
Published in Software & Systems Modeling, DOI 10.1007/s10270-016-0532-2.
(The final publication is available at: http://link.springer.com/article/10.1007/s10270-016-0532-2)

Visual Modeling of RESTful Conversations with RESTalk

Ana Ivanchikj · Cesare Pautasso · Silvia Schreier

Received: 15 January 2016 / Revised: 30 April 2016 / Accepted: 2 May 2016

Abstract The cost savings introduced by Web services

through code re-use and integration opportunities have

motivated many businesses to develop Web APIs, with

ever increasing numbers opting for the REST architec-

tural style. RESTful Web APIs are decomposed in mul-

tiple resources, which the client can manipulate through

HTTP interactions with well defined semantics. Getting

the resource in the desired state might require multiple

client-server interactions, what we define as a RESTful

conversation. RESTful conversations are dynamically

guided by hypermedia controls, such as links. Thus,

when deciding whether and how to use a given RESTful

service, the client might not be aware of all the inter-

actions which are necessary to achieve its goal. This

is because existing documentation of RESTful APIs

describe the static structure of the interface, expos-
ing low-level HTTP details, while little attention has

been given to conceptual, high-level, modeling of the

dynamics of RESTful conversations. Low-level HTTP

details can be abstracted from during the design phase

of the API, or when deciding which API to use. We

argue that, in these situations, visual models of the re-

quired client-server interactions might increase develop-

ers’ efficiency and facilitate their understanding. Thus,

to capture all possible interaction sequences in a given

RESTful conversation, we propose RESTalk, an exten-

sion to the BPMN Choreography diagrams to render

A. Ivanchikj
USI, Lugano, Switzerland
E-mail: ana.ivanchikj@usi.ch

C. Pautasso
USI, Lugano, Switzerland
E-mail: cesare.pautasso@usi.ch

S. Schreier
innoQ Deutschland GmbH, Monheim, Germany
E-mail: silvia.schreier@innoq.com

them more concise and yet sufficiently expressive in the

specific REST domain. We also report on the results ob-

tained from an exploratory survey we have conducted

to assess the maturity of the field for a domain specific

language, and to obtain feedback for future improve-

ments of RESTalk.

Keywords RESTful Web Services · Conversations ·
BPMN Choreography · Modeling Notation Extension ·
Exploratory Study · Domain Specific Language ·
Questionnaire · RESTalk

1 Introduction

Web Application Programming Interfaces (APIs) al-

low systems to interact with each-other over the net-

work, thus enabling remote access to Web services [37].

Emerging technologies, such as Cloud services [26], Ser-

vice mashups [7], and Microservices [29], all make use

of Web APIs, driving their improvement not only in

terms of design and performance, but also in terms of

usability.

There has been a recent shift in software engineer-

ing towards API-driven development, where the key fo-

cus in the development is the API [12]. Such an “API

first” paradigm fosters an agile approach, not only in

the service development, but also in the API develop-

ment. This requires fast feedback on the API’s design,

which in the initial design phases can be facilitated by

visualizing the designed API’s behavior. Documenta-

tion of API’s design can also improve the usability and

learnability of the API once it is frozen and released to

the public. Learning and understanding an API consti-

tutes a major part of a programmer’s work. A survey on

what makes APIs hard to learn [38] has revealed that

http://link.springer.com/article/10.1007/s10270-016-0532-2

2 Ana Ivanchikj et al.

78% of the respondents learn APIs by reading docu-

mentation. What they often find missing in such doc-

umentation, is the high-level design of API’s behavior

to help them understand how to use the API to achieve

their goal.

Simple APIs, designed to fulfill the requirements of

a single client, can minimize the number of exposed

operations. Public and reusable Web APIs, however,

are typically used by multiple clients, built at differ-

ent times and operated by different organizations. In

this case, API’s size and complexity would grow out of

control if an operation is added to satisfy the needs

of each type of client using it. Thus, while reusable

APIs publish the minimal set of operations to satisfy

all clients, some clients may have to compose such op-

erations through multiple interactions, thus having a

conversation with the API to achieve their goals.

A quick look at the ProgrammableWeb website1,

a popular Web API repository, highlights the domi-

nance of REST APIs, i.e., APIs which are compliant

with the REpresentation State Transfer (REST) archi-

tectural style [10]. This has also been confirmed by a

recent empirical study [40], which among other aspects,

also explored how service to service communication is

implemented in industry. As more and more Web ser-

vices adopt the constraints of REST, conversations re-

main an important concept when reasoning about how

clients make use of RESTful Web APIs [37] over mul-

tiple HTTP request-response interactions [16].

RESTful conversations have been introduced in [16],

where they are used as an abstraction mechanism to

simplify the modeling of individual RESTful APIs. In

traditional messaging systems, conversations involve a
set of related messages exchanged by two or more par-

ties [18,4]. Web services borrowed the notion of conver-

sation [5] to indicate richer forms of interactions going

beyond simple message exchange patterns [45].

The existing tools for REST API documentations

(e.g., RAML2, Swagger3, Blueprint4, Mashape5) focus

on structural and data modeling aspects, and as such

do not capture the dynamics of the client-server inter-

actions.

While using standard UML sequence diagrams to

visually represent a sample of RESTful conversations

in [16], we have realized the need for a domain specific

notation. The goal of such notation would be to visu-

alize all possible interactions that may occur in a given

RESTful conversation, thus we have named it RESTalk.

1 http://www.programmableweb.com/protocol-api
2 http://raml.org
3 http://swagger.io
4 https://apiblueprint.org
5 https://www.mashape.com

To design it we have decided to start from the Business

Process Model and Notation (BPMN) Choreography

diagrams [46, Chap. 5], since they have been designed

with the purpose of modeling interactions between mul-

tiple parties. BPMN has become an ISO standard in

2013 (ISO/IEC 19510). In [33] we have extended the

BPMN Choreography diagrams to emphasize relevant

details for using the HTTP protocol, such as hyperme-

dia controls [3], headers and status codes6. These are

all important for defining the salient properties of the

set of request-response messages composing a RESTful

conversation.

In this article, we present RESTalk and we evaluate

it with an exploratory study, whose goal is to obtain

initial feedback, primarily from industry, on some of

RESTalk’s cognitive dimensions [13], as well as to elicit

whether there is a need for explicit modeling of REST-

ful conversations with a domain specific language. The

feedback obtained from the 35 survey participants pro-

vides a formative evaluation of our work, and will affect

our next iterations with the design of RESTalk.

The promising results from the reading and mod-

eling tasks we have assigned to the participants, are

particularly encouraging for us, as is the fact that al-

most all participants are willing to use RESTalk in their

projects, and find it equally or more understandable,

efficient and concise compared to the textual or visual

notation they are currently using.

The rest of the article is structured as follows. In

Section 2 we define the main properties of RESTful

conversations and in Section 3 we introduce RESTalk

and offer some guidelines on its use. We present the de-

sign and results of the conducted exploratory survey in

Section 4 and discuss them in Section 5. After studying

related work in Section 6, we draw some conclusions in

Section 7.

2 RESTful Conversations

REST is a hybrid architectural style [43], which com-

bines the layered, client-server, virtual machine, and

replicated repository styles, with additional constraints

(i.e., the uniform interface, statelessness of interactions,

caching and code-on-demand) [10]. These constraints

affect the way in which the client and the server inter-

act.

For instance, the statelessness constraint requires a

client’s request to carry all the relevant information for

6 This article includes and extends the work that the au-
thors have presented at the 9th European Conference on Soft-
ware Architecture (ECSA 2015) under the title “Modeling
RESTful Conversations with Extended BPMN Choreography
Diagrams” [33]

http://www.programmableweb.com/protocol-api
http://raml.org
http://swagger.io
https://apiblueprint.org
https://www.mashape.com

Visual Modeling of RESTful Conversations with RESTalk 3

understanding the request, such that the server does

not need to remember the state of the conversation.

As a consequence, every interaction within a RESTful

architecture is always initiated by the client. The client

is interested in manipulating the resources hosted by

the server, where resources are conceptual abstractions

of any information or service that can be named, and

thus can be identified as relevant to the client.

Each resource is globally identified by a Uniform

Resource Identifier (URI) used to address the request

to that resource. The client discovers the URIs dynam-

ically from the server’s response, which can refer the

client to related resources. The mechanism whereby hy-

perlinks (or resource references) are embedded into re-

source representations, or sent along in the correspond-

ing meta data [32], is one of the core tenets of REST,

known as Hypermedia [3]. The server’s responses can

contain from zero to many links, depending on the cur-

rent state of the requested resource. The server might

also send parametrized links based on which the client

can dynamically construct the URI for the next request

by providing the required parameter(s). The client, by

deciding which link(s) to follow, can take different paths

in the conversation. However, the client should simply

follow links, without making any assumptions about

the URI’s structure [42]. This constraint is known as

HATEOAS (Hypermedia As The Engine of Application

State) [10].

Another important REST constraint, that allows for

decoupling, information hiding and standardisation, is

the uniform interface requirement. This is achieved by

using standard methods to manipulate resource repre-

sentations. Which methods are available for which re-

source is decided at design time, but can change at run

time based on the state of the resource. When using

the HTTP protocol the methods may include, for ex-

ample, GET, POST, PUT, DELETE. Which one will

be used in the request, depends on the client’s goal.

Some of these methods (e.g., GET) are safe in terms

that they do not modify the resource. Others (e.g.,PUT,

DELETE), are not safe but they are nonetheless idem-

potent, i.e, they can be called multiple times without

changing the outcome of the call, which has important

recovery implications in presence of temporary commu-

nication failures [9].

To summarize, as a result of the above mentioned

characteristics and constraints of the REST architec-

tural style, RESTful conversations can be seen as a spe-

cific kind of message-based conversations defined by the

following characteristics:

1. Interactions are always client-initiated, thus it is the

client who drives the conversation forward and de-

cides when to stop it;

2. Client requests are addressed to resources, identified

through their URIs;

3. When the server is available to process client re-

quests, every request message is always followed by a

response. There may be different possible responses

to the same request message, depending on the state

of the requested resource;

4. Hypermedia: responses embed related URIs, which

may be used to address subsequent requests;

5. Statelessness: every request is self-contained and be-

cause of that independent of the previous ones;

6. Uniform Interface: there is a fixed set of request

methods a resource can support. Depending on the

state of the resource, the server allows clients to use

different methods when interacting with it.

These characteristics make it possible to share the

responsibility for the conversation’s direction between

clients and servers. It is the client who initiates the

conversation, but it is the server who guides the client

towards the next possible steps by choosing to embed

zero, one or more related URIs as hyperlinks in a re-

sponse. The client may choose which hyperlink(s) to

follow, if any (it may also decide to stop sending re-

quests at any time). This way, the client decides how

to continue the conversation by selecting the next re-

quest from the options provided by the server in pre-

vious responses. In general, the client can accumulate

URIs discovered during the entire conversation or may

remember them from previous conversations. Zuzak et

al. call this the Link Storage in their finite-state ma-

chine model for RESTful clients [49]. Additionally, re-

sponses may be marked as cacheable, and thus clients

will not need to contact the server again when reissuing
the same request multiple times.

The discussion so far assumes that servers are avail-

able and always reply to client’s requests. However,

servers may indicate their unavailability by sending re-

sponses with the 503 Service Unavailable status code. In

case of failures, either due to loss of messages or to the

complete unavailability of the servers, an exception to

the request-response rule must be made. Clients may

thus decide to resend a request after a given timeout

(for temporary failures) or eventually give up retrying

(for permanent failures).

3 Visual Modeling of RESTful Conversations

with RESTalk

The graphical representation of all the possible inter-

actions, that may occur as part of a RESTful conver-

sation, facilitates its comprehension. While UML se-

quence diagrams can be a good starting point when

4 Ana Ivanchikj et al.

Client

Server

Response
Timeout

Request

Response
Hyperlink1
Hyperlink2

Client

Server

Request
Hyperlink1

Client

Server

Alternative
Response

Client

Server

Alternative
Response

Client

Server

Request
Hyperlink2

Response

Fig. 1 Exemplary RESTful conversation modeled using standard BPMN Choreography

Request

Response

Request

Hyperlink1
Hyperlink2

Hyperlink1

Alternative
Response

Alternative
Response

Response
Timeout

Hyperlink Flow

Request

Response

Hyperlink2

2

3

4

6

7

1

5

8

8 8

Exclusive XOR gateway

Inclusive OR gateway

Parallel AND gateway

Fig. 2 Exemplary RESTful conversation modeled using RESTalk with numbered notation constructs

dealing with simple conversations [16], they are limited

in concisely presenting conversations that can follow al-

ternative paths.

3.1 RESTalk

Initially, we have considered using the BPMN Chore-

ographies to visually model RESTful conversations [30].

They focus on the exchange of messages with the pur-

pose of coordinating the interactions between two or

more participants [21, pg. 315], and at the same time

they precisely describe the partial order in which the

interactions may occur. An exemplary RESTful con-

versation would look as in Fig. 1, if modeled using the

standard BPMN Choreography notation.

Visual Modeling of RESTful Conversations with RESTalk 5

However, Lindland et al., in their framework for un-

derstanding the quality in conceptual modeling [24],

claim that a very important aspect of a modeling lan-

guage is its domain appropriateness. Cortes-Cornax et

al. [6] emphasize the same when evaluating the quality

of BPMN Choreographies. They state that “the lan-

guage must be powerful enough to express anything in

the domain but no more”.

Therefore, to render the BPMN Choreography di-

agrams more concise when targeting the modeling of

RESTful conversations, as opposed to generic message-

based conversations for which the BPMN Choreogra-

phies were originally designed, we propose minor, but

significant changes to the standard notation. We name

the extended notation RESTalk, and in Fig. 2 we use

it to model the same exemplary RESTful conversation

shown in Fig. 1. The modifications to the standard

BPMN Choreography are presented below.

Modification 1: In contrast to business processes

where it is important to highlight which participant is

responsible for initiating the interaction, in a REST-

ful conversation the initiator is always the client, and

there is no one-way interaction, as every successful re-

quest is followed by a response. The content of the mes-

sages is of a particular interest, because it defines, as a

minimum, the resource, the action to be taken by the

server, and the future direction of the conversation. To

comply with these differences and bring the visual con-

struct closer to its meaning [28], we replace the BPMN

activity, comprised of an optional incoming/outgoing

message with a text annotation to depict the message

content and a three band choreography task containing

participants’ names, with a two band request-response

element with embedded message content (Fig. 3). The

required content of the request-response messages is the

request method, the URI, as well as the response status

code, and where applicable links.

Request

Response
Hyperlink

Client

Server

Request

Response
Hyperlink

Fig. 3 Modification 1: replacing the BPMN activity

Modification 2: Since in a RESTful interaction a

request is always followed by a response, the request-

response bands always go together, except when there

is path divergence due to different possible responses

from the server to a given client’s request. Only in this

case the request is separated from the responses by an

exclusive gateway to show the two or more alternative

responses that can be sent by the server (Fig. 4).

Client

Server

Request
Hyperlink

Client

Server

Alternative
Response

Client

Server

Alternative
Response

Request
Hyperlink

Alternative
Response

Alternative
Response

Fig. 4 Modification 2: allowing for different server responses

Modification 3: The hyperlink flow indicates how

URIs are discovered from hyperlinks embedded in a

preceding response to clarify how clients discover and

navigate among related resources (Fig. 5). Adding this

element is important in RESTful conversations where,

due to the HATEOAS constraint in a REST compli-

ant API, clients should not be forced to guess URIs,

neither to retrieve the URIs from out-of-band knowl-

edge [44]. The hyperlink flow makes it thus possible

to distinguish which requests are sent by clients us-

ing hard-coded knowledge about URIs, and which are

sent by dynamically discovering the URI from previous

responses. Namely, if there is a client request in the

conversation model (with the exception of the first re-

quest), where the URI is not extracted from a hyperlink

flow, the API designer is aware that a client would need

out-of-band knowledge to complete the conversation.

Client

Server

Request

Response
Hyperlink

Client

Server

Response

Request
Hyperlink

Request

Response

Hyperlink

Request

Response
Hyperlink

Fig. 5 Modification 3: hyperlink flow

To summarize, the core constructs in RESTalk, used

to express one to one (client-server) conversations, are

as following (please refer to the enumerated elements in

Fig. 2 for the visual presentation which is based on the

same exemplary RESTful conversation as Fig. 1):

1. Start event: to mark the beginning of the conversa-

tion;

6 Ana Ivanchikj et al.

2. An activity containing the content of the request

(white) and response (gray) messages;

3. Hyperlink flow to highlight the usage of resource

identifiers discovered from previous responses;

4. Control flow split gateways to show path divergence

due to client’s decisions, e.g., to navigate to a given

resource or to end the conversation. There are three

types of gateways: XOR - exclusive gateway that

allows only one of the outgoing paths to be taken;

OR - inclusive gateway that allows none, one or all

of the outgoing paths to be taken; AND - parallel

gateway that requires all outgoing paths to be taken.

5. Control flow merge gateways to show path conver-

gence after a split. The same symbols are used as

for the split gateways, but the semantical meaning is

to allow the conversation to continue after a certain

condition is met, i.e., for XOR - exclusive gateway

the request from only one of the incoming flows has

to be received; for OR - inclusive gateway the re-

quests from all paths that have been activated with

an inclusive split need to be received; for AND - par-

allel gateway the requests from all concurrent paths

need to be received;

6. Exclusive split due to different possible responses

from the server;

7. Response timeout to model situations where it is

relevant for the conversation to show that, if the

server takes too long to respond, the client will de-

cide to resend the request. Such timeouts can hap-

pen after every request, but as discussed later in the

simplifications, we recommend to explicitly use the

response timeout event only for non-idempotent re-

quests. This element is used attached to the request

element to show its interrupting nature [21, pg.342]

that breaks the normal request-response sequence,

and introduces a request-timeout-request sequence.

Such sequence can be repeated as long as a response

is not received from the server, or the client eventu-

ally gives up;

8. End event: to mark the end of the conversation,

when the client stops sending further requests. Dif-

ferent end events (reflecting different outcomes) are

possible for a given conversation.

While many of these constructs have been formally

specified in the BPMN Choreography metamodel [21,

pg.316], the REST-specific metamodel (e.g., requests,

responses, hyperlinks) has been formally defined by

Nikaj and Weske in [31].

3.2 RESTalk Guidelines

While in the previous section we have explained the de-

sign of RESTalk, its constructs and its constraints, in

this section we provide RESTalk users with certain rec-

ommendations which, if applied, can simplify the cre-

ated models and make them more readable.

3.2.1 Simplifications

Often in high-level conceptual modeling [39, pg. 93],

various assumptions and simplifications are necessary

to avoid overwhelming the reader with too many visual

elements. As a result, certain details are excluded from

the model representation. Having in mind the charac-

teristics of RESTful conversations, mentioned in Sec-

tion 2, we introduce the following assumptions that help

simplify the RESTalk diagrams:

1. While a hyperlink that has been discovered by the

client can be used at any time in the future, to avoid

decreased readability due to too many hyperlink

flow edges, we only take into consideration the hy-

perlink obtained from the nearest previous response

(Fig. 6 (S1));

2. While servers may send responses that include many

different HTTP status codes, we only include the

status codes which are relevant for the specific con-

versation. For example, 5xx status codes can occur

at any time. The conversation model should only

explicitly indicate how a client will need to react to

such errors depending on the specific conversation

domain and error semantics (Fig. 6 (S2));

3. While clients may decide to stop sending requests

at any time, we model a path as finished (by using

an end event), only if an initially intended goal has

been achieved (Fig. 6 (S3));

4. While clients may choose to resend idempotent re-

quests (GET, PUT, DELETE) an arbitrary number

of times, we only model situations where the client

retries sending non-idempotent request (POST,

PATCH) after a response timeout event occurs. This

is because resending idempotent requests does not

affect the outcome of the request (Fig. 6 (S4));

5. Likewise, clients may eventually give up resending

requests after a timeout. This additional branch and

end event is not typically shown in optimistic mod-

els representing how clients deal with temporary

failures (Fig. 6 (S5)).

The visual effect of the above mentioned simplifica-

tions is evident in Fig. 6.

Visual Modeling of RESTful Conversations with RESTalk 7

Request

Response

Response 5xxResponse
 Hyperlink/ID; rel=...

Hyperlink/ID

Response Response 5xx

 Hyperlink/ID

Hyperlink

Hyperlink/ID

Request
Hyperlink/ID

Request Request

Response 5xx

Response Response 5xx

S2

S4

S1
S1 S3

S2

S3

S4 S4

S2 S2

S5

S5

S5 S5

Request

Response

 Hyperlink/ID; rel=...

 Hyperlink/ID

Response

 Hyperlink/ID
Response

Hyperlink

Hyperlink/ID

Request
Hyperlink/ID

Request Request

Response

Fig. 6 RESTtalk diagram simplified following the guidelines of Section 3.2.1

3.2.2 Style Guidelines

Style is frequently influenced by the personal prefer-

ences of the modeler or by the complexity of the reality

that the model needs to describe. Thus, the implemen-

tation of the following recommendations is subject to

modeler’s choice.

To accommodate the request-response content pre-

sented within the activities, we recommend a vertical

flow for the diagram layout, as opposed to the horizon-

tal direction usually used in standard BPMN Chore-

ographies. This should enhance the readability of the

diagram as the control flow can be followed from top to

bottom: with a starting event leading directly to client’s

request, followed by the corresponding server’s response

leading directly to the next request or an end event.

The events that the modeler can use are not limited

to the default none or to the timer event type. BPMN

Choreographies offer a plethora of event types, and de-

pending on the needs of the conversation, any of them

can be used within RESTalk. For instance, events may

be used to represent the out-of-band discovery of links,

e.g., when they are extracted from an e-mail message.
As opposed to BPMN, where best practices advise doc-

umentation of the decisions in exclusive and inclusive

gateways, in RESTalk the modeler can abstract from

describing how clients make decisions on which path to

follow, if such details are not entirely relevant to the

conversation.

The request method, the URI, the response status

code and links are mandatory elements of the request-

response messages. However, RESTalk does not limit

the content of a message to only the above mentioned

elements. Depending on the notation usage, whiteboard

or drawing tool, any headers or content details consid-

ered necessary can be added by the modeler.

Last but not least, in RESTalk, the sample values

of URIs found in the hyperlink flow are meant as place-

holders. They do not necessarily have to reflect the ac-

tual structure of the URI, since the server is free to

create any URI to be sent to the client embedded in

a response. Sometimes a concrete URI is not expres-

8 Ana Ivanchikj et al.

sive enough, for example, for providing the client with

a link for searching, where the search term typically is

not known in advance by the server. In such cases, an

HTML form [17] or a URI template [14] is provided by

the server, so that the client can mint the concrete URI

by replacing the parameter(s) in the given template.

This requires the client to know the semantics of all

parameters. Such URI templates can also be contained

in the hyperlink flow.

4 Exploratory Survey

One general problem with modeling languages is their

dissemination and acceptance by the targeted modeler

community. To address this issue, we have decided to

follow a user-driven approach for gradual improvement

of RESTalk. Therefore, after defining the initial ver-

sion and testing its expressiveness with several exam-

ples of RESTful conversations, we have conducted an

exploratory survey, which is a qualitative research tech-

nique for understanding the viewpoint of the surveyed

subjects about the addressed problem [47, Chap. 2].

We have opted for this approach since we wanted to

inquire into the need in industry for a domain specific

modeling language. Furthermore, we wanted to obtain

insights to help us manage the unavoidable trade-off be-

tween the expressiveness and completeness of RESTalk

on one hand, and its simplicity and understandability

on the other [11].

4.1 Survey design

Given the exploratory nature of the survey, we have
mostly used open-ended questions. Their purpose was

to gain understanding on industry’s existing practices

in representing the client-server interactions, which oc-

cur when using a REST API, and to obtain respon-

dents’ opinion on RESTalk, its cognitive characteris-

tics, and usefulness. To reach a greater audience we

have translated the survey both in English and Ger-

man and made it available on-line7. When answering

all the questions in details, the expected duration of

the survey as designed has been 30-40 min, which fits

with the actual time spent by the participants (Fig. 7).

We have divided the questions in the following seven

groups: demographic data, background on used nota-

tions in practice, RESTalk’s intuitiveness, RESTalk vs.

standard BPMN Choreography, reading task, modeling

task, and RESTalk’s evaluation.

We have started with questions about participants’

background and experience in designing and using REST

7 http://restfulconversations.limequery.com

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

0	 5	 10	 15	 20	 25	 30	 35	 40	 45	 50	 55	

Ti
m
e	
to
	 a
ns
w
er
	 (m

in
)	

Number	 of	 answered	 ques5ons	

4
1	

9	

Complete	 answers	

Par9al	 answers	

Fig. 7 Time dedicated to filling out the survey with distinc-
tion between complete and partial answers

APIs. To understand the existing modeling practices in

the REST API design, we have further inquired the

visual notation(s) respondents have used in such cir-

cumstances. The question concerning the used nota-

tions was a multiple-choice question in order to get a

full picture of all the notations used in practice. How-

ever, the more detailed questions referred only to one

of the selected notations in order to avoid constructing

a too lengthy survey. The priority list for the detailed

questions has been as follows: BPMN Choreography,

In-house developed notation, UML Sequence diagrams,

UML Activity diagrams, Other standard notations. The

detailed questions were open-ended and explored re-

spondents’ perception about the pros and cons of the

notation, as well as the effort of learning it and the

effect its usage has had on the team’s productivity.

To assess the intuitiveness of RESTalk, before ex-

plaining it in detail, we have asked the respondents to

describe, in their own words, a simple conversation we

had provided the diagram of, and then to respond to

several specific multiple-choice questions assessing their

understanding of the conversation.

As per Gemino and Wand’s [11] framework for em-

pirical evaluation of conceptual modeling techniques,

such techniques ought to be compared based on their

grammar, i.e., the modeling constructs and the rules

for combining them. Thus, to those respondents who

had basic knowledge of BPMN we have also asked some

inter-grammar comparison questions. We have first ex-

plained them the extensions and the modifications we

have made to the standard BPMN Choreography. Then,

based on a generic example modeled in the standard

BPMN Choreography (Fig. 1) and in RESTalk (Fig. 2),

we have asked them to compare the two in terms of

conciseness, expressiveness, and ease of understanding.

We have closed this block of questions by asking which

notation they would prefer using.

For the respondents who did not have prior BPMN

knowledge, we have provided a short RESTalk tutorial

(Fig. 2), describing all of the constructs used in sub-

http://restfulconversations.limequery.com

Visual Modeling of RESTful Conversations with RESTalk 9

sequent tasks as well as their semantics, without div-

ing in depth into the full complexity of BPMN. This

tutorial was made available for further reference dur-

ing the survey. We have not presented the assumptions

and simplifications of the modeled reality mentioned in

Section 3 to any of the respondents, in order to explore

their validity.

To further evaluate RESTalk, we have included both

a reading and a modeling task to be answered by all re-

spondents. After these tasks, we have asked them to

evaluate RESTalk in terms of conciseness, understand-

ability and efficiency, as well as to identify any am-

biguous semantics or missing elements. We have used

open-ended questions in order to obtain more detailed

feedback.

Not being interested in statistical inference, we have

made most of the questions optional in order to encour-

age greater survey participation. Only the questions

used in determining the survey logic, i.e., which ques-

tions to be disclosed to which audience, were manda-

tory. Essentially, the question regarding experience with

using visual notations for modeling RESTful conversa-

tion, and the question regarding prior BPMN knowl-

edge.

4.2 Survey sample

We have kept the on-line survey open for almost 3

months, i.e., until we have gained sufficiently valuable

input from the respondents. Thus, we were not aim-

ing at reaching a minimal sample size of the targeted

population. While we were targeting primarily industry

practitioners, we have also used some conferences and

social media to reach a broader audience. The reason

for focusing mainly on industry, was to get feedback

on their willingness to use visual notations. Namely,

while in academia modeling notations such as UML or

BPMN are frequently taught, their acceptance in in-

dustry seems to be limited [34]. However, we believe

that if a notation is developed in an agile manner, with

a continuous direct contribution from industry practi-

tioners, it is more likely to fit their actual needs and

thus to achieve greater adoption.

From the total of 35 respondents, 74% (26 individual

responses) are from industry and 26% (9 individual re-

sponses) are from academia, based on the job title they

have provided. Their experience with using, and/or de-

signing RESTful APIs, ranges from couple of months

to more than 10 years, with almost half of them hav-

ing more than 3 years of experience. More details can

be found in Fig. 8. The data labels in the graph show

the absolute number of respondents in each experience

group. No other demographic data has been considered

relevant for the current study.

8	

10	

7	

6	

4	

9	 9	

6	

7	

4	

0%	

5%	

10%	

15%	

20%	

25%	

30%	

Up	 to	 1	
year	

1	 to3	
years	

3	 to	 5	
years	

5	 to	 7	
years	

more	 than	
7	 years	

Developing	 APIs	

Using	 APIs	

Fig. 8 Respondents’ experience with REST APIs

The sample includes a broad range of practitioner

roles from researchers, through IT consultants, soft-

ware quality engineers, developers, architects and up

to a CTO. The average time dedicated to filling out

the survey has been calculated to 23 minutes, with the

time increasing as the number of answered questions in-

creased. Given the fact that the survey could be paused

and resumed later, the average time has been calculated

after removing the data for 3 persons who took over 3

hours to fill out the survey. Nonetheless, their answers

have been taken into consideration for the rest of the

survey analysis.

Since conditional logic was used in the survey, the

number of questions to be answered differed among dif-

ferent respondents, with 8-14 additional questions for

respondents with modeling experience. However, dou-

ble checking the responses with time to answer values

above the trend line, has indicated that they have ded-

icated more time to provide more exhaustive answers.

Further details are available in the scatter plot in Fig. 7

where also complete vs. partial answers are evident. The

scatter plot shows that all of the partial answers contain

the first 10 questions, with 28 questions emerging as a

limit. As can be derived from Fig. 9, this limit is due

to the modeling task which the respondents probably

found more challenging or time consuming.

4.3 Survey results

As mentioned in Subsection 4.1, most of the survey

questions were not mandatory and survey conditional

logic was incorporated in two question groups: Used

notations in practice (Subsection 4.3.1), which was

only presented to participants who have used the con-

crete notation before, and RESTalk vs. Standard

10 Ana Ivanchikj et al.

0	

5	

10	

15	

20	

25	

30	

35	

40	

Q
1	

Q
2	

Q
3	

Q
4	

Q
5	

Q
6	

Q
7	

Q
8	

Q
9	

Q
10

	
Q
11

	
Q
12

	
Q
13

	
Q
14

	
Q
15

	
Q
16

	
Q
17

	
Q
18

	
Q
19

	
Q
20

	
Q
21

	
Q
22

	
Q
23

	
Q
24

	
Q
25

	
Q
26

	
Q
27

	
Q
28

	
Q
29

	
Q
30

	
Q
31

	
Q
32

	
Q
33

	
Q
34

	
Q
35

	
Q
36

	
Q
37

	
Q
38

	
Q
39

	
Q
40

	
Q
41

	
Q
42

	
Q
43

	
Q
44

	
Q
45

	
Q
46

	
Q
47

	
Q
48

	
Q
49

	
Q
50

	
Q
51

	
Q
52

	
Q
53

	
Q
54

	
Q
55

	
Q
56

	
Q
57

	
Q
58

	
Q
59

	
Q
60

	
Q
61

	
Q
62

	
Q
63

	
Q
64

	
Q
65

	
Q
66

	
Q
67

	
Q
68

	
Q
69

	
Q
70

	
Q
71

	
Q
72

	
Q
73

	
Q
74

	
Q
75

	
Q
76

	
Q
77

	
Q
78

	
Q
79

	
Q
80

	
Q
81

	
Q
82

	
Q
83

	

demo-‐	
graphic	
data	

used	
nota=ons	

in	
prac=ce	

BPMN	 Choreography	 in-‐house	 developed	 nota=on	 UML	 sequence	 diagrams	 UML	 ac=vity	 diagram	 other	 standard	 nota=ons	 RESTalk	
intui=veness	

BPMN	
Choreography	
vs.	 RESTalk	

reading	 task	 mode-‐	
ling	
task	

RESTalk	 evalua=on	

Number	 of	
answers	

Max	 number	
of	 answers	

Fig. 9 Maximum vs. actual number of answers per question

BPMN Choreography (Subsection 4.3.3), which was

only presented to participants with prior BPMN knowl-

edge. Fig. 9 shows the theoretical maximum number of

respondents per question, given the survey sample of 35,

and the actual number of respondents. You can use it

as a reference for the absolute number of respondents

per question, given the percentages mentioned in the

remaining part of this subsection.

4.3.1 Used notations in practice

Out of all the respondents, 38% have used some visual

notations to discuss the life-cycle of resources and al-

lowed HTTP interactions within an REST API. The

percentage is equal in industry and academia. These

respondents have been asked to choose one or more of

the following notations they have used: BPMN Chore-

ography, In-house developed notation, UML Sequence

diagrams, UML Activity diagrams, or Other standard

notations. UML Sequence diagrams have emerged as

the most widely used, with as many as 85% of the

respondents using it, while BPMN Choreography has

been used by just one person from academia who stated

that he has used it for “research incentives”. Details

are available in Fig. 10. Such results are not surprising

given the longevity of UML. The distribution is similar

even if we analyze the answers disaggregated between

industry and academia.

In-house developed notations have been used by four

persons, mainly due to lack of knowledge of existing

standards, their complexity or lack of flexibility. These

are similar reasons to what Petre has identified regard-

ing UML use in practice in [34]. The respondents have

developed simple, ad-hoc notations, or simplified the

UML notation, so that the diagrams can easily be drawn

by hand or with a ready-to-use tool. The one person

who is no longer using the in-house developed nota-

tion, states the reason being the fact that “it was not

searchable, shareable or usable after forgetting the con-

text”.

All of the persons who have declared having used

UML sequence diagrams, are still using them, mainly

54%	

85%	

8%	

31%	

15%	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

UML	 Ac2vity	
Diagram	

UML	 Sequence	
Diagram	

BPMN	
Choreography	

In-‐house	
developed	

Other	
standard	
nota2on	

Fig. 10 Used visual notations for RESTful conversations in
practice

due to their effectiveness in depicting the order of inter-

actions between the client and the server. The UML se-

quence diagram language features they appreciate the

most are the possibility to show the creation and de-

struction of resources, concurrency and the direction of

the exchanged messages. Nonetheless, they consider it

challenging to express “dynamic calls or a lot of third

party services and failover tools”, as well as conditions,

loops or resource’s state. Regardless of such limitations,

they believe that using UML sequence diagrams has

improved their productivity by improving the team’s

understanding of the interactions and driving design

discussions. Furthermore, they believe that the UML

notation has a fast learning curve, which is expected

given that many study it during their formal education.

4.3.2 RESTalk’s intuitiveness

A notation is intuitive if it is easy to understand with-

out explicit instruction. Therefore, before providing any

tutorial for RESTalk or explaining how it is different

from the BPMN Choreography, we have shown respon-

dents the diagram in Fig. 11, and posed an open-ended

question to describe its meaning using natural language.

As per the answers, it is intuitive from the diagram that

an empty resource is created and the content is added

later on. The concept of the hyperlink flow seems to

Visual Modeling of RESTful Conversations with RESTalk 11

POST /resource
<empty>

201 Created
Location: /resource/X

PUT /resource/X
<content>

200 OK

Fig. 11 Diagram used for assessing RESTalk’s intuitiveness

be clear as well. The elements that have emerged as

ambiguous were the exclusive merge gateway and the

timer event. They depict a situation in which the server

does not respond to the POST request, and thus the

client sends the request again. For instance, one per-

son expressed doubts on whether the “process makes

a POST or is waiting for a POST”, while another one

was not sure whether the timeout occurs “if the re-

sponse takes too long (or if the request is empty?)”.

One person from academia interpreted the gateway as

an unspecified data-based decision being made.

After the open-ended question we have also asked 4

multiple choice questions with only one correct answer

(marked in bold):

1. The goal of the conversation is:

– editing an existing resource

– creating a new resource

– creating multiple new resources

– none of the answers

2. The client can send the POST request multiple

times:

– true

– false

– I don’t know

3. By sending multiple POST requests multiple re-

sources are being created:

– true

– false

– I don’t know

4. The client knows the link to the created resource

before the start of the conversation:

– true

– false

– I don’t know

As can be seen in Fig. 12, there is a fairly high

average number of correct answers (77%), which we

consider an indication of a rather intuitive notation.

As was evident from the open-ended question answers,

the timer event has caused confusion on how many re-

sources are created if sending the POST request mul-

tiple times. While 56% have understood it well, other

22% have stated that they do not know the answer. If

we disaggregate the answers by sector, the academia

has higher percentage of correct answers to this ques-

tion (75%). This is not surprising given that 57% of

them have prior BPMN knowledge, and the timer event

is one of BPMN’s core constructs. It could also explain

the slightly higher average number of correct answers

in academia (81%) compared to industry (75%).

If we look at the intuitiveness from the respondents’

experience perspective, we notice an increase in the av-

erage number of correct answers as the respondents’

experience increases (Fig. 13). This is to be expected in

such a simple diagram, where knowledge of the REST

context can be sufficient for making educated guess on

constructs which might be less intuitive. On the other

hand, drilling down on the results applying as a criteria

respondents’ experience with using a visual notation to

depict RESTful conversations, has not revealed mean-

ingful differences in the answers between respondents

who have used visual notations and those who have

not.

4.3.3 RESTalk vs. Standard BPMN Choreography

Given that RESTalk is based on BPMN Choreogra-

phies, we used different approaches in explaining it to

people with and without BPMN experience. As per the

survey results, 41% of the total respondents have some
basic BPMN knowledge, with that percentage being

higher in academia (57% or 4 persons) than in industry

(35% or 7 persons). After having explained the main

modifications made to the standard BPMN Choreog-

raphy, we have asked these respondents to compare

an exemplary model designed with standard BPMN

Choreography (Fig. 1) to the same model designed with

RESTalk (Fig. 2). As can be seen from Fig. 14, re-

spondents’ perception is positive since nobody finds

RESTalk less concise or less expressive than the stan-

dard BPMN Choreography. Only one person from in-

dustry found the standard BPMN Choreography more

understandable, but without providing further details

on the reasons. The number of persons who have an-

swered the questions is provided in parenthesis in the

x-axis labels in Fig. 14.

Since as we have seen in Fig. 10 UML Sequence di-

agrams are the most widely used notation for depicting

RESTful interactions, we have decided to delve into

the answers of respondents who have used UML Se-

12 Ana Ivanchikj et al.

56%	

70%	

88%	

93%	

77%	

0%	 10%	 20%	 30%	 40%	 50%	 60%	 70%	 80%	 90%	 100%	

By	 sending	 mul8ple	 POST	 requests	 mul8ple	 resources	 are	 being	 created	

The	 client	 can	 send	 the	 POST	 request	 mul8ple	 8mes	

The	 goal	 of	 this	 RESTful	 conversa8on	 is	 crea8ng	 a	 new	 resource	

The	 client	 knows	 the	 link	 to	 the	 created	 resource	 before	 the	 start	 of	 the	 conversa8on	

Average	 correct	 answers	

Fig. 12 Multiple choice questions for assessing RESTalk’s intuitiveness (ordered by percentage of correct answers)

67%	 67%	
70%	

87%	

100%	

0%	

20%	

40%	

60%	

80%	

100%	

120%	

Up	 to1	 year	 1	 to	 3	 years	 3	 to	 5	 years	 5	 to	 7	 years	 more	 than	 7	 years	

The	 goal	 of	 this	 RESTful	 conversaCon	 is	 creaCng	 a	
new	 resource	

The	 client	 can	 send	 the	 POST	 request	 mulCple	 Cmes	

By	 sending	 mulCple	 POST	 requests	 mulCple	
resources	 are	 being	 created	

The	 client	 knows	 the	 link	 to	 the	 created	 resource	
before	 the	 start	 of	 the	 conversaCon	

Average	 correct	 answers	

Fig. 13 Assessing RESTalk’s intuitiveness from respondents’ experience perspective

quence diagrams for this purpose before (7 persons).

All of them but one find RESTalk less time consum-

ing and more or equally concise than UML Sequence

diagrams.

80%	

60%	

75%	

20%	

40%	

13%	

0%	 0%	

13%	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

Concise	 	
(10	 pers.)	 	

Expressive	 	
(10	 pers.)	

Understandable	 	
(8	 pers.)	

More	

Equally	

Less	

Fig. 14 RESTalk vs. Standard BPMN Choreography

If we analyze the responses comparing industry vs.

academia (Fig. 15), we notice that industry participants

find RESTalk significantly more expressive than the

ones from academia, while they both agree on it being

more understandable than the standard BPMN Chore-

ography. These questions were answered by 4 to 6 par-

ticipants from industry8 and 4 persons from academia.

100%	

25%	

75%	
67%	

83%	
75%	

0%	

20%	

40%	

60%	

80%	

100%	

120%	

More	 Concise	 More	 Expressive	 More	
Understandable	

Industry	 (max	 6	 pers.)	

Academia	 (max	 4	 pers.)	

Fig. 15 RESTalk vs. Standard BPMN Choreography per
sector

However, all respondents prefer using RESTalk to

the standard BPMN Choreography due to lower over-

head, greater simplicity and “better notion of what re-

sponse belongs to what request”.

8 Since the questions were not mandatory a few industry
participants did not answer all of them.

Visual Modeling of RESTful Conversations with RESTalk 13

POST /job

202 Accepted
Location: /job/42

DELETE /job/42/output

200 OK

DELETE /job/42

200 OK

GET /job/42

200 OK 303 See Other
Location: /job/42/output

GET /job/42/output

200 OK

Fig. 16 Long running request conversation modeled with RESTalk

4.3.4 Reading task

For the reading task we have applied RESTalk to a

common conversation that can be found in different

RESTful APIs, e.g., Amazon Glacier’s API for long

term storage of infrequently used data9. Fig. 16 shows

the diagram included in the survey. It depicts a REST-

ful conversation where the retrieval of data is turned

into a job resource in order to avoid the client having

to keep the connection open for too long, while waiting

for the data retrieval. The client can keep on polling for

the job output, and will only get redirected to it when

the job has finished. Then it can read the job output

multiple times, or it can decide to delete it. The job

itself can be deleted at any point, thus either implicitly

stopping the job, if it has not finished yet, or deleting

the finished job since it is no longer necessary.

This group of questions followed after all the respon-

dents got introduced to the basics of RESTalk. To test

their ability to read diagrams modeled in RESTalk, we

have posed the following multiple choice questions with

one correct answer (marked in bold):

1. How many resources are created during this conver-

sation:

– none

9 http://docs.aws.amazon.com/amazonglacier/latest/
dev/job-operations.html

– one

– two

– one or two

– more than two

2. What happens when you try to access the job re-

source while the job has not completed yet:

– you get a 200 OK status code and a placeholder

link to where the output will be saved once the

job has completed

– you get a 200 OK status code and can try

to access the job again later

– you cannot send a GET job request before the

job has completed

3. When can you delete the job resource?

– only after the job has completed

– only before the job has completed

– only after having read the output

– only before having read the output

– only after the job has completed and you have

read the output

– only after the job has completed, but before you

have read the output

– at any time after the creation of the job

resource

We have also asked the following true/false/I don’t

know questions (the correct answer can be found in

brackets):

http://docs.aws.amazon.com/amazonglacier/latest/dev/job-operations.html
http://docs.aws.amazon.com/amazonglacier/latest/dev/job-operations.html

14 Ana Ivanchikj et al.

11%	

56%	

62%	

72%	

72%	

77%	

81%	

83%	

85%	

66%	

0%	 10%	 20%	 30%	 40%	 50%	 60%	 70%	 80%	 90%	

How	 many	 resources	 are	 created	 during	 this	 conversa?on	

The	 client	 must	 delete	 the	 job	 output	 resource	 aEer	 it	 reads	 it	

You	 can	 access	 the	 job	 output	 without	 having	 a	 link	 to	 the	 job	 itself	

What	 happens	 when	 you	 try	 to	 access	 the	 job	 resource	 while	 the	 job	 has	 not	
completed	 yet	

The	 job	 resource	 can	 be	 deleted	 without	 dele?ng	 the	 job	 output	 resource	

The	 job	 output	 resource	 gets	 automa?cally	 deleted	 once	 the	 client	 has	 read	 it	

The	 client	 can	 decide	 to	 delete	 the	 job	 output	 resource	 only	 aEer	 it	 has	 read	 it	

When	 can	 you	 delete	 the	 job	 resource	

The	 client	 can	 read	 the	 job	 output	 mul?ple	 ?mes	

Average	

Fig. 17 Assessing the reading of RESTalk diagrams (questions are ordered by percentage of correct answers)

63%	 62%	
65%	 66%	

63%	

0%	

20%	

40%	

60%	

80%	

100%	

120%	

Up	 to	 1	 year	 	
(max.	 6	 persons)	

1	 to	 3	 years	
(max.	 6	 persons)	

3	 to	 5	 years	
(max.	 5	 persons)	

5	 to	 7	 years	 	
(max.	 7	 persons)	

more	 than	 7	
years	

(max.	 3	 persons)	

How	 many	 resources	 are	 created	 during	 this	
conversaDon	

You	 can	 access	 the	 job	 output	 without	 having	 a	
link	 to	 the	 job	 itself.	

What	 happens	 when	 you	 try	 to	 access	 the	 job	
resource	 while	 the	 job	 has	 not	 completed	 yet	

The	 job	 output	 resource	 gets	 automaDcally	
deleted	 once	 the	 client	 has	 read	 it.	

The	 client	 must	 delete	 the	 job	 output	 resource	
aMer	 it	 reads	 it.	

The	 client	 can	 read	 the	 job	 output	 mulDple	
Dmes	

The	 client	 can	 decide	 to	 delete	 the	 job	 output	
resource	 only	 aMer	 it	 has	 read	 it.	

The	 job	 resource	 can	 be	 deleted	 without	
deleDng	 the	 job	 output	 resource.	

When	 can	 you	 delete	 the	 job	 resource-‐	 	

Average	 correct	 answers	

Fig. 18 Assessing the reading of RESTalk diagrams from respondents’ experience perspective

1. You can access the job output without having a link

to the job itself (false);

2. The job output resource gets automatically deleted

once the client has read it (false);

3. The client must delete the job output resource after

it reads it (false);

4. The client can read the job output multiple times

(true);

5. The client can decide to delete the job output re-

source only after it has read it (false);

6. The job resource can be deleted without deleting

the job output resource (true).

As evident from Fig. 17, all of the questions were

answered with more than 50% of accuracy, except the

question regarding the number of resources created dur-

ing the conversation. Since the job can be deleted even

before it is finished, we considered “one or two” as a

correct answer, i.e., either only the job resource or both

the job resource and the job/output resource are cre-

ated. However, as per the discussion with some of the

respondents, probably many of them (63%) consider

Visual Modeling of RESTful Conversations with RESTalk 15

the job/output a sub-resource of the job resource, and

thus have identified “one” as the correct answer. Hence,

if we regard this question as a conceptual rather than

modeling question, and therefore discard it in the cal-

culation, the average number of correct answers rises

from 66% to 73%. On sector level, this indicator is much

higher in academia (86%) than in industry (68%), while

on BPMN knowledge level, it is higher for respondents

with no previous BPMN knowledge (76%) than for re-

spondents with basic BPMN knowledge (70%).

While in the intuitiveness group of questions, the

impact of experience on the correctness of the answers

was evident, this is not the case in the reading task

group of questions, possibly due to the greater com-

plexity of the modeled reality. No meaningful differ-

ences among experience groups have been noticed in

this case. Fig. 18 shows the results as well as the max-

imum number of respondents per group.

Although the correlation coefficient between time to

answer the reading task questions and accuracy of the

answers is not high (0.25), a scattered plot of such cor-

relation (Fig. 19) reveals several clusters of respondents.

Those who rushed through the questions without pay-

ing too much attention (accuracy less than 40% in less

than 10 minutes), those who understood well RESTalk

and/or the REST concept and answered the questions

quickly and accurately, and those who took their time

to reason to get to the correct answers (accuracy higher

than 70% in up to 50 minutes).

0	

10	

20	

30	

40	

50	

60	

0%	 20%	 40%	 60%	 80%	 100%	

Ti
m
e	
to
	 a
ns
w
er
	 (m

in
)	

Accuracy	 of	 answers	

Fig. 19 Correlation between time to answer and accuracy of
answers

4.3.5 Modeling task

We have asked the respondents to use RESTalk to model

the life-cycle of a collection item, i.e., all the possible

CRUD (Create, Read, Update, Delete) operations that

can be performed on the same resource. Only three of

the respondents, all from academia, have performed the

task. They have all modeled the reality from the server’s

perspective, i.e., using just one end event after the re-

source is deleted. Thus, they made the simplification of

only modeling with an end event a conversation which

could never be resumed in the future, and abstracting

from situations where the client ends the conversation

without deleting the resource. They have all correctly

used the activities with the request-response content,

and two of them have also used the hyperlink flow ele-

ment. The exclusive split and join gateways have been

merged in one combined gateway by two of the respon-

dents (Fig. 20 and Fig. 21), while the third respondent

made a mistake in merging the control flows, which re-

sulted with an infinite loop between reading and updat-

ing the resource (Fig. 22).

Fig. 20 Respondent’s model of CRUD operations on a col-
lection item (1)

Fig. 21 Respondent’s model of CRUD operations on a col-
lection item (2)

16 Ana Ivanchikj et al.

Fig. 22 Respondent’s model of CRUD operations on a col-
lection item (3)

The fact that 2 out of 3 respondents have decided

not to use a tool to perform the modeling task, indicates

the appropriateness of RESTalk for both whiteboard

discussions and API documentation. Respondents’ per-

sonal opinion on the matter is presented in Subsec-

tion 4.3.6.

4.3.6 RESTalk’s evaluation

After having used RESTalk, to understand or model a

RESTful conversation, we have posed open-ended ques-

tions to assess whether it is considered easily under-

standable, and how it stands in terms of conciseness

and efficiency compared to the textual or visual no-

tation that the respondents had used before. To give

some structure to the obtained answers, we have clas-

sified them in the groups shown in the graphs (Fig. 23

to Fig. 26).

83% of the respondents have a positive view on the

understandability of RESTalk, finding it easy or some-

what easy to understand. One IT consultant stated that

it is “surprisingly easy”. While almost all the respon-

dents from academia find it decisively easy to under-

stand, industry respondents seem to be more reluctant

(Fig. 23). The ones that did not find RESTalk easy

to understand, did not provide further details for such

evaluation, while others expressed doubts of its under-

standability with more “complex conversations”.

57% of the respondents find RESTalk less time con-

suming than the notation (textual or visual) they had

31%	

88%	

44%	

13%	
25%	

0%	
0%	

20%	

40%	

60%	

80%	

100%	

Industry	 (16	 per.)	 Academia	 (8	 per.)	

Easily	 understandable	

Yes	

Somewhat	

No	

Fig. 23 Assessing RESTalk’s understandability per sector

used before (Fig. 24)10. All the ones who found RESTalk

more time consuming are respondents who have not

used visual notations before to depict RESTful conver-

sations. Thus, it is reasonable that they consider draw-

ing a diagram more time consuming than textual de-

scription. An IT consultant states that a “prerequisite

for easy usage is that the graphical notation can be

derived from a simple textual notation”. As expected,

given the results from the understandability assessment

(Fig. 23), respondents from industry are more skeptical

than in academia (Fig. 25), however the differences are

not as evident as in the understandability question.

57%	

10%	

19%	
14%	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

Less	 Equally	 More	 N/A	

Time	 consuming	
(21	 pers.)	

Fig. 24 Assessing RESTalk’s efficiency

50%	

71%	

14%	

0%	

21%	
14%	 14%	 14%	

0%	

20%	

40%	

60%	

80%	

Industry	 (14	 per.)	 Academia	 (7	 per.)	

Time	 consuming	

Less	

Equally	

More	

N/A	

Fig. 25 Assessing RESTalk’s efficiency per sector

10 N/A stands for persons who did not use any notation
before and thus could not make the comparison

Visual Modeling of RESTful Conversations with RESTalk 17

Of those 18 who responded to the conciseness ques-

tion, 61% consider RESTalk more concise. One respon-

dent states that it “probably depends on the graph and

the number of responses at a given request”. When ana-

lyzing this indicator from the sector viewpoint, contrary

to the previous results, in this case it is the industry re-

spondents who are more united in their positive judge-

ment about RESTalk (Fig. 26).

73%	

43%	

9%	
0%	

18%	
29%	

0%	

29%	

0%	

20%	

40%	

60%	

80%	

Industry	 (11	 per.)	 Academia	 (7	 per.)	

Concise	

Yes	

Somewhat	

No	

N/A	

Fig. 26 Assessing RESTalk’s conciseness per sector

If we define positive sentiment about RESTalk as an

opinion that RESTalk is superior or equal to existing

notations, then a rather high percentage of support is

present in all three indicators (understandability - 83%,

efficiency - 67%, and conciseness - 72%).

Regardless of the above disclosed assessment, all re-

spondents but two are willing to try using RESTalk

in their own projects. One freelance software engineer

states: “it will take some time to get familiar with but

I think we could boost the development process even

more”. An IT consultant, on the other hand, condi-

tions its acceptance to the availability of a specific tool:

“If I could simply generate it from a textual description

of the graphs, I would use it”. 69% of the respondents

seem to have preference for a modeling tool support

for RESTalk to facilitate the drawing, although some

do agree that simple diagrams can also be drawn man-

ually on whiteboards or using existing drawing tools.

One also proposes to develop a tool for automatic ex-

traction of the diagrams from code.

When asked whether they find the HTTP details

(methods, URIs, status codes, links) sufficient for un-

derstanding what the RESTful conversation is aiming

at, 71% have responded affirmatively. Some of the pro-

posed HTTP elements to be added include authenti-

cation details as well as “some additional headers and

parameters”.

Interesting remarks have emerged from open-ended

questions on RESTalk missing elements or ambigui-

ties, as well as RESTful conversations used in practice

which the respondents find challenging or impossible

to model with RESTalk. Although the BPMN model-

ing best practice guidelines [2, Chap. 2] advise not to

use combined gateways (one gateway as both a split

and a join), several respondents have stated that mul-

tiple gateways create unnecessary “visual and mental

distractions”. In BPMN, exclusive gateways are data

based decisions, so some considered it confusing not

having the precise data conditions defined in the gate-

way. Some have also emphasized that RESTalk lacks

details regarding the length of the timer or the maxi-

mum number of iterations allowed in a loop. Also peo-

ple who deal with applications where the state changes

are crucial, have noticed that the state transition is not

explicitly marked in the current version of RESTalk.

Another constructive remark is that currently it is not

clear when there is a dependence between resources

(e.g., a resource and a sub-resource). This is an im-

portant structural aspect, since updating or deleting

the resource might result with the automatic update or

deletion of the sub-resource.

5 Discussion

The purpose of this empirical study was to obtain the

first cycle of feedback on RESTalk, the modeling no-

tation we are proposing, in order to guide further im-

provements. Although 35 respondents might not seem

high as an absolute number, we consider the construc-

tive remarks we have obtained as truly valuable for our

future work.

5.1 Need for a Domain Specific Language

Despite of the fact that currently there is no domain

specific notation for modeling dynamic aspects of REST

APIs, such as RESTful conversations, 38% of the re-

spondents have already used some existing UML stan-

dard notation, or an in-house developed notation, to

depict sequences of client-server interactions. As a CTO

indicates, a notation is “helpful for explaining concrete

scenarios. It permits a ’behind the scenes look’ and

thereby understanding of consequences”. This indicates

that there is an identified need for visualizing REST-

ful conversations in practice. However, even the cur-

rently most widely used notation, the UML Sequence

diagram, has its limitation when it comes to depicting

RESTful interactions. One programmer names the fol-

lowing challenges when using UML Sequence diagrams:

“If you want to know more about an object than just

if it’s engaged (active) in an interaction or not, this

can be difficult to represent on a sequence diagram and

it can make the diagram too complex and unreadable.

Another case when a sequence diagram can become too

18 Ana Ivanchikj et al.

complex very quickly, is when we have multiple objects

and object lifelines that we wish to represent, and the

interactions between the objects are too convoluted to

read”. Our goal with proposing RESTalk as a domain

specific notation is exactly to overcome such limitations

of the existing standards.

5.2 Evaluation of the Cognitive Characteristics of

RESTalk

Since this was an exploratory survey, with no intention

of making statistical inference based on the same, we

have only tackled some of the cognitive dimensions de-

fined in [13], which we considered the most important in

this initial stage of RESTalk’s design. Namely, we have

addressed the consistency, the closeness of mapping and

the abstraction gradient dimensions.

We have taken intuitiveness as a broader approach

to what is considered consistency in [13], i.e., “When

some of the language has been learnt, how much of the

rest can be inferred?”. Without providing any prior in-

formation about RESTalk, it was encouraging to see

that most of the respondents understood great part of

the presented diagram and answered correctly to 77% of

the multiple choice questions. In some cases, we have re-

alized that prior knowledge of BPMN causes certain de-

gree of confusion, particularly in circumstances where,

due to the REST architecture domain characteristics,

there is a slight difference in the semantics between the

standard BPMN Choreography and RESTalk. For in-

stance, while in BPMN Choreography exclusive gate-

ways are data based and explicitly showing the deci-

sion point options is necessary, in RESTful interactions

client’s conditional decisions can be abstracted from.

However, the respondents’ feedback has made us real-

ize that including the rationale behind server’s decisions

could indeed facilitate understanding under which con-

dition each alternative response can be expected. It is

also encouraging to see that even respondents with no

prior BPMN knowledge have high average score of 76%

of correct answers on the reading task.

The results of what is defined in [13] as a “close-

ness of mapping” between the notation and the problem

world, are both positive and beneficial for future im-

provements. Namely, when asked to compare RESTalk

to the BPMN Choreography, all of the respondents have

found it at least equally, if not more concise and expres-

sive. On the other hand, when asked to compare it to

the notation they are currently using only one person

found it less concise, while 61% found it more concise

than what they are currently using. This is an encour-

aging result, since it involves the first iteration of the

design of RESTalk. However, what has been particu-

larly beneficial for us is that the respondents have pro-

vided several examples of conversations which cannot

be modeled with the existing elements in RESTalk. For

instance, conversations where the state transitions are

important for the conversation logic, and should thus

become explicitly visualized. Likewise, in some cases

the number of maximum retries for accessing a tem-

porary unavailable resource are limited and need to be

explicitly specified. Thus, in the future, we can work on

finding a way to effectively deal with such situations.

Another important cognitive characteristic of a no-

tation, which we were interested in, was the “abstrac-

tion gradient”, i.e., the levels of abstraction. While, as

stated in Section 3, we have abstracted from some de-

tails when designing RESTalk, we have intentionally

omitted to state the assumptions and simplifications

behind such abstractions in the tutorial provided in

the survey. We wanted to evaluate whether some ab-

stractions are excessive, and thus respondents would

identify them as missing elements or vice-versa. The

modeling task, for instance, has revealed that the re-

spondents have taken the end event simplification even

further. While we abstract from modeling an end event

after every server response, which is the real world de-

scription, they have opted for only modeling one end

event to show that the conversation can never be con-

tinued in the future. On the contrary, we have used

end events to show all the potentially successful con-

versation logs that can occur in a given conversation.

The reading task, on the other hand, has disclosed that

RESTalk lacks the expressiveness in showing the de-

pendencies between resources, or that the length of the

timer is not specified. Regardless of such findings, the

understandability of RESTalk reaches a fairly high level

of 66% based on the correct answers of the reading

task multiple-choice questions, and an even higher level

based on the respondents’ subjective opinion, where

83% have evaluated RESTalk as easy or somewhat easy

to understand.

To conclude, the predominantly positive sentiment

regarding general understandability, conciseness and ef-

ficiency of RESTalk per se, or in comparison to stan-

dard BPMN Choreography or other visual notations,

and above all the willingness of 88% of the respondents

to put RESTalk into practice, gave us the assurance we

have sought to continue improving RESTalk and deal-

ing with some of the modeling challenges it poses.

In our future work we will need to improve the de-

sign of RESTalk to respond to some of the provided

feedback, either by adding new elements or by introduc-

ing what is defined as a secondary notation, i.e., “use

of layout, colours, other cues to convey extra mean-

Visual Modeling of RESTful Conversations with RESTalk 19

ing” [13] or visual variables (e.g., size, orientation, tex-

ture etc.) [28]. We are aware that there will always be

trade-offs between different cognitive dimensions during

the design of RESTalk. However, the iterative, user-

centric approach we are following should help us find

the sweet spot. After all, we do not propagate using

RESTalk as the sole technique for documenting REST

APIs. It merely focuses on the API’s dynamic behaviour

thus leaving out static details. They can be added to

RESTalk as textual annotations or notes disclosed on

click when using a modeling tool. Or depending on

modeler’s goal, RESTalk can be used as a complemen-

tary technique to already existing techniques, which are

more inclined to static details.

6 Related Work

The related work ranges from structural modeling over

state-based modeling approaches up to tools for API

design.

Schreier [41] has identified structural (static) and

behavioral (dynamic) modeling of REST APIs when

defining a REST metamodel. The static model defines

the structural elements of an API such as the resources,

their URI, the methods that can be called on them,

the supported representation media types etc. Signifi-

cant theoretical work [10,25,15] and tool support (e.g.,

RAML, Swagger, Blueprint, Mashape) has already been

provided for the structural aspect. The behavior model

refers to the request-response interactions and behavior

triggered by method calls. Existing work on the behav-

ioral aspect usually addresses the question of validating

compliance with REST. As such it tends to rely on Petri

Nets [22] or UML state machines [41,36] to depict the

dynamics.

Li and Chou [22] have used Coloured Petri Nets [20],

what they call REST Charts, to model REST APIs as

a set of hypermedia representations and transitions be-

tween them. Later on in [23], they have extended their

modeling framework in order to decouple the resource

representation from the resource connections and to

provide for layered representations. The interaction it-

self is depicted in the transition element, however it

lacks REST specific visual presentation, i.e., the request

and response are not evident in the transition element.

Rauf et al., tackling the research question of design-

ing REST compliant and dependable Web services in a

PhD thesis [36], have identified the necessity of model-

ing the behavior of REST interfaces. They have opted

for using UML class diagrams and UML protocol state

machines to visualize the behavioral interfaces in order

to take advantage of existing tools for model valida-

tion and consistency analysis. While they have focused

on RESTful service composition, our scope is wider and

refers to RESTful conversations which can refer both to

composed and single services. Their model is state cen-

tered and focuses on any data sent with POST, PUT

or DELETE requests in order to trigger the transfer

between states. The GET method is implicitly used to

check for the state invariants. Based on Schreier’s meta-

model [41], van Porten in [35] has developed and eval-

uated a visual notation for modeling Resource-oriented

applications. Beside views for statical aspects, he has

offered two views for dealing with the behavioural as-

pects of the model. One focuses on the behavior of sin-

gle method calls, thus not tackling multiple client-server

interactions. The other view focuses on the state tran-

sitions of a single given resource.

As opposed to the previously mentioned approaches,

our model has the interaction (request-response) as a

first class citizen, and focuses on the hyperlink discov-

ery through navigation. Alarcon and Wilde [1] have also

embraced the important REST principle of interlinked

resources and proposed ReLL (the Resource Linking

Language) for describing REST services. They agree

that the most important aspects in describing REST

services are the links between resources and the neces-

sary interactions to access the resources. The tool, they

have implemented to harvest REST resources, outputs

a typed graph of the discovered resources and the links

between them. RESTalk is more detailed and, in addi-

tion to these elements, it explicitly presents the request

method, server’s responses with status codes and the

control flow. Depending on the targeted user and the

characteristics of the API, different notations can be

used to visualize REST APIs. Mitra [27], for example,

proposes a sketching tool aimed at Web API design-

ers, which offers two different canvas views depending

on the API style, which he calls CRUD and Hyperme-

dia style. The CRUD style reflects the resource, URI

and HTTP method, while the Hypermedia style uses

informal state diagram for visualization. This tool, by

design, does not support logical behavior visualization.

RESTalk, on the other hand, does not only target API

designers, but also API users. It aims at supporting

them in achieving their goals and speeding up their

learning curve by showing all the possible conversations

they can have with the service. Thus we consider some

of the existing work (e.g., [36,27]) as complementary to

ours, offering a different perspective on the REST API

visualization. While other approaches choose to focus

mainly on visualizing state transitions, we have decided

to offer a new viewpoint and focus on interactions.

The necessity of modeling Web service interactions

is as old as Web services themselves. It has led to the

creation of the “Web Services Choreography Working

20 Ana Ivanchikj et al.

Group”11 in 2002 which aimed at defining a vendor-

neutral choreography specification to facilitate service

integration. The Web Services Choreography Descrip-

tion Language (WS-CDL) remained only as a candi-

date standard language since the working group was

closed in 2009. However, graphical representation of the

choreographies was never in the scope of this group.

Nonetheless, meanwhile academia and industry were

working on that aspect of choreographies and came

up with different modeling language proposals such as

Let’s Dance [48] or iBPMN [8]. They have eventually

led to the introduction of the Choreography Diagram in

version 2.0 of the BPMN standard [46, Chap. 5], which

Nikaj et al. [30,31] have used to model RESTful con-

versations by adding REST-specific annotations. How-

ever, since the main targeted domain of these languages

is modeling interactions involving traditional Web ser-

vices, their capability of depicting effectively and effi-

ciently RESTful interactions is limited, which has mo-

tivated our work on visually modifying and extending

the BPMN Choreography.

7 Conclusion and Future Work

Conversations are relevant in the context of REST-

ful Web APIs, because multiple basic HTTP interac-

tions are combined by clients navigating through the

API’s resources guided by the hyperlinks provided by

the server. Thus, the design of RESTful APIs always

consists of conversations and not only, for example, of

the URI patterns and supported media types of its re-

sources. We consider giving a visual representation of

RESTful conversations an important first step towards

understanding and improving how RESTful APIs are

designed, documented, and used. This has motivated

our work on extending the standard BPMN Choreog-

raphy diagrams to create RESTalk, which has a domain

specific focus on the facets of RESTful APIs, e.g., hy-

perlink flow, request-response sequencing [33].

We believe that the doctrine of agile development

should not be limited only to software. The design of

modeling notations also needs frequent iteration, driven

by user feedback. Therefore, after the initial informal

feedback during the European Conference on Software

Architecture (ECSA 2015) [33], we have decided to con-

duct an exploratory survey, as part of our strategy for

gradual improvement of RESTalk. The survey was con-

ducted among both designers of RESTful APIs and de-

velopers of client applications consuming them. Thus,

the main contribution of this article consists of the in-

sight into how well, and to which extent the existing real

11 http://www.w3.org/2005/12/wscwg-charter.html

world practices of modeling RESTful conversations can

be supported. The results of the survey have confirmed

the maturity of the need for a domain specific model-

ing language, and the potential interest in industry for

using such language. They have also provided us with

a good level of confidence in the intuitiveness, expres-

siveness and understandability of RESTalk, the domain

specific modeling language we propose.

The obtained feedback regarding missing or ambigu-

ous constructs, as well as real world problems which

would be difficult to model with the current version of

RESTalk, will be used to improve the language in the

future. Taking into consideration the current trends of

Web service composition and mash-ups, in the future

we will also extend RESTalk to express multi-party con-

versations. We have already started working on some of

these issues and we present our initial ideas in a poster

paper [19], where we apply the notation to model the

Doodle API12. After finalizing such modifications of the

language, in line with our iterative development strat-

egy, we will conduct further surveys and controlled ex-

periments which will focus both on RESTalk and on its

comparison to other notations. The goal is to have as

a final product a domain specific language that helps

RESTful API designers and users to increase their effi-

ciency and improve the quality of their work. We con-

sider it important to assess the potential for RESTalk’s

acceptance in practice before deciding whether tool sup-

port should be provided for it.

On the other hand, based on our experience, ex-

isting literature and informal feedback gathered from

the survey respondents, we plan to use RESTalk to vi-

sually model a collection of frequently used RESTful

conversation patterns and to explore how to compose

together reusable patterns to simplify the modeling of

larger conversations. As Haupt et al. [15] who propose

composite resources to support effective modeling, we

also believe that complex RESTful conversations can be

modelled with the help of interconnected set of simple

named RESTful conversation patterns.

Acknowledgements We would like to thank all of the par-
ticipants in the survey and the anonymous reviewers for their
time and valuable feedback.

12 http://support.doodle.com/customer/en/portal/
articles/664212-doodle-wizard-api

http://www.w3.org/2005/12/wscwg-charter.html
http://support.doodle.com/customer/en/portal/articles/664212-doodle-wizard-api
http://support.doodle.com/customer/en/portal/articles/664212-doodle-wizard-api

Visual Modeling of RESTful Conversations with RESTalk 21

References

1. Alarcon, R., Wilde, E.: Linking Data from RESTful Ser-
vices. In: Third Workshop on Linked Data on the Web.
Raleigh, North Carolina (2010)

2. Allweyer, T.: BPMN 2.0: Introduction to the Standard
for Business Process Modeling. BoD–Books on Demand
(2010)

3. Amundsen, M.: Building Hypermedia APIs with HTML5
and Node. O’Reilly (2011)

4. Barros, A., Dumas, M., ter Hofstede, A.H.: Service In-
teraction Patterns. In: Business Process Management,
LNCS, vol. 3649, pp. 302–318. Springer (2005)

5. Benatallah, B., Casati, F., et al.: Web service conversa-
tion modeling: A cornerstone for e-business automation.
Internet Computing, IEEE 8(1), 46–54 (2004)

6. Cortes-Cornax, M., Dupuy-Chessa, S., Rieu, D., Dumas,
M.: Evaluating choreographies in BPMN 2.0 using an ex-
tended quality framework. In: Business Process Model
and Notation, LNBIP, vol. 95, pp. 103–117. Springer
(2011)

7. Daniel, F., Matera, M.: Mashups: Concepts, Models and
Architectures. Springer (2014)

8. Decker, G., Barros, A.: Interaction Modeling Using
BPMN. In: Business Process Management Workshops,
LNCS, vol. 4928, pp. 208–219. Springer (2008)

9. Fielding, R., Reschke, J.: Hypertext Transfer Protocol–
HTTP/1.1. Request for Comments: 7230 (2014). URL
https://tools.ietf.org/html/rfc7230

10. Fielding, R.T.: Architectural Styles and the Design of
Network-based Software Architectures. Ph.D. thesis,
University of California, Irvine (2000)

11. Gemino, A., Wand, Y.: A framework for empirical eval-
uation of conceptual modeling techniques. Requirements
Engineering 9(4), 248–260 (2004)

12. Goteti, H.: API Driven Development, Bridging the gap
between Providers and Consumers. Tech. rep., CA
Technologies (2015). URL http://rewrite.ca.com/us/
articles/application-economy/apis-bridging-the-

gap-between-providers-and-consumers.html

13. Green, T.R.G., Petre, M.: Usability Analysis of Visual
Programming Environments: A Cognitive Dimensions
Framework. Journal of Visual Languages & Computing
7(2), 131–174 (1996)

14. Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,
Orchard, D.: URI Template. Request for Comments: 6570
(2012). URL https://tools.ietf.org/html/rfc6570

15. Haupt, F., Karastoyanova, D., Leymann, F., Schroth, B.:
A model-driven approach for REST compliant services.
In: International Conference on Web Services (ICWS
2014), pp. 129–136. IEEE (2014)

16. Haupt, F., Leymann, F., Pautasso, C.: A conversation
based approach for modeling REST APIs. In: Proc. of
the 12th WICSA 2015. Montreal, Canada (2015)

17. Hickson, I., Berjon, R., Faulkner, S., Leithead, T.,
Navara, E., OConnor, E., Pfeiffer, S.: HTML5. A vocabu-
lary and associated APIs for HTML and XHTML. W3C
Recommendation (2014). URL http://www.w3.org/TR/
html5/forms.html

18. Hohpe, G.: Let’s have a conversation. Internet Comput-
ing, IEEE 11(3), 78–81 (2007)

19. Ivanchikj, A.: RESTful conversation with RESTalk -the
use case of doodle-. In: Proceedings of the International
Conference on Web Engineering (ICWE’16), pp. 583–587.
Springer (2016)

20. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analy-
sis Methods and Practical Use, vol. 1. Springer Science
& Business Media (2013)

21. Jordan, D., Evdemon, J.: Business Process Model And
Notation (BPMN) Version 2.0. OMG (2011). URL http:

//www.omg.org/spec/BPMN/2.0/
22. Li, L., Chou, W.: Design and Describe REST API with-

out Violating REST: A Petri Net Based Approach. In:
Web Services (ICWS), 2011 IEEE International Confer-
ence on, pp. 508–515 (2011)

23. Li, L., Chou, W.: Designing Large Scale REST APIs
Based on REST Chart. In: Web Services (ICWS), 2015
IEEE International Conference on, pp. 631–638 (2015)

24. Lindland, O., Sindre, G., Solvberg, A.: Understanding
quality in conceptual modeling. Software, IEEE 11(2),
42–49 (1994)

25. Masse, M.: REST API Design Rulebook. O’Reilly (2011)
26. Mell, P., Grance, T.: The NIST Definition of Cloud Com-

puting (2011)
27. Mitra, R.: Rapido: A Sketching Tool for Web API De-

signers. In: Proceedings of the 24th International Con-
ference on World Wide Web, WWW ’15 Companion, pp.
1509–1514. Florence, Italy (2015)

28. Moody, D.: The “Physics” of Notations: Toward a Scien-
tific Basis for Constructing Visual Notations in Software
Engineering. IEEE Trans. Softw. Eng. 35(6), 756–779
(2009)

29. Newman, S.: Building Microservices. O’Reilly (2015)
30. Nikaj, A., Mandal, S., Pautasso, C., Weske, M.: From

Choreography Diagrams to RESTful Interactions. In:
The Eleventh International Workshop on Engineering
Service-Oriented Applications, pp. 3–14 (2015)

31. Nikaj, A., Weske, M.: Formal Specification of RESTful
Choreography Properties. In: Proceedings of the Inter-
national Conference on Web Engineering (ICWE’16), pp.
365–372. Springer (2016)

32. Nottingham, M.: Web Linking. Request for Com-
ments: 5988 (2010). URL https://tools.ietf.org/html/
rfc5988

33. Pautasso, C., Ivanchikj, A., Schreier, S.: Modeling REST-
ful Conversations with Extended BPMN Choreography
Diagrams. In: D. Weyns, R. Mirandola, I. Crnkovic (eds.)
European Conference on Software Architecture, LNCS,
pp. 87–94. Springer (2015)

34. Petre, M.: UML in practice. In: Proceedings of the
2013 International Conference on Software Engineering
(ICSE), pp. 722–731. IEEE Press (2013)

35. van Porten, O.: Development and Evaluation of a Graph-
ical Notation for Modelling Resource-Oriented Applica-
tions. Master’s thesis, FernUniversität, Hagen, Germany
(2012)

36. Rauf, I.: Design and validation of stateful composite
RESTful web services. Ph.D. thesis, Turku Centre for
Computer Science (2014)

37. Richardson, L., Amundsen, M., Ruby, S.: RESTful Web
APIs. O’Reilly (2013)

38. Robillard, M.P.: What makes APIs hard to learn? An-
swers from developers. Software, IEEE 26(6), 27–34
(2009)

39. Robinson, S., Brooks, R., Kotiadis, K., Van Der Zee,
D.J.: Conceptual Modeling for Discrete-Event Simula-
tion. CRC Press, Inc. (2010)

40. Schermann, G., Cito, J., Leitner, P.: All the services large
and micro: Revisiting industrial practices in services com-
puting. Tech. rep., PeerJ PrePrints (2015)

41. Schreier, S.: Modeling RESTful applications. In: Pro-
ceedings of the Second International Workshop on REST-
ful Design, pp. 15–21. ACM (2011)

https://tools.ietf.org/html/rfc7230
http://rewrite.ca.com/us/articles/application-economy/apis-bridging-the-gap-between-providers-and-consumers.html
http://rewrite.ca.com/us/articles/application-economy/apis-bridging-the-gap-between-providers-and-consumers.html
http://rewrite.ca.com/us/articles/application-economy/apis-bridging-the-gap-between-providers-and-consumers.html
https://tools.ietf.org/html/rfc6570
http://www.w3.org/TR/html5/forms.html
http://www.w3.org/TR/html5/forms.html
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/
https://tools.ietf.org/html/rfc5988
https://tools.ietf.org/html/rfc5988

22 Ana Ivanchikj et al.

42. Steiner, T., Algermissen, J.: Fulfilling the Hypermedia
Constraint Via HTTP OPTIONS, the HTTP Vocabu-
lary In RDF, And Link Headers. In: Proceedings of the
Second International Workshop on RESTful Design, pp.
11–14. ACM (2011)

43. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software
Architecture: Foundations, Theory, and Practice. Wiley
(2009)

44. Verborgh, R., Hausenblas, M., Steiner, T., Mannens, E.,
Van de Walle, R.: Distributed Affordance: An Open-
World Assumption for Hypermedia. In: Proceedings of
the 4th International Workshop on RESTful Design, pp.
1399–1406. ACM (2013)

45. Völter, M., Kircher, M., Zdun, U.: Remoting Patterns:
Foundations of Enterprise, Internet and Realtime Dis-
tributed Object Middleware. Wiley (2013)

46. Weske, M.: Business Process Management: Concepts,
Languages, and Architectures, 2nd edn. Springer (2012)

47. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Reg-
nell, B., Wesslén, A.: Experimentation in Software Engi-
neering. Springer (2012)

48. Zaha, J.M., Barros, A., et al.: Let’s dance: A language
for service behavior modeling. In: On the Move to Mean-
ingful Internet Systems 2006: CoopIS, DOA, GADA, and
ODBASE, pp. 145–162. Springer (2006)

49. Zuzak, I., Budiselic, I., Delac, G.: A Finite-State Machine
Approach for Modeling and Analyzing RESTful Systems.
Journal of Web Engineering 10(4), 353–390 (2011)

	Introduction
	RESTful Conversations
	Visual Modeling of RESTful Conversations with RESTalk
	Exploratory Survey
	Discussion
	Related Work
	Conclusion and Future Work

