
The Blockchain as a Software Connector
Xiwei Xu

NICTA, Sydney, Australia
CSE, UNSW, Sydney, Australia

Xiwei.Xu@nicta.com.au

Cesare Pautasso
Faculty of Informatics

University of Lugano (USI)
via Buffi 13, 6900 Lugano, Switzerland

c.pautasso@ieee.org

Liming Zhu
NICTA, Sydney, Australia

CSE, UNSW, Sydney, Australia
Liming.Zhu@nicta.com.au

Vincent Gramoli
NICTA, Sydney, Australia

University of Sydney, Australia
Vincent.Gramoli@sydney.edu.au

Alexander Ponomarev
and An Binh Tran

NICTA, Sydney, Australia
Alexander.Ponomarev@nicta.com.au

AnBinh.Tran@nicta.com.au

Shiping Chen
CSIRO, Sydney, Australia

Shiping.Chen@csiro.au

Abstract—Blockchain is an emerging technology for decent-
ralized and transactional data sharing across a large network
of untrusted participants. It enables new forms of distributed
software architectures, where components can find agreements on
their shared states without trusting a central integration point or
any particular participating components. Considering the block-
chain as a software connector helps make explicitly important
architectural considerations on the resulting performance and
quality attributes (for example, security, privacy, scalability and
sustainability) of the system. Based on our experience in several
projects using blockchain, in this paper we provide rationales
to support the architectural decision on whether to employ a
decentralized blockchain as opposed to other software solutions,
like traditional shared data storage. Additionally, we explore spe-
cific implications of using the blockchain as a software connector
including design trade-offs regarding quality attributes.

Index Terms—Blockchain; Architecture connector; Design;
Trade-off

I. INTRODUCTION

Blockchain is an emerging technology that enables new
forms of distributed software architectures, where components
can find agreements on their shared states for decentralized and
transactional data sharing across a large network of untrusted
participants without relying on a central integration point that
should be trusted by every component within the system .

The blockchain data structure is a timestamped list of
blocks, which records and aggregates data about transactions
that have ever occurred within the blockchain network. Thus,
the blockchain provides an immutable data storage, which only
allows inserting transactions without updating or deleting any
existing transaction on the blockchain to prevent tampering
and revision. The whole network reaches a consensus before
a transaction is included into the immutable data storage. The
next writer of new records on the immutable data storage is
decided via different mechanisms, for example, Proof-of-work
or Proof-of-stake [24].

The first generation of blockchain is a public ledger for
monetary transactions with very limited capability to support
programmable transactions. A typical type of applications is

cryptocurrency [24]. Cryptocurrency is a digital currency that
is based on peer-to-peer network and cryptographic tools.
Cryptocurrencies are low-cost and inherently independent of
any centralized authority to transfer virtual money or issue new
units of money. New units of money are issued by the users of
the cryptocurrency through mining. The virtual money can be
transferred among peer-to-peer users without going through a
trusted authority to purchase goods and services in real world.
Bitcoin is the first and most widely used cryptocurrency.

The second generation of blockchain became a generally
programmable infrastructure with a public ledger that records
computational results. Smart contracts [20] were introduced as
autonomous programs running across the blockchain network
and can express triggers, conditions and business logic to
enable complicatedly programmable transactions. Smart con-
tracts are more versatile than simple currency transactions.

The design of a blockchain-based system has not yet been
systematically explored, and there is little understanding about
the impact of introducing the blockchain in a software archi-
tecture. In this paper, we discuss our experience obtained from
applying the blockchain into a number of projects, which res-
ulted in operational prototypes we built using readily available
blockchain techniques. The prototypes included in this paper
are 1) a decentralized trading market for data sharing, and 2)
a platform for participating organisations to securely negotiate
and store sensitive data values, which represents a scenario of
secure data exchange and negotiation.

Based on this experience, from an architectural perspect-
ive, according to the taxonomy of software connectors [16],
we propose to consider the blockchain as a novel kind of
software connector, which should be considered as a pos-
sible decentralized alternative to existing centralized shared
date storage. Such view helps us make explicitly important
architectural considerations on the resulting quality attributes
of the applications. We found that using the blockchain as
a software connector could improve information transparency
and traceability. However, the mining mechanism increases
the communication latency, which might cause poor user



experience. Likewise, the amount of data that can be stored
on the blockchain is very limited, thus making it important to
decide which data (or meta-data) should be stored on-chain
vs. off-chain.

The paper proceeds by introducing background information
about the blockchain in Section II, followed by discussing
blockchain from an architecture perspective in Section III.
Section IV compares the blockchain with existing software
connectors. Section V discusses the detailed architecture of our
prototypes using blockchain as a software connector. Section
VI enumerates the lessons learned from our experience, before
Section VII concludes the paper.

II. BLOCKCHAIN

A. Background

Initially, the blockchain was the key technique behind
Bitcoin [19]. The blockchain is a public ledger maintained
by all the nodes within the cryptocurrency network. The
blockchain stores all the transactions that have ever occurred
in the cryptocurrency system. Later, the concept was gener-
alized to a distributed ledger that exploits the blockchain to
verify and store transactions without needing cryptocurrency
or tokens [27].

The blockchain network does not rely on any central trus-
ted authority, which has the power to control the system,
like traditionally centralized banking and payment systems.
Instead, trust is achieved as an emergent property from the
interactions between nodes within the network. In this paper,
we use blockchain to refer to the data structure replicated on
the nodes and blockchain network to refer to the infrastructure
composed of a decentralized peer-to-peer network of nodes.

Blocks and transactions are the two essential elements mak-
ing up the blockchain. Seen as a data structure, the blockchain
is an ordered list of blocks. Blocks are the containers aggreg-
ating transactions. Every block is identifiable, and linked back
to its previous block in the chain.

Transactions represent state transitions with ownership in-
formation, which could include new data records and transfer
of control among participants. The transactions in cryptocur-
rencies are the data structures that encode the monetary value
being transferred between accounts. More generally, such as
in Ethereum, the transactions are a set of identifiable data
packages that store monetary value, code, and/or parameters
and results of function calls. The integrity of the transactions
is ensured by cryptographic techniques.

Once created, the transaction is signed with the signature
of the transaction’s initiator, which indicates the authorization
to spend the money, create the contract, or pass the data
parameters associated with the transactions. If the signed
transaction is properly formed, it is valid and contains all the
information needed to be executed.

The transaction is sent to a node connected to the blockchain
network, which knows how to validate the transaction. The
invalid transactions are discarded, while the valid transactions
are propagated to another three to four other connected nodes,
which will further validate the transactions and send them to

Cryptocurrencies
Bitcoin [19] https://bitcoin.org/
Peercoin http://peercoin.net/
Colouredcoins http://coloredcoins.org/
Omni http://www.omnilayer.org/
Nxt http://nxt.org/

Smart contract platforms
Etheruem https://www.ethereum.org/
Counterparty http://counterparty.io/

Ledger platforms
Factom http://factom.org/
Ripple https://ripple.com/
Eris https://erisindustries.com/
MultiChain http://www.multichain.com/
Enigma http://enigma.media.mit.edu/

Table I: Examples of blockchain applications and platforms

their peers untill the transaction reaches every node in the
network.

This flooding approach guarantees that a valid transaction
will reach the whole network within few seconds. The senders
do not need to trust the nodes they use to broadcast the
transactions, as long as they use more than one to ensure
that the transaction propagates. The recipients do not need
to trust the senders either because the transactions are signed
and contain no confidential information or credentials such as
private keys.

When a transaction reaches a mining node, it is verified
and included in a block, which is propagated to the network.
The block is chained into the blockchain once the whole
network reaches a consensus. Once recorded on the blockchain
and confirmed by sufficient subsequent blocks, the transaction
becomes a permanent part of the public ledger and is accepted
as valid in principle by all nodes within the blockchain
network.

B. Blockchain Applications and Platforms

Table I gives some examples of blockchain platforms that
use the blockchain at the core of their architecture.

1) Cryptocurrency: Cryptocurrency uses cryptography to
control the monetary issuance and secures the transaction. The
first cryptocurrency, Bitcoin, created in 2009, is still the most
widely-used cryptocurrency [1]. Bitcoin allows developers to
add 40 bytes of arbitrary data to a transaction, which can be
permanently recorded on the blockchain. Thus, the blockchain
of Bitcoin has been used to register asset and ownership other
than monetary transactions, like in Ascribe1.

Some cryptocurrencies are overlay networks on Bitcoin, for
example, coloured coins, which taints a subset of Bitcoin
to represent and manage real-world assets. Other overlay
networks completely define new transaction syntax, such as
Omni and Counterparty. There are also cryptocurrencies that
have their own blockchains built from scratch, such as Nxt.
Please refer to [18], [3] and [27] for more comprehensive
surveys on the state-of-art of existing cryptocurrencies.

1Ascribe — https://www.ascribe.io/

https://bitcoin.org/
http://peercoin.net/
http://coloredcoins.org/
http://www.omnilayer.org/
http://nxt.org/
https://www.ethereum.org/
http://counterparty.io/
http://factom.org/
https://ripple.com/
https://erisindustries.com/
http://www.multichain.com/
http://enigma.media.mit.edu/
https://www.ascribe.io/


2) Smart contract: Smart contract is the most important
element in the second generation of blockchains, which en-
ables a generally programmable infrastructure. The smart con-
tract is deployed and executed on the blockchain network and
can be used by the components connected to the blockchain to
reach agreements and solve common problems with minimal
trust.

There are platforms that allow end users to build self-
executing contracts on the Bitcoin blockchain network, for
example, smartcontract2. The smart contract can still be up-
dated after being submitted and before being propagated to the
network. However, smart contracts on the Bitcoin blockchain
network are very simple due to the limited expressiveness of
the corresponding scripting language, which does not support
complex control flow.

Ethereum, as a blockchain-based platform, views smart
contract as their first-class element. Ethereum has built its own
blockchain from scratch with a built-in Turing-complete script
language for writing smart contracts. Counterparty has recre-
ated Ethereum smart contract platform on Bitcoin3. The smart
contract has been used to enable programmable transactions
and machine-to-machine communication in IoT (Internet-of-
Things), for example, ADEPT (Autonomous Decentralized
Peer-To-Peer Telemetry) project of IBM [10].

III. THE BLOCKCHAIN CONNECTOR

A. Software Connector

Software connectors are the fundamental building blocks
of software interactions [16]. A connector is an interaction
mechanism for the components. Connectors include pipes,
repositories, and sockets. For example, middleware can be
viewed as a connector between the components that use the
middleware [6]. Connectors in distributed systems are the
key elements to achieve system properties, such as perform-
ance, reliability, security, etc. Connectors provide interaction
services, which are largely independent of the functionality
of the interacting components [26]. The services provided
by a software connector could be classified into four cat-
egories: communication, coordination, conversion and facilita-
tion. Communication services transfer data among components
while coordination transfers control among components. Con-
version services adjust the interactions to allow components
that have not been exactly tailored for each other to establish
interactions. Facilitation services help to support and optimise
components’ interactions.

B. Overview

Fig. 1 gives an overview of the blockchain playing the
role of software connector. The blockchain is a complex,
network-based software connector, which provides communic-
ation, coordination (through transactions, smart contracts and
validation oracles) and facilitation services [16]. The validation
oracle facilitates component coordination within the network

2Smartcontract — http://www.smartcontract.com/
3http://counterparty.io/news/counterparty-recreates-ethereums-smart-

contract-platform-on-bitcoin/

Validation 
oracle

Blockchain layer

Application layer

Blockchain network

Off- chain 
control

Node

Blockchain 
connector

Chain

MiningTransaction 
validation

Secure clearing 
paymant ChainChain

Permission 
mangement

Incentive 
mechanism

Off-chain 
data 

Off- chain 
control

Off- chain 
control

Blockchain layer

Figure 1: Overview of blockchain as connector

using external, independently managed state. Other facilitation
services include cryptography-based secure clearing payment,
mining, transaction validation, incentive mechanisms, and per-
mission management.

Every node in the blockchain network has two layers,
namely, application layer and blockchain layer. Part of the
application is implemented inside the blockchain connector in
terms of smart contracts. The part of application outside the
blockchain connector might host off-line data and application
logic, and interact with the blockchain through transactions.
Table II shows some design decisions developers need to con-
sider when using blockchain as a connector and summarizes
the corresponding impact on quality attributes.

One of the main architectural decisions for software con-
nector is that what functionality is implemented in the con-
nector and what is implemented in the component. In the
case of blockchain, this decision concerns which data and
computation should be placed on-chain or kept off-chain
(Application Design Decision 1 in Table II). While the block-
chain provides a trust-less network that can verify partial
computational results and provide agreements on the outcomes
of transactions, the amount of computational power and data
storage space available on the blockchain network remains
limited.

Another decision concerns the access scope of the block-
chain: public, private or consortium/community [4] (Applic-
ation Design Decision 2 in Table II). Most of the cryptocur-
rencies are built on top of public blockchains, which can be
accessed and mined by anyone with Internet access. Using a
public blockchain results in better information transparency
and audit-ability, but sacrifices information privacy. Consor-
tium blockchain is used across multiple organizations. The
consensus process of a consortium blockchain is controlled
by authorized nodes. The right to read the blockchain may
be public, or restricted to the participants of the blockchain

http://www.smartcontract.com/
http://counterparty.io/news/counterparty-recreates-ethereums-smart-contract-platform-on-bitcoin/
http://counterparty.io/news/counterparty-recreates-ethereums-smart-contract-platform-on-bitcoin/


Table II: Design decisions and quality attribute trade-offs

Blockchain Design Decision 1
Mechanisms of improving transaction processing rate

Larger block size; Off-chain transactions; Smaller transaction without
signature; Scalable protocol

Blockchain Design Decision 2
Mechanisms of selecting the next block included in the blockchain
Proof-of-work, Proof-of-stake, Proof-of-burn, Proof-of-retrievability

Application Design Decision 1
Scope: on-chain

Enable verification of computational result, limited computation power
and data storage
Examples: Metadata (V-A), Negotiable value (V-B).
Scope: off-chain

More computation power and data storage, less cost, additional trust
required
Examples: Raw personal data (V-A), Sensitive information (V-B)

Application Design Decision 2
Public chain

Information transparency, growth potential to larger scale, trustworthy,
existing user base
Examples: V-A
Private chain

Easier management, better privacy
Examples: Consortium blockchain (V-B)

Application Design Decision 3
Single chain

Easier chain management and permission management, harder data
management and isolation
Examples: V-A, V-B.
Multiple chains

Information isolation, harder chain management and permission man-
agement

Application Design Decision 4
External Validation oracle

Introduce a third party trusted by the whole network
Examples: Arbitrator (V-A)
Internal Validation oracle

Periodically injecting external state into the blockchain might intro-
duce latency issues. The source of external state also needs to be
trusted.

Application Design Decision 5
Permissionless vs. Permissioned blockchain

Trade-offs: Performance, cost, censorship, reversibility, finality, flex-
ibility in governance
Permissions: Read/Join network, submit transaction, mine, create
assets Example: Permissioned (V-A, V-B)

network. A private blockchain’s write permission is kept to
one organization. Using consortium and private blockchains
requires a permission management component to authorize
the participants within the network. There are many platforms
that support building consortium chains and private chains, for
example, Multichain and Eris.

Additionally, a blockchain-based system can maintain a
unique chain to record all types of transactions together or
maintain multiple chains to isolate information of separate
parties or of separate concerns, for example, using one chain
to store transactions, and using a separate chain to store
access control information (Application Design Decision 3 in
Table II).

Challenges of public blockchain Scalability is one of the
main criticisms of public blockchains. Currently, the public
blockchains, like Bitcoin and Ethereum, can only handle on

average 3-20 transactions per second, while the mainstream
payment service, like VISA, can handle on average 2000
transactions per second. There are works trying to improve the
scalability (Blockchain Design Decision 1 in Table II). Bitcoin
plans to increase its block size from 1MB to 8MB to allow
miners to include more transactions into one block. Bitcoin
lightening network [21] moves some of the transactions off-
chain. A multisignature transactions is established between
two participants as a micropayment channel to transfer value
offchain. Once both sides wish to close the micropayment
channel and finalize the value transfer, a transaction is sub-
mitted to the global Bitcoin blockchain. Segregated witness4

proposes to remove the signatures from transactions to reduce
the size of transactions, thus, one block could contain more
transactions. Bitcoin-NG [8] decouples Bitcoin’s blockchain
operation into two planes: leader election and transaction
serialization. Once a leader is selected randomly, it is entitled
to serialize transactions until the next is selected.

Another concern of using blockchain is that all the in-
formation on the blockchain is publicly available to all the
participants within the network, especially the information
on the public blockchain, which is publicly accessible by
everyone. Cryptography is the only way to preserve data
privacy.

Besides, if a public blockchain is used, running computa-
tions on the blockchain costs actual money. Thus, applications
are not supposed to deploy all computations and store all data
on the blockchain. A common practice we also observed in
our projects is to keep the big and private raw data off-chain,
and stores the meta-data on-chain.

C. Communication Service

Communication service is a primary block of component
interaction, which transfer data among components. Fig. 2
shows the internal structure of a node within the blockchain
network. Components use blockchain as a mediator to transfer
data. There are two ways to store data on the blockchain.
One is to add data into transactions, like Bitcoin; the other is
to add data into contract storage, like Ethereum. Both ways
store data through submitting transactions to the blockchain,
which may contain the information of money transfer together
with some arbitrary data. After the transaction is included in
the blockchain, the data becomes publicly accessible to the
components within the network.

Some blockchain platforms provide an API and/or tools to
access and filter the historical transactions. Ethereum suggests
to cache all transactions to prevent the blockchain network
from being under heavy stress due to frequent queries. The
authors of MultiChain also plan to establish a bridge between
its blockchains and regular relational databases in its future
versions. Using the ordinary database indexing techniques, the
historical transactions can be analyzed more efficiently.

Other than transactions, blocks also contain the state of the
whole system after applying those transactions, In Bitcoin,

4https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki



Application layer

Off- chain 
control

Off-chain 
data 

Off- chain 
control

Off- chain 
control

Contract Contract

TX TX

Blockchain layer 

Application layer

Off- chain 
control Off-chain 

data 
Off- chain 

control
Off- chain 

control

Contract Contract

TX TX

Node Node 

OracleOracleValidation oracle

Blockchain layer 

Figure 2: Interaction between applications and blockchain

the state is the collection of coins of all the accounts that
have not been spent yet. In Ethereum, the state of the system
is the changes of the whole contract storage. In Ethereum,
every contract has its own storage where only the contract
can write to. The contract storage can be viewed as a flexible
key-value data store. The data stored in contract storage can
be updated through sending transactions to the corresponding
contract with new value. The contract has an address, which
is used to query the contract storage. In the block, the state
is stored in a tree data structure. For example, Bitcoin uses a
Merkle tree whereas Ethereum uses a Patricia tree. Similarly
as the transactions, the state of contract storage can be queried
through API. By default, the query returns the current state.

D. Coordination Service

Different components of the architecture can coordinate
their computations through the blockchain. To do so, it is
possible to submit transactions to smart contracts to invoke
the functions defined in the smart contracts, or use a validation
oracle to sign transactions, the outcome of which depends on
the external state.

As shown in Fig. 2, the control of the application flows
through transactions initiated from externally owned accounts
and transferred among contract accounts. Contracts behave like
autonomous agents that live in the execution environment of
the blockchain network. Contracts are instantiated by submit-
ting transactions with the source code of the contracts to the
blockchain network. A contract defines a set of functions. At
the function level, the contract runs the code of a function
when receiving a transaction calling the function with its
required parameters. At the contract level, a contract could
create a new contract by sending a transaction. The contract
can also kill itself. The contract cannot receive any transactions
after killing itself, but the source code of the contract cannot be
removed from the blockchain. The source code is permanently
stored within the transaction that creates the contract.

Validation oracle The execution environment of blockchain is
a closed environment, which is not allowed to import external
states through polling external servers. To address this limita-
tion, the concept of validation oracle is introduced to evaluate
conditions that cannot be expressed within blockchains.

A validation oracle is a mechanism that facilitate component
coordination within the network using external state. Valida-

tion oracle is part of the blockchain connector, but can be
independent of the blockchain network (Application Design
Decision 4 in Table II). When a validation of transactions de-
pends on some external state, the validation oracle is requested
to validate the transaction and sign the valid transaction. This
will block the progress of the transaction until a condition over
the external state is verified by the validation oracle.

If the validation cannot be automated, a human arbitrator
can validate transactions and sign valid transactions. If the
validation can be automated, an automated arbitrator, could
periodically pull the value of the variables from contract
storage as state of the application to validate the transactions.
However, both ways introduce a externally trusted party again.
The last way is to inject the external state into the blockchain
through periodically updating the value of variables within the
contract storage. The last way can cause time delay between
the external state changes and the change being injected into
the blockchain.

In Bitcoin, an automated validation oracle can be imple-
mented as a server outside the blockchain network, which
has its own key pair. When a transaction requires external
state to be validated, the validation oracle is requested to sign
the transaction on-demand. The logic of validating transaction
is defined by the user. Thus, the validation oracle signs a
transaction when the user-defined expression on the server is
evaluated to be true [2]. To reduce the required trust, Orisi5

runs a set of independent validation oracles. Orisi allows the
participants involved in a contract to select a set of oracles
they both are comfortable using before initiating the contract,
and then sign a contract requiring a certain number of the
validation oracle signatures.

E. Facilitation Services

1) Transaction validation: The mechanism to validate
transactions is specific to blockchains. Generally, the trans-
actions are validated by being re-executed by the node that
receives the transactions. For example, in Bitcoin, the val-
idation of transactions relies on two scripts, including a
locking script in the output of a transaction that specifies the
conditions to spend the coins referred by the transaction, and
an unlocking script that satisfies the conditions placed on a
transaction output by the locking script. When a transaction
is validated, the unlocking script in each input is executed
alongside the corresponding locking script to see if it satisfies
the spending condition. The transaction is valid if the result
of executing scripts is “TRUE”, which means the unlocking
script has succeeded in resolving the spending condition. If
the result is not “TRUE” after executing the combined script,
the transaction is invalid.

2) Mining mechanism: Mining is a process, in which some
nodes within the blockchain network aggregate transactions
into blocks. These nodes are called miners in the blockchain
network. Once a new block is generated by a miner, the miner
propagates the block to the blockchain network. And the new

5Orisi: Distributed Bitcoin oracles — http://orisi.org/

http://orisi.org/


block is included into the public blockchain after the whole
network reaching consensus.

There are different mechanisms to select the miner as the
next author to update the ledger (Blockchain Design Decision
2 in Table II). In Bitcoin, the miner is chosen at random
through “Proof-of-work”. “Proof-of-work” is a piece of data
that is very costly to produce but easy to be verified. Producing
a “Proof-of-work” is a random process with low probability.
Thus, the miners in Bitcoin network compete to generate the
“Proof-of-work” through burning their CPU time. The first
miner to find the “Proof-of-work” is the potential next author
of the blockchain. The difficulty of the work is adjusted to
generate a new block every 10 minutes. However, proof of
work largely limits the capacity of processing transactions.

“Proof-of-stake” is an alternative mechanism, which grants
mining rights to participants in proportion to their holding
of the currency within the blockchain network. For example,
the miners in Peercoin blockchain network need to prove
the ownership of a certain amount of currency to mine
blocks. “Proof-of-stake” blockchains provide protection from
a malicious attack because executing an attack would require
the attackers to own large amount of currency, which is very
expensive. Besides, the miners owning a large stake most
probably won’t attack the system, for example, through double
spending. In long term, such attacks will decrease the value
of the cryptocurrency and the value of their stake.

The “Proof-of-burn” process used in Counterparty block-
chain involves destroying Bitcoins and generating propor-
tionally XCPs (coins used in Counterparty). More recently,
Permacoin proposes a modification to Bitcoin [17], which
uses “Proof-of-retrievability” to re-purpose Bitcoin’s mining
resource to distributed storage of archival data. This approach
provides additional incentives to contribute resources to the
network.

3) Secure clearing payment: Blockchain provides a service
of trusted peer-to-peer payment through cryptography. Every
transaction is associated with the public key of its initiator.
The transaction can be broadcast to the blockchain network
only after the initiator signing the transaction with the cor-
responding private key. Thus, the authenticity is enforced by
the key pairs. The transaction validation checks if new extra
money created from the blockchain network after a specific
transaction.

4) Permission management: Blockchains could be classi-
fied into permissioned blockchains and permissionless block-
chains (Application Design Decision 5 in Table II). The service
of permission management is provided by a permissioned
blockchain network.

The participants of a permissionless blockchain networks
is either pseudonymous or anonymous, like Bitcoin and Eth-
ereum. Using anonymous validators takes the risk of Sybil
attack, where the attacker gains a disproportional amount
of influence on the system. For example, in Bitcoin, any
participant with a sufficient share of computational power is
able to change the records in the blockchain without respecting
jurisdictional boundaries and therefore undermine financial

sanctions and seizure of assets [7]. Besides, the “Proof-of-
work” process, used as a Sybil protection mechanism, is costly
and wasteful.

By contrast, permissioned blockchain networks, like Ripple
and Eris Industries, are more congruent with traditional bank-
ing systems and can provide more utility to financial institu-
tions [25]. In permissioned blockchain networks, the identity
of the validators or even the participants is whitelisted through
some types of KYC (Know Your Customer) procedure, which
is a widely used method of managing identity in traditional
finance. It means that the participants of the system require
legal identities in real world to validate transactions. Thus,
permissioned blockchains are able to legally host off-chain
assets in the real world, while permissionless systems cannot.

Other than the permission of validation, basic permissions
like joining the network, submitting transactions, mining, and
creating assets can be also managed by the permission man-
agement service. Once joining a blockhain network, the par-
ticipant inherently has the read permission on the blockchain
because all the information recorded is publicly available. The
permission information can be stored on-chain as well.

There are trade-offs between permissioned and permis-
sionless systems including transaction processing rate, cost,
censorship, reversibility, finality [25] and the flexibility in
changing and optimizing the network rules.

5) Economic incentive: Every blockchain introduces eco-
nomic incentives, reputation and rating mechanisms for miners
to validate transactions and generate blocks and participants
to be honest.

For example, in Bitcoin, the miners have two incentives to
mine blocks, including the reward of generating new blocks
and the transaction fees associated with transactions being
aggregated into the blocks. Ethereum also charges computation
fee for the miner to execute the smart contracts. Enigma has a
fixed price for storage, data retrieval, and computation within
the network. Besides, a node is required to submit a security
deposit to join the network. If a node is found to lie, its deposit
will be split among the other honest nodes.

IV. COMPARISON WITH OTHER CONNECTORS

A. Centralized, Shared Data Store

Shared data stores, like key-value stores, export a basic
Create/Read/Update/Delete (CRUD) interface. The blockchain
is an append-only data store as it does not support update
but rather supports the creation of new transactions. Any
changes/updates on contract states are appended to the block-
chain as new transactions. An analogy with this so-called
ledger in data stores is the concept of log where data items
get appended but never deleted or updated. This immutability-
of-stored-information property is the key to the traceability of
the relevant assets recorded on the blockchain.

Traditional shared data stores use different strategies to
improve sustainability and throughput, and reduce latency,
such as master-slave replication, and multi-master replication.
Blockchain provides a more sustainable data storage because
the data is duplicated on every node within the blockchain



network. But the throughput of some blockchains is not
comparable with shared data store due to the latency caused
by mining.

Traditional shared data stores have their own consensus
protocols to synchronize replicas [11] in a fully trusted envir-
onment, such as 2-Phase Commit and Paxos. The consensus
protocol of blockchain is aimed to tolerant Byzantine Gener-
als’ Problem [13], in which components of the system aim
at reaching agreement among themselves to process correct
operations despite a faulty component. The comparison of
the consensus protocols used for blockchains and for general
distributed systems is detailed in Section IV-B.

Besides, blockchain is able to validate the consistency of
transactions based on rules attached with the transactions in
terms of smart contract. Such rules can be applied on the whole
blockchain, for example, to prevent double-spending problem
through checking new extra money created during a spending
transaction.

B. Replicated State Machine

Replicated state machine [22] is a general method to im-
plement a fault-tolerant service with a distributed system. To
cope with failures, it replicates the service at several servers
and coordinates the service requests issued by the clients.
Similarly, the blockchain uses distribution not to depend nor
rely on any single entity.

State machine replication typically relies on a consensus
protocol that takes as an input the requests of the components
and decides upon one of these requests [12]. In the case of
a distributed locking service, the consensus will guarantee
that only one particular client acquires a lock, while multiple
clients requested it concurrently. Blockchain also features a
consensus protocol to ensure that among multiple conflicting
proposed transactions, only one gets approved, preventing for
example a double spending of the same coins.

For reaching a consensus on a particular transaction request,
the replicated state machine requires sufficiently many votes.
Replicated state machine rely on quorums of voters [15]
that stem from the concept of weighted votes [9]. Typical
blockchain implementations also requires sufficiently many
votes. In Ripple, sufficiently many votes are obtained when
a minimum of nodes in a unique node list have voted whereas
in Bitcoin sufficiently many votes are obtained when a suffi-
ciently complex challenge (Proof-of-work) is solved.

A replicated state machine supports communication by
transmitting data among components. Components can store
and retrieve information that will persist despite failures.
The state machine replication guarantees that the information
stored by one component gets replicated and delivered to
another components upon requests even when some failures
occur.

To address arbitrary failures or Byzantine failures [13],
replicated state machines exploit security mechanisms. The
sender of a message is typically authenticated with public-key
cryptography so that the encryption with the sender private key
serves as a signature to whoever decrypts the message with

the corresponding public key. The digital signature resulting
from public-key cryptography is also used in blockchains
to preserve the ownership of coins. Collision-resilient hash
functions help verifying the integrity of the message. They
take the content of the message and produce a digest. This
digest once sent encrypted allows the receiver to observe that
the signed message was not altered. As an example, Bitcoin
uses the SHA256 whereas the early replicated state machine
tolerating Byzantine failures [5] used the AdHash solution
based on MD5.

Finally, a replicated state machine totally orders the requests
from components. It controls concurrency by scheduling re-
quests issued by components and thus serves as a facilitation
connector. This total order is also the key property of the
blockchain. In Bitcoin, each block contains the hash of the
previous block according to this total order, hence allowing to
audit preceding transactions by backtracking the blockchain
up to the genesis block. To maintain this total order and to
prevent the chain from becoming a tree, miners always append
blocks to the first chain of maximal length they hear of and all
transactions that are part of forked blocks in shorter branches
are simply discarded.

V. PROJECT RETROSPECTIVE

A. Data Monetization

Our first project is a platform to support the scenario of data
monetization in which the data owners increase the value of
their data through trading their data sets with data consumers.
We consider two use cases. In one case, the data providers
publish their data sets on the platform and the data consumers
could select data sets from one or more data owners to do
analytics for different purposes, and pay the data owners
according to the value of their data sets. In the other case, the
data consumers first post their analytics jobs with the price
information on the platform, after which data owners could
browse the list of analytics jobs and select the jobs based on
the conditions defined in the offer.

The platform can be used in different business scenarios, for
example, trading personal data produced by individuals. This
scenario is inspired by [14], which discusses an economy of
micropayment based on the Web to compensate people for
originally creative work they post on the Web. Thus, personal
data is treated as private property that can be traded.

Another possible scenario is the data analytics across or-
ganizations. The organizations doing data analytics pay the
organizations who provide the data. The amount of money is
calculated based on the value of the data set. For example,
in an analytics based on two data sets from two different
insurance companies, the data set from a company with larger
number of customers is more valuable than the one from
a company with smaller number of customers. Thus, the
insurance company, which provides more valuable data set
gets more money from the organization doing the analytics
using the data sets.

Fig. 3 shows the architecture of the platform. The plat-
form provides mainly three functions, including data trading,



Register data set, 
Upload data analytics script...

Owner Consumer

Transfer raw data

Dataset&registry&&
•  Metadata&
•  Policy&address&

&

Job&registry&
•  Contribu3on&criteria&
•  Dataset&requirement&

Tamper1proof&log&of&events&
•  Usage&policy&compliance&result&
•  When&and&what&analy3cs&job&&

Off1chain&

Data&analy:cs&& Hosted&raw&data&

Data&analy:cs&
infrastructure&

Policy&compliance&checker&

Policy&
Compiler&

Policy&
enforcement&

On1chain&

Condi:onal&
payment&

Conflict&
resolu3on&

Usage&policy&
specifica:on&

Figure 3: Architecture of data monetization platform

compliance checking of user-defined usage policy and data
analytics. The policy compliance checking and data analytics
is off-chain functionality, the technical detail of which is out
of the scope of this paper.

The blockchain in this project allows the communication
and facilitates the interactions between data owners and data
consumers through running a set of smart contracts, logging
events in an immutable data storage and providing a condi-
tional payment infrastructure.

On the blockchain, there is a data set registry implemented
as a smart contract, which stores all the data sets registered
on the platform and allows data owners to register a new
data set on the blockchain. The new data set is registered
through calling the data set registry contract to create a data
set contract, which stores the hash of the data set to allow
consumers to check the integrity of the off-chain data. The
metadata of the data set, like the description and the size of
the data set, and a pointer to the corresponding user-defined
usage policy is stored off-chain.

Similarly, we use another smart contract to implement a job
registry that stores the list of the existing analytics jobs on the
platform and allows data consumers to add new analytics jobs.
Every analytics job is a contract, which defines the requirement
of the requested data sets and the criteria to measure the
contribution of an involved data set, for example, the size of
the data set, the publish date of the data set, and the coverage
of the data set etc. A more comprehensive value model is out
of the scope of this project. The trading and negotiation logic
are implemented in smart contracts as well.

Blockchain provides a tamper-proof log of events that ever
occurred in the platform, including both on-chain and off-
chain events/activities/data. On-chain events/activities include

registering, trading and negotiating. Off-chain data include
results of usage policy compliance checking and the informa-
tion of analytics job, such as processing time, the data sets
involved, and the monetary value eventually paid to each
of the data owner. Besides, the blockchain is inherently a
payment infrastructure that supports conditional payment. In
our case, for example, the payment is triggerd before the
analytic job starts. The amount of money is calculated by the
smart contract according to the contribution criteria associated
with the analytics job and metadata of the involved data set.

Users, as data owner or data consumer, interact with the
smart contracts running on the blockchain. In this platform,
due to its size, the raw data is stored and transferred off-chain.
This reflects current practices of popular Web applications
which allow users to download the data associated with their
accounts, for example, Google takeout service6.

One issue of this kind of marketplaces is how to verify that
the data being sold complies with the owner’s description. In
our platform, we introduce reputation and rating mechanisms
for data owners to be honest. A similar ongoing industrial
project, called Slur7, is an anonymous marketplace for trad-
ing secret information. Slur introduces an additional role,
called Arbitrators, that validates the data. When the buyers
claim that the content does not match the seller’s description,
slur randomly selects several arbitrators to evaluate the con-
tent. The arbitrators are paid for their effort.

B. Organizations Sharing Sensitive Data

Another project we are working on is a platform for parti-
cipating organizations to securely negotiate and store sensitive
data values (such as prices, delivery dates, or legal contracts).
The architecture of this project is given in Fig. 4. This scenario
requires secure data exchange and negotiations. Some details
had to be omitted and generalised due to Intellectual Property
reasons.

The users could log on to the platform via federated access.
There are negotiation templates stored in a central place with
specific value fields in the template to be negotiated. The
sensitive information is still kept inside the organizations
where the data was originated, and thus not available to
other organizations using the same platform or stored in
any centralised third party platform. The negotiation can be
initiated, negotiated and signed through a web application or
a mobile application.

As a part of the platform, blockchain is used to facilitate the
negotiation by using smart contracts, and store the different
versions of sensitive data produced during negotiation. One
smart contract is used to represent one negotiation. The nego-
tiation is initiated by a participant from an existing template
by selecting initial values for the negotiable variables. All
the values produced during the negotiation are included in
blockchain. Since the information on blockchain is publicly
available to all users, the value is encrypted before being

6https://www.google.com/settings/takeout
7http://slur.io

https://www.google.com/settings/takeout
http://slur.io


Initiate, negotiate, sign

Organisation C

Documents

Identities

Organisation B

Documents

Identities

Organisation A

Documents

Identities

Confidential

Key$distribu,on$ Access$control$$

Tamper6proof$log$of$events$
•  Proposal(of(new(value(
•  Agree/disagree(

Key$genera,on$

Off-chain 

Federated$
Authen,ca,on$

On6chain$

Contract$
template$

Document$
generator$

Contract$
template$
Nego,a,on$
template$

Figure 4: Overview of the legal platform

included into the blockchain. When a negotiation is created
by an involved participant, our platform generates a secret
key associated with the negotiation, which is used to encrypt
the value of the negotiable variables before adding the inform-
ation into blockchain. Then a smart contract is generated to
facilitate this negotiation. The smart contract 1) implements
the negotiation process, 2) has access-control management to
restrict the access to the negotiation, and 3) distributes the
secret key of the contract by encrypting it with the participant’s
public key, which is his/her blockchain address, and allows
the participant to retrieve his/her encrypted contract secret
key. Once a participant gets the encrypted contract secret key,
he/she decrypts it with his/her private key. With the contract
secret key, the participant can query the encrypted value of
the negotiable variable and decrypt it. The retrieval of the
negotiable variable and decryption is transparent to the end
user.

The negotiation is done peer-to-peer and may require
manual user intervention. Every activity, such as proposing
a new value, agreeing or disagreeing on a value, are included
in the blockchain as different versions of the negotiation.
Once an agreement is reached and signed by all the involved
participants, the negotiation is finalized, a digital document of
the negotiation is generated. The digital document is stored
internally in the organisation. To bind the digital document
and the corresponding smart contract, the address if the smart
contract is included in the digital documents, and then the hash
of the digital document is included in the smart contract. After
the binding, the smart contract could be killed to avoid further
interaction and modification.

In this platform, the blockchain prevents tampering and

enforces integrity and auditabilty of the sensitive data. A
consortium blockchain or public blockchain can be selected in
this scenario since the privacy of the data is preserved through
cryptography.

VI. DISCUSSION

Lesson: scalability and performance The performance of
public blockchain is very limited. As mentioned earlier, public
blockchains can only process 3-20 transactions per second.
The average transaction processing rate we calculated from
the whole blockchain (1020156 blockchains at 18/02/2016
00:21:12 GMT) is 1.7 transactions per block, and the average
transaction processing rate from the latest 100000 blocks
(920156-1020156) is 3.4 transactions per block. The average
mining time is 17 seconds.

We conducted a small experiment to test the performance
of a private blockchain, and compared the result with the
public blockchain. We built a Ethereum private blockchain and
created 50 accounts in the genesis block. We issued simple
transactions which transfer 0.001 ether from one account to
another. The sender and the recipient of the transactions were
chosen randomly from the 50 accounts. During the experiment,
we found a bug in Ethereum that causes many transactions
failed to be included. The issue was reported and confirmed
as legitimate8. After fixing the issue, the performance of the
private chain became much better than the public chain. The
number of transactions included into one block was around
15000 transaction on average, and the mining time was around
41 second on average. Thus, the transaction process rate was
around 366 transactions per second.

Lesson: Privacy Public blockchains do not guarantee data
privacy. Also permissionless blockchains cannot preserve pri-
vacy of the data because anyone could join the blockchain
network without permission, and all the data on the blockchain
is visible to all participants. Thus, for scenarios like the
legal contract platform, a permissioned blockchain is more
appropriate, which can allow developers to explicitly grant
permissions to the participants. Besides, the information on
blockchain might need to be encrypted to preserve privacy. In
this case, the key needed to be generated and stored off-chain.
Thus, the blockchain doesn’t have enough information that can
be used by the components without permissions to access the
sensitive data.

Lesson: Trusted third-party Using external state does not
always introduce the need for trusting an additional party. For
example, in the licence renewal scenario, the government is a
trusted party anyway, thus, we use government as an validation
oracle that injects external state into the blockchain.

Lesson: Incentives If a blockchain-based system has com-
putation ran off-chain or data stored off-chain, an additional
economic incentive is required for the participants to be
honest. Incentives for miners may include rewards, transaction

8https://github.com/ethereum/go-ethereum/issues/2139



fees, computation fees, or data storage fees. Incentives for
participants to be honest can involve: security deposits, or
reputation and rating mechanisms used in our first project.

Lesson: Reducing cost The applications on top of the block-
chain could reduce the transactions being included into block-
chain. For example, establishing micropayment channel, which
only submit the transaction once being closed by either party.
The transient state does not need to be included into block-
chain, for example, not all the activities during negotiation are
worth to be included into blockchain. To reduce the number
of submitted transactions, an alternative design is to only
record the different value of negotiable variables and the final
voting result of the value rather than record every single voting
activity.

Lesson: Data and contract management If the data to be
stored by the application is associated with the state of the
contract processing it, the data will be discarded once the
functionality of the contract is updated through uploading a
new version of the contract to the blockchain. To address this
problem, we suggest to separate the computation from the data
in dedicated smart contracts.

Once deployed on the blockchain, the smart contract is
always ”running” and responding to requests. We suggest to
kill the contract explicitly once the functionality of the contract
is not used to avoid further interaction and unnecessary cost.

Lesson: Off-chain data Store We stored meta-data on-chain to
be publicly accessible, and kept the raw private data off-chain.
For example, we put the hash of personal data on-chain, but
transfer the raw data off-chain.

Due to the limited size of the data store provided by
the blockchain [23], an off-chain data store is necessary for
some applications. There are existing platforms providing
a data layer on top of the blockchains, such as Factom,
which stores only the hash of the the private data and small
amounts of public data in their own blockchain. Factom also
anchors the Bitcoin blockchain every 10 minutes to be more
secure. Distributed data storage, like IPFS9, DHT (Distributed
Hash Table) are also sometime used in combination with the
blockchains to build decentralized applications.

VII. CONCLUSIONS

In this paper we have presented our experience from
using the blockchain in several projects. The blockchain
provides communication and coordination services through
transactions, validation oracles and smart contracts, and spe-
cific facilitation services, including permission management,
cryptography-based secure payment, transaction validation,
mining and incentives. We have compared the blockchain to
related software connectors such as the shared data store and
the replicated state machine, highlighting the most important
theoretical differences. Based on the practical project experi-
ence we have distilled important design decisions implied by

9IPFS — https://ipfs.io/

the choice of introducing a blockchain in the architecture and
discussed the corresponding trade-offs.

ACKNOWLEDGMENTS

NICTA is funded by the Australian Government through the
Department of Communications and the Australian Research
Council through the ICT Centre of Excellence Program.

REFERENCES

[1] Crypto-currency market capitalizations. http://coinmarketcap.com/.
[2] bitcoinwiki. Contract. https://en.bitcoin.it/wiki/Contract#Example 7:

Rapidly-adjusted .28micro.29payments to a pre-determined party.
[3] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.

Felten. Sok: Research perspectives and challenges for bitcoin and
cryptocurrencies. In the 36th IEEE Symposium on Security and Privacy
(SP2015), pages 104–121, May 2015.

[4] V. Buterin. On public and private blockchains. https://blog.ethereum.
org/2015/08/07/on-public-and-private-blockchains/.

[5] M. Castro and B. Liskov. Practical byzantine fault tolerance. In Proc.
of OSDI, pages 173–186, 1999.

[6] P. Clements, F. Bachman, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord,
and J. Stafford. Documenting Software Architectures: Views and Beyond.
Addison-Wesley, 2003.

[7] EBA. Eba(european banking authority) opinion on “virtual currencies”.
2014.

[8] I. Eyal, A. E. Gencer, E. G. Sirer, and R. van Renesse. Bitcoin-ng: A
scalable blockchain protocol. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), Santa Clara, CA, Mar.
2016. USENIX Association.

[9] D. K. Gifford. Weighted voting for replicated data. In Proceedings
of the seventh ACM symposium on Operating systems principles, pages
150–162. ACM Press, 1979.

[10] IBM. Device democracy saving the future of the internet of things.
2015.

[11] B. Kemme and G. Alonso. Database replication: a tale of research across
communities. Proceedings of the VLDB Endowment, 3(1-2):5–12, 2010.

[12] L. Lamport. The part-time parliament. ACM TOCS, 16(2):133–169,
1998.

[13] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4(3):382–401, July 1982.

[14] J. Lanier. Who Owns the Future? Simon and Schuster, 2013.
[15] D. Malkhi and M. Reiter. Byzantine quorum systems. In Proceedings

of the Twenty-ninth Annual ACM Symposium on Theory of Computing,
STOC ’97, pages 569–578, 1997.

[16] N. R. Mehta, N. Medvidovic, and S. Phadke. Towards a taxonomy of
software connectors. In Proc. of ICSE, pages 178–187, June 2000.

[17] A. Miller, A. Juels, E. Shi, B. Parno, and J. Katz. Permacoin:
Repurposing bitcoin work for data preservation. In IEEE Symposium
on Security and Privacy, May 2014.

[18] M. Morisse. Cryptocurrencies and bitcoin: Charting the research
landscape, August 2015.

[19] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https:
//bitcoin.org/bitcoin.pdf.

[20] S. Omohundro. Cryptocurrencies, smart contracts, and artificial intelli-
gence. AI Matters, 1(2):19–21, Dec. 2014.

[21] J. Poon and T. Dryja. The bitcoin lightning network: Scalable off-chain
instant payments. 2016.

[22] F. B. Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial.

[23] P. Snow, B. Deery, J. Lu, D. Johnston, and P. Kirby. Business processes
secured by immutable audit trails on the blockchain. 2014.

[24] M. Swan. Blockchain: Blueprint for a New Economy. O’Reilly, US,
2015.

[25] T. Swanson. Consensus-as-a-service: a brief report on the emergence of
permissioned, distributed ledger systems. 2015.

[26] R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software Architecture:
Foundations, Theory, and Practice. Wiley, 2009.

[27] F. Tschorsch and B. Scheuermann. Bitcoin and beyond: A technical
survey on decentralized digital currencies. IACR Cryptology ePrint
Archive, 2015:464, 2015.

https://ipfs.io/
http://coinmarketcap.com/
https://en.bitcoin.it/wiki/Contract#Example_7:_Rapidly-adjusted_.28micro.29payments_to_a_pre-determined_party
https://en.bitcoin.it/wiki/Contract#Example_7:_Rapidly-adjusted_.28micro.29payments_to_a_pre-determined_party
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

	Introduction
	Blockchain
	Background
	Blockchain Applications and Platforms
	Cryptocurrency
	Smart contract


	The Blockchain Connector
	Software Connector
	Overview
	Communication Service
	Coordination Service
	Facilitation Services
	Transaction validation
	Mining mechanism
	Secure clearing payment
	Permission management
	Economic incentive


	Comparison with Other Connectors
	Centralized, Shared Data Store
	Replicated State Machine

	Project Retrospective
	Data Monetization
	Organizations Sharing Sensitive Data

	Discussion
	Conclusions
	References

