
Vincenzo	Ferme	
Faculty	of	Informatics	
USI	Lugano,	Switzerland

WORKFLOW ENGINE
PERFORMANCE BENCHMARKING

WITH BENCHFLOW

Vincenzo Ferme

2

The BenchFlow Project

Design and implement the first benchmark to
assess and compare the performance of WfMSs
that are compliant with Business Process Model
and Notation 2.0 standard.

”

“

Vincenzo Ferme

3

What is a Workflow Management System?

WfMS Users

Applications

Application Server

Instance
Database

DBMS

Web
Service

D

A

B

C

Vincenzo Ferme

4

Many Vendors of BPMN 2.0 WfMSs

https://en.wikipedia.org/wiki/List_of_BPMN_2.0_engines

Jan 2011

BPMN 2.0

Jan 2014

BPMN 2.0.2
ISO/IEC 19510

Aug 2009

BETA
BPMN 2.0

Year Number Sum
2009 1 1
2010 5 6
2011 4 10
2012 1 11
2013 8 19
2014 2 21
2015 2 23
2016 0 23

Grand
Total 23

N
um

be
r o

f B
PM

N
 2

.0
 W

fM
Ss

0

5

10

15

20

25

Year of the First Version Supporting BPMN 2.0
2009 2010 2011 2012 2013 2014 2015 2016

�1

Vincenzo Ferme

5

end-users, vendors, developers
Why do We Need a Benchmark?

Vincenzo Ferme

5

end-users, vendors, developers
Why do We Need a Benchmark?

1. How to choose the best WfMS according to
the company’s technical requirements?

2. How to choose the best WfMS  
 according to the company’s  
 business process models (workflows)? B

C
D

Vincenzo Ferme

5

end-users, vendors, developers
Why do We Need a Benchmark?

1. How to choose the best WfMS according to
the company’s technical requirements?

2. How to choose the best WfMS  
 according to the company’s  
 business process models (workflows)? B

C
D

4. How to identify WfMS’s bottlenecks?

3. How to evaluate performance improvements  
 during WfMS’s development?

Vincenzo Ferme

6

The BenchFlow Benchmarking Process

Workload
Model WfMS

Configurations
Workload Metrics

KPIs
Measure

Input/Process/Output Model

Vincenzo Ferme

6

The BenchFlow Benchmarking Process

Workload
Model WfMS

Configurations
Workload Metrics

KPIs
Measure

Input/Process/Output Model

Workload
Mix

80%
C

A

B

20%
D

Vincenzo Ferme

6

The BenchFlow Benchmarking Process

Workload
Model WfMS

Configurations
Test

Types
Workload Metrics

KPIs
Measure

Input/Process/Output Model

Workload
Mix

80%
C

A

B

20%
D

Load Functions
Test Data

Unsaved diagram
Unsaved diagram

Vincenzo Ferme

6

The BenchFlow Benchmarking Process

Workload
Model WfMS

Configurations
Test

Types
Workload Metrics

KPIs
Measure

Input/Process/Output Model

Workload
Mix

80%
C

A

B

20%
D

Load Functions
Test Data

Containers

Vincenzo Ferme

6

The BenchFlow Benchmarking Process

Workload
Model WfMS

Configurations
Test

Types
Workload Metrics

KPIs
Measure

Input/Process/Output Model

Workload
Mix

80%
C

A

B

20%
D

Load Functions
Test Data

Performance
Data

Process
Instance
Duration

Throughput

Containers

Vincenzo Ferme

Vendor

BenchFlow

Provide
Benchmarking
Methodology

Vendor

BenchFlow

Agree on adding
Vendor's WfMS to the

Benchmark

Benchmarking Methodology Agreement Proposal

Signed Agreement

Vendor

BenchFlow

Provide Containerized
Distribution of WfMS

Containerized WfMS Request

Containerized WfMS

Vendor

BenchFlow

Verify the Benchmark
Results

Results Verification Outcome

Results Verification Request

Vendor

BenchFlow

Provide Draft
Benchmark Results

Draft Benchmark ResultsVerified Benchmark Results

Not Valid

Are the
Results
Valid?

Community

BenchFlow

Publish Benchmark
Results Valid

Figure 4: Benchmarking Methodology Choreography

pending on the WfMS’s architecture. The DBMS
Container can refer to an existing publicly available
Container distributions. The containerized WfMS
should be publicly available (e.g., at the Docker Hub
registry8), or the Benchflow team should be granted
access to a private registry used by the vendor. The
same applies to the Containers’ definition file, i.e., the
Dockerfile (Turnbull, 2014, ch. 4). While private reg-
istries are a solution that can work with vendors of
closed-source systems, they impact the reproducibil-
ity of the results. For each WfMS version to be in-
cluded in the benchmark, there must be a default con-
figuration, i.e., the configuration in which the WfMS
Containers start without modifying any configuration
parameters, except the ones required in order to cor-
rectly start the WfMS, e.g., the database connection.
However, if vendors want to benchmark the perfor-
mance of their WfMS with different configurations,
for example, the configuration provided to users as
a “getting started” configuration, or production-grade
configurations for real-life usage, they can also pro-
vide different configurations. To do that, the Con-
tainers must allow to issue the WfMS configurations
through additional environment variables9, and/or by
specifying the volumes to be exposed10 in order to

8
https://hub.docker.com/

9
https://docs.docker.com/reference/run/

#env-environment-variables

10
https://docs.docker.com/

userguide/dockervolumes/

access the configuration files. Exposing the volumes
allows to access the files defined inside the Contain-
ers, on the host operating system. Precisely, the WES
Container has to, at least, enable the configuration of:
1) the used DB, i.e., DB driver, url, username and
password for connection; 2) the WES itself; and 3) the
logging level of the WES, and the application stack
layers on which it may depend on. Alternatively, in-
stead of providing configuration details, the vendors
can provide different Containers for different config-
urations. However, even in that case enabling the DB
configuration is required.

In order to access relevant data, all WfMS Con-
tainers have to specify the volumes to access the
WfMS log files, and to access all the data useful to
setup the system. For instance, if the WfMS defines
examples as part of the deployment, we may want
to remove those examples by overriding the volume
containing them. Moreover, the WES Container (or
the DBMS Container) has to create the WfMS’s DB
and populate it with data required to run the WfMS.
The vendors need to provide authentication configu-
ration details of the WfMS components (e.g., the user
with admin privileges for the DBMS). Alternatively
the vendor may simply provide the files needed to cre-
ate and populate the DB.

#mount-a-host-directory-as-a-data-volume

7

Methodology Framework

+

Container Based Methodology and Framework

BenchFlow Framework
architecture

Instance
Database

DBMSFaban Drivers

ContainersServers

DATA  
TRANSFORMERSANALYSERS

Performance
Metrics

Performance
 KPIs

WfMS

Te
st

 E
xe

cu
ti

on
A

na
ly

se
s

Faban
+

Web
Service

Minio

harness

MONITOR
Adapters

C
O

LLEC
T

O
R

S

Vincenzo Ferme

Vendor

BenchFlow

Provide
Benchmarking
Methodology

Vendor

BenchFlow

Agree on adding
Vendor's WfMS to the

Benchmark

Benchmarking Methodology Agreement Proposal

Signed Agreement

Vendor

BenchFlow

Provide Containerized
Distribution of WfMS

Containerized WfMS Request

Containerized WfMS

Vendor

BenchFlow

Verify the Benchmark
Results

Results Verification Outcome

Results Verification Request

Vendor

BenchFlow

Provide Draft
Benchmark Results

Draft Benchmark ResultsVerified Benchmark Results

Not Valid

Are the
Results
Valid?

Community

BenchFlow

Publish Benchmark
Results Valid

Figure 4: Benchmarking Methodology Choreography

pending on the WfMS’s architecture. The DBMS
Container can refer to an existing publicly available
Container distributions. The containerized WfMS
should be publicly available (e.g., at the Docker Hub
registry8), or the Benchflow team should be granted
access to a private registry used by the vendor. The
same applies to the Containers’ definition file, i.e., the
Dockerfile (Turnbull, 2014, ch. 4). While private reg-
istries are a solution that can work with vendors of
closed-source systems, they impact the reproducibil-
ity of the results. For each WfMS version to be in-
cluded in the benchmark, there must be a default con-
figuration, i.e., the configuration in which the WfMS
Containers start without modifying any configuration
parameters, except the ones required in order to cor-
rectly start the WfMS, e.g., the database connection.
However, if vendors want to benchmark the perfor-
mance of their WfMS with different configurations,
for example, the configuration provided to users as
a “getting started” configuration, or production-grade
configurations for real-life usage, they can also pro-
vide different configurations. To do that, the Con-
tainers must allow to issue the WfMS configurations
through additional environment variables9, and/or by
specifying the volumes to be exposed10 in order to

8
https://hub.docker.com/

9
https://docs.docker.com/reference/run/

#env-environment-variables

10
https://docs.docker.com/

userguide/dockervolumes/

access the configuration files. Exposing the volumes
allows to access the files defined inside the Contain-
ers, on the host operating system. Precisely, the WES
Container has to, at least, enable the configuration of:
1) the used DB, i.e., DB driver, url, username and
password for connection; 2) the WES itself; and 3) the
logging level of the WES, and the application stack
layers on which it may depend on. Alternatively, in-
stead of providing configuration details, the vendors
can provide different Containers for different config-
urations. However, even in that case enabling the DB
configuration is required.

In order to access relevant data, all WfMS Con-
tainers have to specify the volumes to access the
WfMS log files, and to access all the data useful to
setup the system. For instance, if the WfMS defines
examples as part of the deployment, we may want
to remove those examples by overriding the volume
containing them. Moreover, the WES Container (or
the DBMS Container) has to create the WfMS’s DB
and populate it with data required to run the WfMS.
The vendors need to provide authentication configu-
ration details of the WfMS components (e.g., the user
with admin privileges for the DBMS). Alternatively
the vendor may simply provide the files needed to cre-
ate and populate the DB.

#mount-a-host-directory-as-a-data-volume

7

Methodology Framework

+

Container Based Methodology and Framework

BenchFlow Framework
architecture

Instance
Database

DBMSFaban Drivers

ContainersServers

DATA  
TRANSFORMERSANALYSERS

Performance
Metrics

Performance
 KPIs

WfMS

Te
st

 E
xe

cu
ti

on
A

na
ly

se
s

Faban
+

Web
Service

Minio

harness

MONITOR
Adapters

C
O

LLEC
T

O
R

S

Provides Great Advantages for Automation

and Reproducibility of Results, while

Ensuring Negligible Performance Impact

Vincenzo Ferme

8

[CLOSER ’16]
Container-centric Methodology for Benchmarking Workflow Management
Systems.

Vendor

BenchFlow

Provide
Benchmarking
Methodology

Vendor

BenchFlow

Agree on adding
Vendor's WfMS to the

Benchmark

Benchmarking Methodology Agreement Proposal

Signed Agreement

Vendor

BenchFlow

Provide Containerized
Distribution of WfMS

Containerized WfMS Request

Containerized WfMS

Vendor

BenchFlow

Verify the Benchmark
Results

Results Verification Outcome

Results Verification Request

Vendor

BenchFlow

Provide Draft
Benchmark Results

Draft Benchmark ResultsVerified Benchmark Results

Not Valid

Are the
Results
Valid?

Community

BenchFlow

Publish Benchmark
Results Valid

Figure 4: Benchmarking Methodology Choreography

pending on the WfMS’s architecture. The DBMS
Container can refer to an existing publicly available
Container distributions. The containerized WfMS
should be publicly available (e.g., at the Docker Hub
registry8), or the Benchflow team should be granted
access to a private registry used by the vendor. The
same applies to the Containers’ definition file, i.e., the
Dockerfile (Turnbull, 2014, ch. 4). While private reg-
istries are a solution that can work with vendors of
closed-source systems, they impact the reproducibil-
ity of the results. For each WfMS version to be in-
cluded in the benchmark, there must be a default con-
figuration, i.e., the configuration in which the WfMS
Containers start without modifying any configuration
parameters, except the ones required in order to cor-
rectly start the WfMS, e.g., the database connection.
However, if vendors want to benchmark the perfor-
mance of their WfMS with different configurations,
for example, the configuration provided to users as
a “getting started” configuration, or production-grade
configurations for real-life usage, they can also pro-
vide different configurations. To do that, the Con-
tainers must allow to issue the WfMS configurations
through additional environment variables9, and/or by
specifying the volumes to be exposed10 in order to

8
https://hub.docker.com/

9
https://docs.docker.com/reference/run/

#env-environment-variables

10
https://docs.docker.com/

userguide/dockervolumes/

access the configuration files. Exposing the volumes
allows to access the files defined inside the Contain-
ers, on the host operating system. Precisely, the WES
Container has to, at least, enable the configuration of:
1) the used DB, i.e., DB driver, url, username and
password for connection; 2) the WES itself; and 3) the
logging level of the WES, and the application stack
layers on which it may depend on. Alternatively, in-
stead of providing configuration details, the vendors
can provide different Containers for different config-
urations. However, even in that case enabling the DB
configuration is required.

In order to access relevant data, all WfMS Con-
tainers have to specify the volumes to access the
WfMS log files, and to access all the data useful to
setup the system. For instance, if the WfMS defines
examples as part of the deployment, we may want
to remove those examples by overriding the volume
containing them. Moreover, the WES Container (or
the DBMS Container) has to create the WfMS’s DB
and populate it with data required to run the WfMS.
The vendors need to provide authentication configu-
ration details of the WfMS components (e.g., the user
with admin privileges for the DBMS). Alternatively
the vendor may simply provide the files needed to cre-
ate and populate the DB.

#mount-a-host-directory-as-a-data-volume

Vincenzo Ferme

9

BenchFlow Benchmarking Methodology
requirements from the WfMS

Availability of APIs

• Deploy Process

• Start Process Instance

• Users API

• Web Service APIs

• Events APIs

Vincenzo Ferme

9

BenchFlow Benchmarking Methodology
requirements from the WfMS

Availability of APIs

• Deploy Process

• Start Process Instance

• Users API

• Web Service APIs

• Events APIs

• Workflow & Construct:

• Start Time

• End Time

• [Duration]

Availability of Timing Data

Vincenzo Ferme

9

BenchFlow Benchmarking Methodology
requirements from the WfMS

Availability of APIs

• Deploy Process

• Start Process Instance

• Users API

• Web Service APIs

• Events APIs

• Workflow & Construct:

• Start Time

• End Time

• [Duration]

Availability of Timing Data

Availability of Execution State
State of the workflow execution. E.g., running, completed, error

Vincenzo Ferme

10

BenchFlow Framework
architecture

Instance
Database

DBMSFaban Drivers

ContainersServers

DATA  
TRANSFORMERSANALYSERS

Performance
Metrics

Performance
 KPIs

WfMS

Te
st

 E
xe

cu
ti

on
A

na
ly

se
s

Faban
+

Web
Service

Minio

harness

benchflow [BPM ’15] [ICPE ’16]

MONITOR
Adapters

C
O

LLEC
T

O
R

S

Vincenzo Ferme

11

BenchFlow Framework
WfMSs’ specific characteristics

•Manages the Automatic WfMS deployment;

•Provides a “plugin” mechanism to add new WfMSs;

•Performs automatic Process Models deployment;

•Collects Client and Server-side data and metrics;

•Automatically computes performance metrics and  
statistics.

Vincenzo Ferme

12

Applications of the Methodology and Framework

[CAiSE ’16]
Micro-Benchmarking BPMN 2.0 Workflow Management Systems
with Workflow Patterns.

 WfMS

 MySQL

3 WfMSsWorkload

sequencePattern

Empty
Script 1

Empty
Script 2

…

0

750

1500

0:00 4:00 10:00

Metrics

• Engine Level

• Process Level

• Environment

Vincenzo Ferme

Micro-Benchmarking with Workflow Patterns

13

research questions

Selected three WfMSs: popular open-source WfMSs actually used in industry

1. What is the impact of individual or a mix of
workflow patterns on the performance of each one
of the benchmarked BPMN 2.0 WfMSs?

2. Are there performance bottlenecks for the selected
WfMSs?

Vincenzo Ferme

14

sequencePattern

Empty
Script 1

Empty
Script 2

Workload
Mix

Micro-Benchmarking with Workflow Patterns
workload mix

Sequence Pattern [SEQ]

• N. Russell et al, Workflow Control-Flow Patterns: A Revised View, 2006
Pattern Reference:

Vincenzo Ferme

14

sequencePattern

Empty
Script 1

Empty
Script 2

Workload
Mix

Micro-Benchmarking with Workflow Patterns
workload mix

Sequence Pattern [SEQ]exclusiveChoicePattern

generate
number

Empty
Script 1

Empty
Script 2case_2

case_1

Exclusive Choice and Simple Merge [EXC]

• N. Russell et al, Workflow Control-Flow Patterns: A Revised View, 2006
Pattern Reference:

Vincenzo Ferme

15

arbitaryCyclesPattern

generate
1 or 2

Empty
Script 1

Empty
Script 2

i++

i < 10

i >= 10
case_1

case_2

Workload
Mix

Micro-Benchmarking with Workflow Patterns
workload mix

Arbitrary Cycle [CYC]

• N. Russell et al, Workflow Control-Flow Patterns: A Revised View, 2006
Pattern Reference:

Vincenzo Ferme

16

Workload
Mix

Micro-Benchmarking with Workflow Patterns
workload mix

parallelSplitPattern

Empty
Script 1

Empty
Script 2

Parallel Split and Synchronisation [PAR]

• N. Russell et al, Workflow Control-Flow Patterns: A Revised View, 2006
Pattern Reference:

Vincenzo Ferme

16

Workload
Mix

Micro-Benchmarking with Workflow Patterns
workload mix

implicitTerminationPattern

Empty
Script 1

Wait 5
Sec

Explicit Termination Pattern [EXT]

parallelSplitPattern

Empty
Script 1

Empty
Script 2

Parallel Split and Synchronisation [PAR]

• N. Russell et al, Workflow Control-Flow Patterns: A Revised View, 2006
Pattern Reference:

Vincenzo Ferme

17

Micro-Benchmarking with Workflow Patterns
workload mix design decisions

1. Maximise the simplicity of the model expressing the workflow
pattern

2. Omit the interactions with external systems by implementing all
tasks as script tasks

Vincenzo Ferme

18

Load
Functions

Micro-Benchmarking with Workflow Patterns
load function

Test
Type

Load test

In
st

an
ce

Pr

od
uc

er
s

0
300
600
900

1200
1500

Time (min:sec)

0:0
0
0:3

0
1:0

0
2:0

0
3:0

0
4:0

0
5:0

0
6:0

0
7:0

0
8:0

0
10

:00

Example for u=1500

Vincenzo Ferme

19

WfMS
Configurations Micro-Benchmarking with Workflow Patterns

configurations: WfMS environments

 WfMS A WfMS B WfMS C

Vincenzo Ferme

19

WfMS
Configurations Micro-Benchmarking with Workflow Patterns

configurations: WfMS environments

 WfMS A WfMS B WfMS C

 MySQL MySQL MySQL

MySQL: Community Server 5.6.26

Vincenzo Ferme

19

WfMS
Configurations Micro-Benchmarking with Workflow Patterns

configurations: WfMS environments

 WfMS A WfMS B WfMS C

 MySQL MySQL MySQL

MySQL: Community Server 5.6.26

O.S.: Ubuntu 14.04.01 Ubuntu 14.04.01 Ubuntu 14.04.01
J.V.M.: Oracle Serv. 7u79 Oracle Serv. 7u79 Oracle Serv. 7u79

Vincenzo Ferme

19

WfMS
Configurations Micro-Benchmarking with Workflow Patterns

configurations: WfMS environments

 WfMS A WfMS B WfMS C

 MySQL MySQL MySQL

MySQL: Community Server 5.6.26

O.S.: Ubuntu 14.04.01 Ubuntu 14.04.01 Ubuntu 14.04.01
J.V.M.: Oracle Serv. 7u79 Oracle Serv. 7u79 Oracle Serv. 7u79

App. Server: Ap. Tomcat 7.0.62 Ap. Tomcat 7.0.62 Wildfly 8.1.0. Final

Vincenzo Ferme

19

WfMS
Configurations Micro-Benchmarking with Workflow Patterns

configurations: WfMS environments

 WfMS A WfMS B WfMS C

 MySQL MySQL MySQL

MySQL: Community Server 5.6.26

O.S.: Ubuntu 14.04.01 Ubuntu 14.04.01 Ubuntu 14.04.01
J.V.M.: Oracle Serv. 7u79 Oracle Serv. 7u79 Oracle Serv. 7u79

App. Server: Ap. Tomcat 7.0.62 Ap. Tomcat 7.0.62 Wildfly 8.1.0. Final

Max Java Heap: 32GB

Vincenzo Ferme

19

WfMS
Configurations Micro-Benchmarking with Workflow Patterns

configurations: WfMS environments

 WfMS A WfMS B WfMS C

 MySQL MySQL MySQL

MySQL: Community Server 5.6.26

O.S.: Ubuntu 14.04.01 Ubuntu 14.04.01 Ubuntu 14.04.01
J.V.M.: Oracle Serv. 7u79 Oracle Serv. 7u79 Oracle Serv. 7u79

App. Server: Ap. Tomcat 7.0.62 Ap. Tomcat 7.0.62 Wildfly 8.1.0. Final

Max Java Heap: 32GB Max DB Connections Number: 100

Vincenzo Ferme

19

WfMS
Configurations Micro-Benchmarking with Workflow Patterns

configurations: WfMS environments

 WfMS A WfMS B WfMS C

 MySQL MySQL MySQL

MySQL: Community Server 5.6.26

WfMS’s Containers: official ones, if available on DockerHub

O.S.: Ubuntu 14.04.01 Ubuntu 14.04.01 Ubuntu 14.04.01
J.V.M.: Oracle Serv. 7u79 Oracle Serv. 7u79 Oracle Serv. 7u79

App. Server: Ap. Tomcat 7.0.62 Ap. Tomcat 7.0.62 Wildfly 8.1.0. Final

Max Java Heap: 32GB Max DB Connections Number: 100

Vincenzo Ferme

19

WfMS
Configurations Micro-Benchmarking with Workflow Patterns

configurations: WfMS environments

 WfMS A WfMS B WfMS C

 MySQL MySQL MySQL

MySQL: Community Server 5.6.26

WfMS’s Containers: official ones, if available on DockerHub
WfMS’s Configuration: as suggested by vendor’s documentation

O.S.: Ubuntu 14.04.01 Ubuntu 14.04.01 Ubuntu 14.04.01
J.V.M.: Oracle Serv. 7u79 Oracle Serv. 7u79 Oracle Serv. 7u79

App. Server: Ap. Tomcat 7.0.62 Ap. Tomcat 7.0.62 Wildfly 8.1.0. Final

Max Java Heap: 32GB Max DB Connections Number: 100

Vincenzo Ferme

20

WfMS
Configurations Micro-Benchmarking with Workflow Patterns

configurations: WfMS deployment

TEST ENVIRONMENT

CPU
64 Cores  

@ 1400 MHz

RAM 128 GB

Load Drivers

CPU
12 Cores  

@ 800 MHz

RAM 64 GB

WfMS

CPU
64 Cores  

@ 2300 MHz

RAM 128 GB

DBMS

Vincenzo Ferme

20

WfMS
Configurations Micro-Benchmarking with Workflow Patterns

configurations: WfMS deployment

TEST ENVIRONMENT

CPU
64 Cores  

@ 1400 MHz

RAM 128 GB

Load Drivers

CPU
12 Cores  

@ 800 MHz

RAM 64 GB

WfMS

CPU
64 Cores  

@ 2300 MHz

RAM 128 GB

DBMS

10 Gbit/s
10 Gbit/s

Vincenzo Ferme

20

WfMS
Configurations Micro-Benchmarking with Workflow Patterns

configurations: WfMS deployment

TEST ENVIRONMENT

CPU
64 Cores  

@ 1400 MHz

RAM 128 GB

Load Drivers

CPU
12 Cores  

@ 800 MHz

RAM 64 GB

WfMS

CPU
64 Cores  

@ 2300 MHz

RAM 128 GB

DBMS

10 Gbit/s
10 Gbit/s

O.S.: Ubuntu 14.04.3 LTS Ubuntu 14.04.3 LTS Ubuntu 14.04.3 LTS

Vincenzo Ferme

20

WfMS
Configurations Micro-Benchmarking with Workflow Patterns

configurations: WfMS deployment

TEST ENVIRONMENT

CPU
64 Cores  

@ 1400 MHz

RAM 128 GB

Load Drivers

CPU
12 Cores  

@ 800 MHz

RAM 64 GB

WfMS

CPU
64 Cores  

@ 2300 MHz

RAM 128 GB

DBMS

10 Gbit/s
10 Gbit/s

O.S.: Ubuntu 14.04.3 LTS Ubuntu 14.04.3 LTS Ubuntu 14.04.3 LTS

1.8.2 1.8.2 1.8.2

Vincenzo Ferme

21

Micro-Benchmarking with Workflow Patterns
performed experiments

Individual patterns

1. 1500 (max) concurrent Instance Producers starting each pattern
[SEQ, EXC, CYC, EXT, PAR]

Mix of patterns

2. 1500 concurrent Instance Producers starting an equal number of
pattern instances (20% mix of [SEQ, EXC, CYC, EXT, PAR])

Vincenzo Ferme

21

Micro-Benchmarking with Workflow Patterns
performed experiments

Three runs for each execution of the experiments

Individual patterns

1. 1500 (max) concurrent Instance Producers starting each pattern
[SEQ, EXC, CYC, EXT, PAR]

Mix of patterns

2. 1500 concurrent Instance Producers starting an equal number of
pattern instances (20% mix of [SEQ, EXC, CYC, EXT, PAR])

Vincenzo Ferme

21

Micro-Benchmarking with Workflow Patterns
performed experiments

Three runs for each execution of the experiments
The data collected in the first minute of the execution has not been included in the analysis

Individual patterns

1. 1500 (max) concurrent Instance Producers starting each pattern
[SEQ, EXC, CYC, EXT, PAR]

Mix of patterns

2. 1500 concurrent Instance Producers starting an equal number of
pattern instances (20% mix of [SEQ, EXC, CYC, EXT, PAR])

Vincenzo Ferme

21

Micro-Benchmarking with Workflow Patterns
performed experiments

Three runs for each execution of the experiments
The data collected in the first minute of the execution has not been included in the analysis

Individual patterns

1. 1500 (max) concurrent Instance Producers starting each pattern
[SEQ, EXC, CYC, EXT, PAR]

Mix of patterns

2. 1500 concurrent Instance Producers starting an equal number of
pattern instances (20% mix of [SEQ, EXC, CYC, EXT, PAR])

Vincenzo Ferme

22

Number of Process
Instances

Computed Metrics and Statistics
engine level metrics

Throughput

Execution Time

Database Size

WfMS UsersLoad Driver

Instance
Database

Application Server

DBMS

Web
Service

D

A

B
C

…

Vincenzo Ferme

22

Number of Process
Instances

Computed Metrics and Statistics
engine level metrics

Throughput

Execution Time

Database Size

WfMS UsersLoad Driver

Instance
Database

Application Server

DBMS

Web
Service

D

A

B
C

…

Vincenzo Ferme

23

individual patterns: throughput (bp/sec)
Micro-Benchmarking with Workflow Patterns

SEQ EXC EXT PAR CYC

WfMS A

WfMS B

WfMS C

1456.79 1417.17 1455.68 1433.12 327.99

1447.66 1436.03 1426.35 1429.65 644.02

63.31 49.04 0.38 48.89 13.46

u=600

u=800

u=1500

Vincenzo Ferme

24

Micro-Benchmarking with Workflow Patterns
individual patterns: WfMS C Scalability for SEQ pattern

WfMS C uses a synchronous instantiation API,
load drivers must wait for workflows to end

before starting new ones

Vincenzo Ferme

24

Micro-Benchmarking with Workflow Patterns
individual patterns: WfMS C Scalability for SEQ pattern

WfMS C uses a synchronous instantiation API,
load drivers must wait for workflows to end

before starting new ones

R
es

po
ns

e
T

im
e

0

14

28

500 1000 1500 2000

u Instance Producers

T
hr

ou
gh

pu
t

0

40

80

500 1000 1500 2000

u Instance Producers

Vincenzo Ferme

24

Micro-Benchmarking with Workflow Patterns
individual patterns: WfMS C Scalability for SEQ pattern

WfMS C uses a synchronous instantiation API,
load drivers must wait for workflows to end

before starting new ones

R
es

po
ns

e
T

im
e

0

14

28

500 1000 1500 2000

u Instance Producers

T
hr

ou
gh

pu
t

0

40

80

500 1000 1500 2000

u Instance Producers

We have found a bottleneck! (~60 bp/sec)

Vincenzo Ferme

25

Computed Metrics and Statistics
process level metrics

Throughput

WfMS UsersLoad Driver

Instance
Database

Application Server

Web
Service

D

A

B
C

DBMS
…

Instance Duration

Pe
r

Pr
oc

es
s

D

efi
ni

ti
on

Vincenzo Ferme

25

Computed Metrics and Statistics
process level metrics

Throughput

WfMS UsersLoad Driver

Instance
Database

Application Server

Web
Service

D

A

B
C

DBMS
…

Instance Duration

Pe
r

Pr
oc

es
s

D

efi
ni

ti
on

Vincenzo Ferme

26

Micro-Benchmarking with Workflow Patterns
individual patterns: mean (instance duration time)

Vincenzo Ferme

26

Micro-Benchmarking with Workflow Patterns
individual patterns: mean (instance duration time)

sequencePattern

Empty
Script 1

Empty
Script 2

[SEQ]

Vincenzo Ferme

26

implicitTerminationPattern

Empty
Script 1

Wait 5
Sec

[EXT]

Micro-Benchmarking with Workflow Patterns
individual patterns: mean (instance duration time)

Vincenzo Ferme

26

Micro-Benchmarking with Workflow Patterns
individual patterns: mean (instance duration time)

parallelSplitPattern

Empty
Script 1

Empty
Script 2

[PAR]

Vincenzo Ferme

26

Micro-Benchmarking with Workflow Patterns
individual patterns: mean (instance duration time)

CYC Instance
Producers:

u=600

[CYC]

arbitaryCyclesPattern

generate
1 or 2

Empty
Script 1

Empty
Script 2

i++

i < 10

i >= 10
case_1

case_2

Vincenzo Ferme

27

Computed Metrics and Statistics
environment metrics

WfMS UsersLoad Driver

Instance
Database

Application Server

Web
Service

D

A

B
C

DBMS

CPU/RAM Usage per
Second

IO Operations/Network
Usage per Second

…

Vincenzo Ferme

27

Computed Metrics and Statistics
environment metrics

WfMS UsersLoad Driver

Instance
Database

Application Server

Web
Service

D

A

B
C

DBMS

CPU/RAM Usage per
Second

IO Operations/Network
Usage per Second

…

Vincenzo Ferme

28

Micro-Benchmarking with Workflow Patterns
individual patterns: mean (RAM) and mean (CPU) usage

RAM CPU

Vincenzo Ferme

29

Micro-Benchmarking with Workflow Patterns
performed experiments

Individual patterns

1. 1500 (max) concurrent Instance Producers starting each pattern
[SEQ, EXC, CYC, EXT, PAR]

Mix of patterns

2. 1500 concurrent Instance Producers starting an equal number of
pattern instances (20% mix of [SEQ, EXC, CYC, EXT, PAR])

Three runs for each execution of the experiments
The data collected in the first minute of the execution has not been included in the analysis

Vincenzo Ferme

30

Micro-Benchmarking with Workflow Patterns
mix of patterns: duration, RAM, CPU

Vincenzo Ferme

31

Micro-Benchmarking with Workflow Patterns
summary

Even though the Executed Workflows are Simple

Vincenzo Ferme

31

Micro-Benchmarking with Workflow Patterns
summary

There are relevant differences in workflows’
duration and throughput among the WfMSs

Even though the Executed Workflows are Simple

Vincenzo Ferme

31

Micro-Benchmarking with Workflow Patterns
summary

There are relevant differences in workflows’
duration and throughput among the WfMSs

There are relevant differences in
resource usage among WfMSs

CPURAM

Even though the Executed Workflows are Simple

Vincenzo Ferme

31

Micro-Benchmarking with Workflow Patterns
summary

There are relevant differences in workflows’
duration and throughput among the WfMSs

One WfMS has bottlenecks

There are relevant differences in
resource usage among WfMSs

CPURAM

Even though the Executed Workflows are Simple

Highlights

Highlights

Vincenzo Ferme

6

The BenchFlow Benchmarking Process

Workload
Model WfMS

Configurations
Test

Types
Workload Metrics

KPIs
Measure

Input/Process/Output Model

Workload
Mix

80%
C

A

B

20%
D

Load Functions
Test Data

Performance
Data

Process
Instance
Duration

Throughput

Containers

Benchmarking Process

Highlights

Vincenzo Ferme

6

The BenchFlow Benchmarking Process

Workload
Model WfMS

Configurations
Test

Types
Workload Metrics

KPIs
Measure

Input/Process/Output Model

Workload
Mix

80%
C

A

B

20%
D

Load Functions
Test Data

Performance
Data

Process
Instance
Duration

Throughput

Containers

Benchmarking Process
Vincenzo Ferme

8

[CLOSER ’16]
Container-centric Methodology for Benchmarking Workflow Management
Systems.

Vendor

BenchFlow

Provide
Benchmarking
Methodology

Vendor

BenchFlow

Agree on adding
Vendor's WfMS to the

Benchmark

Benchmarking Methodology Agreement Proposal

Signed Agreement

Vendor

BenchFlow

Provide Containerized
Distribution of WfMS

Containerized WfMS Request

Containerized WfMS

Vendor

BenchFlow

Verify the Benchmark
Results

Results Verification Outcome

Results Verification Request

Vendor

BenchFlow

Provide Draft
Benchmark Results

Draft Benchmark ResultsVerified Benchmark Results

Not Valid

Are the
Results
Valid?

Community

BenchFlow

Publish Benchmark
Results Valid

Benchmarking Methodology

Highlights

Vincenzo Ferme

6

The BenchFlow Benchmarking Process

Workload
Model WfMS

Configurations
Test

Types
Workload Metrics

KPIs
Measure

Input/Process/Output Model

Workload
Mix

80%
C

A

B

20%
D

Load Functions
Test Data

Performance
Data

Process
Instance
Duration

Throughput

Containers

Benchmarking Process
Vincenzo Ferme

8

[CLOSER ’16]
Container-centric Methodology for Benchmarking Workflow Management
Systems.

Vendor

BenchFlow

Provide
Benchmarking
Methodology

Vendor

BenchFlow

Agree on adding
Vendor's WfMS to the

Benchmark

Benchmarking Methodology Agreement Proposal

Signed Agreement

Vendor

BenchFlow

Provide Containerized
Distribution of WfMS

Containerized WfMS Request

Containerized WfMS

Vendor

BenchFlow

Verify the Benchmark
Results

Results Verification Outcome

Results Verification Request

Vendor

BenchFlow

Provide Draft
Benchmark Results

Draft Benchmark ResultsVerified Benchmark Results

Not Valid

Are the
Results
Valid?

Community

BenchFlow

Publish Benchmark
Results Valid

Benchmarking Methodology

Vincenzo Ferme

10

BenchFlow Framework
architecture

Instance
Database

DBMSFaban Drivers

ContainersServers

DATA  
TRANSFORMERSANALYSERS

Performance
Metrics

Performance
 KPIs

WfMS

Te
st

 E
xe

cu
ti

on
A

na
ly

se
s

Faban
+

Web
Service

Minio

harness

benchflow [BPM ’15] [ICPE ’16]

MONITOR
Adapters

C
O

LLEC
T

O
R

S

BenchFlow Framework

Highlights

Vincenzo Ferme

6

The BenchFlow Benchmarking Process

Workload
Model WfMS

Configurations
Test

Types
Workload Metrics

KPIs
Measure

Input/Process/Output Model

Workload
Mix

80%
C

A

B

20%
D

Load Functions
Test Data

Performance
Data

Process
Instance
Duration

Throughput

Containers

Benchmarking Process
Vincenzo Ferme

8

[CLOSER ’16]
Container-centric Methodology for Benchmarking Workflow Management
Systems.

Vendor

BenchFlow

Provide
Benchmarking
Methodology

Vendor

BenchFlow

Agree on adding
Vendor's WfMS to the

Benchmark

Benchmarking Methodology Agreement Proposal

Signed Agreement

Vendor

BenchFlow

Provide Containerized
Distribution of WfMS

Containerized WfMS Request

Containerized WfMS

Vendor

BenchFlow

Verify the Benchmark
Results

Results Verification Outcome

Results Verification Request

Vendor

BenchFlow

Provide Draft
Benchmark Results

Draft Benchmark ResultsVerified Benchmark Results

Not Valid

Are the
Results
Valid?

Community

BenchFlow

Publish Benchmark
Results Valid

Benchmarking Methodology

Vincenzo Ferme

10

BenchFlow Framework
architecture

Instance
Database

DBMSFaban Drivers

ContainersServers

DATA  
TRANSFORMERSANALYSERS

Performance
Metrics

Performance
 KPIs

WfMS

Te
st

 E
xe

cu
ti

on
A

na
ly

se
s

Faban
+

Web
Service

Minio

harness

benchflow [BPM ’15] [ICPE ’16]

MONITOR
Adapters

C
O

LLEC
T

O
R

S

BenchFlow Framework
Vincenzo Ferme

26

Empty
Script 1

Wait 5
Sec

[EXT]

Micro-Benchmarking with Workflow Patterns
individual patterns: mean (instance duration time)

Empty
Script 1

Empty
Script 2

[SEQ]
Empty
Script 1

Empty
Script 2

[PAR]

CYC Instance
Producers:

u=600

[CYC]

generate
1 or 2

Empty
Script 1

Empty
Script 2

i++

i < 10

i >= 10
case_1

case_2

Micro-Benchmark with WP

Vincenzo Ferme

33

•We want to characterise the Workload Mix using Real-World process models

• Share your executable BPMN 2.0 process models, even anonymised

Process Models

• We want to characterise the Load Functions using Real-World behaviours

• Share your execution logs, even anonymised

Execution Logs

•We want to add more and more WfMSs to the benchmark

• Contact us for collaboration, and BenchFlow framework support

WfMSs

Call for Collaboration
WfMSs, process models, process logs

benchflow
benchflow

vincenzo.ferme@usi.ch

http://benchflow.inf.usi.ch

WORKFLOW ENGINE
PERFORMANCE BENCHMARKING

WITH BENCHFLOW

Vincenzo	Ferme	
Faculty	of	Informatics	
USI	Lugano,	Switzerland

http://benchflow.inf.usi.ch

BACKUP SLIDES

Vincenzo	Ferme	
Faculty	of	Informatics	
USI	Lugano,	Switzerland

Vincenzo Ferme

36

Published Work

[BTW ’15]
C. Pautasso, V. Ferme, D. Roller, F. Leymann, and M. Skouradaki. Towards workflow
benchmarking: Open research challenges. In Proc. of the 16th conference on
Database Systems for Business, Technology, and Web, BTW 2015, pages 331–350, 2015.

[SSP ’14]
M. Skouradaki, D. H. Roller, F. Leymann, V. Ferme, and C. Pautasso. Technical open
challenges on benchmarking workflow management systems. In Proc. of the 2014
Symposium on Software Performance, SSP 2014, pages 105–112, 2014.

[ICPE ’15]
M. Skouradaki, D. H. Roller, L. Frank, V. Ferme, and C. Pautasso. On the Road to
Benchmarking BPMN 2.0 Workflow Engines. In Proc. of the 6th ACM/SPEC
International Conference on Performance Engineering, ICPE ’15, pages 301–304, 2015.

Vincenzo Ferme

37

Published Work

[CLOSER ’15]
M. Skouradaki, V. Ferme, F. Leymann, C. Pautasso, and D. H. Roller. “BPELanon”: Protect
business processes on the cloud. In Proc. of the 5th International Conference on
Cloud Computing and Service Science, CLOSER 2015. SciTePress, 2015.

[SOSE ’15]
M. Skouradaki, K. Goerlach, M. Hahn, and F. Leymann. Application of Sub-Graph
Isomorphism to Extract Reoccurring Structures from BPMN 2.0 Process Models.
In Proc. of the 9th International IEEE Symposium on Service-Oriented System
Engineering, SOSE 2015, 2015.

[BPM ’15]
V. Ferme, A. Ivanchikj, C. Pautasso. A Framework for Benchmarking BPMN 2.0
Workflow Management Systems. In Proc. of the 13th International Conference on
Business Process Management, BPM ’15, pages 251-259, 2015.

Vincenzo Ferme

38

Published Work

[BPMD ’15]
A. Ivanchikj, V. Ferme, C. Pautasso. BPMeter: Web Service and Application for Static
Analysis of BPMN 2.0 Collections. In Proc. of the 13th International Conference on
Business Process Management [Demo], BPM ’15, pages 30-34, 2015.

[ICPE ’16]
V. Ferme, and C. Pautasso. Integrating Faban with Docker for Performance
Benchmarking. In Proc. of the 7th ACM/SPEC International Conference on Performance
Engineering, ICPE ’16, 2016.

[CLOSER ’16]
V. Ferme, A. Ivanchikj, C. Pautasso., M. Skouradaki, F. Leymann. A Container-centric
Methodology for Benchmarking Workflow Management Systems. In Proc. of the
6th International Conference on Cloud Computing and Service Science, CLOSER 2016.
SciTePress, 2016.

Vincenzo Ferme

[CAiSE ’16]
M. Skouradaki, V. Ferme, C. Pautasso, F. Leymann, A. van Hoorn. Micro-Benchmarking
BPMN 2.0 Workflow Management Systems with Workflow Patterns . In Proc. of
the 28th International Conference on Advanced Information Systems Engineering, CAiSE
’16, 2016.

39

Published Work

[ICWE ’16]
C. Jürgen, V. Ferme, H.C. Gall. Using Docker Containers to Improve Reproducibility
in Software and Web Engineering Research. In Proc. of the 16th International
Conference on Web Engineering, 2016.

[ICWS ’16]
M. Skouradaki, V. Andrikopoulos, F. Leymann. Representative BPMN 2.0 Process Model
Generation from Recurring Structures. In Proc. of the 23rd IEEE International
Conference on Web Services, ICWS '16, 2016.

Vincenzo Ferme

40

Published Work

[SummerSOC ’16]
M. Skouradaki, T. Azad, U. Breitenbücher, O. Kopp, F. Leymann. A Decision Support
System for the Performance Benchmarking of Workflow Management Systems.
In Proc. of the 10th Symposium and Summer School On Service-Oriented Computing,
SummerSOC '16, 2016.

[OTM ’16]
M. Skouradaki, V. Andrikopoulos, O. Kopp, F. Leymann. RoSE: Reoccurring Structures
Detection in BPMN 2.0 Process Models Collections. In Proc. of On the Move to
Meaningful Internet Systems Conference, OTM '16, 2016. (to appear)

[BPM Forum ’16]
V. Ferme, A. Ivanchikj, C. Pautasso. Estimating the Cost for Executing Business
Processes in the Cloud. In Proc. of the 14th International Conference on Business
Process Management, BPM Forum ’16, 2016. (to appear)

Vincenzo Ferme

41

Docker Performance

[IBM ’14]
W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An updated performance comparison
of virtual machines and Linux containers. IBM Research Report, 2014.

Although containers themselves have almost no overhead,
Docker is not without performance gotchas. Docker
volumes have noticeably better performance than files stored in
AUFS. Docker’s NAT also introduces overhead for workloads
with high packet rates. These features represent a tradeoff
between ease of management and performance and should
be considered on a case-by-case basis.

”

“Our results show that containers result in equal or better
performance than VMs in almost all cases.

“
”

BenchFlow Configures Docker for Performance by Default

Vincenzo Ferme

42

Benchmarking Requirements

• Relevant

• Representative

• Portable

• Scalable

• Simple

• Repeatable

• Vendor-neutral

• Accessible

• Efficient

• Affordable

• K. Huppler, The art of building a good benchmark, 2009
• J. Gray, The Benchmark Handbook for Database and Transaction Systems, 1993
• S. E. Sim, S. Easterbrook et al., Using benchmarking to advance research: A

challenge to software engineering, 2003

Vincenzo Ferme

43

BenchFlow Benchmarking Methodology
WfMS

Configurations

requirements from the WfMS

NON-CORECORE

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

43

BenchFlow Benchmarking Methodology
WfMS

Configurations

requirements from the WfMS

NON-CORECORE

WfMS

Initialisation APIs

Deploy Process

Start Process
Instance

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

43

BenchFlow Benchmarking Methodology
WfMS

Configurations

requirements from the WfMS

NON-CORECORE

WfMS

Initialisation APIs

Deploy Process

Start Process
Instance

+ WfMS

Claim Task Complete Task

User APIs

Create User Create Group

Pending User Tasks

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

43

BenchFlow Benchmarking Methodology
WfMS

Configurations

requirements from the WfMS

NON-CORECORE

WfMS

Initialisation APIs

Deploy Process

Start Process
Instance

+ WfMS

Claim Task Complete Task

User APIs

Create User Create Group

Pending User Tasks

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Invoke WS

Web Service APIs

Vincenzo Ferme

43

BenchFlow Benchmarking Methodology
WfMS

Configurations

requirements from the WfMS

NON-CORECORE

WfMS

Initialisation APIs

Deploy Process

Start Process
Instance

Event APIs

Issue Event

WfMS

Pending Event Tasks

+ WfMS

Claim Task Complete Task

User APIs

Create User Create Group

Pending User Tasks

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Invoke WS

Web Service APIs

Vincenzo Ferme

44

BenchFlow Benchmarking Methodology
WfMS

Configurations

requirements from the WfMS
Table 1: Summary of Core and Non-core APIs to be imple-
mented by the WfMS

Functionality Min Response Data

C
or

e
AP

Is

Initialisation
APIs

Deploy a process Deployed process ID
Start a process instance Process instance ID

N
on

-c
or

e
AP

Is

User APIs Create a user User ID
Create a group of users User group ID
Access pending tasks Pending tasks IDs
Claim a task*
Complete a task

Event APIs Access pending events Pending events IDs
Issue events

Web service
APIs

Map tasks to Web
service endpoints

*Optional depending on the WfMS implementation

2.1.2 System Under Test

The SUT refers to the system that is being tested for
performance. In our case a WfMS which, accord-
ing to the WfMC (Hollingsworth, 1995), includes the
Workflow Enactment Service (WES) and any envi-
ronments and systems required for its proper func-
tioning, e.g., application servers, virtual machines
(e.g., Java Virtual Machine) and DBMSs. The WES
is a complex middleware component which, in addi-
tion to handling the execution of the process models,
interacts with users, external applications, and Web
services. This kind of SUT offers a large set of con-
figuration options and deployment alternatives. The
DBMS configuration as well as the WES configura-
tions (e.g., the granularity level of history logging,
the DB connection options, the order of asynchronous
jobs acquisition), may affect its performance. More-
over, WfMSs often offer a wide range of deployment
alternatives (e.g., standalone, in a clustered deploy-
ment, behind a load balancer in an elastic cloud in-
frastructure) and target different versions of applica-
tion server stacks (e.g., Apache Tomcat, JBoss).

To add a WfMS in the benchmark, we require the
availability of certain Core and Non-core APIs. A
summary of the same is presented in Table 1.

The Core APIs are Initialisation APIs necessary
for automatic issuing of the simplest workload to the
SUT in order to test SUT’s performance. They in-
clude: 1) deploy a process and return as a response an
identifier of the deployed process (PdID); and 2) start
a process instance by using the PdID and return as a
response the new instance identifier (PiID).

Depending on the execution language of the
WfMS and the constructs that it supports, other Non-

core APIs might be necessary for testing more com-
plex workloads. For instance, if we are targeting
BPMN 2.0 WfMSs we might also require the follow-

ing APIs:
For applying workloads involving human tasks,

the following User APIs are necessary: 1) create
a user and return the identifier of the created user
(UsID); 2) create a group of users, return the cre-
ated group identifier (UgID), and enable adding users
by using their UsIDs; 3) pending user/manual tasks:
access all the pending user/manual task instances of
a given user/manual task identified by its id (Jordan
and Evdemon, 2011, sec. 8.2.1) as specified in the
model serialization. We want to obtain all the pend-
ing tasks with the given id of all the process instances
(PiIDs) of a given deployed process (PdID). The API
has to respond with data, enabling the creation of a
collection that maps the process instances to the list
of their pending tasks <PiID, UtIDs> and <PiID,
MtIDs>; 4) claim a user/manual task identified by
UtID/MtID, if tasks are not automatically assigned by
the WfMS; and 5) complete a user/manual task iden-
tified by UtID/MtID by submitting the data required
to complete the task.

To issue a workload containing process mod-
els with catching external events, the following
Event APIs are necessary: 1) pending catching
events/receive tasks: access the pending catching
event/receive task instances of a given event/task
identified by its id (Jordan and Evdemon, 2011, sec.
8.2.1) specified in the model serialization. We want
to obtain all the pending catching events/receive tasks
with the given id of all the process instances (Pi-
IDs) of a given deployed process (PdID). The API
has to respond with data enabling the creation of a
collection that maps the process instances to the list
of their pending catching events/receive tasks <PiID,
CeIDs> and <PiID, RtIDs>; and 2) issue an event to
a pending catching event/receive task identified by us-
ing CeID/RtID. We require the APIs to accept the data
necessary to correlate the issued event to the correct
process instance, e.g., a correlation key.

Finally, to be able to issue a workload defining in-
teraction with Web services and/or containing throw-
ing events, the WfMS has to support a binding mech-
anism to map each Web service task/throwing event
to the corresponding Web service/throwing event end-
point. The WfMS should preferably allow to specify
the mapping in the serialized version of the model,
so that the binding can be added before deploying the
process.

Since many WfMSs are offered as a service, it is
safe to assume that many WfMSs expose, what we
call, the Core APIs. In our experience with systems
we have evaluated so far (e.g., Activiti, Bonita BPM,
Camunda, Imixs Workflow, jBPM), they support not
only the core APIs, but also the non-core APIs. The

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

45

BenchFlow Framework
system under test

Docker Engine

Vincenzo Ferme

45

BenchFlow Framework
system under test

Docker Engine
Containers

Vincenzo Ferme

45

BenchFlow Framework
system under test

Docker Engine

Docker Machine

pr
ov

id
es

Containers

Vincenzo Ferme

45

BenchFlow Framework
system under test

Docker Swarm

Docker Engine

Docker Machine

pr
ov

id
es

Containers

Vincenzo Ferme

45

BenchFlow Framework
system under test

Docker Swarm

Docker Engine

Docker Machine

pr
ov

id
es

mana
ges

Containers

Servers

Vincenzo Ferme

45

BenchFlow Framework
system under test

Docker Swarm

Docker Engine

Docker Compose

Docker Machine

pr
ov

id
es

mana
ges

Containers

Servers

Vincenzo Ferme

45

BenchFlow Framework
system under test

Docker Swarm

Docker Engine

Docker Compose

Docker Machine

pr
ov

id
es

mana
ges

Containers

Servers

SUT’s Deployment Conf.

deploys

Vincenzo Ferme

46

Server-side Data and Metrics Collection

WfMS

Start Workflow

asynchronous execution of workflows

Vincenzo Ferme

Users

D

A

B
C

Start

Application Server

Web
Service

Load Driver

DBMS

WfMS

Instance
Database

46

Server-side Data and Metrics Collection

WfMS

Start Workflow

asynchronous execution of workflows

Vincenzo Ferme

Users

D

A

B
C

Start

Application Server

Web
Service

Load Driver

DBMS

WfMS

Instance
Database

46

Server-side Data and Metrics Collection

WfMS

Start Workflow

End

asynchronous execution of workflows

Vincenzo Ferme

47

Server-side Data and Metrics Collection
monitors

DBMSFaban Drivers

ContainersServers

harness
WfMS

Te
st

 E
xe

cu
ti

on Web
Service

Vincenzo Ferme

47

Server-side Data and Metrics Collection
monitors

DBMSFaban Drivers

ContainersServers

harness
WfMS

Te
st

 E
xe

cu
ti

on Web
Service

MONITOR

Vincenzo Ferme

48

Server-side Data and Metrics Collection
monitors

DBMSFaban Drivers

ContainersServers

harness
WfMS

Te
st

 E
xe

cu
ti

on Web
Service

• CPU usage
• Database state

Examples of Monitors:Monitors’ Characteristics:
• RESTful services
• Lightweight (written in Go)
• As less invasive on the SUT as possible

Vincenzo Ferme

48

Server-side Data and Metrics Collection
monitors

DBMSFaban Drivers

ContainersServers

harness
WfMS

Te
st

 E
xe

cu
ti

on Web
Service

CPU
Monitor

DB
Monitor

• CPU usage
• Database state

Examples of Monitors:Monitors’ Characteristics:
• RESTful services
• Lightweight (written in Go)
• As less invasive on the SUT as possible

Vincenzo Ferme

49

Server-side Data and Metrics Collection
collect data

DBMSFaban Drivers

ContainersServers

harness
WfMS

Te
st

 E
xe

cu
ti

on Web
Service

Vincenzo Ferme

49

Server-side Data and Metrics Collection
collect data

DBMSFaban Drivers

ContainersServers

harness
WfMS

Te
st

 E
xe

cu
ti

on Web
Service

Minio
Instance
Database

A
na

ly
se

s
C

O
LLEC

T
O

R
S

Vincenzo Ferme

50

Server-side Data and Metrics Collection
collect data

DBMSFaban Drivers

ContainersServers

harness
WfMS

Te
st

 E
xe

cu
ti

on Web
Service

• Container’s Stats (e.g., CPU usage)
• Database dump
• Applications Logs

Examples of Collectors:Collectors’ Characteristics:

• RESTful services
• Lightweight (written in Go)
• Two types: online and offline
• Buffer data locally

Vincenzo Ferme

50

Server-side Data and Metrics Collection
collect data

DBMSFaban Drivers

ContainersServers

harness
WfMS

Te
st

 E
xe

cu
ti

on Web
Service

Stats
Collector

DB
Collector

• Container’s Stats (e.g., CPU usage)
• Database dump
• Applications Logs

Examples of Collectors:Collectors’ Characteristics:

• RESTful services
• Lightweight (written in Go)
• Two types: online and offline
• Buffer data locally

Vincenzo Ferme

51

Te
st

 E
xe

cu
ti

on

A high-throughput
distributed messaging
system

Minio
Instance

 DatabaseA
na

ly
se

s

DBMSFaban Drivers

ContainersServers

harness
WfMS

Web
Service

Stats
Collector

DB
Collector

Synchronisation with the Analyses
schedule analyses

Vincenzo Ferme

51

Te
st

 E
xe

cu
ti

on

A high-throughput
distributed messaging
system

Minio
Instance

 DatabaseA
na

ly
se

s

DBMSFaban Drivers

ContainersServers

harness
WfMS

Web
Service

Stats
Collector

DB
Collector

C
O

LLEC
T

Synchronisation with the Analyses
schedule analyses

Vincenzo Ferme

51

Te
st

 E
xe

cu
ti

on

A high-throughput
distributed messaging
system

Minio
Instance

 DatabaseA
na

ly
se

s

DBMSFaban Drivers

ContainersServers

harness
WfMS

Web
Service

Stats
Collector

DB
Collector

C
O

LLEC
T

Publish

Synchronisation with the Analyses
schedule analyses

Vincenzo Ferme

51

Te
st

 E
xe

cu
ti

on

A high-throughput
distributed messaging
system

Minio
Instance

 DatabaseA
na

ly
se

s

DBMSFaban Drivers

ContainersServers

harness
WfMS

Web
Service

Stats
Collector

DB
Collector

C
O

LLEC
T

Publish
Su

bs
cr

ib
e

Synchronisation with the Analyses
schedule analyses

Vincenzo Ferme

51

Te
st

 E
xe

cu
ti

on

A high-throughput
distributed messaging
system

Minio
Instance

 DatabaseA
na

ly
se

s

DBMSFaban Drivers

ContainersServers

harness
WfMS

Web
Service

Stats
Collector

DB
Collector

C
O

LLEC
T

Publish
Su

bs
cr

ib
e

Read

Synchronisation with the Analyses
schedule analyses

Vincenzo Ferme

52

Performance Metrics and KPIs
amount of data

REALISTIC

DATA

Number of

Repetitio
ns

1

1053

Vincenzo Ferme

52

Performance Metrics and KPIs
amount of data

REALISTIC

DATA

Number of

Repetitio
ns

1

1053

Number of
WfMSs

1

Vincenzo Ferme

53

Micro-Benchmarking with Workflow Patterns
mix of patterns: throughput (bp/sec)

MIX

WfMS A

WfMS B

WfMS C

1061.27

1402.33

1.78

Vincenzo Ferme

54

Computed Metrics and Statistics
feature level metrics

WfMS UsersLoad Driver

Instance
Database

Application Server

Web
Service

D

A

B
C

DBMS

Throughput

…

Instance Duration

Pe
r

C
on

st
ru

ct

(t
yp

e,
 n

am
e)

Vincenzo Ferme

54

Computed Metrics and Statistics
feature level metrics

WfMS UsersLoad Driver

Instance
Database

Application Server

Web
Service

D

A

B
C

DBMS

Throughput

…

Instance Duration

Pe
r

C
on

st
ru

ct

(t
yp

e,
 n

am
e)

Vincenzo Ferme

55

Computed Metrics and Statistics
interactions metrics

Response Time

Latency

…

WfMS UsersLoad Driver

Instance
Database

Application Server

DBMS

Web
Service

D

A

B
C

Vincenzo Ferme

55

Computed Metrics and Statistics
interactions metrics

Response Time

Latency

…

WfMS UsersLoad Driver

Instance
Database

Application Server

DBMS

Web
Service

D

A

B
C

Vincenzo Ferme

56

Computed Metrics and Statistics
descriptive and homogeneity statistics

• Descriptive Statistics (e.g., Mean, Confidence Interval,  
Standard Deviation, Percentiles, Quartiles, …)

• Coefficient of Variation across trials

• Levene Test on trials

