/1 1 new O/1
0/1-> C/1 2 0/1-> C/1
new O/2 3[newQ/2
0/2->C/2 4 0/2->C/2
new O/3 5] new 0/3
0/3->C/3 6l 0/3->C/3

Backups taken independently at different times

WS-REST

2018

WS-REST
2018

[AIS]Al

Disaster Strikes

o T I S T I\ =Y

new C/1 1 1 new 0/1 1 new 0/1
C/1/name 2 2l 0/1~> C/1 2l 0/1-> C/1
new C/2 3 3 newOQ/2 3 new0Q/2
C/2/name 4 4 02> C/2 4 0/2 > C/2
> 3] new 0/3 5| new 0/3
6 6 O/3 > C/3 6| 0/3~> (C/3

One microservice is lost

WS-REST
2018 @

[AIS]Al

Recovery from Backup

o T I S T I\ =Y

new C/1 | new C/1 1 new 0/1 1 new 0/1
C/1/name 2l C/1/name 2l O/1~>C/1 2l O/1~> C/1
new C/2 3] newC/2 3] newO/2 3] newO/2
C/2/name 4 C/2/name 4 02> C/2 4 0/2-> C/2
> 3] new 0/3 5| new 0/3
6 6| 0/3~> C/3 6| 0/3~> (C/3

Broken link after recovery

WS-REST
2018 @

o T I S T I\ =Y

eeeee

[AIS]Al

Eventual Inconsistency

new C/1

C/1/name

new C/2

C/2/name

(@) B o B o Y % I N6 Y

new C/1

C/1/name

new C/2

C/2/name

O Ul WN A

new O/1 1 new O/1
0/1-> C/1 2l O/1~>C/1
new O/2 3[newQ/2
0/2->C/2 4 0/2 > C/2
new O/3 5| new 0/3
0/3->C/3 6l 0/3->C/3

Broken link after recovery

WS-REST
2018 @

o T I S T I\ =Y

]

new C/1

C/1/name

new C/2

C/2/name

(@) B o B o Y % I N6 Y

Customer

new C/1

C/1/name

new C/2

C/2/name

Order

new O/1 1 new 0/1
0o/1->C/1 2l O/1~>C/h
new 0/2 3 new Q/2
0/2->C/2 4 0/2 > C/2
5
6

Backups of all microservices taken at the same time.

WS-REST
2018 @

o T I S T I\ =Y

new C/1

C/1/name

new C/2

C/2/name

Customer

new C/1

C/1/name

new C/2

C/2/name

Order

new O/1 1 new 0/1
0o/1->C/1 2l O/1~>C/h
new 0/2 3 new Q/2
0/2->C/2 4 0/2 > C/2
5
6

No updates allowed anywhere while backing up the
microservices

WS-REST

2018

Powered by
[A[STQ]

The BAC theorem

When Backing up a
microservice architecture,
It Is not possible to have

both
Consistency and Availability

WS-REST

2018

[AlSIq]

Consistency

During normal operations, each microservice
will eventually reach a consistent state

Referential integrity: links across microservice
boundaries are guaranteed eventually not to be
broken

WS-REST

2018

Availability

It is possible to both read and update the state
of any microservice at any time

WS-REST

2018

Backup

While backing up the system, is it possible to
take a consistent snapshot of all microservices
without affecting their availability?

No.

WS-REST

2018

Backup + Availability

Backing up each microservice independently
will eventually lead to inconsistency after
recovering from backups taken at different

times

WS-REST

2018

Backup + Consistency

Taking a consistent backup requires to:

= disallow updates anywhere during the backup
(limited availability)

= wait for the slowest microservice to complete
the backup

= agree among all microservices on when to
perform the backup (limited autonomy)

WS-REST

2018

[AIS]Al

Shared Database

Customer Order

Product Shipment

A centralized, shared database would require
only one backup

Is this still a microservice architecture?

WS-REST
2018 @

Product Shipment

A centralized, shared database would require only one
backup

Each microservice must use a logically separate schema

What happened to polyglot persistence? WS-REST

2018

[AIS]Al

Links can break

Customer Order

Product / Shlpment

%‘%

No guarantees for references crossing
microservice boundaries

Microservices inherit a fundamental property of
the Web

o T I S T I\ =Y

new C/1

C/1/name

new C/2

C/2/name

new C/3

C/3/name

(@) B o B o Y % I N6 Y

Orphan State

Customer|] Order

new C/1

C/1/name

new C/2

C/2/name

new C/3

C/3/name

O Ul WN A

&>

eeeee

[AIS]Al

new O/1 1 new 0/1
0/1-> C/1 2l O/1~> C/1
new 0/2 3 new Q/2
0/2->C/2 4 0/2->C/2
5
6

Orphan state is no longer referenced after recovery

WS-REST
2018 @

eeeeeeeeee

Order Product Shipment

7 7 7
BEO)||| SEC||| SEs

An expensive, replicated database with high-availability for
every microservice

WS-REST

2018

A

Unstoppable 53(?:.;5.‘:.'".2\\&

How do you restart an unsibp'pa ble systeﬁ:’f“\'k:

\""k.‘
s Wi 4
e | =
| ' R WS-REST
. ——— - e e 2018 ©

eeeeeeeee

Eventual Consistency
Consistency

WS-REST

2018

Powered by

Risaster Strikes

Eventual Consistency Recovery Eventual
Consistency Inconsistency

WS-REST

2018 @

Eventual Consistency

Retries are enough to deal with temporary
failures of read operations, eventually the
missing data will be found
Risaster Strikes

Eventual Consistency Recovery Ever
Consistency Incons

WS-REST

2018

[AIS]Al

Eventual Consistency

Retries are enough to deal with temporary
failures of read operations, eventually the
missing data will be found

Risaster Strikes

Eventual Consistency Recovery Eventual
Consistency Inconsistency

Eventual Inconsistency

Retries are useless to deal with permanent
failures of read operations, which used to work
just fine before disaster recovery

Backup Disaster Strikes

J J
Eventual Consistency Recovery Er
Consistency Inco

WS-REST
2018

Backup Disaster Strikes
J J
Eventual Consistency Recovery

Consistency

WS-REST
2018

o S L S T S =Y

new C/1

C/1/name

new C/2

C/2/name

Customer

new C/1

C/1/name

new C/2

1
2
3
4 C/2/name
5
6

Order

new O/1 1 new 0/1
0/1-> C/1 2[O/1-> C/1
new 0/2 3[new Q/2
0/2~>CJ2 4 0/2->CJ2
5
6

Take snapshots only when all microservices are consistent

Avoid eventual consistency

WS-REST
2018 @

[AIS]Al

Microservices

Distributed transactions are notoriously difficult to
implement and as a consequence microservice architectures
emphasize transactionless coordination between services,
with explicit recognition that consistency may only be
eventual consistency and problems are dealt with by
compensating operations.

M. Fowler,). Lewis https://www.martinfowler.com/articles/microservices.html

Keep data together for microservices that
cannot tolerate eventual inconsistency

WS-REST

2018

[AIS]Al

Does it apply to you?
0 More than one stateful microservice
O Polyglot persistence
0 Eventual Consistency
0 (Cross-microservice references)

0 Disaster recovery based on backup/restore

O Independent backups

= Eventual inconsistency (after disaster recovery)

WS-REST
2018 @

Does it apply to you?
0 More than one stateful microservice
O Polyglot persistence
0 Eventual Consistency
0 (Cross-microservice references)

0 Disaster recovery based on backup/restore

0 Synchronized backups (limited availability/autonomy)

= Consistent Disaster Recovery

WS-REST

2018

eeeeeeeee

The BAC Theorem

Not Available

Not Backed Up for updates

Availability

WS-REST

2018

S 0B W N

new C/1

C/1/name

new C/2

C/2/name

O BN

No Backup

new C/1

C/1/name

new C/2

C/2/name

(@) NS » T — B 5 Y NG RS

new O/1 N new 0/1
0/1->C/1 2l 0/1-> C/1
new O/2 3 newQ/2
0/2-> C/2 4 0/2->C/2
new O/3 5 new 0/3
0/3~>C/3 6l 0/3->(C/3

WS-REST
2018

o S L S T S =Y

new C/1

C/1/name

new C/2

C/2/name

(@) TIN5 B o Y % B NG Y

No Backup

new C/1

C/1/name

new C/2

C/2/name

O Ul W N

new O/1 1 new O/1
0/1-> C/1 2[O/1~> C/1
new O/2 3 new0/2
0/2->C/2 4 0/2>CJ/2
5] new 0/3
6] 0/3-> (/3

Trim to the oldest backup

Loose even more data!

WS-REST
2018

AfS]0]
The BAC Theorem

When Backing up a whole microservice architecture, it is not
possible to have both Consistency and Availability

Corollaries

. Microservice architectures eventually become inconsistent
after disaster strikes when recovering from independent
backups

. Achieving consistent backups can be attempted by limiting
the full availability/autonomy of the microservices and

synchronizing their backups
WS-REST

2018

b

1. Eventual Consistency.breeds Eventual
Inconsistency

i

i Trade off: Cost of Recovery vs. Prevention

Cluster microservices to be backed up together

WS-REST
2018

THEME ARTICLE: Fortifying the Cloud

Consistent Disaster
Recovery for
Microservices:

the BAC Theorem

Guy Pardon How do you back up a microservice? You dump its
o database. But how do you back up an entire

Ex:;::m“ rer application decomposed into microservices? In this

Italiana, Lugano, Switzerland article, we discuss the tradeoff between the
Olaf Zimmermann availability and consistency of a microservice-based

Hochschule fiir Technik - . PP
R wil (HSR FHO), architecture when a backup of the entire application is
Switzerland being performed. We demonstrate that service

designers have to select two out of three qualities:
backup, availability, and/or consistency (BAC). Service designers must also consider
how to deal with consequences such as broken links, orphan state, and missing state.

Microservices are about the design of fine-grained services, which can be developed and oper-
ated by independent teams, ensuring that an architecture can organically grow and rapidly
evolve.! By definition, each microservice is independently deployable and scalable; each stateful
one relies on its own polyglot persistent storage mechanism. Integration at the database layer is
not recommended, because it introduces coupling between the data representation internally used
by multiple microservices. Instead, microservices should interact only through well-defined
APIs, which—following the REST architectural style’ —provide a clear mechanism for manag-
ing the state of the resources exposed by each microservice, Relationships between related enti-
ties are implemented using hypermedia,’ so that representations retrieved from one microservice
API can include links to other entities found on other microservice APIs. While there is no guar-
antee that a link retrieved from one microservice will point to a valid URL served by another, a
basic notion of consistency can be introduced for the microservice-based application, requiring
that such references can always be resolved, thus avoiding broken links. As the scale of the sys-
tem grows, such a guarantee can be gradually weakened, as is currently the case for the World

e WS-REST

IEEE Cloud Camputing Capublished by the IEEE CS and [EEE ComSac

January/February 2018 2325-6095/16/833.00 ©2018 |EEE 2 [] 1 8

Powered by

References

Guy Pardon, Cesare Pautasso, Olaf Zimmermann, Consistent Disaster Recovery for
Microservices: the BAC Theorem , IEEE Cloud Computing, 5(1):49-59, January/February
2018

Cesare Pautasso, Olaf Zimmermann, The Web as a Software Connector: Integration
Resting on Linked Resources , IEEE Software, 35(1):93-98, January/February 2018

Cesare Pautasso, Ana Ivanchikj, and Silvia Schreier, A Pattern Language for RESTful
Conversations , EuroPlop 2016

Ana Ivanchikj, Cesare Pautasso, and Silvia Schreier, Visual modeling of RESTful
conversations with RESTallk , Journal of Software & Systems Modeling, pp. 1-21, May,
2016. (Journal-First Best Paper Award at MODELS 2016)

Florian Haupt, Frank Leymann, Cesare Pautasso: A conversation based approach for
modeling REST APls , 12th Working IEEE / IFIP Conference on Software Architecture
(WICSA 2015), Montreal, CA, May 2015

Gregor Hohpe, "Let's have a conversation", Internet Computing, IEEE 11.3 (2007): 78-81.

Roy Fielding, Architectural Styles and the Design of Network-based Software
Architectures, University of California, Irvine, 2000

Guy Pardon and Cesare Pautasso, Atomic Distributed Transactions: a RESTful Design ,

5th International Workshop on Web APIs and RESTful Design (WS-REST), Seoul, Korea, WS-REST

ACM, April, 2014. 2018

2016. (Journal-First Best Paper Award at MODELS 2016) Powered b

Florian Haupt, Frank Leymann, Cesare Pautasso: A conversation based approach for
modeling REST APIs , 12th Working IEEE / IFIP Conference on Software Architecture
(WICSA 2015), Montreal, CA, May 2015

Gregor Hohpe, "Let's have a conversation”, Internet Computing, IEEE 11.3 (2007): 78-81.

Roy Fielding, Architectural Styles and the Design of Network-based Software
Architectures , University of California, Irvine, 2000

Guy Pardon and Cesare Pautasso, Atomic Distributed Transactions: a RESTful Design,
5th International Workshop on Web APIs and RESTful Design (WS-REST), Seoul, Korea,
ACM, April, 2014,

Jim Webber, Savas Parastatidis, lan Robinson, REST in Practice: Hypermedia and
Systems Architecture, O'Reilly, 2010

Cesare Pautasso, Erik Wilde, Push-Enabling RESTful Business Processes , 9th
International Conference on Service Oriented Computing (1ICSOC 2011), Paphos, Cyprus,
December 201

Cesare Pautasso, EPMN for REST, In Proceedings of the 3rd International Workshop
on BPMN (BPMN 2011), Lucerne, Switzerland, November 2011

Thomas Erl, Benjamin Carlyle, Cesare Pautasso, Raj Balasubramanian, SOA with REST:
Principles, Patterns & Constraints for Building Enterprise Solutions with REST,
Prentice Hall, 2012

WS-REST
2018

Powered by
[ATSIQ]

Made with

AllS

http://asq.inf.usi.ch

WS-REST

2018

Powere d by

[AIS]Q]

Acknowledgements

Guy Pardon, Olaf Zimmermann, Florian Haupt,
Silvia Schreler, Ana lvanchikj, Mathias Weske,
Adriatik Nikaj, Sankalita Mandal,

Hagen Overdick, Jesus Bellido, Rosa Alarcon,
Alessio Gambi, Daniele Bonetta,

Achille Peternier, Erik Wilde, Mike Amundsen,
?Stefan Tilkov, James Lewis

o Er : S e e SR
""'/‘ ¥ T -q\v P e L I -J—’e."f e e $ g S
P = i e T B &

WS-REST
2018

