
Modeling RESTful Conversations with Extended
BPMN Choreography Diagrams

Cesare Pautasso1, Ana Ivanchikj1, and Silvia Schreier2

1 Faculty of Informatics, University of Lugano (USI), Switzerland
c.pautasso@ieee.org

ana.ivanchikj@usi.ch
2 innoQ Deutschland GmbH, Monheim, Germany

silvia.schreier@innoq.com

Abstract. RESTful Web APIs often make use of multiple basic HTTP
interactions to guide clients towards their goal. For example, clients may
get redirected towards related resources by means of hypermedia controls
such as links. Existing modeling approaches for describing RESTful APIs
expose low-level HTTP details that help developers construct individual
requests and parse the corresponding responses. However, very little at-
tention has been given to high-level modeling of RESTful conversations,
which abstracts the structure of multiple HTTP interactions. To address
such issue in this paper we introduce an extension of the notation used
in BPMN choreography diagrams. Its purpose is to represent concisely
all possible interaction sequences in a given RESTful conversation.

Keywords: RESTful Web Services · Conversations · BPMN Choreography ·
Modeling Notation Extension

1 Introduction

In traditional messaging systems, conversations involve a set of related messages
exchanged by two or more parties [1, 2]. Web services borrowed the notion of con-
versation [3] to indicate richer forms of interactions going beyond simple message
exchange patterns [4]. As more and more Web services [5] adopt the constraints
of the REpresentational State Transfer (REST) architectural style [6], conversa-
tions remain an important concept when reasoning about how clients make use
of RESTful Web APIs over multiple HTTP request/response cycles [7].

In this paper we introduce an extended version of the choreography diagrams
of the Business Process Model and Notation (BPMN) 2.0 standard [8, Chap. 5].
Our goal is to provide a concise and yet expressive visualization of all possi-
ble interactions that may occur in a given RESTful conversation, in order to
facilitate the communication among RESTful APIs’ architects and developers.
The extension emphasizes details found when using the HTTP protocol, such
as hypermedia controls [9], headers and status codes. They are all relevant for
defining the salient properties of the request and response messages composing a



RESTful conversation. To illustrate the expressiveness of the proposed notation
we model an example of a frequently reoccurring conversation.

The BPMN for REST [10] extension we have proposed earlier in 2011 targeted
the modeling of RESTful Web service invocations from business process models
and the invocation of resources published from within business processes. In this
paper we target a different viewpoint focusing on the interactions between clients
and resources, while abstracting away the processes that represent the internal
logic of the two (or more) parties involved in the conversation.

The rest of the paper is structured as follows. In Section 2 we define the main
properties of RESTful conversations. We survey related work in Section 3. We
introduce the extension for BPMN choreography diagrams and use it to model
a well known conversation in Section 4 and conclude in Section 5.

2 RESTful Conversations

REST is a hybrid architectural style, which combines the layered, client-server,
virtual machine and replicated repository styles with additional constraints
(i.e., the uniform interface, statelessness of interactions, caching and code-on-
demand) [6]. As a consequence, interactions within a RESTful architecture are
always initiated by clients. They send request messages addressed to the re-
sources hosted on servers which are globally identified by Uniform Resource
Identifiers (URIs). Requests are always followed by response messages, whose
representation may change depending on the current state of the corresponding
resource. Relationships between resources can be expressed and resources can
refer clients to related resources. This way, URIs are dynamically discovered
by clients. The mechanism whereby hyperlinks (or resource references) are em-
bedded into resource representations or sent along in the corresponding meta
data [11] is one of the core tenets of REST, known as Hypermedia.

RESTful conversations thus can be seen as a specific kind of message-based
conversation defined by the following characteristics: 1. Interactions are client-
initiated; 2. Requests are addressed to URIs; 3. A request message is always
followed by a response, however there may be different possible responses to the
same request message; 4. Hypermedia: responses embed related URIs, which may
be used to address subsequent requests; 5. Statelessness: every request is self-
contained and therefore independent of the previous ones; 6. Uniform Interface:
there is a fixed set of request methods a resource can support. Furthermore, it
is possible to distinguish safe or idempotent requests from unsafe ones.

These characteristics make it possible to share the responsibility for the con-
versation’s direction between clients and servers. Servers guide the client towards
the next possible steps in the conversation by choosing to embed zero, one or
more related URIs as hyperlinks in a response. Clients may choose which hy-
perlink to follow, if any (they may decide to stop sending requests at any time).
This way, clients decide how to continue the conversation by selecting the next
request from the options provided by the server in previous responses. In general,
clients can accumulate URIs discovered during the entire conversation or may

2



remember them from previous conversations. Zuzak et al. call this the Link Stor-
age in their finite-state machine model for RESTful clients [12]. Additionally,
responses may be tagged as cacheable and thus clients will not need to contact
the server again when re-issuing the same request multiple times. The discussion
so far assumes that servers are available and always reply to client’s requests3.
In case of failures, either due to loss of messages or the complete unavailability
of servers, an exception to the response-request rule must be made.

3 Related Work

The necessity of conceptual modeling of interactions has resulted in different
modeling language proposals such as Let’s Dance [13] or iBPMN [14], and has
led to the introduction of the Choreography Diagram in version 2.0 of the BPMN
standard [8, Chap. 5]. Since the main targeted domain of these languages is mod-
eling interactions involving traditional Web services, their capability of depicting
effectively and efficiently RESTful interactions is limited, which has motivated
our work on extending the BPMN choreography. RESTful Conversations have
been introduced in [7], where they are used as an abstraction mechanism to sim-
plify the modeling of individual RESTful APIs making use of them. In this paper
we model the conversations themselves, which in some cases, may span across
multiple APIs. Whereas in [7] UML sequence diagrams are used to visually rep-
resent the selected sample of conversations, in this paper we use extended BPMN
choreography diagrams, following the fast-growing adoption of the BPMN stan-
dard which became an ISO standard in 2013 (ISO/IEC 19510).

4 Extension for RESTful BPMN Choreographies

The graphical representation of all the possible interactions, that may occur
as part of a RESTful conversation, facilitates its comprehension. While UML
sequence diagrams can be a good starting point when dealing with simple con-
versations [7], they are limited in concisely presenting conversations that can
follow alternative paths. Therefore we propose using BPMN choreographies to
visualize RESTful conversations. They focus on the exchange of messages with
the purpose of coordinating the interactions between participants [15, pg. 315],
while at the same time showing the order in which the interactions may occur.

As Lindland et al. [16] claim in their framework for understanding the qual-
ity in conceptual modeling, a very important aspect of a modeling language is
its domain appropriateness. Cortes-Cornax et al. [17] emphasize the same when
evaluating the quality of BPMN choreographies. They state that “the language
must be powerful enough to express anything in the domain but no more”.
Therefore, to render the BPMN choreography diagrams more concise when tar-
geting the modeling of RESTful conversations, we propose minor changes to
their notation.
3 Servers may indicate their unavailability by sending responses carrying the 503 Ser-

vice Unavailable status code.

3



Client

Server

Response
Timeout

Request

Response
Hyperlink1 URI
Hyperlink2 URI

Client

Server

Request
Hyperlink1 URI

Client

Server

Alternative
Response

Client

Server

Alternative
Response

Client

Server

Request
Hyperlink2 URI

Response

Fig. 1: RESTful conversation modeled with standard BPMN choreography

Request

Response

Request

Hyperlink1 URI
Hyperlink2 URI

Hyperlink1 URI

Alternative
Response

Alternative
Response

Response
Timeout

Hyperlink Flow

Request

Response

Hyperlink2 URI

1

2

3

4

5

Fig. 2: RESTful BPMN choreography: proposed notation extension

As it happens often in high-level conceptual modeling [18, pg. 93], various
assumptions and simplifications need to be introduced in order to avoid over-
whelming the reader with too many visual elements. This usually results in the

4



exclusion of certain details from the models. We introduce the following list of as-
sumptions and simplifications for the RESTful BPMN choreographies: 1. While
a hyperlink that has been discovered by the client can be used at any time in
the future, to avoid decreased readability due to line-crossing we only take into
consideration the hyperlink from the last received response; 2. While clients may
decide to stop sending requests at any time, we model a path as finished (by
using an end event), only if an initially intended goal has been achieved; 3. While
servers may send responses that include many different HTTP status codes, we
only include the status codes which are relevant for the specific conversation. For
example, 5xx status codes can occur at any time. The client will need to decide
how to react to such errors depending on the domain and error details; 4. While
clients may choose to resend idempotent requests an arbitrary number of times,
we only model situations where the client retries sending non-idempotent request
(POST, PATCH) after a response timeout event occurs.

Fig. 1 and 2 show the same generic conversation in order to illustrate the
proposed extension of the notation and its conciseness. In contrast to business
processes where it is important to highlight which participant is responsible for
initiating the interaction, in a RESTful conversation the initiator is always the
client, and there is no one-way informative interaction. The content of the mes-
sages is of a particular interest, because it defines the action to be taken by the
server and the future direction of the conversation. To comply with these differ-
ences, we replace the BPMN activity comprised of an optional incoming/outgo-
ing message with a text annotation to depict the message content and a three
band choreography task containing the names of the participants, with a two
band request/response element with embedded message content (Fig. 2, no. 1).
Moreover, since in RESTful conversations the focus is not on the activities but
on their request/response content, we consider a vertical flow direction more
intuitive to follow, with a starting event leading directly to client’s request and
the server’s response leading directly to the following request or an end event.

The remaining extensions that we propose capture distinct tenets of REST-
ful APIs. The hyperlink flow indicates how URIs are discovered from hyperlinks
embedded in the preceding response to clarify how clients discover and navigate
among related resources (Fig. 2, no. 2). In RESTful conversations it is impor-
tant to distinguish between: 1. Path divergence due to client’s decisions, e.g., to
navigate to a given resource or to end the process, in which case any type of
gateway (exclusive, inclusive, parallel or complex) can be used (Fig. 2, no. 3);
and 2. Path divergence due to different possible responses from the server to a
given client’s request, in which case only exclusive gateway can be used, since
the server always sends exactly one response (Fig. 2, no. 4). In the latter case,
the exclusive gateway is introduced between a given request and the alternative
response messages. This is the only situation in which a request and its response
are not aggregated in the same element. Response timeouts may occur when the
server takes too long to respond and thus the client decides to resend the re-
quest. To model them we use an interrupting boundary timer event attached to

5



Client

Server

POST 
/job

202 Accepted
Location: 
/job/42

DELETE 
/job/42

GET 
/job/42

Client

Server

200 OK

Client

Server

Client

Server

200 OK

Client

Server

303 See Other
Location: 
/job/42/output

Client

Server

GET 
/job/42/output

200 OK

Client

Server

200 OK

DELETE 
/job/42/output

Fig. 3: Long running request modeled with standard BPMN choreography

POST /job

202 Accepted
Location: /job/42

DELETE /job/42/output

200 OK

DELETE /job/42

200 OK

GET /job/42

200 OK 303 See Other
Location: /job/42/output

GET /job/42/output

200 OK

Fig. 4: Long running request modeled with the proposed extension
6



the request element. Such an event breaks the normal request-response sequence
by introducing a request-timeout-request-response sequence (Fig. 2, no. 5).

In addition to the generic conversation shown in Fig. 1 and 2, in Fig. 4 we have
applied our notation to a conversation that can be found in many RESTful APIs,
e.g., Amazon Glacier’s API for long term storage of infrequently used data4.
Retrieving such data can take several hours (usually 3 to 5 hours 5). Therefore
to avoid having the client wait for such a long time, the operation is turned into a
job resource, which is created using the original request. Assuming that creating
the job twice has no side effects and the client does not receive a response to
the job creation request within a given time frame, it can decide to send the
POST request again. Once the job has been created the client may poll the job
resource to GET its current progress and will eventually be redirected to another
resource representing the output, once the long running operation has completed.
Since the output has its own URI, it becomes possible to GET it multiple times,
as long as it has not been deleted. Additionally, the long running job can be
cancelled at any time with a DELETE request, thus implicitly stopping the
operation on the server or deleting its output if it had already completed in the
meanwhile. Fig. 3 and 4 show the conversation covering the whole lifecycle of a
long running operation using the standard BPMN and our proposed extended
BPMN notation, respectively. They illustrate how concisely this conversation can
be visualized with our extension by emphasizing the important REST tenets.

5 Conclusion

Conversations are relevant in the context of RESTful Web APIs because multiple
basic HTTP interactions are combined by clients navigating through the API’s
resources guided by the hyperlinks provided by the server. Thus, the design of
RESTful APIs always consists of conversations and not only, for example, of
the URI patterns and supported media types of its resources. Giving a visual
representation of RESTful conversations is an important first step towards un-
derstanding and improving how RESTful APIs are designed.

The contribution of this paper is the graphical representation of RESTful
conversations by proposing minimal extension to the standard BPMN choreog-
raphy diagrams. The goal is to render the conversations more precise by focusing
on the specific facets of RESTful APIs (e.g., hyperlink flow, request-response se-
quencing). We have illustrated the expressiveness of the proposed notation by
modeling a typical conversation found in many RESTful APIs.

In the future we plan to design and conduct a survey among both design-
ers of RESTful APIs and developers of client applications consuming them, to
validate that the proposed notation enhances the understandability of RESTful
conversations. Furthermore based on our experience and existing literature we
plan to model a collection of frequently used RESTful conversation patterns and

4 http://docs.aws.amazon.com/amazonglacier/latest/dev/job-operations.html
5 http://aws.amazon.com/glacier/

7



to explore how to compose together individual reusable patterns to simplify the
modeling of larger conversations.

Acknowledgment The work is partially supported by the Hasler Foundation

(Switzerland) with the Liquid Software Architecture (LiSA) project.

References

1. Hohpe, G.: Let’s have a conversation. Internet Computing, IEEE 11(3) (2007)
78–81

2. Barros, A., Dumas, M., ter Hofstede, A.H.: Service interaction patterns. In van der
Aalst, W., Benatallah, B., Casati, F., Curbera, F., eds.: Business Process Manage-
ment. Volume 3649 of LNCS. Springer, Heidelberg (2005) 302–318

3. Benatallah, B., Casati, F., et al.: Web service conversation modeling: A cornerstone
for e-business automation. Internet Computing, IEEE 8(1) (2004) 46–54

4. Völter, M., Kircher, M., Zdun, U.: Remoting patterns: foundations of enterprise,
internet and realtime distributed object middleware. Wiley, Chichester (2013)

5. Richardson, L., Amundsen, M., Ruby, S.: RESTful Web APIs. O’Reilly, Sebastopol
(2013)

6. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine (2000)

7. Haupt, F., Leymann, F., Pautasso, C.: A conversation based approach for modeling
REST APIs. In: In: 12th WICSA, Montreal, Canada, ACM (May 2015) 1–9

8. Weske, M.: Business Process Management: Concepts, Languages, and Architec-
tures. 2nd edn. Springer, Heidelberg (2012)

9. Amundsen, M.: Building Hypermedia APIs with HTML5 and Node. O’Reilly,
Sebastopol (2011)

10. Pautasso, C.: BPMN for REST. In: 3rd International Business Process Modeling
Notation Workshop (BPMN 2011), Lucerne, Springer (November 2011) 74–87

11. Nottingham, M.: Web linking. Internet RFC 5988 (October 2010)
12. Zuzak, I., Budiselic, I., Delac, G.: A finite-state machine approach for modeling

and analyzing RESTful systems. J. Web Eng. 10(4) (December 2011) 353–390
13. Zaha, J.M., Barros, A., et al.: Let’s dance: A language for service behavior model-

ing. In: On the Move to Meaningful Internet Systems 2006: CoopIS, DOA, GADA,
and ODBASE. Springer, Heidelberg (2006) 145–162

14. Decker, G., Barros, A.: Interaction modeling using BPMN. In ter Hofstede, A.,
Benatallah, B., Paik, H.Y., eds.: Business Process Management Workshops. Volume
4928 of LNCS. Springer, Heidelberg (2008) 208–219

15. Jordan, D., Evdemon, J.: Business process model and notation (BPMN) version
2.0. OMG (2011) http://www.omg.org/spec/BPMN/2.0/.

16. Lindland, O., Sindre, G., Solvberg, A.: Understanding quality in conceptual mod-
eling. Software, IEEE 11(2) (March 1994) 42–49

17. Cortes-Cornax, M., Dupuy-Chessa, S., Rieu, D., Dumas, M.: Evaluating chore-
ographies in BPMN 2.0 using an extended quality framework. In Dijkman, R.,
Hofstetter, J., Koehler, J., eds.: Business Process Model and Notation. Volume 95
of LNBIP. Springer, Heidelberg (2011) 103–117

18. Robinson, S., Brooks, R., Kotiadis, K., Van Der Zee, D.J.: Conceptual modeling
for discrete-event simulation. CRC Press, Inc., Boca Raton (2010)

8


