Liquid Stream Processing
across Web browsers and Web servers

Masiar Babazadeh, Andrea Gallidabino, and Cesare Pautasso

Faculty of Informatics, University of Lugano (USI), Switzerland
{name.surname}@usi.ch

Abstract. The recently proposed API definition WebRTC introduced
peer-to-peer real time communication between Web browsers, allowing
streaming systems to be deployed on browsers in addition to traditional
server-side execution environments. While streaming applications can
be adapted to run on Web browsers, it remains difficult to deal with
temporary disconnections, energy consumption on mobile devices and
a potentially very large number of heterogeneous peers that join and
leave the execution environment affecting the quality of the stream. In
this paper we present the decentralized control approach followed by the
Web Liquid Streams (WLS) framework, a novel framework for streaming
applications running on Web browsers, Web servers and smart devices.
Given the heterogeneity of the deployment environment and the volatility
of Web browsers, we implemented a control infrastructure which is able
to take operator migration decisions keeping into account the deployment
constraints and the unpredictable workload.

1 Introduction

Real-time Web applications which display live updates resulting from complex
stream processing topologies have recently started to impact the Web architec-
ture. Web browsers are no longer limited to synchronous request-response HT'TP
interactions but can now establish full-duplex connections both with the server
(WebSockets) and even directly with other browsers (WebRTC). This opens up
the opportunity to shift to the Web browser more than a simple view to be ren-
dered over the results of the stream, but also the processing of the data stream
operators. Similar to ongoing Rich Internet Application trends [1], the idea is
to offload part of the computation to clients that are becoming more and more
powerful. This however requires the flexibility to adapt operators to run on a
highly heterogeneous execution environment, determine which is the most suit-
able location for their execution, and deal with frequent outages, limited battery
capacity and device failures.

More in detail, while building data streaming applications across Web browsers
with WebRTC and WebSockets can be a relatively simple task, managing the
deployment of arbitrary topologies, disconnections, and errors without a central
entity may become increasingly difficult. The volatile nature of Web browsers
(whose tabs may be closed at any time) implies that the system should be able

to restart leaving operators on other available machines. At the same time, CPU
and memory consumption as well as data flow rate should be managed and reg-
ulated when operators become too taxing on the hosting browser. Whenever
a host used up all its resources and causes bottlenecks, the hosted streaming
operators should be relocated to other available machines. Special care should
be taken in presence of portable devices such as smartphones or tablets, whose
battery should be saved whenever possible.

In this paper we show how we deal with these problems in the Web Liquid
Streams (WLS) framework. WLS allows developers to implement distributed
stream processing topologies composed of JavaScript operators deployed across
Web browsers and Web servers. Thanks to the widespread adoption of JavaScript,
the lingua franca of the Web, it is possible to deploy and run streaming applica-
tions on any Web-enabled device: from small microprocessors, passing through
smartphones, all the way to large virtualised Cloud computing clusters running
the Node.JS |2] framework. The focus of this paper concerns the WLS distributed
control infrastructure which is able to deal with faults and disconnections of the
computing operators as well as bottlenecks in the streaming topology. Moreover
it is in charge of optimizing the physical deployment of the topology by migrat-
ing and cloning operators across Web browsers and Web servers to reduce energy
consumption and increase parallelism.

The RESTful API of the first version of WLS, which supported distributed
stream processing only over Web server clusters has been previously described
in [3]. In this paper we build upon the previous results to present the second
version of WLS, which makes the following novel contributions:

— A decentralized infrastructure to deploy both on Web servers and Web
browsers a graph of data stream operators in order to reduce the end to
end latency of the stream while enforcing given deployment constraints.

— A control infrastructure able to deal with bottlenecks in the stream topology.

— A technique for cloning and relocating operators to dynamically parallelize
computationally intensive operators, which can make use of volunteer re-
sources and react to unpredictable workload changes.

The rest of this paper is organized as follows: Section [2] discusses related
work, Section [3] introduces the Web Liquid Streams framework while Section [4]
describes its control infrastructure. Section [5| shows a preliminary evaluation of
the control infrastructure and Section [§] concludes the paper.

2 Related Work

Many stream processing frameworks have been proposed over the years [4,[5].
Here we discuss the ones which inspired our work on WLS. Storm [6] is a dis-
tributed real-time computational environment originally developed by Twitter.
Stream operators are defined by custom created ”spouts” and ”bolts”, used to
allow distributed processing of streaming data. Storm presents a two-fold con-
troller infrastructure to deal with worker failure and node failure. Storm only
features a server-side deployment, while we extend this concept in WLS by in-

cluding Web browsers as part of the target deployment infrastructure and use
standard Web protocols to send and receive data.

D-Streams [7] is a framework that provides a set of stream-transformations
which treat the stream as a series of deterministic batch computations on very
small time intervals. In this way, it reuses the fault tolerance mechanism for
batch processing, leveraging MapReduce style recovery. D-Stream features a
reconfiguration-style recovery for faults, which was inspirational for our con-
troller; nonetheless, the D-Streams topology cannot be changed and adapted
to the workload at runtime. Another related framework is MillWheel [§] by
Google. MillWheel helps user build low-latency data-processing applications at
large-scale without the need to think about how to deploy it in a distributed
execution environment. Our runtime works at the same level of abstraction, but
targets a more diverse, volunteer computing-style set of provided resources.

With the rapid growth of mobile smart phones, many efforts targeted im-
proving their energy efficiency and explored how to deal with energy-intensive
applications by means of Cloud offloading [9]. With approaches like MAUT [10]
or ThinkAir [11], programmers annotate part of the code to be offloaded, and
the runtime is able to tell if the offloading of the annotated parts could save
energy on the client that would remotely invoke the corresponding methods.

Some research effort has been dedicated towards self-adaptation of streaming
applications. A self-adapting optimizer has been presented in [12] where the au-
thors introduced an online and offline scheduler for Storm. Another optimization
for Storm has been proposed in [13], where the authors present an optimization
algorithm that finds the optimal values for the batch sizes and the degree of
parallelism for each Storm node in the dataflow. The algorithm automatically
finds the best configuration for a topology, avoiding manual tuning. Our work
is very similar, yet the premises of having fully transparent Peers are not met,
as WLS is unable to access the complete hardware specifications of a machine
from the existing Web browser HTML5 APIs. A more general approach in de-
scribing streaming optimizations has been taken in [4], where authors suggest a
list of stream processing optimizations, some of which have been applied in our
framework (i.e., Operator Fission, Fusion or Load balancing).

The concept of liquid software has been introduced in the Liquid Software
Manifesto [14], where the authors use it to represent a seamless multi-device user
experience where software can effortlessly flow from one device to another [15].
Likewise, in [16] we described an architectural style for liquid Web services, which
can elastically scale taking advantage of heterogeneous computing resources. In
the presented cases, the liquid quality is applied to the deployment of software
components. In this paper we focus our efforts on the stream software connector
and how to characterize its liquid behavior.

3 The Web Liquid Streams Framework

The Web Liquid Streams (WLS) framework helps developers create stream pro-
cessing topologies and run them across Web servers, Web browsers, and smart

devices. This Section introduces the main abstractions provided by WLS and
how they can be used to build Topologies of streaming Operators written in
JavaScript. To build streaming applications, developers make use of the follow-
ing building blocks: Peers are physical machines that host the computation.
Any Web-enabled device, including Web servers, Web browsers or microproces-
sors is eligible to become a Peer. In a streaming application, Operators receive
the data, process it and forward the results downstream. Each Operator is asso-
ciated to a JavaScript file, which describes the processing logic. The Topology
defines a graph of Operators, effectively describing the data flow from producer
Operators to consumers. The structure of the Topology can dynamically change
while the stream is running. Peers can host more than one Operator at a time,
and Operators on the same Peer can be part of different streaming Topolo-
gies. The way Operators and Peers are organized is dynamic as the number of
Operators and their resource usage can change at runtime. Operators can be
redundantly deployed on multiple Peers for increased scalability and reliability.

When implementing an Operator, developers do not need to worry about
communication protocols as it is the WLS runtime’s task to deploy the Oper-
ators on the physical hosts based on the Topology description and deployment
constraints, and thus taking care of abstracting away the actual stream commu-
nication channels. To do so, the runtime includes a control infrastructure able to
deal with disconnections and load fluctuations by means of Operator migration.

3.1 Liquid Stream Processing

We use the Liquid Software metaphor [14H16] to visualize the properties of the
flow of data elements through the Operators that are deployed over a large and
variable number of networked Peers owned by the users of the platform. The
nature of the Peers can be heterogeneous: big Web servers with a lot of storage
and RAM, Web browsers running on smart phones or personal computers, but
also Web-enabled microcontrollers and smart devices such as Raspberry PI or
Tessel.IO. Users of the system can share their own resources in a cooperative
way by either connecting to the system through a Web browser or a Web server.
WLS is able to handle the churn of connecting and leaving Peers through a
gossip algorithm [17] , which propagates across all Peers the information about
connected Peers where Operators can be deployed.

As a liquid adapts its shape to the one of its container, the WLS framework
adapts the operators and the stream data rate to fit within the available re-
sources. When the resource demand increases (i.e., because of an increase in the
stream rate, or the processing power required to process some stream elements),
new resources are allocated by the controller. Likewise, these will be elastically
de-allocated once the stream resource demand decreases.

3.2 Operator Cloning and Migration

We implemented two basic mechanisms on the Operators: cloning and migra-
tion [18]. Operator cloning is the process of creating an exact copy of the Op-

erator on another Peer to solve bottlenecks by increasing the parallelism. The
process can be reversed once the bottlenecks are solved and there is no need to
keep more than one Peer busy.

Migration is the process of moving one Operator from one Peer to another at
runtime. Migration in WLS can be triggered when a Peer expresses its willingness
to leave the system, or when the battery level of a device reaches a predefined
threshold. In that case, the Operators are migrated on other Peers to prevent
disconnection errors when the battery is completely drained out. During the
migration, the controller creates copies of these Operators on the designated
machines and performs the bindings to and from other Operators, given the
Topology structure. Considering [18], WLS performs a re-initialization of the
relocated code on the new execution environment.

4 Decentralized Control Infrastructure

By uploading a file containing the Topology description through the WLS APT [3],
users of the system can deploy and execute their Topologies on a subset of
the available Peers, which will be autonomously and transparently managed by
WLS. Topologies can also be created manually through the command-line in-
terface of the system or through a graphical monitoring tool. Upon receiving
a Topology description or manual configuration commands, the system checks
if the request can be satisfied with the currently available resources. If that is
the case, WLS allocates and deploys Operators on designated Peers and starts
the data stream between them. In this section we present the autonomic control
infrastructure that automatically deploys Topologies and sends reconfiguration
commands through the same WLS API. Each Web server Peer features its own
local controller which deals with the connections and disconnections of the Web
browser Peers attached to it as well as the parallelisation of Operators running
on it (by forking Node.js processes). A similar controller is deployed on each Web
browser Peer, where it parallelises the Operator execution spawning additional
Web Workers. Likewises it monitors the local environment conditions to detect
bottlenecks, battery shortages or disconnections and to signal them to the cor-
responding controller on the Web server. This establishes a hierarchical control
infrastructure whereby each Operator is managed by a separate entity, coordi-
nated by the controller responsible for managing the lifecycle and regulating the
performance of the whole Topology.

4.1 Deployment Constraints

The control infrastructure deals with disconnections of Peers, load fluctuations
and Operator migrations. In this paper we target the ability of the controller
to deploy, migrate, and clone Operators across Peers seamlessly in order to face
disconnections, but also to improve the overall performance of the Topology in
terms of latency and energy consumption. To do so, the controller takes into
account a list of constraints that are specified in the Topology description. The

constraints are presented here in descending order of importance: i) Hardware
Dependencies, for example the presence on the Peer device of specific hardware
sensors or actuators must be taken into consideration by the controller as first-
priority deployment constraint. An Operator that makes use of a gyroscope
sensor cannot be migrated from a smart phone built with such sensor to a Web
server. ii) Whitelists or Blacklists. Operators can be optionally associated
with a list of known Peers that must (or must not) be used to run them. The list
can be specified using IP address ranges and should be large enough so that if one
Peer fails another can still be found to replace it. iii) Battery, whenever a Peer
has battery shortage, the controller should be able to migrate the Operator(s)
running on such Peer in order not to completely drain out the Peer battery.
At the same time, a migration operation should not be performed targeting a
Peer with a low battery level. iv) CPU. The current CPU utilization of the
Peer must leave room to deploy another operator. Since JavaScript is a single-
threaded language, we use the number of CPU cores as an upper bound on the
level of parallelism that a Peer can deliver.

These constraints are used to select a set of candidate Peers, which are then
ranked according to additional criteria, whose purpose is to ensure that the end-
to-end latency of the stream is reduced, while minimizing the overall resource
utilization. This is important to reduce the cost of the resources allocated to
each Topology, while maintaining a good level of performance.

4.2 Ranking Function

The following metrics are taken into account by the controller for selecting the
most suitable Peer for each Operator: i) Energy consumption can be opti-
mized, for example when the computation of an Operator is too taxing on a
battery-dependent Peer. In this case a migration may occur, moving the heavy
computation from a mobile device to a desktop or Web server machine. Thus, the
priority is given to fully charged mobile Peers or to fixed Peers without battery.
ii) Parallelism can be achieved by cloning a bottleneck Operator. For example,
a migration or a cloning operation may be expected if the computation is very
CPU-intensive and the Peer hosting the Operator not only has its CPU full but
it is also the Topology bottleneck. Thus, higher priority is given to Peers with
larger CPUs and higher CPU availability. iii) Deployment Cost Minimiza-
tion by prioritizing Web browsers instead of making use of Web servers, WLS
tries to avoid incurring in additional variable costs given by the utilization of
pay-per-use Cloud resources.

These metrics can be accessed on a Web server through the Node.js APIs,
while on the Web browser we can again use the HTML5 APIs to gather the bat-
tery levels and a rough estimate of the processing power. The ranking function is
evaluated by the controller at Topology initialization to find the best deployment
configuration of the Operators, and while the Topology is running to improve its
performance and deal with variations in the set of known/available Peers. For
each Peer, the function uses the previously described constraints and metrics to

Algorithm 1: Peer Ranking for Topology Initialization

Data: Known Peers, Topology
Result: Peers Ranking
P < Known Peers ;
foreach Operator o in Topology do
foreach Peer p in P do
if lcompatible(o, p) then
‘ P+ P\p;
end
end
end
if P =0 then
| return cannot deploy Topology
else
foreach Peer p in P do
Poll p for its current metrics M;(p);
Compute ranking function r(p) according to Eq. ;
end
return Sorted list of available Peers P according to their rank r(p)
end

compute a value that describes how much a Peer is suited to host an Operator.
The function is defined as follows:

r(p) = ZaiMi(p) (1)

where «; is the weight representing the importance of the ¢ — th metric. M;
is the current value of the metric obtained from the Peer p. The result gives
an estimate of the utility of the Peer p to run one or more Operators on it. In
case the utility turns out to be negative, the semantics implies that the Peer
p should no longer be used to run any operator. Whenever a Topology has to
start, the controller polls the known Peers and executes the procedure shown in
Algorithm

The controller first determines which of the known Peers are compatible
with the Operators of the topology. Then it polls each Peer for its metrics. Once
received, the Ranking is computed and stored for further use. The Peers are
then ordered from the most suited to the least suited, then for each Operator to
be deployed the controller iterates the list top to bottom it decides which Peer
will host it. This deploys the whole Topology and when all Peers confirm that
the Operators have been deployed the flow of the data stream begins. As the
Topology is up and running, the ranking function is periodically re-evaluated
by the controller to check the status of the execution and adapt the topology
to changes in workload (reflected by changed CPU utilization of the Peers) and
changes in the available Peers (and thus deal with disconnections), as well as

changes to the Topology structure itself (e.g., when new operators are removed
from or added to it).

4.3 Disconnection Recovery

Whenever a Peer abruptly disconnects (i.e., a Web browser crashes), the con-
troller notices the channel closing (through the JavaScript error event handling)
and starts executing a recovery procedure in order to restore the Topology by
restarting the lost Operators on other available Peers. The recovery is similar
to the migration decision algorithm: the controller restarts the lost Operators
on Peers satisfying the deployment constraints and with the highest ranking
possible. It may be possible that the channel closing was caused by temporary
network failures. In this case, if the Peer assumed lost comes back up, the con-
troller brings it back to a clean state by stopping all Operators still running on
it. The Peer may be later assigned other Operators if needed.

5 Preliminary Evaluation

The goal of the evaluation is to observe the differences between a deployment
strategy to address bottlenecks using a random ranking function (random con-
troller) as a baseline with respect to a more accurate deployment decision mak-
ing approach, based on the devised ranking function defined in Eq. (ranking
controller). As additional control, we also performed experiments with a reverse
ranking controller (Ranking=!), which makes the worst possible decisions.

The Topology we use to evaluate the ranking controller consists of three
Operators: the first takes as input a stream of tweets, the second encrypts them
using triple DES and the third stores the encrypted result on a server. Given
the unpredictable dynamics of the Twitter Firehose API we decided to sample
100000 tweets and use them as benchmark workload. The size of the messages
exchanged along the stream is thus less than 1Kb.

For this experiment we used a Samsung Galaxy S4, one Mac Book Pro i7 with
16GB RAM running OSX, a Windows 7 machine 2.9GHz quadcore and three
iPads 3 WiFi for the encryption Operator, while two servers for the producer
and the consumer Operators (the producer with twenty-four Intel Xeon 2GHz
cores and the consumer with four Intel Core 2 Quad 3GHz cores, both running
Ubuntu 12.04 with Node.JS version 0.10.15.). All the resources using a Web
browser are running Google Chrome version 40.

Figure[l|shows the resource usage of the experiments, comparing the number
of processes and Peers used in the experiment. We see that in the first random
approach, the deployment of the CPU-intensive Operator is on an iPad (single
process), which then gets cloned on the MacBook, the best machine, resulting in
a very low median latency. The other runs show a mix of deployment scenarios
resulting in a not-so-optimal median throughput and with higher resource usage
(two or more Peers). The ranking controller is able to detect the best machine
where to run the CPU-intensive Operator and thus not only keeps the latency

220

sl _ 200

3 164 £
L - - 150
4 0 9
% 102 110 <
% 4+ -1 100 —
5] g
e :
ool 150 g
** 22
6
Ranking Random 1 Random 2 Random 3 Random 4 Ranking™*

Peers Macbook (8C) [Windows (4C) [Phone (4C) iPad (1C)
Processes Macbook (8C) M Windows (4C) [Phone (4C) iPad (1C)

Median Latency

Fig. 1: Liquid Deployment and Bottleneck Handling: Comparison of Random vs.
Ranked resource allocations and their median end-to-end latency.

very low, but also uses a smaller amount of resources. The reverse ranking con-
troller instead uses the iPads, the Phone and the Windows machine (in this
order) to clone the Operator, resulting in a very high resource usage.

6 Conclusion and Future Work

In this paper we presented a control infrastructure for distributed stream pro-
cessing across Web-enabled devices. The controller extends the Web Liquid
Streams (WLS) framework for running stream processing topologies composed of
JavaScript operators across Web servers and Web browsers. The control infras-
tructure is able to choose a suitable initial deployment on the available resources
connected to WLS. While the streaming topology is running, it monitors the per-
formance and is able to migrate or clone Operators across machines to increase
parallelism as well as to prevent and react to faults given by battery shortages
and disconnections. The controller is able to do so by using a ranking function
which orders the Peers that are compatible with each Operator for choosing
the most appropriate Peer for a deployment or migration. The initial evaluation
presented in the paper shows how the controller reflects the best possible de-
ployment given a set of resources, resulting in a balanced message throughput
along the topology graph, and reduced end-to-end stream latency.

We are currently performing an extensive performance evaluation covering
additional features of the WLS framework (e.g., more fine-grained CPU perfor-
mance characterization, support of stateful operators, operator consolidation).
Moreover, we would like to improve the current allocation approach, which is ex-

tremely simple and greedy. It does not consider characteristics of the Operators
and of the data, which may affect computation time and Peer load.

Acknowledgment We are grateful to Monica Landoni for her help. The work is
supported by the Hasler Foundation with the Liquid Software Architecture (LiSA)
project and by the Swiss National Science Foundation with the Fundamentals of Par-

allel Programming for Platform-as-a-Service Clouds project (Grant Nr. 153560).

References

1.

o

10.

11.

12.

13.

14.

15.

16.

17.

18.

Casteleyn, S., et al.: Ten years of rich internet applications: A systematic mapping
study, and beyond. ACM Trans. Web 8(3) (2014) 18:1-18:46

Tilkov, S., et al.: Node.js: Using javascript to build high-performance network
programs. IEEE Internet Computing 14(6) (2010) 80-83

Babazadeh, M., Pautasso, C.: A RESTful API for Controlling Dynamic Streaming
Topologies. In: Proc. of WWW Companion, Seoul, Korea (April 2014)

Hirzel, M., et al.: A catalog of stream processing optimizations. ACM Comput.
Surv. 46(4) (2014) 46:1-46:34

Babazadeh, M., et al.: The Stream Software Connector Design Space: Frame-
works and Languages for Distributed Stream Processing. In: Software Architecture
(WICSA), 2014 IEEE/IFIP

Apache: Storm, distributed and fault-tolerant realtime computation (2011)
Zaharia, M., et al.: Discretized streams: an efficient and fault-tolerant model for
stream processing on large clusters. In: Proc. of USENIX HotCloud. (2012) 10-16
Akidau, T., et al.: Millwheel: Fault-tolerant stream processing at internet scale.
In: Proc. VLDB Endow. (2013) 734-746

Kumar, K., Lu, Y.H.: Cloud computing for mobile users: Can offloading compu-
tation save energy? Computer 43(4) (2010) 51-56

Cuervo, E., et al.: MAUIL: Making Smartphones Last Longer with Code Offload.
In: Proc. of MobiSys, ACM (2010) 49-62

Kosta, S., et al.: Thinkair: Dynamic resource allocation and parallel execution
in the cloud for mobile code offloading. In: INFOCOM, 2012 Proceedings IEEE.
(2012) 945-953

Aniello, L., Baldoni, R., Querzoni, L.: Adaptive online scheduling in storm. In:
Proc. of DEBS, ACM (2013) 207-218

Sax, M.J., et al.: Performance optimization for distributed intra-node-parallel
streaming systems. In: ICDE Workshops, IEEE Computer Society (2013) 62-69
Taivalsaari, A., et al.: Liquid software manifesto: The era of multiple device own-
ership and its implications for software architecture. In: Proc. of COMPSAC 2014,
IEEE Computer Society 338-343

Mikkonnen, T., Systa, K., Pautasso, C.: Towards liquid web applications. In: Proc.
ICWE2015, Rotterdam, NL, Springer

Bonetta, D., Pautasso, C.: An architectural style for liquid web services. In: 9th
Working IEEE/IFIP Conference on Software Architecture (WICSA 2011)
Jelasity, M., et al.: Gossip-based aggregation in large dynamic networks. ACM
Trans. Comput. Syst. 23(3) (2005) 219-252

Fuggetta, A., et al.: Understanding code mobility. IEEE Trans. Softw. Eng. 24(5)
(1998) 342-361

