
On the Architecture of Liquid Software:
Technology Alternatives and Design Space

Andrea Gallidabino and
Cesare Pautasso

University of Lugano (USI)
CH-6900 Lugano, Switzerland

andrea.gallidabino@usi.ch,
c.pautasso@ieee.org

Ville Ilvonen, Tommi Mikkonen,
Kari Systä and Jari-Pekka Voutilainen

Tampere University of Technology
FI-33720 Tampere, Finland

ville.ilvonen@student.tut.fi, tommi.mikkonen@tut.fi,
kari.systa@tut.fi, jari.voutilainen@iki.fi

Antero Taivalsaari
Nokia Technologies

Visiokatu 1
FI-33720 Tampere, Finland

antero.taivalsaari@nokia.com

Abstract—The liquid metaphor refers to software that operates
seamlessly across multiple devices owned by one or multiple
users. Liquid software architectures can dynamically deploy and
redeploy stateful software components and transparently adapt
them to the capabilities of heterogeneous target devices. The
key design goal in liquid software development is to minimize
the efforts that are related to multiple device ownership (e.g.,
installation, synchronization and general maintenance of personal
computers, smartphones, tablets, home displays, cars and wear-
able devices), while keeping the users in full control of their
devices, applications and data. In this paper we present a design
space for liquid software, categorizing and discussing the most
important architectural issues and alternatives. These alternatives
represent relevant capabilities offered by emerging technologies
and deployment platforms that are then positioned and compared
within the design space presented in the paper.

Keywords—Multi-device programming, multiple device owner-
ship, software architecture, design space, liquid software.

I. INTRODUCTION

We are rapidly heading toward a future in which the users
own a large number of network-connected computing devices.
Software applications are no longer run only on personal
computers but also on smartphones, tablets, phablets, smart
TVs as well as in embedded devices found in houses, clothes
and cars. Software usage patterns are changing accordingly, as
the users increasingly expect to be able to access their data and
applications seamlessly on every device, possibly even using
those devices at the same time [1].

Traditional software and operating systems are not de-
signed to offer user experiences that take advantage of multiple
devices [2]. Instead, each device has its own set of applica-
tions, installed and managed separately. However, the cost of
managing applications and ensuring that all applications have
access to all the relevant data can easily become unbearable
as the number of devices in a person’s daily life grows.
In this paper we explore liquid software [3] – a paradigm
in which computation and user experience are expected to
behave seamlessly across devices. Applications can migrate
and adapt to different usage contexts and device configurations.
Liquid software takes full advantage of multiple heterogeneous
devices, whereby any device can be used sequentially (or
concurrently) to run software that ”roams” from one device
to another, following the user’s attention.

The design space of liquid software arises from issues in
replicating and synchronizing the software components and
their state. Users who switch the device in the middle of a task
do not appreciate if they have to restart their work from scratch;
rather, they expect continuity in the hand-off of the work be-
tween devices, including seamless availability of their data [4].
It is important to discuss whether such synchronization relies
on a centralized or a decentralized architecture. In a centralized
architecture all the software components and their state are
backed up in the cloud and devices synchronize their state via
centralized servers. Alternatively, in a decentralized approach
liquid software flows directly between devices, leveraging
peer-to-peer (P2P) connectivity and direct replication across
devices. The granularity of the components and state that need
to be migrated is another fundamental dimension.

By outlining the most important design issues and the
corresponding technical choices, we provide an overview of
how to build liquid software systems that can be deployed and
then run across multiple devices owned by one or more users.
The resulting design space also provides a useful overview
of emerging technologies and frameworks that support the
implementation of liquid software. More precisely, in this
paper, we first provide an insight into the concept of liquid soft-
ware, and connect it to emerging computing trends. Then, we
explore technology alternatives and the design space needed
for implementing the concept. Finally, we provide a discussion
on building liquid software systems as well as related efforts.

II. TOWARDS LIQUID SOFTWARE

Recent device shipment trends indicate that we will quickly
move from a world in which each person has a few devices –
a PC, a smartphone and possibly a tablet – to a world in which
people will use dozens of connected devices in their daily
lives: laptops, phones, tablets and phablets, game consoles,
smart TVs, car displays, watches, augmented reality glasses,
digital cameras, digital photo frames, home appliances, and so
on; all of them connected to the Internet [5], [3]. Designing
applications that work with such range of devices requires
special considerations in their design [1]. The concept of
liquid software originates from late 1990s and early 2000s [2],
[6], and currently culminates in environments such as Apple
Handoff [4] in which the user can, e.g., start writing an email
using a smartphone, and then finish it with a laptop that has
a much better keyboard for writing longer emails. We have



recently distilled the overall vision into the Liquid Software
Manifesto [3], and described the main challenges in applying
the vision to Web applications [7]. Moreover, we have also
introduced an architectural style for liquid Web services [8].
All of these techniques, following the principles laid out in [9],
demonstrate how liquid applications can flow from computer to
computer in a simple, straightforward, and hassle-free fashion.

Reflecting the state-of-practice today to the vision above,
automatic synchronization of multiple computing devices to-
day is at best supported only partially, usually within select
ecosystems only, and even then the user must turn it on
explicitly. However, we believe that multiple device ownership
will soon be so ubiquitous that automatic synchronization
will become the norm rather than the exception. In such a
multi-device computing environment, the users can effortlessly
roam between all the computing devices that they have, with
data and applications synchronized transparently between all
the computing devices, potentially even spanning multiple
native platform ecosystems. In particular, whenever applicable,
roaming between multiple devices includes the synchronization
of the full state of each application, so that the users can
seamlessly continue their previous activities on any device.
This requires careful consideration of the following issues:

Adaptation of the user interface to different devices and
contexts. While the functions of an application may remain
the same, the devices that are used for running the application
may differ in terms of display capabilities and input devices. In
addition, the users’ ability and interest to pay constant attention
will differ according to the context. Thus, the user interfaces
of liquid applications should be responsive and adapt onto the
set of devices where they currently run.

Synchronization of the users’ persistent data. This content
is commonly stored locally on each device and can be syn-
chronized using different cloud-based storage services [10].
Unfortunately, these cloud-based storage systems are often
limited to single applications, specific data types or certain
native operating system ecosystems.

Synchronization of the state of the applications that move
during execution or run on multiple devices simultaneously. In
addition to the data consumed and produced by an application,
liquid software is also concerned with the runtime (ephemeral,
dynamic) state of the application itself. This runtime state
includes the values of relevant variables, volatile memory
storage and user interface configuration settings, which may
not be necessarily persisted after the application completes,
but must be migrated with the application in order to give a
true sense of continuity to the user.

Partitioning. In the context of liquid applications, the
balance between server- and client-side execution can change
dynamically. Different devices have different capabilities, and
thus optimal configurations may vary. Therefore, liquid soft-
ware frameworks should offer capabilities for offloading com-
putation from clients to servers and vice versa. Since the
capabilities of computing devices may vary considerably, we
anticipate both Ultra Thin approaches, where almost all the
computation is performed on the server side, and ultra-thick
designs, where the clients are completely self-contained, with
no need for server components whatsoever.

Security. The user must remain in full control over dynamic

TABLE I. TECHNOLOGIES AND ALTERNATIVES

Sun Ray [11]

Joust [2]

Fluid Computing [6]

Continuity [4]

Android Baton [12]

Cloudberry [13] Cloudbrowser [14]

Continuum [15]

Liquid.js DOM
[16]

Liquid.js for Polymer [17]
Topology

Centralized X X X X X X
Decentralized X X X X X

Layering
Ultra Thin Client X - X

Thin Client X
Thick Client X X X X X X

Client Deployment
Preinstalled X X X X X
On-Demand X X X

Cached X X
Granularity

OS X X
VM/Container

Application X X X X X X

A
rc

hi
te

ct
ur

e

Component X X
State Identification

Implicit X X X
Explicit X X X X X X X

Synchronization
Trickle X X X X X X XSt

at
e

Batch X X X X
Device Usage

Sequential X X X X X X X
Parallel X X X X

UI Adaptation
None X X X X

Responsive X X X
Complementary X X X X X

Primitives
Forwarding X X X X

Migration X X X X X
Forking X
Cloning X X X X

Discovery
Shared URL X X X X X

QR Code X
Bluetooth X X X

WiFi X X

L
iq

ui
d

U
se

r
E

xp
er

ie
nc

e

SmartCard X

deployment and transfer of applications and data. If certain
functionality or data should be accessible only on a specific
device, the user shall be able to define this in a simple,
intuitive fashion. Likewise, when migrating applications to
foreign devices, either belonging to other users or shared public
devices, suitable access control policies need to be established
and enforced. While security aspects can be downplayed for
software running on multiple devices belonging to the same
user, there is a need for assessing and evaluating to which
extent existing security solutions can be applied to liquid
software. An in-depth treatment of this matter is not in the
scope of this paper.

III. THE DESIGN SPACE OF LIQUID SOFTWARE

The liquid user experience can be implemented in a number
of different ways. To sketch the design space for liquid
software, we discuss relationships and dependencies between a
number of design issues and alternatives (Figure 1). Moreover,
Table I characterizes technology options, and positions them
in the liquid software design space.

A. Topology

The topology of a liquid architecture can be centralized,
with a single, well-defined host that keeps the master copy



Fig. 1. Overview: the Design Space of Liquid Software. Mandatory arrows indicates that a child feature is required; optional arrows indicate that the child
feature is optional; alternative arrows indicate that only one child feature must be selected; or arrows indicate that at least one child feature must be selected.

of the application state and an image of the software to be
deployed and run on each device. This centralized host is
usually available in the Cloud, taking advantage of the high
availability and virtually unlimited capacity of data centers,
at the expense of the privacy of the data, which is no longer
confined to user controlled devices. Liquid software thus flows
up and down from the Cloud onto various user devices that are
thus easy to back up and synchronize as long as a connection
to the Cloud is available.

Alternatively, liquid software architectures can be designed
with a decentralized topology, where software, applications’
state and their data are exchanged directly between devices
in a peer-to-peer (P2P) fashion, leveraging local connectivity
between devices. While peer-to-peer approaches can work by
restricting the deployment of software onto specific devices
that are under the user’s control, such a multi-master approach
(as opposed to centralized master-slave approach) makes it
more challenging to resolve conflicts when synchronizing the
state as there is no longer a single master copy. Likewise,
while each individual user device may have perfect internet
connectivity, it is unlikely that all the devices of the user are
always online at the same time. Thus, special care must be
taken to ensure successful migration and synchronization of
state across all peered devices.

This basic topology decision – centralized versus decentral-
ized design – can be regarded as a fundamental dimension in
the context of liquid software. Granted, with a central server, it
is easier to manage software as well as data content. However,
the decentralized alternative can offer significant benefits as
well, as only local connectivity is needed for migrating state
from one device to another, and the users’ data can be kept
outside the reach of major cloud providers. Hybrid approaches
as possible, too, with the cloud serving as an additional ”peer”,

e.g., for backup purposes [10]. In real-life implementations,
the borderline between the two basic topologies is not always
clear. For instance, in [18], the implementation techniques
forced the design to use a centralized server for communi-
cation, while conceptually the migration was designed in a
distributed fashion. It should also be noted that sharing of user
data, synchronization of the application state, and application
deployment do not need to be organized according to the
same topology, and the final architecture may be a mixture
of centralization and decentralization.

The selection of the topology also depends on the expected
user experience behavior when dealing with temporary device
outages and offline scenarios. When the user is moving sequen-
tially from one device to another, there might be significant
gaps between executions – for instance, the new target device is
not online when the previously used device has been switched
off. Centralized topology can introduce a store-and-forward
functionality that allows sequential scenarios with a gap in
between usages and devices.

Finally, an important topology-related aspect is to define
how liquid software becomes aware of the set of devices on
which it can run. The discovery mechanisms are concerned
with the existence of the devices, their location/proximity, their
current reachability (online/offline) and their ownership. In
centralized topologies, the registry of devices is usually kept in
the Cloud. On the device side, several technologies are readily
available for discovery, including shared URLs, QR codes,
Bluetooth service discovery mechanisms, WiFi access point
connectivity, and special purpose hardware such as smartcards.

B. Granularity

While the majority of use cases for liquid software are
concerned with the migration of entire software applications,



we have recognized a variety of use cases that call for liquidity
at different levels of granularity. In the following we show
which layer(s) of the software stack can be made responsible
for migration and synchronization.

• Operating system level. Implementing liquid software at
operating system (OS) level is the most comprehensive but
also the most complex approach; in OS level implementations,
the entire operating system has been designed to support
seamless process migration, state synchronization and data
transfer across several computing devices running the same
operating system.

• Virtual machine/Container level. Probably the most com-
monly used mechanism for migration today is to utilize virtual
machines that enable moving running applications between
various computing devices. The technology is widely used in
data centers, e.g., to bring applications and content closer to the
edges of the network and consolidate multiple virtual machines
to run on the same physical resources to save energy. Like
virtual machines, containers are widely used in Cloud systems,
with the advantage of reduced footprint and the more fine-
grained control on which parts of the system can be moved.

• Application level. Moving a specific application as it
is running is probably the most natural way to consider
migration; application developers are commonly offered a
framework that they will use for implementing state synchro-
nization.

• Component level. Migrating application components
from one device to another enables custom and flexible de-
signs, where only parts of applications that need to be present
in the target device are transferred. This level of granularity
becomes particularly interesting when multiple devices are
used at the same time. This can be an efficient way to
implement the complementary screening scenario, where a
different visual component of the same application would be
deployed on a different device.

Design decisions related to granularity are heavily depen-
dent on the capabilities of target devices. For instance, with
Ultra Thin clients only the visual presentations (in the extreme
case only ”pixels”) need to transferred to the target client. In
contrast, a thick client typically requires at least application
level liquidity support.

C. Code Deployment

There are numerous different ways to implement client de-
ployment and installation. In one end of the spectrum there are
preinstalled applications that are statically installed, similarly
to the applications in personal computers. This method is used
for native applications in major mobile platforms like Android,
iOS and Windows Phone. Moreover, even Web applications
in some platforms, such as Tizen [19] and Firefox OS [20]
follow the same paradigm – the applications are prepackaged,
transferred to the device (often by downloading them from
an application store), and then installed in the traditional
fashion. On many of the current native mobile platforms, a
cloud service (e.g., iCloud) will automatically (and entirely
transparently from the user’s viewpoint) install previously
acquired applications when the user takes a new device in use.

In the other end of the spectrum there are on-demand Web
applications that are run simply by pointing the browser to
a specific URL. These applications are typically downloaded
on the fly for each execution, and are only available in the
presence of a network connection. In such systems code de-
ployment means nothing more than passing on the URL of the
application from one device to another. In Cloudberry [13] the
applications were run by giving the URL to the Web engine,
but the application code was cached by using the HTML5
Application Cache [21]. The application cache would keep
the necessary files available so that dynamic code downloads
were subsequently needed only if some of the implementation
components of the application actually changed.

Although the deployment mechanisms are technically in-
dependent of each other, there are some logical connections.
The following combinations have been commonly encoun-
tered in real-life implementations: • Thin client, on-demand
deployment. For thin client applications offline operation is
not necessary and thus on-demand deployment is a feasible
option. • Thin client, pre-installation. In thin clients most
the functionality is on the server, and possible application
updates are also server-driven. In many frameworks the client
application is dynamically generated and may change as a
consequence of changes on the server side. • Thick client,
on-demand deployment. One of the main benefits of thick
client applications is the support of offline operation when
network connection is not available. In Web applications, this
benefit can only be achieved if Application Cache is used.
• Thick client, pre-installation. This combination resembles
the traditional, solid installable binary applications. Obviously,
offline use of applications is enabled. In the extreme, ultra-thin
cases there is no application installation to end-user devices at
all. Naturally, there need to be deployment mechanisms for the
server-side applications. Conversely, in ultra-thick designs, the
server might not be needed at all, since everything is managed
by the client.

D. Liquid User Experience Primitives

From the user perspective the liquid software acts just like
any other software, with in addition a combination of the
following four primitives [9], which makes it possible to shift
from a solid to a liquid user experience: • Forwarding: the
ability of transparently forwarding the output and redirecting
the input gathered on one device to the application remotely
running on the other device. • Migration: the ability of par-
tially or completely moving the current instance of the liquid
application from a device to another effortlessly. • Forking:
the ability of partially or completely creating a copy of the
current instance of the liquid application on a different device.
• Cloning: the ability of partially or completely creating a
copy of the current instance of the liquid application on a
different device (i.e., forking) while keeping the two instances
synchronized thereafter.

E. State and Data in Liquid User Experiences

Broadly speaking, liquid software systems deal with two
kinds of data: 1) persistent user data and 2) ephemeral run-
time application state. Persistent user data needs to be made
available across different devices and usage contexts. Likewise,
the ephemeral, dynamic state of running applications must be



stored in a form that allows the state to be effortlessly carried
across devices. The state identification can happen implicitly,
where all parts of the application are addressed, or explicitly,
where only relevant parts are synchronized.

Conflict handling and consistency. Different user experi-
ences impose different requirements on state synchronization.
Sequential screening – the user moving from one device to
another to continue activities – does not generate conflicts,
since there is only one active device at each time. In contrast,
parallel and collaborative use of devices – when multiple
devices are used simultaneously to complete a task – require
close to real-time updates and may lead to conflicting updates
to the same data. Some of these problems need to be solved
in the application level, but ideally the underlying application
or OS framework should guarantee the eventual consistency in
data synchronization.

At the implementation level, state synchronization can take
place in two different ways: trickle and batch updates. In
the former case, two or more devices are kept in sync by
incrementally forwarding the state changes as soon as they
occur. Alternatively, it is possible to buffer a larger set of
changes, and migrate them to other devices as a batch. For
seamless real-time updates at the user interface level, the
trickle approach is pretty much mandatory. However, since
many devices partaking in liquid software scenarios may be
offline for prolonged periods of time, batch updates typically
need to be supported as well, so that previously recorded
changes can be ”played back” on other devices as those devices
become available online again. An obvious challenge in buffer-
ing changes and transmitting them later when connectivity is
restored is that devices may be in inconsistent state and require
reconciliation later [22].

No matter which approach is chosen, a procedure that
synchronises the entire system is needed when initiating the
execution of an application on new devices. Depending on the
mechanism that is used for launching new applications, this
can take place either using a central server or in a peer-to-
peer fashion. In addition, conflict resolution between different
devices requires a protocol for agreeing over the common state.
Depending on the situation, this may again happen via a central
server or, e.g., by voting among the clients themselves. A
simple but effective solution chosen in [10] was to allow the
latest change to override any past conflicting changes in order
to avoid any deadlocks or communication overhead associated
with voting.

Federation of synchronization. An important consideration
in liquid software system development is the federation of
devices that can partake in the migration of data and state. In
multi-device scenarios it is important to be able to carefully
manage access control rights and grant permissions depending
on the ownership of the device on which the software dynami-
cally finds itself running on. We identify two basic permissions
controlling the direction of synchronization: • Publishing: the
ability to send/push data to paired devices. • Subscribing:
the ability to receive/pull data from paired devices. These
permissions are particularly useful in multi-user scenarios, to
make sure both parties agree to exchange data.

User interface adaptation. The final consideration in re-
alizing state synchronization is to determine how to render

the state of the applications with user interfaces that adapt to
the set of devices used to run the application [1]. Existing
mechanisms and design practices such as responsive web
design [23] pave the way to adequately treating this dimension,
although still requiring careful attention and consideration
from the designers and application developers. It must be kept
in mind that liquid software behavior is always to some extent
an illusion – a lot of technical grunt work is needed ”under
the hood” to maintain the users’ impression that software is
flowing between devices seamlessly. A significant part of the
designers’ and developers’ work is concerned with maintaining
that illusion.

F. Security Considerations

The success of computing platforms supporting liquid be-
havior is fundamentally dependent on security. As summarized
in [3], the ability of liquid software to readily flow from device
to device is both a blessing and a curse. It is a blessing
because enables a new computing paradigm – virtualized but
personal computing environment that is independent of any
specific computer or device. However, the very mobility of
liquid software is a curse because it can open potentially
huge security holes. The notion of the users entire computing
environment – most of the applications and data – being
accessible from any of the user’s devices can make the system
vulnerable from security and privacy perspective. For instance,
if even one of the user’s devices is stolen, there is a possibility
that his entire computing environment could be compromised.

As a starting point for security and device federation, there
are well-known techniques for secure communications, user
authentication, and various other primitives that are needed
for implementing security features for any liquid application.
These have been maturing for years in the context of computer
networks, the Web, cloud computing, and mobile devices.
These already existing mechanisms can largely be used to
satisfy the requirements for privacy, cohesion, authentication,
authorization, and accounting.

A basic principle defined in [3] is to keep the user in
full control of the liquidity of applications and data. This
calls for a security approach that is flexible yet simple and
straightforward in layman terms, not assuming special skills or
a deep understanding from the end user’s part. For example,
Sun Ray Ultra Thin network terminals [11] provided a secure
smart card authentication system that would connect the client
device to the remote user session, making it appear truly as if
the user’s earlier computing session had instantly migrated to
the present target terminal. More work is needed to investigate
which authentication techniques and security practices can be
accepted by end users in different usage scenarios.

IV. RELATED WORK

There have been numerous attempts to tackle the issues
arising from multiple device ownership, with different design
drivers (Table I). The term liquid software was coined by
Hartman, Manber, Peterson and Proebsting in a technical report
back in 1996 [24]. Their seminal research culminated in the
design of Joust [2] – a system that was based on synchronizing
Java applications between virtual machines running in different
computers.



Fluid computing [6] denotes the replication and real-time
synchronisation of application states on several devices. The
authors list three main application areas: 1) multi-device ap-
plications, where several devices may be temporarily coupled
to behave as one single device (for example, a mobile and
a stationary device); 2) mitigation of the effects of variable
connectivity, where applications on ubiquitous devices can
exploit full or intermittent connectivity; 3) collaboration, where
multi-user applications enable several users to collaborate on
a shared document. Technically the platform associated with
fluid computing consists of middleware that replicates data on
multiple devices, and achieves coordination of these devices
through synchronisation. Each device has a replica of the
application state, allowing the device to operate autonomously;
a special synchronisation protocol is used for keeping the
replicas consistent.

The roots of liquid software can be traced back to
Computer-Supported Collaborative Work (CSCW), where the
focus is on enabling collaboration between multiple users
rather than among the different devices owned by a single user.
A typical example of a collaborative, multi-device, component-
based, thin-client groupware system is presented in [25]. The
design is based on web technologies of the time, allowing
incorporation of mobile devices as well as native clients in the
same system.

In the wider area of mobile computing, the authors of
[26] list various trends that can be related to our work. In
the advent of wearable computing, omnipresent connectivity,
and increasingly smart devices, it is clear that techniques
that enable seamless use of multiple devices will become
fundamental.

V. CONCLUSIONS

We take it for granted that we are at yet another turning
point in the computing industry. The dominant era of PCs
and smartphones is about to come to an end. So far, stan-
dalone devices have been the norm, and software has been
primarily attached to a single device. We believe that in the
computing environment of the future, the users will have a
considerably larger number of internet-connected devices in
their daily lives. Liquid software architectures let users take
full advantage of their multiple devices. By breaking down
the deployment and runtime boundaries between each device,
liquid software systems allow applications and their data to
move across devices seamlessly, thus making multiple device
usage and ownership significantly easier than today. There
are many possible alternatives to consider when designing
software architecture supporting liquid software. In this pa-
per we have presented a design space for realizing liquid
software. We outlined the most important design issues and
the corresponding technical alternatives. The resulting design
space also provided an overview of emerging technologies and
frameworks that support the implementation of liquid software.

ACKNOWLEDGMENTS

This work has been supported by the Academy of Finland
(projects 283276 and 295913). This work is also partially
supported by the SNF and the Hasler Foundation with the Fun-
damentals of Parallel Programming for Platform-as-a-Service
Clouds (SNF-200021 153560) and the Liquid Software Archi-
tecture (LiSA) grants.

REFERENCES

[1] M. Levin, Designing Multi-device Experiences: An Ecosystem Approach
to User Experiences Across Devices. O’Reilly, 2014.

[2] J. H. Hartman, P. A. Bigot, P. G. Bridges, A. B. Montz, R. Piltz,
O. Spatscheck, T. A. Proebsting, L. L. Peterson, and A. C. Bavier,
“Joust: A platform for liquid software,” IEEE Computer, vol. 32, no. 4,
pp. 50–56, 1999.

[3] A. Taivalsaari, T. Mikkonen, and K. Systä, “Liquid software manifesto:
The era of multiple device ownership and its implications for software
architecture.” in 38th IEEE Computer Software and Applications Con-
ference (COMPSAC), 2014, pp. 338–343.

[4] G. Gruman, “Apple’s Handoff: What works, and what doesn’t,” In-
foWorld, Oct. 7, 2014.

[5] Gartner Group, “Gartner says worldwide traditional pc, tablet, ultramo-
bile and mobile phone shipments on pace to grow 7.6 percent in 2014,”
http://www.gartner.com/newsroom/id/2645115.

[6] D. Bourges-Waldegg, Y. Duponchel, M. Graf, and M. Moser, “The
fluid computing middleware: Bringing application fluidity to the mobile
internet,” in IEEE/IPSJ International Symposium on Applications and
the Internet (SAINT’05), 2005, pp. 54–63.

[7] T. Mikkonen, K. Systä, and C. Pautasso, “Towards liquid web applica-
tions,” in Proc. of ICWE, 2015, pp. 134–143.

[8] D. Bonetta and C. Pautasso, “An architectural style for liquid web
services,” in Proc. of WICSA, 2011, pp. 232–241.

[9] A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding code mobility,”
IEEE Trans. Softw. Eng., vol. 24, no. 5, pp. 342–361, May 1998.

[10] O. Koskimies, J. Wikman, T. Mikola, and A. Taivalsaari, “Edb: A multi-
master database for liquid multi-device software,” in Proc. of the Second
ACM International Conference on Mobile Software Engineering and
Systems, 2015, pp. 125–128.

[11] “Sun Ray Products,” http://www.oracle.com/technetwork/
server-storage/sunrayproducts/overview/index.html.

[12] K. Bell, “Baton promises to be the ultimate android app switcher,”
Mashable.com, 2014.

[13] A. Taivalsaari and K. Systä, “Cloudberry: An HTML5 cloud phone
platform for mobile devices.” IEEE Software, vol. 29, no. 4, pp. 40–45,
2012.

[14] A. Taivalsaari, T. Mikkonen, and K. Systä, “Cloud browser: enhancing
the web browser with cloud sessions and downloadable user interface,”
in Grid and Pervasive Computing. Springer, 2013, pp. 224–233.

[15] “Microsoft Continuum,” http://www.windowscentral.com/continuum.
[16] J.-P. Voutilainen, T. Mikkonen, and K. Systä, “Liquid.js: Middleware

for liquid web applications,” submitted, under review.
[17] A. Gallidabino and C. Pautasso, “Deploying stateful web components

on multiple devices with liquid.js for Polymer,” in accepted at CBSE’16.
[18] J. Kuuskeri, J. Lautamäki, and T. Mikkonen, “Peer-to-peer collaboration

in the Lively Kernel,” in Proc. ACM Symposium on Applied Computing,
2010, pp. 812–817.

[19] “Tizen Developer Pages,” https://developer.tizen.org/.
[20] “FirefoxOS Developer Pages,” https://developer.mozilla.org/en-US/

docs/Mozilla/Firefox OS.
[21] “w3schools.com,” www.w3schools.com/html/html5 app cache.asp.
[22] E. Brewer, “Cap twelve years later: How the” rules” have changed,”

Computer, vol. 45, no. 2, pp. 23–29, 2012.
[23] E. Marcotte, Responsive Web Design. Editions Eyrolles, 2011.
[24] J. Hartman, U. Manber, L. Peterson, and T. Proebsting, “Liquid soft-

ware: A new paradigm for networked systems,” University of Arizona,
Tech. Rep. 96-11, 1996.

[25] J. Grundy, X. Wang, and J. Hosking, “Building multi-device,
component-based, thin-client groupware: issues and experiences,” in
Australian Computer Science Communications, vol. 24, no. 4, 2002,
pp. 71–80.

[26] G. P. Picco, C. Julien, A. L. Murphy, M. Musolesi, and G.-C. Roman,
“Software engineering for mobility: reflecting on the past, peering into
the future,” in Proc. of the on Future of Software Engineering. ACM,
2014, pp. 13–28.

http://www.gartner.com/newsroom/id/2645115
http://www.oracle.com/technetwork/server-storage/sunrayproducts/overview/index.html
http://www.oracle.com/technetwork/server-storage/sunrayproducts/overview/index.html
http://www.windowscentral.com/continuum
https://developer.tizen.org/
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox_OS
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox_OS
www.w3schools.com/html/html5_app_cache.asp

