
Mashup Development with Web Liquid Streams

Andrea Gallidabino, Masiar Babazadeh, and Cesare Pautasso

Faculty of Informatics, University of Lugano (USI), Switzerland
{name.surname}@usi.ch

Abstract. Web services such as Twitter and Facebook provide direct
access to their streaming APIs. The data generated by all of their users
is forwarded in quasi-real-time to any external client requesting it: this
continuous feed opens up new ways to create mashups that differ from
existing data aggregation approaches, which focus on presenting with
multiple widgets an integrated view of the data that is pulled from mul-
tiple sources. Streaming data flows directly into the mashup without the
need to fetch it in advance, making it possible to exchange data between
mashup components through streaming channels. In this challenge sub-
mission we show how streaming APIs can be integrated using a stream
processing framework. Mashup components can be seen as stream opera-
tors, while the mashup can be defined by building a streaming topology.
The mashup is built with Web Liquid Streams, a dynamic streaming
framework that takes advantage of standard Web protocols to deploy
stream topologies both on Web servers and Web browsers.

Keywords: Mashups, Streaming, Liquid Software

1 Introduction

The mashup concept and the interest in the mashup tools started to appear when
more and more Web services and Web Data sources were released [1]. While
mashups can be built using traditional Web development tools, languages and
frameworks, specialized mashup composition tools have appeared focusing on
raising the level of abstraction and thus enabling non-programmers to compose
mashups [2]. Different tools can be characterized depending on the users they
target, and the mashup development approach they implement [3]. A precise
categorisation of the various mashup tools describes synthetically their expressive
power and the type of solution they propose can be found in [4].

Mashups are in general data centric applications which gather data from
many Web services or Web data sources and mix them together in a single inte-
grated application. Data may be fetched from the Web in many different forms:
static resources accessible through static URLs (e.g. JSON/XML files), resources
accessible through REST APIs, or – in the case of this paper – streaming and
feed APIs that forward new data to clients without the need of any new request
after the initial subscription. Mashup tools make it easy to integrate one or more
of those type of data.

This paper presents the rapid mashup challenge solution proposed by the Web
Liquid Streams (WLS) framework [5], a stream processing runtime that helps
developers deploy streaming topologies running on heterogeneous Web-enabled
devices. WLS helps the users to develop logic mashups by creating JavaScript
logic components. Components may interact with any of the data sources de-
scribed above and components may be connected together in order to create a
streaming topology representing the mashup.

2 Related Work

As witnessed during the challenge, there exists many mashup tools based on
different paradigms and runtime architectures. By using the Web browser as
a platform, many tools implement the logic of both the integration and the
presentation directly on the Web browser. While the presentation layer suits
perfectly the Web browser environment, there are some issues with the integra-
tion layer, which can not always be fully deployed on the Web browser [6]. The
solution to this problem is decoupling the integration and presentation layer by
shifting the development of mashup from the client-side to the server-side [7].
With Web Liquid Streams, it is possible to dynamically decide where mashup
components should be deployed.

Many mashup tools take advantage of the data flow paradigm to represent
how information and events flow between mashup components connected into
pipelines. Tools like FeedsAPI 1, Superpipes2, or Yahoo Pipes3 use pipelines as
a mechanism for developing mashups. The idea is to create a flow of data that
goes from a multitude of sources through one or many integration layers and
finally ends the flow in the presentation layer.

The pipeline approach can be easily implemented in a streaming frame-
work [8] because all the layers of a pipelined mashup can be directly trans-
lated to a type of operator in a streaming topology: data sources used in a
mashup translate to producer operators, the integration layers translate to filter
operators, and the presentation layer translates to consumer operators. Even
if streaming frameworks naturally suit the implementation of pipelines, not all
streaming frameworks are suited for mashup development. Mashup development
with streaming frameworks must meet two criteria: operators must be able to
interact with external data sources and Web APIs and there must be a mecha-
nism enabling visualisation of the consumer operators and their deployment as
Web Widgets.

JOpera is a process-based [9] mashup composition tool that was extended
in 2009 with streaming execution support to build real-time mashups of stream
data sources found on the Web [10].

1 http://www.feedsapi.com/
2 https://github.com/superfeedr/superpipes
3 https://pipes.yahoo.com/pipes/

http://www.feedsapi.com//
https://github.com/superfeedr/superpipes
https://pipes.yahoo.com/pipes/

Chrooma+ [11] is a streaming mashup tool that enables construction of
mashups with video and audio sources. It can create composition of media
streams with any HTML component.

SensorMasher [12] uses streams of data produced by sensors as data sources
and builds visual compositions on a Web browser. SensorMasher publishes the
data of the attached sensors as Web data sources, making it possible to integrate
them with other data sources.

3 Web Liquid Streams Framework

WLS helps Web developers to create streaming topologies running across hetero-
geneous Web-enabled devices. Any device on which a Web browser or a node.js
Web server can run, can be used to produce, process or consume a WLS stream.
WLS targets programmers that are able to write JavaScript code that runs both
on the server and on the client. Mashup components in WLS are called oper-
ators and may interact with any Web service API (both streaming, RESTful
and RPC-based). An operator is the core building block of a streaming topol-
ogy, it can receive data, process it and forward results downstream. By binding
(connecting) two or more operators together it is possible to define a streaming
topology.

Operators may run on Web servers or on Web browsers. In both environments
they can use the same WLS API to produce and consume the data stream
(see Section 3.4). Operators running on a Web Browser also have access to an
extended API for rendering the data stream and visualize it on web pages (see
Section 3.5). Figure 1 shows the scheme of a possible topology composed by
three operators: the producer and filter run in the server-side while the producer
runs on a browser. In this example the filter makes requests to an external API.

WLS abstracts away the deployment on the heterogeneous machines from
the development of the topology. It keeps the mashup alive in case of failures.
If a mashup component overload is detected it automatically allocates more
resources to that component [13].

In this section we discuss the features offered in the WLS framework in more
detail. Explanations are followed by real examples used in the demo.

3.1 Startup and Discovery of the Devices

Discovery of the devices happens by direct connection through different entry
points provided by the WLS runtime. When WLS finishes the initialisation, a list
of ports is prompted on the screen (Figure 2). Every port defines a specific entry
point or a service published by the WLS application. Smart devices running the
WLS-node script can connect to the application by connecting to the RCP entry
point, while Web browser enabled peers can connect to the Remote entry point.
Through the HTTP port it is possible to send HTTP requests.

WLS also publishes a RESTful API [14] through the REST API ROOT
port. During the demo we show how to retrieve topology descriptions through
this interface (Fig.9).

Producer Filter

Server-side Client-side
(Browser)

External
Service

API

Consumer

DOM

Fig. 1: Web Liquid Streams topology example

Fig. 2: Web Liquid Streams startup

When devices connect to the WLS application they become Peers and an
unique peer id (pid) is assigned to them. Figure 3 shows the WLS application’s
answer to the connection of one server peer and three remote peers connected
through a Web browser.

Fig. 3: Web Liquid Streams discovery

3.2 Commands

WLS provides a list of console commands allowing live development of a mashup:

run script pid (e.g. run producer.js 1)
Creates a new operator on peer pid and loads the defined script. Workers
inside the operator will run the loaded script. The run command returns a
unique operator identifier (cid) representing the created operator.

bind cidFrom cidTo (e.g. bind 1 2)
Creates a one-way communication channel between two operators: from op-
erator cidFrom to operator cidTo.

kill cid (e.g. kill 1)
Unloads all the workers inside the operator cid and kills it.

unbind cidFrom cidTo (e.g. unbind 1 2)
Removes the communication channel created from operator cidFrom to op-
erator cidTo.

exec topology (e.g. exec icwe topology.js)
Given the definition of a topology, automatically runs the needed run and
bind commands in order to deploy the operators on the available peers.

migrate cid pid (e.g. migrate 1 0)
Move operator cid from its current peer to peer pid.

Figure 4 shows a real example of running and binding operators. Two operators
are run with scripts icwe producer.js and icwe f1.js on pid 0. The run command
returns two cid : the runtime assigns to the first operator cid 0 and to the second
one cid 1. When both operators are started it is possible to bind them with the
bind command.

Fig. 4: Running and binding example

3.3 Topology

A topology can be described with our internal DSL based on the JSON syntax4.
The description defines both operators and bindings as follows:

operators
id Identifier of the operator
script Script loaded in the operator and ran by the workers
browser Defines if an operator may run on the client-side, if not defined

the operator exists exclusively on the server-side
path Relative path of the domain that enables direct access to the op-

erator through a Web browser connection

4 http://json.org/

http://json.org/

only If true an operator runs exclusively on the client-side, if false the
operator may run on both server-side and client-side

bindings

from Identifier of an operator defined in the operator array
to Identifier of an operator defined in the operator array
type Sending algorithm such as: round-robin or broadcast

Listing 1.1 shows the implementation of a linear topology composed by three
operators: the first and second operators can run only on the server-side, while
the third one can run only in a browser and is accessible to the URL /map. The
first operator sends messages to the second one in a round-robin fashion, the
second broadcasts messages to the third one.

Listing 1.1: Topology JSON description example: linear topology with three
operators used in the first iteration of the demo

1 {
2 "topology": {
3 "id": "test",
4 "operators": [{
5 "id": "producer",
6 "script": "icwe_producer.js"
7 },{
8 "id": "filter",
9 "script": "icwe_f1.js"

10 },{
11 "id": "consumer",
12 "script": "icwe_browser.js",
13 "browser": {
14 "path" : "/map",
15 "only" : true
16 }
17 }
18],
19 "bindings": [{
20 "from": "producer",
21 "to": "filter",
22 "type": "round_robin"
23 },{
24 "from": "filter",
25 "to": "consumer",
26 "type": "broadcast"
27 }
28]
29 }
30 }

3.4 Script API

WLS provides developers with the following basic API:

var wls = require(’wls.js’)
An operator script has to import the WLS library. The library contains
the two streaming routines needed to create the topology’s streaming flow.
Our framework redefines the require function in the remote clients in order
to make server-side scripts and client-side scripts as compatible as possible
without the need of any further modification. It is important to note that
in the client-side the require function should be called only once in order
to load the WLS library, since it always returns the WLS object no matter
the arguments passed (it does not load any server-side node modules).

wls.createOperator(function(message){. . . })
The createOperator method is used to execute scripts on messages coming
from upstream. It takes a callback function parameter which is executed
every time a message is parsed by the operator. The callback function re-
ceives the message itself as the first argument. A script can define only a
single operator.

wls.send(message)
The send method is used to send messages downstream to all operators
bound to the sender. The message must be a serializable object. We highly
recommend to send JSON parsable objects as messages.

Listing 1.2 shows the implementation of one of the scripts used in the rapid
mashup challenge (Section 4). The script receives a message from upstream as
an argument to the callback registered with wls.createOperator (lines 4-8). When
processing every stream message, the script makes an external HTTP request
in the geoNamesRequest function (lines 10-25). The answer to the request is
eventually forwarded downstream through the wls.send function (lines 18-22).

Listing 1.2: Server script: Tweet Geolocate

1 var wls = require(’wls.js’)
2 var http = require(’http’)
3
4 wls.createOperator(function(msg) {
5 var tweet = msg.tweet
6 var locationName = getLocationName(tweet)
7 geoNamesRequest(locationName, tweet)
8 })
9

10 var geoNamesRequest = function(locationName, tweet){
11 var options = {...}
12
13 http.get(options, function(res) {
14 var coords = undefined
15 ...
16

17 res.on(’end’, function () {
18 wls.send({
19 tweet: tweet,
20 color: createRandomColor(),
21 location: coords
22 })
23 })
24 })
25 }
26 // Returns the name of a location connected to the tweet
27 var getLocationName = function (tweet) {...}
28 // Returns a random color
29 var createRandomColor = function () {...}

3.5 Extended Remote Script API

Implementation of WLS in the Web browser is slightly different from the server-
side. Workers in the server-side are spawned as child-processes of the WLS run-
time, while in the Web browser workers run as WebWorkers. Scripts running in
a Web browser should be able to access and interact with the Document Object
Model (DOM) of the Web page, but WebWorkers lack direct access to the DOM.
The remote peers in the browsers have access to an extended set of API methods
that enhance the communication between the DOM and the operator’s script.

wls.createHTML(id, html)
The createHTML method adds HTML code snippets to the DOM. It takes
two parameters: a unique id and the HTML code snippet passed as a String.

wls.createScript(id, scriptPath)
The createScript method adds a client-side script to the header of the asso-
ciated Web page. It takes two parameters: a unique id and the path to the
script relative to the domain name.

wls.callFunction(name, argumentsArray [, function(result){. . . }])
The callFunction method calls a function associated to the DOM from within
the WebWorker. If the DOM defines a function named name, then it will be
executed by passing the argumentsArray as the arguments. If the optional
callback function is passed as an argument, it will be executed after the
function call ends. The callback takes the returned value of the executed
function as the first parameter.

wls.setDOM(selector, attribute, value)
The setDOM method sets a new value to the attribute of the specified DOM
elements. The elements are specified by the selector parameter and are writ-
ten as jQuery selectors5.

wls.subscribe(id)
The subscribe method creates a direct communication channel from the DOM
to the WebWorker. Once the WebWorkers subscribe, the DOM can create

5 https://api.jquery.com/category/selectors/

https://api.jquery.com/category/selectors/

and send messages to the WebWorkers as if the DOM is an operator in
the topology. It can send messages through the channels with the frame-
work function WLS.publish(id, message), where id is the unique iden-
tifier specified in the subscribe call and message is the object forwarded by
the DOM.

Listings 1.3, 1.5, and 1.6 show the implementation of the three remote scripts
used in the rapid mashup challenge (Section 4).

In Listing 1.3 we show the script that creates markers inside the GoogleMap.
The first time the script is loaded it will inject the GoogleMap HTML into the
DOM by using the function wls.createHTML (line 7) and it will inject into the
header of the Web page the script ’js/map.js’ (Listing 1.4) by using the function
wls.createScript (line 8). When a message arrives from upstream (lines 1-6) the
message is processed and the worker will call the addMarker function which is
now defined in the DOM by using the wls.callFunction method.

In Listing 1.5 we show the script that visualises information associated to
the markers on the GoogleMap. The first time the script is loaded it registers
a new subscriber by calling the wls.subscribe method (line 9). Whenever in the
DOM the method WLS.publish(’markermouseover’, msg) is called (Listing 1.4:
line 8-10), a message is forwarded to the worker script, as if it had received a
message from upstreams (lines 2-8). Once the message is processed, the script
will modify some attributes of the Web page by calling the wls.setDOM method
(lines 5-7).

Similarly in Listing 1.6 the script registers a subscriber called markerclick(line
9). Wherever the DOM calls the method WLS.publish(’markerclick’, msg) (List-
ing 1.4: line 4-6) a message is sent to the worker script.

Listing 1.3: Browser Script: Marker Creator

1 wls.createOperator(function(msg) {
2 var tweet = msg.tweet
3 var color = msg.color
4 var location = msg.location
5 wls.callFunction(’addMarker’,[tweet,color,location],undefined)
6 })
7 wls.createHTML(’mapDiv’, ’<div id="map-canvas"></div>’);
8 wls.createScript(’mapScript’, ’js/map.js’);

Listing 1.4: js/map.js script

1 var addMarker = function(tweet, color, location) {
2 ...
3
4 google.maps.event.addListener(marker,’click’,function(){
5 WLS.publish(’markerclick’, {tweet:tweet, color:color,

count:count})
6 }
7 ...
8 google.maps.event.addListener(marker,’mouseover’,function(){

9 WLS.publish(’markermouseover’, {tweet:tweet, color:color
})

10 }
11 ...
12 }

Listing 1.5: Browser Script: Marker Viewer

1 var wls = require(’wls.js’)
2 wls.createOperator(function(msg) {
3 var tweet = msg.tweet
4 var color = msg.color
5 wls.setDOM(’#marker_color’, ’css’, "background-color", color)
6 wls.setDOM(’#marker_author’, ’html’, tweet.user.screen_name)
7 wls.setDOM(’#marker_tweet’, ’html’, tweet.text)
8 })
9 wls.subscribe(’markermouseover’)

10 wls.createHTML(...);

Listing 1.6: Browser Script: Marker Clicker

1 var wls = require(’wls.js’)
2 wls.createOperator(function(msg) {
3 wls.send({
4 tweet: msg.tweet,
5 color: msg.color,
6 count: msg.count
7 })
8 })
9 wls.subscribe(’markerclick’)

4 Rapid Mashup Challenge

Figure 5 summarizes the final topology deployed during the demo, the description
of the scripts can be found in Section 4.2. The mashup we propose in the demo
mixes the following three external APIs:

Geonames
Geonames6 converts name Strings to a pair of latitude-longitude coordi-
nates. Answers from the GeoNames API are in JSON format, which can be
forwarded downstream without the need of any processing.

GoogleMaps
GoogleMaps7 adds a geographic map to a Web page, its API allows creation
of markers on the map given the latitude-longitude coordinates.

6 http://www.geonames.org/
7 https://developers.google.com/maps/

http://www.geonames.org/
https://developers.google.com/maps/

Twitter REST API8 and Streaming API9

REST: The Twitter REST API is used to retrieve all the re-tweets associ-
ated to a given tweet.

Streaming: We subscribe to the streaming feed of The New York Times
(TNYT) Twitter account @nytimes. Every time The New York Times
tweets a piece of news, a message is forwarded to our operator.

Tweet
Retriever

Tweet
Geolocate

Stream

Marker
Creator

REST

Marker
Clicker

Retweet
Gatherer

Marker
Viewer

on
mouseclick

on
mouseover

Server-side
C
lient-side

Fig. 5: Complete Stream Topology and Component Deployment

The rapid mashup challenge demo mashup marks on a map the geographical
location of the news published by The New York Times. Moreover the mashup
detects two different events associated to the marker: when the mouse is over a
marker the mashup returns additional textual information about the news; when
a marker is clicked it shows on the map, with smaller markers of the same color,
the geographical location of all the users who retweeted it.

During the challenge we incrementally build the mashup from scratch, start-
ing with the definition of a simple linear topology with our JSON syntax. The
initial topology only shows the tweets on the GoogleMap.

After the initial solution, we expand the topology dynamically by invoking
the console commands described in Section 3.2. The extended topology is now
non-linear, it re-uses the Tweet Geolocate component, and offers the onclick and

8 https://dev.twitter.com/rest/public
9 https://dev.twitter.com/streaming/overview

https://dev.twitter.com/rest/public
https://dev.twitter.com/streaming/overview

mouseover functionalities. The extended mashup has been obtained by incre-
mentally adding components to it without stopping its execution, a form of live
mashup development [15].

At the end of the demo we ask the audience to connect to our Web applica-
tion. Anybody that connects to the mashup with his Web browser will be able
to see the GoogleMap. With the new clients connected to WLS we demonstrate
the migration and the distribution of the mashup components over the set of
peers contributed by the audience.

4.1 Motivation

The proposed mashup allows the demonstration of the most important features
offered by WLS:

Topology definition Topologies can be created by the means of our DSL lan-
guage and executed automatically.

Live mashup development Topologies can be extended at runtime and com-
ponents can be added or removed while already existing mashups are run-
ning.

Reusable components Components are independent from the topology they
were created for. The Tweet Geolocate is used both in the initial topology
and the extended one with different upstreams operators.

Distributed user interface mashups The live demo shows that more than
one operator can be instantiated to visualise the data. The stream topology
can be deployed on different clients and therefore its results are shared among
multiple users.

4.2 Scripts

The rapid mashup challenge is composed by three server-side scripts and three
client-side scripts.

4.2.1 Server-side

Tweet Retriever
The operator subscribes to the feed of ’The New York Times’ Twitter. When
a new tweet is forwarded to the operator it is processed and trimmed of
the useless data. The processed tweet is forwarded to the Tweet Geolocate
operator.

Tweet Geolocate
The implementation of this operator can be found in Listing 1.2. The Twitter
feed does not directly return the latitude-longitude coordinates of the news.
This operator searches for a location name inside the tweet and sends an
HTTP request to the GeoNames API. The tweet and the GeoNames answer
is broadcasted downstream to all Marker Creator operators.

Re-tweet Gatherer
The operator receives a tweet and a number from upstream. It sends an
HTTP request to the REST Twitter API and requests the first n re-tweets
connected to the given tweet, where n is the number received from upstream.
Every single retweet is then forwarded in a message to the Tweet Geolocate
operator.

4.2.2 Client-side

Marker Creator
The implementation of this operator script can be found in Listing 1.3. This
operator injects the HTML code and javascript of the GoogleMap into the
Web page. Every time a tweet arrives from upstreams it calls a function
defined in the DOM which adds a marker on the GoogleMap. Figure 6 shows
the map on the Web page with some markers on it. Big markers are news
tweeted by the TNYT, while small markers are retweets.

Fig. 6: Marker Creator

Marker Viewer
The implementation of this operator script can be found in Listing 1.5.
This script adds an HTML tweet viewer to the Web page (Figure 7). When
the mouseover event of a marker is fired the operator receives the tweet as
a stream message and changes the page accordingly by showing the most
relevant information on the Web page: marker color, author, and text of the
tweet.

Fig. 7: Marker Viewer

Marker Clicker
The implementation of this operator script can be found in Listing 1.6.
This script adds a number picker to the Web page. When the click event
of a marker is fired the operator receives a message with the tweet and the
number selected in the picker. The operator sends a request downstream to
the Retweet Gatherer with both information.

5 Demo

We present our plan for the rapid mashup challenge with a five-phase demo.
Scripts are defined in advance and are not discussed during the challenge demon-
stration.

5.1 Slides Presentation

The slides presentation10 gives the audience a general introduction to WLS. The
presentation describes the concept of operators, binding, and topology. Moreover
it presents the console commands used during the demo: run, bind, exec, and mi-
grate. Lastly it introduces the JSON description of a topology and the possibility
to dynamically change it at runtime.

5.2 Startup and Connection

We open the demo by starting the application and explaining the console log
messages (see Section 3.1). In particular we not only show the audience the
different ports and services, but specifically the connection of the peers. We
explain that the server itself is a peer and the application assigns pid 0 to it.

Aftwerwards we open a Web browser (Chrome or Firefox) and connect to the
framework through the remote port. The console logs the connection of a new
remote peer and assigns the pid 1 to it.

At this point the set of peers managed by the application consists of two
peers: a server with pid 0 and a remote peer with pid 1.

5.3 Topology Creation and Deployment

We create the JSON description of a linear topology. The topology is created
on a text editor so that people can see the description of the operators and
bindings. We construct the topology iteratively allowing the audience to connect
what they see with what they heard during the slides presentation.

We use an empty JSON template (Listing 1.7) as a starting point for the
creation. After briefly explaining the template we add the three operators Tweet
Retriever, Tweet Geolocate, and Marker Creator. In particular we make sure to

10 http://www.slideshare.net/AndreaGallidabino/web-liquid-streams-mashup-
challenge-icwe-2015

http://www.slideshare.net/AndreaGallidabino/web-liquid-streams-mashup-challenge-icwe-2015
http://www.slideshare.net/AndreaGallidabino/web-liquid-streams-mashup-challenge-icwe-2015

explain the audience that the first two operators will run on the server while
the last one will run on a Web browser by defining the browser flag (see Section
3.3).

Lastly we add to the description two bindings connecting the three operators,
making sure to explain the difference between the round-robin and broadcast
sending algorithm. The final topology description can be viewed in Listing 1.1.

Listing 1.7: Topology description starting point

1 {
2 "topology": {
3 "id": "test",
4 "operators": [
5 "ADD OPERATORS HERE"
6],
7 "bindings": [
8 "ADD BINDINGS HERE"
9]

10 }
11 }

After the definition of the JSON file we can execute the topology. We remind
the audience about the console commands and call exec. The console prompts
messages as if it had executed three run commands and two bind commands
(see Section 3.2). Figure 8 shows the view created on the Web browser: it shows
the pid 1 on the top, the GoogleMap and the cid 2 which is the same operator
identifier written on the console (meaning that the GoogleMap was added to the
Web page by the Marker Creator operator).

Fig. 8: First Iteration: News Stream on the Map

Then we show that by connecting to the REST API port (see Section 3.1), we
can see the current topology ran by the application. Figure 9 shows the extended
JSON description displayed on the Web browser. This description has many more
fields than the one described previously because it also contains information
about the runtime of the operators (such as the cpu usage or workers).

Fig. 9: Topology description retrieved from the REST API

At this point the Web browser displays the map and every time a tweet or
retweet arrives to the client operator a randomly colored marker drops on the
map.

5.4 Topology Development

We dynamically extend the current topology so that we construct the complete
solution to the rapid mashup challenge. We use the console commands run for
the three scripts Marker Viewer, Marker Clicker, and Retweet Gatherer.

Once the run commands finish their execution we show the changes on the
Web browser (Figure 10). The Web page now contains some new HTML, in
particular we see a number picker added by the Marker Clicker operator with
cid 3 and the tweet viewer added by the Marker Viewer operator with cid 4.

Fig. 10: Second Iteration: Marker Creator, Marker Viewer, and Marker Clicker
views

We show that by triggering the mouseover event on a marker the Tweet Viewer
HTML changes accordingly, while if we try to trigger the click event nothing
happens. We explain to the audience what is missing, i.e.the fact that we still did
not create the bindings to the Retweet Gatherer. We run on the console the two
needed bind commands, connecting the Retweet Gatherer to the Marker Clicker
and to the Tweet Geolocate operators.

Finally we can show the audience that by clicking on a marker in the map
the retweets appear. Figure 11 shows the final outcome of the demo on the Web
browser: if a tweet (big marker) is clicked, then many retweets (small markers)
of the same color appear on the map.

5.5 Live Demo and Migration

We invite the audience to participate in the demo and give them the application
URL. They connect to the direct address of the map operator defined in the
JSON topology (Listing 1.8). Anybody connecting to the application can see

Fig. 11: Fully functional rapid mashup challenge

the GoogleMap and receive the markers on their Web browser. We show that we
can move the map from one peer to another with the command migrate without
stopping the runtime.

Listing 1.8: Consumer browser direct access

1 {
2 "id": "consumer",
3 "script": "icwe_browser.js",
4 "browser": {
5 "path" : "/map",
6 "only" : true
7 }
8 },

6 Conclusions

We presented Web Liquid Streams and how it can be used to develop mashups
of streaming Web APIs. Like many data-flow based mashup tools, Web Liquid
Streams uses pipelines to represent how information flows between Web data
sources and the widgets visualising it. However, Web Liquid Streams data flow

pipelines can have arbitrary topology and are used to continuously stream data
so that the mashup widgets can be updated in real-time as more information is
streamed through the mashup.

WLS runs both on Web servers and Web browser-enabled devices making
it possible to implement the presentation layer on the Web browsers and dy-
namically spread the integration layers between the Web servers and the Web
browsers. Moreover any peer attached to the application (i.e. sensors, browsers,
. . .) can become a Data producer, filter as well as consumer of a topology. During
the 10 minutes of the rapid mashup challenge we demonstrated the main fea-
tures of the framework: Static deployment of the mashup topology with JSON
descriptions, iterative and incremental live development of a topology at runtime
and the liquid [16] distribution of the mashup widgets on different Web browsers.

We are currently working on a visual topology editor tool, which would shift
the building of a mashup from the textual editing of low-level JSON descrip-
tions to a high level visual drag-and-drop. The tool would connect and interact
with the already implemented REST API of the runtime for monitoring and
deployment of the mashup topology.

Acknowledgment The work is supported by the Hasler Foundation with the Liquid

Software Architecture (LiSA) project.

References

1. Zang, N., Rosson, M.B., Nasser, V.: Mashups: who? what? why? In: CHI’08
extended abstracts on Human factors in computing systems, ACM (2008) 3171–
3176

2. Liu, Y., Liang, X., Xu, L., Staples, M., Zhu, L.: Composing enterprise mashup com-
ponents and services using architecture integration patterns. Journal of Systems
and Software 84(9) (2011) 1436–1446

3. Aghaee, S., Nowak, M., Pautasso, C.: Reusable decision space for mashup tool
design. In: Proceedings of the 4th ACM SIGCHI symposium on Engineering in-
teractive computing systems, ACM (2012) 211–220

4. Daniel, F., Matera, M.: Mashups: Concepts, Models and Architectures. Springer
(2014)

5. Babazadeh, M., Gallidabino, A., Pautasso, C.: Decentralized stream pro-
cessing over web-enabled devices. In: Proc. of 4th European Conference on
Service-Oriented and Cloud Computing (ESOCC 2015), Taormina, Italy, Springer
(September 2015)

6. Aghaee, S., Pautasso, C.: Mashup development with HTML5. In: 4th Interna-
tional Workshop on Web APIs and Services Mashups (Mashups 2010), Ayia Napa,
Cyprus, ACM (December 2010) 10:1–10:8

7. Daniel, F., Matera, M., Yu, J., Benatallah, B., Saint-Paul, R., Casati, F.: Un-
derstanding ui integration: A survey of problems, technologies, and opportunities.
Internet Computing, IEEE 11(3) (2007) 59–66

8. Hirzel, M., et al.: A catalog of stream processing optimizations. ACM Comput.
Surv. 46(4) (March 2014) 46:1–46:34

9. Daniel, F., Koschmider, A., Nestler, T., Roy, M., Namoun, A.: Toward process
mashups: Key ingredients and open research challenges. In: Proceedings of the 3rd
and 4th International Workshop on Web APIs and Services Mashups. Mashups
’09/’10, New York, NY, USA, ACM (2010) 9:1–9:8

10. Biörnstad, B., Pautasso, C.: Let it flow: Building mashups with data process-
ing pipelines. In: Service-Oriented Computing-ICSOC 2007 Workshops, Springer
(2009) 15–28

11. Oehme, P., Krug, M., Wiedemann, F., Gaedke, M.: The chrooma+ approach to
enrich video content using HTML5. In: Proceedings of the 22nd international
conference on World Wide Web companion. (2013) 479–480

12. Phuoc, D.L., Hauswirth, M.: Linked open data in sensor data mashups. In: Proc.
of SSN09, CEUR (2009) 1–16

13. Babazadeh, M., Gallidabino, A., Pautasso, C.: Liquid stream processing across
web browsers and web servers. In: Proc. of ICWE. Springer (2015) 24–33

14. Babazadeh, M., Pautasso, C.: A restful api for controlling dynamic streaming
topologies. In: Proceedings of the companion publication of the 23rd international
conference on World wide web companion, International World Wide Web Confer-
ences Steering Committee (2014) 965–970

15. Aghaee, S., Pautasso, C.: Live mashup tools: challenges and opportunities. In:
Live Programming (LIVE), 2013 1st International Workshop on, IEEE (2013) 1–4

16. Mikkonnen, T., Systa, K., Pautasso, C.: Towards liquid web applications. In: Proc.
ICWE2015, Rotterdam, NL, Springer

Appendix

Mashup Feature Checklist

Mashup Type Logic mashups
Component Types Logic components
Runtime Location Both Client and Server
Integration Logic Choreographed integration
Data Passing Logic Direct data passing
Instantiation Lifecycle Short-living

Mashup Tool Feature Checklist

Targeted End-User Programmers
Automation Degree Semi-automation or manual
Liveness Level Level 4
Interaction Technique Textual DSL and other (console)
Online User Community None

