
APIstic: A Large Collection of OpenAPI Metrics
Souhaila Serbout
Software Institute, USI
Lugano, Switzerland

souhaila.serbout@usi.ch

Cesare Pautasso
Software Institute, USI
Lugano, Switzerland
c.pautasso@ieee.org

ABSTRACT
In the rapidly evolving landscape of web services, the significance
of efficiently designed and well-documented APIs is paramount. In
this paper, we present APIstic an API analytics dataset and explo-
ration tool to navigate and segment APIs based on an extensive set
of pre-computed metrics extracted from OpenAPI specifications,
sourced fromGitHub, SwaggerHub, BigQuery and APIs.guru. These
pre-computed metrics are categorized into structure, data model,
natural language description, and security metrics. The extensive
dataset of varied API metrics provides crucial insights into API
design and documentation for both researchers and practitioners.
Researchers can use APIstic as an empirical resource to extract
refined samples, analyze API design trends, best practices, smells,
and patterns. For API designers, it serves as a benchmarking tool
to assess, compare, and improve API structures, data models, and
documentation using metrics to select points of references among
1,275,568 valid OpenAPI specifications. The paper discusses po-
tential use cases of the collected data and presents a descriptive
analysis of selected API analytics metrics.

The dataset available at: http://openapi.inf.usi.ch/

ACM Reference Format:
Souhaila Serbout and Cesare Pautasso. 2018. APIstic: A Large Collection of
OpenAPI Metrics. In Proceedings of 21st International Conference on Mining
Software Repositories (MSR 2024). ACM, New York, NY, USA, 13 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
API analytics aims to obtain actionable insights from API-related
artifacts (e.g., developer documentation [65], usage logs [17, 44], or
– as considered in this paper – machine-readable descriptions [58]).
API providers analyze their API landscape to improve the qual-
ity [57, 64] and value proposition of their APIs [56]. API consumers
need support when selecting suitable APIs [27] to estimate whether
the risk of introducing an extra dependency is worth the benefit of
integrating their systems with some external API [37, 53].

In this paper, we present a dataset of API analytics metrics be-
longing to 1,275,568 valid API Specifications obtained by mining a
large collection of real-world Web APIs [66] gathered from differ-
ent sources. We include metrics covering different facets of Web
APIs [37, 46] described according to the widely adopted standard

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR 2024, April 2024, Lisbon, Portugal
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

specification: OpenAPI [8, 27]. API Structure Metrics, e.g., the num-
ber of paths, operations, HTTP methods, and distinct parameters,
offer insights into the size and type of the provided API operations.
The API Data Model Metrics, counting schemas, properties, and
their usage, delve into the intricacies of data representation in APIs.
The API Description Metrics, such as endpoints description cov-
erage, the Coleman–Liau index (CLI) and Automated Readability
Index (ARI), provide an evaluation of API natural language docu-
mentation quality. API Security metrics assess whether, how and
to which extent an API supports client authentication and autho-
rization [24].

The dataset provides a benchmark for API designers to assess
quantitative aspects of their API in relationship to a large collection
of API descriptions mined from open source repositories (e.g., as
shown in this threshold derivation method [20]). API analytics re-
searchers can also use the dataset to quantitatively observe the state
of the practice in API design, study to which extent some known
API design patterns (or smells) are adopted in practice [74], select
and extract smaller samples based on quantitative and domain-
specific criteria for further study, identify new indicators based
on the given raw metrics that can help detect outliers or cluster
similar API designs, making it possible to assess and manage the
quality of entire API landscapes [51, 70]. By including artifacts ob-
tained from different sources, the dataset includes APIs at different
stages of their development lifecycle: from early API sketches found
in GitHub repositories to mature APIs deployed in production by
major service providers. Thanks to the corresponding interactive
exploration tool, researchers to search and filter our comprehensive
API analytics dataset for empirical studies and pattern mining [40].
We aim to regularly update this public dataset with new features.

To demonstrate the dataset’s utility, this paper includes a descrip-
tive analysis of key API metrics, comparing artifacts from various
sources. We address questions about the variability of the metrics
over time and across datasets. For example, we observe the usage
of specific HTTP methods and API security features as well as
measure the readability of natural language documentation.

The rest of this paper is structured as follows. In Section 2 we
describe how the dataset has been gathered, the provenance meta-
data associated with the artifacts and give an informal definition
of the metrics. In Section 3, we present the results of the analysis
over the dataset, with the goal of comparing the artifacts obtained
from different sources as seen through a multifaceted lens of the
metrics. We discuss potential use cases for the dataset in Section 4.
Then we introduce some related work in Section 5 before we draw
our conclusions in Section 6 where we also outline the roadmap for
the APIstic dataset.

1

https://orcid.org/0000-0002-8144-2606
https://orcid.org/0000-0002-2748-9665
http://openapi.inf.usi.ch/
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

MSR 2024, April 2024, Lisbon, Portugal Serbout and Pautasso

2 DATASET DESCRIPTION
2.1 Data Collection Methodology
The retrieval of API specifications varies by source. APIs.guru and
SwaggerHub, specializing in OpenAPI specifications, have a lower
risk of false positives. However, extracting from SwaggerHub is
challenging due to API limitations [61]. For GitHub and BigQuery,
we used a content-based discovery approach, targeting key ele-
ments of OpenAPI/Swagger specifications to reduce false positives.
Discovered specifications are regularly processed for inclusion in
future dataset updates.

2.1.1 SwaggerHub API. SwaggerHub [11], a platform for teams to
design, document, and test HTTP-based web services. It feature also
the SwaggerHub Registry API [12]. This API facilitates integration
of API documentation management into projects, bypassing the
web interface for easier automation of API management. The API
offers also endpoints to navigate not only the owned APIs but
also specifications that are publicly hosted on the SwaggerHub
repository.

SwaggerHub, while lacking explicit documentation on its rate
limiting strategy, seems to block clients exceeding 10 requests per
second within a 3-minute window. Based on our observations, to re-
set this limit, clients must remain inactive for at least an hour. Conse-
quently, collecting artifacts from the SwaggerHub dataset spanned
several weeks. Additionally, due to frequent breaking changes in
the SwaggerHub Registry API, our crawler necessitated continuous
monitoring and maintenance.

2.1.2 GitHub API. GitHub is a popular source to collect artifacts
found in open-source projects [28], including OpenAPI specifi-
cations. There is no established approach to fetch the OpenAPI
artifacts using the GitHub APIs since they are stored as .yaml or
.json files. However, since the GitHub API supports searching for
files by content, we built two queries that look for any .json or .yaml
file that contains the mandatory fields in a valid OpenAPI/Swagger
specification:
𝑞1 = language:yaml language:json "openapi" "paths" "info" "title"

𝑞2 = language:yaml language:json "swagger" "paths" "info" "title"

GitHub’s REST and GraphQL APIs have rate limits – 5,000 re-
quests per hour for REST and 2,000 points per minute for GraphQL
– slowing down data collection. However, these APIs are free, with
no fees for requests or queries, unlike data stores like BigQuery.

Listing 1: Query to retrieve OpenAPI specifications from the
BigQuery GitHub Archive
SELECT f . id , f . repo_name , f . path , f . r e f , c . con ten t , c . s i z e
FROM `b igquery − pub l i c − da t a . g i t hub_ r epo s . f i l e s ` AS f
JOIN `b igquery − pub l i c − da t a . g i t hub_ r epo s . con t en t s ` AS c
ON f . i d = c . i d
WHERE ((f . pa th LIKE ' %. j s on ' OR f . pa th LIKE ' %. yml '

OR f . pa th LIKE ' %. yaml ')
AND (c . c on t en t LIKE '%swagger% ' OR c . c on t en t LIKE '%openap i% ')
AND (c . c on t en t LIKE '%pa ths% '))
AND c . c on t en t I S NOT NULL
AND c . c on t en t != ' '
LIMIT 1000 OFFSET $ { PAGE } ;

2.1.3 BigQuery API. BigQuery is a cloud-based data warehouse
provided by Google that allows users to store and analyze large

Table 1: Datasets Overview (41.03 GB Total Size)
Number of API Specifications

Source Valid Distinct avg. size (kB)

GitHub [6] 887,775 505,199 203.97
SwaggerHub [12] 378,275 345,731 27.08
BigQuery [5] 6,376 6,198 443.38
APIs.Guru [3] 3,142 3,142 241.37

Combined 1,275,568 856,259 60.31

datasets using SQL-like queries [32, 45]. The GitHub Archive [7] on
BigQuery, recording all public GitHub commits since 2011, allows
for retrieving snapshots of GitHub data using an SQL-like syntax.
We fetched the open API specification using the query in Listing 1.

One disadvantage of using BigQuery to retrieve GitHub data
is that it requires a Google Cloud Platform account, which may
involve additional costs depending on the size of the dataset and
the complexity of the queries. In the case of GitHub Archive, the
first terabyte of data processed per month is free, but additional
data processing incurs a fee of $5 per terabyte.

2.1.4 APIs.guru. APIs.guru [3] is a popular open-source project
that provides a curated collection of OpenAPI specifications. It is a
community-driven project that aims to provide a centralized repos-
itory that can be used by developers, service providers, researchers,
and other stakeholders. Because of its relatively small size com-
pared to the amount of API descriptions that can be found across
other public data sources, it cannot be used standalone for large-
scale studies. However, because of its curated content it contains
high-quality, valid and distinct specifications as "non-reliable" APIs
are filtered out.

The APIs.guru website includes a simple API which makes it easy
to retrieve the whole dataset after enumerating its content, which
greatly simplifies the discovery and retrieval of the specifications.

2.2 Dataset Overview
In Table 1, we provide an extensive analysis of the origins of the
valid OpenAPI specifications in our dataset, with a significant por-
tion originating from GitHub.

During the data collection process, we identified instances of
identical API specifications sourced from different URLs, marked
as duplicates in our collection. Despite this, we opted to keep these
duplicates to facilitate code cloning research and track potential
divergences in identical specifications over time.

Figure 1 offers a Venn diagram that quantifies the distinct and
overlapping specifications among theGitHub, SwaggerHub, APIs.guru,
and BigQuery datasets. This diagram underscores the individual
and collective contributions of each source where 4011 identical
API specifications were extracted from more than one source.

2.2.1 SwaggerHub Dataset. Until January 15th, 2024, our Swag-
gerHub crawler discovered URLs of 501,064 OpenAPI/Swagger
specifications attributed to 275,929 unique owners (SwaggerHub
user accounts). We downloaded and processed till today 432,265
specifications, out of which 378,275 were found to be valid and
written in 12 different version of the specification language (2.0 →
3.1.5). These specifications were developed on the platform over a
span of nine years (Figure 2).

2

APIstic: A Large Collection of OpenAPI Metrics MSR 2024, April 2024, Lisbon, Portugal

Figure 1: Number of overlapping API specifications
GitHub | SwaggerHub | APIs.Guru | BigQuery

2.2.2 GitHub Dataset. The GitHub crawler discovered and col-
lected 1,221,224 valid API descriptions as commits belonging to
469,029 APIs Until now we parsed, and bundled 887,775 artifacts
with computed metrics present in the GitHub Dataset. These arti-
facts represent commits belonging to the history of 269,082 APIs
committed by 92,250 different owners. 182,902 of the APIs have
only one commit. One API has a long history with 594 commits.

2.2.3 BigQuery Dataset. The BigQuery crawler sent 430 paginated
queries, limiting the size of response to 1000 entries per page. The
average number of valid specifications found in each query’s re-
sponse was 14, overall producing 6,376 valid OpenAPI descriptions
retrieved from 4,696 distinct repositories.

2.2.4 APIs.guru Dataset. We retrieved 3142 valid and distinct API
specifications from the APIs.guru curated website on January 15th,
2024. While most overlap with the ones discovered through the
other sources, we kept this dataset as it represents one of the largest
manually curated API directories where high quality OpenAPI
specifications can be found. For this reason it is a popular source
for recent API analytics studies [15, 25, 42, 49].

2.3 Data Validation Methodology
All the API specifications included in our dataset are valid ones,
regardless of their source or retrieval method. As they are fetched
from their URL source, API specifications are checked using Swag-
ger Validator [13], a popular Node.js library, which parses and
validates their JSON or YAML content against versions 2 or 3 of
the OpenAPI Standard Specification [8]. Only those the syntacti-
cally and semantically conform to the standard are retained in the
dataset. We found that only the specifications from APIs.guru are
all valid (Table 1).

After the initial validation, the API specifications are bundled
into a single document following and traversing references to speci-
fication fragments found across different files. Specifications which
cannot be successfully bundled due to broken links are also dis-
carded. The files used to produce the APIstic metrics dataset are
produced as a result of these validation and bundling processes.

As shown in Table 1 and Figure 1, we preserve duplicates to
support code cloning studies. Likewise, we have found that some
API specifications that appear to be empty (with no paths) have been
used to model JSON schemas [21] (without any operations) or event-
driven APIs which make use of webhooks to deliver notifications
by calling back subscribers [18, 22].

2.4 Artifacts Provenance Metadata
Artifacts in our dataset are uniquely identified and carry explicit
provenance metadata, so that a URL of their source is recorded. We
also include timestamps obtained from their source as well as the
Fetching Date timestamp tracking when the artifact was fetched
by our crawler to be analyzed. The Deleted boolean flag indicates
whether the description was still present (or not) at its URL when
it was last fetched. Given the differences in the mechanism used
to access each source, we also store the following source-specific
metadata.

2.4.1 GitHub. For Each artifact we retrieve the followingmetadata:
• File Name and Path: The name and path to locate the API file
within the repository.
• Owner and Repository Name: key identifiers in the vast data
lake of GitHub repositories.
• Commit Date: Indicates when was the API description commit-
ted to the repository.
• Commit SHA: The hash value used to uniquely identify specific
commits within a repository.

2.4.2 BigQuery. While BigQuery extracts API descriptions from
the GitHub Archive, it unfortunately does not provide access to the
same metadata. In particular, while the File Name and Path and
Owner and Repository Name are present, there is no Commit
Date or Commit Hash. Additionally, while descriptions sourced
from the BigQuery API can belong to arbitrary branches – so we
store their Branch Name – the ones fetched from GitHub are
currently only fetched from the default branch.

2.4.3 SwaggerHub. From SwaggerHub, we obtain the:
• Owner: Identifies the creator or the original author of the API.
• Creation Date: Indicates the creation time of the API in Swag-
gerHub.
• Modification Date: Denotes the last time the API was altered
and saved in SwaggerHub, useful for tracking updates and detecting
changes.

2.4.4 APIs.guru. The API descriptions sourced from the APIs.guru
directory have been curated by the APIs.guru maintainers with
additional metadata including the API provider contact informa-
tion, a category, and a provenance link to the original OpenAPI
specification made available by the provider. This information is
embedded in the API description itself. While APIs are manually
classified within a set of 35 categories, the specifications lack ex-
plicit creation or modification timestamps providing a historical
perspective over the content of the collection.

2.5 Versioning Metadata
OpenAPI specifications must include a Version Identifier, which
we include in the metadata together with its classification according
to two different criteria:
•Version Identifier Format: Categorizes the API version informa-
tion provided in the info section, or API endpoints. It distinguishes
whether the API developers employ semantic versioning [10] (with
two or three counters), time-based versioning, numeric versioning,
or other versioning schemes [46, 59].

3

MSR 2024, April 2024, Lisbon, Portugal Serbout and Pautasso

Figure 2: Monthly Distribution by Creation Date of Valid OpenAPI/Swagger Specifications in SwaggerHub Dataset

Figure 3: Monthly Distribution of Commits of Valid OpenAPI/Swagger Specifications in GitHub Dataset
• Release type: Categorizes the type of release: whether the API
artifact describes a stable release or different kinds of preview re-
leases. This can be useful to refine the API specifications based on
their maturity level [48].

2.6 Metrics
Building upon the static analysis metrics proposed by Bogner et al.,
Haupt et al., Serbout et al. in [19, 36, 60] to study the size and com-
plexity of API structures, the metrics in our dataset share the goal
of providing a quantitative assessment of the size of API structures
and data models, but also of selected quality attributes of API spec-
ifications, including their complexity, readability, versioning and
security [24].

Metrics are computed starting from bundled OpenAPI specifi-
cations by running custom analytics code. Some metrics can be
computed directly by running database queries, while others re-
quire parsing and processing the OpenAPI specifications with cus-
tom analytics scripts. The scripts we built to compute the metric
and classifications are all available in: https://anonymous.4open.
science/r/APIstics_metrics-10C6/README.md.

2.6.1 API Structure Metrics. These metrics evaluate the size, com-
plexity of the operational features of the API, providing insights
into its functional scope and diversity.
• Paths: The number of paths in the API. This metric indicates the
breadth of the API’s functionality, with each path representing the
address of a different communication endpoint, resource or service
provided by the API.
• Operations: The total count of operations available in the API.
This reflects the API’s operational capabilities, encompassing all
possible actions that can be performed through it.
• Used Methods: The number of distinct HTTP methods (GET,
POST, PUT, DELETE, etc) used across the API operations. It signifies
the diversity in the API’s interaction modes.
• Parametric Operations: The number of operations that use
path or query parameters. This metric helps in understanding the
complexity and customization potential of the API operations.
• Distinct Parameters: The count of unique parameter names
used across the API. It representing the variety of parameters that
the API can accept, reflecting its versatility.

4

https://anonymous.4open.science/r/APIstics_metrics-10C6/README.md
https://anonymous.4open.science/r/APIstics_metrics-10C6/README.md

APIstic: A Large Collection of OpenAPI Metrics MSR 2024, April 2024, Lisbon, Portugal

• Used Parameters: The total number of times parameters are
used in the API. This indicates how frequently the API relies on
parameterization for its operations.

2.6.2 API Data Model Metrics. This set of metrics delves into the
structure and usage of data models within the API, highlighting
the size and complexity of its data representation.
• Defined Schemas: To gauge the size of the API data model we
count the number of schemas defined in the API description.
• Distinct Used Schemas: The total number of distinct schemas
that are actually mentioned in API request or response messages.
This reflects the overlap between the theoretically provided API
data model and the API data model clients can use in practice.
• Properties: The total count of properties within those schemas
represents the granularity and detail of the data models used.
• Used Properties: The number of properties that are explicitly
used as part of API request or response messages. It indicates to
which extent the data model of the API is usable by API clients.
• Distinct Used Properties: The unique property names count
indicates the diversity of data attributes the API handles.

2.6.3 API Natural Language Descriptions Metrics. These metrics
focus on the quality and thoroughness of the API’s natural lan-
guage documentation augmenting its machine-readable, structured
description [29]. APIs with extensive natural language descriptions
can be considered as high priority candidates to use as inputs for
machine learning models for clustering or classification tasks.

The OpenAPI specifications, which are machine-readable, can
contain natural language descriptions in multiple languages. Out
of many possible metrics to assess the readability of natural lan-
guage [14, 26, 62], to quantitatively compare the expressiveness
of these descriptions across various languages, we employed two
widely recognized, language-independent indices. The Automated
Readability Index (ARI) was chosen for its simplicity, easy computa-
tion, suitability for a range of texts, and language-agnostic nature.
In contrast, the Coleman–Liau Index (CLI) is preferred for technical
texts due to its emphasis on letter count, and it is notable for its
simplicity, making it easily understandable.
• Coleman-Liau Index: A readability index computed based on
readability formula designed to gauge the understandability of a text
based on its characters per word and sentences per 100 words [26].

CLI is particularly suited for technical documents like API docu-
mentation, as it focuses on characters and sentences rather than
syllables, which are more challenging to accurately assess in tech-
nical language [72].

For each API, we compute the following two metrics:
• mccphw: Mean Character Count per Hundred Words.
• mscphw: Mean Sentence Count per Hundred Words.

The average mean sentence count per hundred words (Average
mscphw) is calculated as the total mean sentence count per hun-
dred words for each path divided by the total number of paths.
Mathematically, it can be represented as:

𝑎𝑣𝑔_𝑚𝑠𝑐𝑝ℎ𝑤 =

∑(mscphw for each path)
Total number of paths

(1)

Similarly, the average mean character count per hundred words
(Average mccphw) is computed as the mean character count per

hundred words for each path divided by the total number of paths:

𝑎𝑣𝑔_𝑚𝑐𝑐𝑝ℎ𝑤 =

∑(mccphw for each path)
Total number of paths

(2)

The Coleman–Liau index is then calculated using the formula:

Index = (0.0588×𝑎𝑣𝑔_𝑚𝑐𝑐𝑝ℎ𝑤)−(0.296×𝑎𝑣𝑔_𝑚𝑠𝑐𝑝ℎ𝑤)−15.8 (3)

• Automated Readability Index: A readability index that esti-
mates the understandability of a text based on its character, word,
and sentence counts [62]. This index provides an estimate of the
US grade level needed to comprehend the text. It is formulated as
follows:

ARI = 4.71 × characters
words

+ 0.5 × words
sentences

− 21.43 (4)

Where the characters, words, and sentences are the average
counts per API endpoint.
• Endpoints Description Coverage: This is a percentage value
indicating the proportion of API endpoints that include a non-
empty description. It measures whether and to which extent all API
endpoints have been completely documented.

2.6.4 API Security Metrics. This section assesses the security pro-
tocols and strategies implemented in the API, reflecting its over-
all security posture. OpenAPI provides explicit support for client
authentication and authorization schemes such as API keys, the
OAuth2 protocol, or HTTP basic authentication. Developers can
customize how such schemes are mapped to the HTTP protocol
request and response payloads and indicate in which endpoint they
are employed.
• Security Schemes: The number of security schemes of each type
listed in the API security component.
• Secured Endpoints: The number of API endpoints which explic-
itly employ specific security schemes.

2.7 APIstic Web-based Dataset Exploration Tool
APIstic capitalizes on the advanced capabilities of MongoDB for
storing and managing the diverse range of API specifications. The
choice of MongoDB is motivated by its exceptional handling of
large datasets and its flexibility in accommodating the tree struc-
tures inherent in API specifications. As they are fetched from their
sources, the stored API specifications are then retrieved and sys-
tematically analyzed by scripts that we meticulously designed to
compute the previously defined metrics and classifications for each
API artifact. Following the computation, the analytical outcomes
for each API specification are persisted in MongoDB and made ac-
cessible by APIstic’s Web Application, which provides a convenient
UI for data filtering and navigatio (Figure 4).

3 API DATASET ANALYSIS
Our analysis encompasses various facets as informed by the com-
puted metrics, including the growth and evolution of API structures
and data models, and the temporal stability of these metrics. We
delve into the utilization of HTTP methods within APIs, tracking
their evolution. Furthermore, we investigate the security schemes
in use and the degree of security applied to endpoints. Additionally,
we evaluate API documentation readability by analyzing natural

5

MSR 2024, April 2024, Lisbon, Portugal Serbout and Pautasso

Figure 4: API Metrics Filters in the APIstic Web UI

Table 2: Version formats in API specifications

Format SwaggerHub BigQuery GitHub APIs.guru

Semantic Versioning 346,012 3,325 546,581 1,161
Major version number 25,139 1,897 248,747 512
Date 1,059 223 18,423 780

Develop 160 68 1,513 2
Snapshot 977 67 6,310 1
Preview 179 48 1,089 489
Alpha 412 45 3,117 45
Beta 456 272 4,448 132
Release Candidate 370 12 1,211 0

Other 2,965 333 21,481 19
Tag 266 58 509 1

Not versioned 280 28 34,346 0

language descriptions with readability indices. The objective is to
demonstrate the extensive scope and detail of our dataset, high-
lighting its value to API development researchers. The dataset’s
broad range of metrics acts as customizable filters, enabling the
isolation of particular data segments for varied research needs.

In the subsequent distribution plots (box plots and violin plots),
we have excluded outlier instances. We categorize a metric value
as an outlier if it appears fewer than 10 times within a dataset.

3.1 Dataset Growth Over Time
We present in Figures 2 and 3, the monthly distribution of OpenAPI
Specifications created on both SwaggerHub and GitHub platforms.
The datasets have shown consistent monthly growth. As the Ope-
nAPI 3.0 standard was introduced, specifications adhering to it
began to surface, allowing the monitoring of its adoption. Despite
this, both Swagger and OpenAPI remain in use, with over three
years passing before the newer standard overshadowed the older.
The decline in specifications gathered in 2023 is attributed to the
ongoing data mining process at the time of this report.

3.2 Web API versioning
What are the commonly adopted version formats inWeb APIs?
In Table 2 we present an overview of the distribution of version
identifier formats classified across the four data sources. The results
show a predominant adoption of Semantic Versioning across all the
data sources.

Dataset Max Min Average Median StDev

GitHub 657 0 15.82 7 24.36
SwaggerHub 2882 0 12.05 3 42.22
APIs.Guru 537 0 19.33 8 44.28
BigQuery 356 0 13.17 4 28.90

Combined 2882 0 14.94 7 29.52

Figure 5: Comparative Analysis of Path Number Distribu-
tions Across All Sources

3.3 API Size: Structure and Datamodel
3.3.1 Are all the APIs across the datasets of the same struc-
ture size? Figure 5 showcases the path count distributions for the
GitHub, SwaggerHub, BigQuery, and APIs.Guru datasets through
violin plots. GitHub’s data indicates a moderate skew with an aver-
age of 15.82 paths and a median of 7, pointing to some APIs with
many more paths than others. SwaggerHub’s distribution is more
skewed, with an average path count of 12.05, a median of only 3,
and a range extending to 2882, signaling that a few APIs possess
a large number of paths. BigQuery’s trend is akin to SwaggerHub,
with an average of 13.17 and a median of 4, again showing a few
APIs with elevated path counts. APIs.Guru differs, with a higher
average path count of 19.33 and a median of 8, indicating a broader
distribution of path counts among its APIs.

3.3.2 How does the size of datamodel vary across sources?
As shown in Figure 6, for GitHub collection, the maximum number
of schemas is 325, with an average of approximately 7.85, indicating
a moderate concentration of APIs with a relatively small number of
distinct schemas. SwaggerHub, however, shows a strikingly high
maximum of 1479 distinct schemas, but its average is the lowest
at around 0.35, suggesting that while most APIs have very few
schemas, a few outliers are exceptionally having a complex data-
model. BigQuery’s data displays a maximum of 286 schemas and
an average of 10.31, aligning closely with GitHub’s distribution.
APIs.guru shows a higher diversity with a maximum of 360 schemas
and an average of about 12.92, indicating a slightly wider range of
complexity for datamodels in its APIs.

3.3.3 Do fresher APIs have larger structure? Analyzing the
API paths in GitHub and Swagger datasets yearly, we can see from
Figures 7 and 8 that the APIs exhibit a clear upward trend, indica-
tive of an increasing expansion of APIs structures between 2014
and 2017. The intensity of this growth has decreased in the next

6

APIstic: A Large Collection of OpenAPI Metrics MSR 2024, April 2024, Lisbon, Portugal

Dataset Max Min Average Median StDev

GitHub 325 0 7.85 2 16.88
SwaggerHub 1149 0 0.35 0 2.96
APIs.Guru 360 0 12.92 4 28.64
BigQuery 286 0 10.54 4 26.26

Combined 1149 0 6.37 0 15.63

Figure 6: Comparative Analysis of Distinct Schema Number
Distributions Across All Datasets

Figure 7: Distribution Number of Paths over the years in
SwaggerHub Dataset

years. However, the SwaggerHub dataset shows a more pronounced
variability and a higher presence of significant outliers, especially
in the later years. But overall the structure size distributions did
not exhibit major change over the years.

3.3.4 Do fresher APIs have larger datamodels? As shown in
Figure 9, GitHub dataset reveals a consistent annual growth in the
average number of distinct schemas within APIs. This shows that
the specifications obtained from GitHub can be subject to a deeper
Web API datamodel evolution analysis.

Figure 8: Distribution Number of Paths over the years in
GitHub Dataset

Figure 9: Distribution Number of Distinct Schemas over the
years in GitHub

3.4 HTTP Methods Usage
3.4.1 Does the proportional usage of different HTTP meth-
ods change over time? Figures 11 and 10 show trends in API
method usage over nine years, detailing the changing prevalence
of methods like GET, POST, PUT. Each year is represented by a bar
divided into sections for each method’s count, with total operations
annotated on top. Analysis of SwaggerHub and GitHub API oper-
ations reveals consistent proportions of HTTP method adoption
across years. GET (read-only) remains most common, followed by
POST (remote procedure calls). PUT and DELETE are used less
frequently and do not show growth in recent years. Other methods
like PATCH, HEAD, OPTIONS, and TRACE are rare.

3.5 API Maintenance Lifecycle
3.5.1 Were the API specifications just created and then
abandoned? The Figure 12, illustrates the lifecycle of APIs in
SwaggerHub descriptions, focusing on whether APIs created in a

7

MSR 2024, April 2024, Lisbon, Portugal Serbout and Pautasso

Figure 10: Yearly Trends in API Method Usage in GitHub
Dataset

Figure 11: Yearly Trends in APIMethodUsage in SwaggerHub
Dataset

specific year underwent modifications in subsequent years. It is
important to note that initial creations are also counted as modifi-
cations. For instance, in 2023, Swagger Hub recorded 63,271 new
API specifications. Additionally, there were 4,124 modifications to
APIs originally created in 2022, 1,293 modifications to those from
2021, 620 from 2020, 242 from 2019, 96 from 2018, and 31 from 2017.
Notably, APIs created in 2016 and 2015 have not been modified up
to the present day.

3.6 Readability of Natural Language
Documentation

3.6.1 How often are endpoints described in the APIs in each
dataset? In Figure 13, all of the datasets show a concentration
of values at the upper end, suggesting a significant number of
endpoints with descriptions. SwaggerHub dataset displays a broader
spread, indicating greater variability and a higher likelihood of
described endpoints in and API.

Figure 12: Number of Created and Modified APIs each year
in the SwaggerHub Dataset

Figure 13: Comparative Analysis of Endpoint Description
Coverage Distributions Across All Sources

3.6.2 How readable are the natural language operations de-
scriptions found in OpenAPI specifications? For each data
source, the distribution of the Coleman–Liau index (CLI) and Au-
tomated Readability Index (ARI) is illustrated in Figures 14 and 15.

8

APIstic: A Large Collection of OpenAPI Metrics MSR 2024, April 2024, Lisbon, Portugal

Figure 14: Comparative Analysis of Coleman-Liau Index Dis-
tributions Across Sources

Figure 15: Comparative Analysis of the Automated Readabil-
ity Index Distributions Across All Sources

These figures reveal relatively similar distributions for both indices,
except for a few outliers in GitHub with exceptionally high values.
This indicates that the complexity of text descriptions is consistent
across datasets.

For instance, comparing two examples of from our dataset with
distant index values, Elastic Email API, exhibits a high ARI of 22.78,
suggesting a text complexity that demands an advanced understand-
ing, likely targeting specialists or users with considerable expertise
in the field. In contrast, the Cinema WebApp API, presents a signif-
icantly lower ARI of 9.49. This score typically characterizes APIs
used for educational purposes or as examples, indicating a more
accessible and user-friendly documentation, suitable for a broader
audience, including beginners or students.

3.7 Types of Security Schemes in APIs
API security documentation is not required for a valid OpenAPI
specification. The metrics we have established are not suitable for
assessing the frequency of security mechanism adoption in API
endpoints. Instead, they serve as a criterion to identify APIs with
documented security features. Subsequent analyses can then be
conducted on this filtered group of APIs.

Table 3: Number of APIs making use of different OpenAPI
Security Schemes across different datasets

Type GitHub SwaggerHub BigQuery APIs.guru

apiKey 261358 6660 1770 528
oauth2 140227 5642 2651 2743
http 142906 2686 138 123
basic 37825 566 124 17
openIdConnect 4099 58 1 0

Secured APIs 26% 3% 74% 96%

Dataset Max Min Average Median Std Dev

GitHub 1 0 0.47 0 0.49
SwaggerHub 1 0 0.03 0 0.15
APIs.Guru 1 0 0.69 1 0.46
BigQuery 1 0 0.51 1 0.49

Combined 1 0 0.30 0 0.45

Figure 16: Comparative Analysis of Average Secured End-
points Distributions Across All Sources

3.7.1 How diverse are the security schemes types used in
APIs? Table 3 reflects diverse security practices in APIs across
GitHub, SwaggerHub, BigQuery, and APIs.guru. The usage of API
keys is the most prevalent, followed by the OAuth2 protocol and the
basic HTTP authentication scheme (described as ’http’ in Swagger
2.0 and as ’basic’ in the more recent OpenAPI 3.0). OpenIDConnect
is present only in a small number of APIs.

We include in the table the security schemes that were used in
at least three of the four source.

3.7.2 What is the average number of secured endpoints in
APIs across datasets? Github and APIs.Guru datasets show a
higher average coverage of endpoints (Fig. 16), with GitHub being
more consistent. SwaggerHub has notably lower coverage, while
BigQuery dataset suggests a moderate coverage. Excluding Swag-
gerHub, we clearly observe a bi-modal distribution of artifacts
where either there is a high level of coverage or no endpoints
make use of security features. While almost all artifacts found in
APIs.guru make use of security features, only very few of the API
descriptions sourced from SwaggerHub do.

9

https://raw.githubusercontent.com/lyekumchew/elasticemail-go/5d7b0b91e82c768919996bda0175040dd34d0855/api/openapi.yaml
https://raw.githubusercontent.com/Pater999/UNITN-IS2-Gruppo11-cinema-webapp/fe1dfdf6d42694df501ad177c2f4a165b42646f7/swagger.yaml

MSR 2024, April 2024, Lisbon, Portugal Serbout and Pautasso

4 DISCUSSION AND USE CASES
The analysis finding reveals that the metrics which have been com-
puted over the APIs included in the four datasets can be used to
select and segment the API specifications for further analysis.

For example, APIs can be distinguished by their structure size
(e.g., whether they have exactly one HTTP endpoint, such as SOAP
or GraphQL APIs, or more such as RESTful APIs making use of URL
addressing). Likewise, a rich set of API segments can be obtained
by selecting specifications making use of a different set of HTTP
method combinations (e.g., only GET for read-only, data-intensive
APIs, or only POST for Remote Procedure style APIs).

Another set of metrics that can be used to further refine the
sample selection concerns the API schemas, which tend to grow
larger with more recent specifications. Static analysis studies to
estimate the bandwidth costs of invoking or operating certain APIs
can benefit from a collection of non-trivial API data models of a
minimum level of complexity and size. These tend to be rare within
the SwaggerHub dataset.

A key observation is the extensive coverage of human-readable
descriptions across all sources, making the dataset valuable for nat-
ural language processing (NLP) tasks. Users of APIstic can leverage
readability indexes to refine their selection, with higher indexes in-
dicating descriptions likely authored by experts, as opposed to non-
expert content like student projects or templates. A dataset rich in
natural language endpoint descriptions is crucial for developing ma-
chine learning models for API design, as these models benefit from
large datasets [55]. It provides context and semantics for improving
generative models and supports tools for back-end/test code gener-
ation that use machine-readable API descriptions [23, 30, 39, 41].
Furthermore, this data can enhance the evaluation and testing of
Web API documentation generation tools in terms of correctness
and completeness [14].

Although OpenAPI does not mandate security documentation,
the analysis found that security coverage varies widely, often being
either completely absent or thoroughly documented with most of
the paths covered by some security measure. This trend implies
that documented security aspects are likely crucial in those APIs,
making them candidate to be selected for further studies on API
security documentation trends. This pattern is observed in the same
way across all sources, with the exception of SwaggerHub, where
most descriptions show minimal security coverage.

The dataset can also support empirical studies on the evolution
of API specifications [63]. On the one hand it includes versioning
metadata, which can help filter or compare stable API specifications
vs. different types of preview releases [59]. On the other hand, many
GitHub-sourced specifications are tracked throughout their history,
which may include up to several hundred commits spanning across
nine years [47], providing a way for researchers to find valuable
case study subjects for longitudinal studies.

The provenance metadata attached to the metrics ensures the
traceability of the exact source of each specification. In the case of
Github and BigQuery it is often possible to retrieve the backend
code in the same repository where the API description was found,
which can allow other in-depth code analysis studies related to
the implementation quality or performance benchmarking of the
API [17], if it is possible to deploy and run it.

5 RELATEDWORK
5.1 OpenAPI-Based Datasets
While many API hubs exist (Public APIs [1], RapidAPI Hub [2],
APIs.guru, and SwaggerHub), only the last two offer OpenAPI de-
scriptions and none are known to provide detailed API analytics
metrics.

Assetnote, an Australian information security company, con-
ducted in 2021 an analysis using a dataset of OpenAPI specifica-
tions for their contextual content discovery project [4]. Our data
collection process shares some of their sources (such as BigQuery,
APIs.guru and SwaggerHub) but has been improved. For example,
looking on BigQuery for files named "swagger.json", "openapi.json",
and "api-docs.json" returned 11,000 files, overlooking API specifica-
tions with non-standard file names. In contrast, our query (Listing 1)
obtained 33,957 API specifications, resulting in 6,376 valid ones for
our dataset. Our SwaggerHub crawler goes beyond the default limit
of 10,000 results per request. Given the amount of API specifica-
tions we managed to retrieve so far by mining software repositories
we have not yet attempted to reproduce their “Scanning the In-
ternet” strategy, which resulted in about 44,000 API specifications,
retrieved by attempting to GET 22 predefined URL templates during
a massive internet-wide scan.

Other research initiatives have constructed specialized datasets
andmetrics for APIs, analysingOpenAPI specifications, such as [68],
where Yaghoub-Zadeh-Fard and Benatallah present the API2CAN
dataset and service, designed to aid in building natural language
interfaces for REST APIs. The dataset, featuring 14,370 API method
and user utterance pairs from 983 APIs in APIs.guru, targets the
development of efficient chatbots. Martin-Lopez et al. used a dataset
of 40 real-world web APIs (2,557 operations) to examine the role
of inter-parameter dependencies in Web APIs, where the found a
lack of formal representation for these dependencies in API design
languages like OpenAPI [50].

5.2 Web API Metrics
In [19], the authors propose RAMA, a prototypical tool which au-
tomatically computes ten maintainability metrics for service-based
systems from machine-readable API descriptions in different for-
mats (OpenAPI/Swagger, RAML [9], WADL [35]). The collected
structural metrics describe mainly the characteristics of the: paths
(e.g, Path Length, longest path), operations (e.g: arguments per
path). The metrics were based on Haupt et al.’s study [36]. While
ourmetrics are all oriented tomeasure API components sizes, Haupt
et al. defined seven structural metrics for the API tree structure and
the type of operations it provides: max depth,#resources, #read only
resources, # links, #DELETE, #POST #roots. These metrics have
been applied to 286 real-world API described in OpenAPI/Swagger.

Additional metrics implemented in RAMA focus on the relation-
ships between the operations inputs/outputs (e.g: lack of message-
level cohesion [16], service interface data cohesion [54]). We plan
to integrate RAMA’s metrics as a future extension of the APIstic
dataset to give a more complete reflection on the relationship be-
tween operations and the corresponding message payloads and a
more detailed view on the API structure.

Inzunza et al. propose methods to identify missing or incomplete
elements in API documentation in their study [38]. Cheh and Chen

10

APIstic: A Large Collection of OpenAPI Metrics MSR 2024, April 2024, Lisbon, Portugal

Table 4: Summary of Studies on Web Service APIs
Year # of Artifacts/People Source of Data Quality Attributes/Metrics Study Topic

[31] 2014 APIs from 4 companies Twitter, Google Maps, Face-
book, Netflix

Evolution challenges Challenges in API evolution

[52] 2018 500 APIs Alexa’s top 4000 sites REST principles, technical features API features and REST compliance
[69] 2018 4 API types Uber, WordPress, OpenStack,

Media Processing
Learnability, stability Propose a quality model for Web APIs

[67] 2019 10 developers Google Auth API Usability issues Usability issues in APIs
[17] 2020 3-month benchmark Web APIs (various) Availability, performance, security Analyze and compare web API qualities
[33] 2020 9,714 URLs across 3,376 apps Android apps Security aspects Web communication security in mobile apps
[43] 2020 Usage logs DHIS2 Web API at WHO Usability attributes (clarity, consistency, etc.) Assess web API usability
[73] 2021 2,000 APIs APIs.guru REST API design guidelines REST API design quality
[27] 2021 2 000 APIs, 10 505 endpoints APIs.guru Natural Language Processing Topic Extraction
[71] 2022 20,047 APIs, 1,885 questions ProgrammableWeb, APIs.guru,

Stack Overflow
User issues, features Common user issues and expectations

[20] 2023 12 API snippets - RESTful design rules Impact of RESTful rules on understandability

introduce a semi-automatic approach for detecting security issues
in API specifications in their work [24]. They focus on identifying
sensitive and insensitive data fields, insecure or high-risk API calls
that might leak sensitive data, and calculating the exposure level of
each data field and API call.

5.3 Web API Landscape Analytics
The landscape ofWeb APIs has been extensively explored with stud-
ies focusing on diverse aspects such as compliance to REST design
principles [66], usability and learnability, stability and evolution,
security and performance (Table 4).

Technical Features andRESTPrinciples. Neumann’s study [52]
examines the technical aspects and REST compliance of 500 web
service APIs, noting widespread JSON use and auto-generated doc-
umentation but low REST adherence, calling for more standardiza-
tion. Complementing this, Zhou et al.’s work [73] assesses REST
API design quality of the specifications of APIs.guru.

Usability and Design Rules. Web API usability is a key focus
in several studies. Koçi et al.’s research [43] adopts a data-driven ap-
proach to evaluate web API usability, underscoring the importance
of attributes such as clarity and consistency. This resonates withWi-
jayarathna and Arachchilage’s examination of the Google Authen-
tication API [67], which points out significant usability concerns
likes inadequate documentation and ambiguous error messaging.
Likewise, Bogner et al. highlights the relationship between RESTful
API design principles, understandability and consistency[20].

API Evolution and Client Developer Challenges. In [31], Es-
pinha et al. study addresses the challenges faced by client developers
due to the evolution of web APIs. The frequent and unpredictable
changes in APIs like those of Twitter and Google Maps highlight
the significant maintenance efforts required from developers and
the lack of industry standards in API evolution policies.

API Usage and Consumer Perspective. In [69], Yamamoto
et al. proposes a quality model for REST-based Web APIs focusing
on learnability and stability, two qualities vital from a consumer’s
perspective. This model provides metrics that are validated empiri-
cally, offering a framework to assess and improve the usability and
stability of Web APIs. In contrast, Zhang et al.’s study of 20,047
web APIs focuses on common user issues and expectations, provid-
ing insights for developers and registry managers to enhance the
functionality and management of web APIs [71].

Security and Performance. Gadient et al. discuss the security
aspects of web communication in mobile apps in [33]. Their re-
search emphasizes the need for secure protocols in web API design
due to prevalent insecure HTTP connections and security flaws
in client-server communications. In [17], Bermbach and Wittern
examine the runtime quality of web APIs during 2015 and 2018,
focusing on variations in availability, latency, and security. The
study finds significant regional and temporal differences in API
performance and responsiveness.

6 CONCLUSIONS
This paper contributes to the growing body of knowledge in API
analytics by introducing a unique and novel dataset that captures a
diverse range of API characteristics.

This dataset serves as a valuable resource to extract samples for
large-scale empirical studies in a field where most existing studies
have been performed considering up to a few thousands of arti-
facts. The current version of the dataset, presented in this paper,
comprises measurements and provenance metadata of a substan-
tial number of 1,275,568 API descriptions sourced from GitHub,
SwaggerHub, BigQuery and APIs.guru, providing a comprehensive
source to analyze current API practices and trends in API design,
documentation, security strategies, and data modeling. Particularly
noteworthy is the portion of the dataset sourced from GitHub,
which includes historical data of APIs, providing insights into the
evolution of these metrics over time.

We are dedicated to the ongoing enrichment of this dataset, con-
tinually updating it with newly fetched and validated API specifica-
tions to ensure it remains a relevant and comprehensive resource
for the study and application of API analytics.

For future work, to encourage good coding practices such as
those based on Richardson’s REST maturity model [66, 73], we
intend to introduce more metrics and indicators to aid in further
API classifications (e.g., whether they are meant for public [52] or
private consumption within a microservice architecture). Likewise,
we are investigating how to aggregate fine-grained security met-
rics (e.g. [24]) so that APIs with a high level of exposure can be
detected [34]. We are also considering the possibility to let users
compute their own custom metrics by submitting JSON queries to
be applied on every API specification.

Acknowledgements. This work was supported by the SNF with the
API-ACE project 184692.

11

MSR 2024, April 2024, Lisbon, Portugal Serbout and Pautasso

REFERENCES
[1] Public APIs — A directory of free and public apis. https://publicapis.io/.
[2] Rapid API Hub. https://rapidapi.com/hub.
[3] APIs.Guru. https://github.com/APIs-guru/openAPI-directory https://APIs.guru/.
[4] Contextual Content Discovery: You’ve forgotten about the API endpoints. https:

//blog.assetnote.io/2021/04/05/contextual-content-discovery/.
[5] Google BigQuery API. https://cloud.google.com/bigquery/docs/reference/rest/.
[6] GitHub API. https://docs.github.com/en/rest, .
[7] GitHub Archive. http://www.gharchive.org/, .
[8] OpenAPI Initiative. https://www.openAPIs.org/.
[9] RAML. https://raml.org/. Accessed: 2021-06-01.
[10] Semantic Versioning. https://semver.org/.
[11] SwaggerHub. https://swagger.io/tools/swaggerhub/, .
[12] SwaggerHub Registry API. https://app.swaggerhub.com/APIs-docs/swagger-

hub/registry-API/, .
[13] Swagger Validator. https://github.com/APIDevTools/swagger-parser.
[14] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-Vásquez,

Laura Moreno, Gabriele Bavota, and Michele Lanza. Software documentation
issues unveiled. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pages 1199–1210. IEEE, 2019.

[15] TarfahAlrashed, JumanaAlmahmoud, AmyXZhang, andDavid RKarger. Scrapir:
making web data apis accessible to end users. In Proceedings of the 2020 CHI
conference on human factors in computing systems, pages 1–12, 2020.

[16] Dionysis Athanasopoulos, Apostolos V Zarras, George Miskos, Valerie Issarny,
and Panos Vassiliadis. Cohesion-driven decomposition of service interfaces
without access to source code. IEEE Transactions on Services Computing, 8(4):
550–562, 2014.

[17] David Bermbach and Erik Wittern. Benchmarking web api quality-revisited.
Journal of Web Engineering, 19(5-6):603–646, 2020.

[18] Matthias Biehl. Webhooks–Events for RESTful APIs, volume 4. API-University
Press, 2017.

[19] Justus Bogner, Stefan Wagner, and Alfred Zimmermann. Collecting service-
based maintainability metrics from restful api descriptions: static analysis and
threshold derivation. In European Conference on Software Architecture, pages
215–227. Springer, 2020. doi: http://dx.doi.org/10.1007/978-3-030-59155-7_16.

[20] Justus Bogner, Sebastian Kotstein, and Timo Pfaff. Do restful api design rules have
an impact on the understandability of web apis? Empirical Software Engineering,
28(6):1–35, 2023. doi: http://dx.doi.org/10.1007/s10664-023-10367-y.

[21] Pierre Bourhis, Juan L Reutter, Fernando Suárez, and Domagoj Vrgoč. Json: data
model, query languages and schema specification. In Proceedings of the 36th
ACM SIGMOD-SIGACT-SIGAI symposium on principles of database systems, pages
123–135, 2017. doi: https://doi.org/10.1145/3034786.3056120.

[22] Engin Bozdag, Ali Mesbah, and Arie van Deursen. A comparison of push and pull
techniques for ajax. In Proceedings of the 2007 9th IEEE International Workshop
on Web Site Evolution, WSE ’07, page 15–22, 2007. ISBN 9781424414505. doi:
10.1109/WSE.2007.4380239.

[23] Steven Bucaille, Javier Luis Cánovas Izquierdo, Hamza Ed-Douibi, and Jordi Cabot.
An openapi-based testing framework to monitor non-functional properties of
rest apis. In International Conference onWeb Engineering, pages 533–537. Springer,
2020.

[24] Carmen Cheh and Binbin Chen. Analyzing openapi specifications for security
design issues. In 2021 IEEE Secure Development Conference (SecDev), pages 15–22.
IEEE, 2021. doi: 10.1109/SecDev51306.2021.00019.

[25] Hsiao-Jung Chen, Shang-Pin Ma, and Hsueh-Cheng Lu. Collaborative security
annotation and online testing for web apis. In 2021 IEEE International Conference
on e-Business Engineering (ICEBE), pages 9–15. IEEE, 2021.

[26] Meri Coleman and Ta Lin Liau. A computer readability formula designed for
machine scoring. Journal of Applied Psychology, 60(2):283, 1975.

[27] Leonardo da Rocha Araujo, Guillermo Rodríguez, Santiago Vidal, Claudia Marcos,
and Rodrigo Pereira dos Santos. Empirical analysis on openapi topic exploration
and discovery to support the developer community. Computing and Informatics,
40(6):1345–1369, 2021.

[28] Ozren Dabic, Emad Aghajani, and Gabriele Bavota. Sampling projects in github
for msr studies. In 2021 IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR), pages 560–564. IEEE, 2021.

[29] Alan De Renzis, Martin Garriga, Andres Flores, Alejandra Cechich, Cristian
Mateos, and Alejandro Zunino. A domain independent readability metric for
web service descriptions. Computer Standards & Interfaces, 50:124–141, 2017.

[30] Hamza Ed-Douibi, Javier Luis Cánovas Izquierdo, and Jordi Cabot. Automatic
generation of test cases for rest apis: A specification-based approach. In 2018
IEEE 22nd international enterprise distributed object computing conference (EDOC),
pages 181–190. IEEE, 2018.

[31] Tiago Espinha, Andy Zaidman, and Hans-Gerhard Gross. Web api growing
pains: Stories from client developers and their code. In 2014 Software Evolution
Week - IEEE Conference on Software Maintenance, Reengineering, and Reverse
Engineering (CSMR-WCRE), pages 84–93, 2014. doi: https://doi.org/10.1109/CSMR-
WCRE.2014.6747228.

[32] Sérgio Fernandes and Jorge Bernardino. What is bigquery? In Proceedings of
the 19th International Database Engineering & Applications Symposium, pages
202–203, 2015.

[33] Pascal Gadient, Mohammad Ghafari, Marc-Andrea Tarnutzer, and Oscar Nier-
strasz. Web apis in android through the lens of security. In 2020 IEEE 27th
international conference on software analysis, evolution and reengineering (SANER),
pages 13–22. IEEE, 2020.

[34] Patric Genfer and Uwe Zdun. Avoiding excessive data exposure through mi-
croservice apis. In European Conference on Software Architecture, pages 3–18.
Springer, 2022.

[35] Marc J. Hadley. Web application description language (wadl). Technical report,
USA, 2006.

[36] Florian Haupt, Frank Leymann, Anton Scherer, and Karolina Vukojevic-Haupt.
A framework for the structural analysis of rest apis. In Proc. IEEE International
Conference on Software Architecture (ICSA), pages 55–58, 2017.

[37] J. Higginbotham. Principles of Web API Design: Delivering Value with APIs and
Microservices. Addison-Wesley Signature Series. Pearson Education (US), 2021.

[38] Sergio Inzunza, Reyes Juárez-Ramírez, and Samantha Jiménez. Api documen-
tation: A conceptual evaluation model. In Proc. of World Conference on In-
formation Systems and Technologies (WorkdCIST’18): Trends and Advances in
Information Systems and Technologies, pages 229–239. Springer, 2018. doi:
10.1007/978-3-319-77712-2_22.

[39] Stefan Karlsson, Adnan Čaušević, and Daniel Sundmark. Quickrest: Property-
based test generation of openapi-described restful apis. In 2020 IEEE 13th Inter-
national Conference on Software Testing, Validation and Verification (ICST), pages
131–141. IEEE, 2020.

[40] Rick Kazman, Roberto Tonelli, and Cesare Pautasso. An empirical basis for
software architecture research. In Software Architecture: Research Roadmaps from
the Community, pages 87–100. Springer, 2023.

[41] Myeongsoo Kim, Davide Corradini, Saurabh Sinha, Alessandro Orso, Michele
Pasqua, Rachel Tzoref-Brill, and Mariano Ceccato. Enhancing rest api testing
with nlp techniques. In Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 1232–1243, 2023.

[42] Myeongsoo Kim, Saurabh Sinha, and Alessandro Orso. Adaptive rest api testing
with reinforcement learning. In 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 446–458. IEEE, 2023.

[43] Rediana Koçi, Xavier Franch, Petar Jovanovic, and Alberto Abelló. A data-driven
approach to measure the usability of web apis. In 2020 46th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA), pages 64–71. IEEE,
2020. doi: https://doi.org/10.1109/SEAA51224.2020.00021.

[44] Rediana Koçi, Xavier Franch, Petar Jovanovic, and Alberto Abelló. Web api
evolution patterns: A usage-driven approach. Journal of Systems and Software,
198:111609, 2023. doi: 10.1016/j.jss.2023.111609.

[45] Valliappa Lakshmanan and Jordan Tigani. Google Bigquery: the definitive guide:
data warehousing, analytics, and machine learning at scale. O’Reilly Media, 2019.

[46] Arnaud Lauret. The design of web APIs. Simon and Schuster, 2019.
[47] Fabio Di Lauro, Souhaila Serbout, and Cesare Pautasso. A large-scale empirical

assessment of web api size evolution. Journal of Web Engineering, 21:1937–1980,
November 2022. doi: 10.13052/jwe1540-9589.2167.

[48] Daniel Lübke, Olaf Zimmermann, Cesare Pautasso, Uwe Zdun, and Mirko Stocker.
Interface evolution patterns: Balancing compatibility and extensibility across
service life cycles. In Proceedings of the 24th European Conference on Pattern
Languages of Programs (EuroPLoP), pages 1–24, 2019.

[49] Shang-Pin Ma, Ming-Jen Hsu, Hsiao-Jung Chen, and Yu-Sheng Su. Api prober–a
tool for analyzing web api features and clustering web apis. ICEBE 2019: Advances
in E-Business Engineering for Ubiquitous Computing, 2019.

[50] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. Inter-parameter
dependencies in real-world web apis: The idea dataset. In Research and Evidence
in Software Engineering, pages 101–106. Auerbach Publications, 2021.

[51] Mehdi Medjaoui, Erik Wilde, Ronnie Mitra, and Mike Amundsen. Continuous
API management. O’Reilly, 2021.

[52] Andy Neumann, Nuno Laranjeiro, and Jorge Bernardino. An analysis of public
rest web service apis. IEEE Transactions on Services Computing, 14(4):957–970,
2018. doi: https://doi.org/10.1109/TSC.2018.2847344.

[53] Chris Parnin and Christoph Treude. Measuring api documentation on the web. In
Proceedings of the 2nd international workshop on Web 2.0 for software engineering,
pages 25–30, 2011.

[54] Mikhail Perepletchikov, Caspar Ryan, and Keith Frampton. Cohesion metrics for
predicting maintainability of service-oriented software. In Seventh International
Conference on Quality Software (QSIC 2007), pages 328–335. IEEE, 2007.

[55] Julian Aron Prenner and Romain Robbes. Making the most of small software en-
gineering datasets with modern machine learning. IEEE Transactions on Software
Engineering, 48(12):5050–5067, 2021.

[56] Yuanbo Qiu. The openness of open application programming interfaces. Infor-
mation, Communication & Society, 20(11):1720–1736, 2017.

[57] Carlos Rodríguez, Marcos Baez, Florian Daniel, Fabio Casati, Juan Carlos Tra-
bucco, Luigi Canali, and Gianraffaele Percannella. Rest apis: A large-scale analysis

12

https://publicapis.io/
https://rapidapi.com/hub
https://github.com/APIs-guru/openAPI-directory
https://APIs.guru/
https://blog.assetnote.io/2021/04/05/contextual-content-discovery/
https://blog.assetnote.io/2021/04/05/contextual-content-discovery/
https://cloud.google.com/bigquery/docs/reference/rest/
https://docs.github.com/en/rest
http://www.gharchive.org/
https://www.openAPIs.org/
https://raml.org/
https://semver.org/
https://swagger.io/tools/swaggerhub/
https://app.swaggerhub.com/APIs-docs/swagger-hub/registry-API/
https://app.swaggerhub.com/APIs-docs/swagger-hub/registry-API/
https://github.com/APIDevTools/swagger-parser

APIstic: A Large Collection of OpenAPI Metrics MSR 2024, April 2024, Lisbon, Portugal

of compliance with principles and best practices. In Proc. 16th International Con-
ference on Web Engineering (ICWE), pages 21–39. Springer, 2016.

[58] Jéssica S Santos, Leonardo G Azevedo, Elton Soares, Raphael Thiago, and Vi-
viane T Silva. Analysis of tools for rest contract specification in swagger/openapi.
In International Conference on Enterprise Information Systems. SciTePress, 2020.

[59] Souhaila Serbout and Cesare Pautasso. An empirical study of web api versioning
practices. In Proc. 23rd International Conference on Web Engineering (ICWE).
Springer, 2023. ISBN 978-3-031-34443-5. doi: 10.1007/978-3-031-34444-2_22. URL
https://doi.org/10.1007/978-3-031-34444-2_22.

[60] Souhaila Serbout, Fabio Di Lauro, and Cesare Pautasso. Web apis structures and
data models analysis. In 2022 IEEE 19th International Conference on Software
Architecture Companion (ICSA-C), pages 84–91. IEEE, 2022.

[61] Souhaila Serbout, Amine El Malki, Cesare Pautasso, and Uwe Zdun. Api rate
limit adoption - a pattern collection. In Proc. 28th European Conference on Pattern
Languages of Programs (EuroPLoP 2023), Kloster Irsee, Germany, July 2023. ACM,
ACM.

[62] Edgar A Smith and RJ Senter. Automated readability index. Number AD0667273.
Aerospace Medical Research Laboratories, November 1967. https://apps.dtic.mil/
sti/citations/AD0667273.

[63] Mirko Stocker and Olaf Zimmermann. Api refactoring to patterns - catalog, tem-
plate and tools for remote interface evolution. In Proc. 28th European Conference
on Pattern Languages of Programs (EuroPLoP), 2023.

[64] Mirko Stocker, Olaf Zimmermann, Uwe Zdun, Daniel Lübke, and Cesare Pau-
tasso. Interface quality patterns: Communicating and improving the quality of
microservices apis. In Proceedings of the 23rd European conference on pattern
languages of programs, pages 1–16, 2018.

[65] Christoph Treude, Justin Middleton, and Thushari Atapattu. Beyond accuracy:
assessing software documentation quality. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE, page 1509–1512, 2020. ISBN
9781450370431. doi: 10.1145/3368089.3417045.

[66] Jim Webber, Savas Parastatidis, and Ian Robinson. REST in practice: Hypermedia
and systems architecture. O’Reilly, 2010.

[67] Chamila Wijayarathna and Nalin AG Arachchilage. An empirical usability
analysis of the google authentication apis. In Proceedings of the 23rd International
Conference on Evaluation and Assessment in Software Engineering, pages 268–274,
2019. doi: https://doi.org/10.1145/3319008.3319350.

[68] Mohammad-Ali Yaghoub-Zadeh-Fard and Boualem Benatallah. Api2can: a dataset
& service for canonical utterance generation for rest apis. BMC Research Notes,
14:1–3, 2021.

[69] Rieko Yamamoto, Kyoko Ohashi, Masahiro Fukuyori, Kosaku Kimura, Atsuji
Sekiguchi, Ryuichi Umekawa, Tadahiro Uehara, and Mikio Aoyama. A quality
model and its quantitative evaluation method for web apis. In 2018 25th Asia-
Pacific Software Engineering Conference (APSEC), pages 598–607. IEEE, 2018.

[70] Uwe Zdun, Mirko Stocker, Olaf Zimmermann, Cesare Pautasso, and Daniel Lübke.
Guiding architectural decision making on quality aspects of microservice apis.
In Proc. 16th International Conference on Service-Oriented Computing (ICSOC
2018), volume 11236, pages 73–89, Hangzhou, Zhejiang, China, November 2018.
Springer, Springer. doi: 10.1007/978-3-030-03596-9_5.

[71] Neng Zhang, Ying Zou, Xin Xia, Qiao Huang, David Lo, and Shanping Li. Web
apis: Features, issues, and expectations–a large-scale empirical study of web
apis from two publicly accessible registries using stack overflow and a user
survey. IEEE Transactions on Software Engineering, 49(2):498–528, 2022. doi:
https://doi.org/10.1109/TSE.2022.3154769.

[72] Shixiang Zhou, Heejin Jeong, and Paul A Green. How consistent are the best-
known readability equations in estimating the readability of design standards?
IEEE Transactions on Professional Communication, 60(1):97–111, 2017.

[73] Xin-Yu Zhou, Wei Chen, Guo-Quan Wu, and Wei Jun. Rest api design analysis
and empirical study. Journal of Software, 33(9):3271–3296, 2021.

[74] Olaf Zimmermann, Mirko Stocker, Daniel Lubke, Uwe Zdun, and Cesare Pau-
tasso. Patterns for API design: simplifying integration with loosely coupled message
exchanges. Addison-Wesley Professional, 2022.

13

https://doi.org/10.1007/978-3-031-34444-2_22
https://apps.dtic.mil/sti/citations/AD0667273
https://apps.dtic.mil/sti/citations/AD0667273

	Abstract
	1 Introduction
	2 Dataset Description
	2.1 Data Collection Methodology
	2.2 Dataset Overview
	2.3 Data Validation Methodology
	2.4 Artifacts Provenance Metadata
	2.5 Versioning Metadata
	2.6 Metrics
	2.7 APIstic Web-based Dataset Exploration Tool

	3 API Dataset Analysis
	3.1 Dataset Growth Over Time
	3.2 Web API versioning
	3.3 API Size: Structure and Datamodel
	3.4 HTTP Methods Usage
	3.5 API Maintenance Lifecycle
	3.6 Readability of Natural Language Documentation
	3.7 Types of Security Schemes in APIs

	4 Discussion and Use Cases
	5 Related Work
	5.1 OpenAPI-Based Datasets
	5.2 Web API Metrics
	5.3 Web API Landscape Analytics

	6 Conclusions
	References

