Team Situational Awareness
and Architectural Decision Making with the
Software Architecture Warehouse

Marcin Nowak and Cesare Pautasso

Faculty of Informatics, University of Lugano, Switzerland
marcin.nowak@usi.ch, c.pautasso@ieee.org
http://saw.inf.usi.ch

Abstract. The core of the design of software architecture is all about
architectural decision making. A high-quality design outcome sets high
requirements, not only on the skills and knowledge of the design team
members, but also on the management of the decision making process.
We claim that in order to deliver high quality decisions, the design team
needs to obtain a high level of situational awareness. To address this, we
present an analysis of the problem of team situational awareness in de-
sign workshops and propose a model on how stakeholder positions help
to build consensus within the argumentation viewpoint of architectural
decisions. We show how the Software Architecture Warehouse tool has
been extended to support the argumentation viewpoint within its live
design document metaphor to provide support for co-located and dis-
tributed design workshops.

1 Introduction

As a result of the trend of globalization in the software industry, remote collab-
oration and decision making within distributed teams is growing in importance.
Due to the complex nature of software systems, the design of software archi-
tecture holds many qualities specific to so-called wicked problems [6,17] and
often cannot be addressed with simple goal-driven optimization methods [7].
To address these problems, the discipline of Software Architecture Knowledge
Management (SAKM [3]) was born and a number of systems specialized in ar-
chitectural decisions management have been proposed (PAKME [4], ADDSS [5],
ArchDesigner [2], (¢)AREL [20], ADgyix [23]). Whereas a subset of these tools ex-
plicitly targets the collaboration needs of distributed or co-located design teams,
only limited support is offered for raising the level of situational awareness in
the context of design workshops.

This paper makes the following contributions: it proposes a novel argumen-
tation viewpoint for capturing architectural knowledge, in which the positions
of multiple stakeholders and design team members can be captured. The po-
sitions follow a well defined life cycle and their state can be aggregated to 1)
determine the level of consensus around each design issue 2) track the progress

2 Software Architecture Warehouse

of the design workshop; and 3) facilitate capturing the rationale of each decision
made by the team. The argumentation view has been implemented as part of the
Software Architecture Warehouse, a collaborative design tool based on the live
design document metaphor. Thanks to its real-time synchronization of design
spaces, it provides an additional, complementary communication channel that
in our experience can enhance the efficiency of both the open, divergent and the
closed, convergent phases of design discussions [10].

This paper is structured as follows: in next Section we present an a brief
relation over background and related work about collaborative architectural de-
cision management; then we delimit the scope of the problem addressed by our
research. In Section three we introduce the concept of argumentation viewpoint.
Section four positions situational awareness in the context of architectural de-
cision making. The Software Architecture Warehouse - the collaborative design
tool implementing the argumentation viewpoint — is presented in Section five.
In Section six we present our preliminary evaluation results and wrap up with
conclusions in Section seven.

2 Related Work and Background

The decision making process [13], and in particular the software architectural
decision making process have been a subject of many studies [9]. The topic of
collaborative design has been less studied and it is only partially supported in
the ISO 42010 decision meta-model [1]. Out of the seven architectural decision
modeling tools reviewed in [19] only three provide support for collaboration, but
none of them is suitable for a low-latency, design workshop environment. Our
work is complementary to existing frameworks and meta-models, since it targets
dynamic decision making activities within a team.

2.1 The problem of collaborative design

The factors that limit the efficiency of the decision making process within a
design team are manifold [10], e.g., the partial overlap of the participants’ ex-
pertise, the complexity of the domain and the wicked nature of the software
architectural design problem [18].

In our experience running design workshops, we have observed that the de-
cision making process can be very chaotic, difficult to control and to organize
without a proper reference framework and tool support. A solid framework for
organizing the decision making process was proposed in [23, Chapter 7].

Another problem is related to the volatility of the decisions. Systematic
recording and documentation of the discussion flow is needed to mitigate deci-
sion evaporation. An open challenge for the architectural decision management
tools is to capture useful content as much as possible during the workshop with-
out hindering the brainstorming or the decision making activities. The goal is to
reduce the cognitive load required to record alternatives and decisions, without
the need to resort to dedicated minute takers or scribes.

European Conference on Software Architecture 2013 3

We also see a big potential in groupware support for creating an environ-
ment in which awareness of the design is shared between team members. Due to
the inherently limited and partially overlapping expertise of each design team
member, in order to achieve high decision quality, the efficient reuse of previous
decision experience is essential. In other words, before making design decisions,
it is essential to elicit and decide what is to be decided out of the available design
space. The elicitation of design issues can be done offline as part of the workshop
preparation, but the selection of relevant architecture alternatives sometime can
only happen during the live brainstorming.

Another major difficulty in efficiently running architectural design workshops
is to keep the focus of the entire design team on the same design issue. In a
co-located design workshop, thanks to high bandwidth of face to face communi-
cation, depending on the size of the team, this requires some good moderation
by the lead architect, but still may be time consuming. Due to the more limited
communication bandwidth, in distributed workshops it becomes more challeng-
ing to keep the collective attention of all remote participants in focus. This is
critical when pruning possible alternatives: as the decision making time grows
near, all team members need to be aware of which decision is about to be made.

Another fundamental problem concerns the nature of the architectural de-
sign solutions. There are many ways how solution can be unsuitable for the
stakeholders. The most critical cases are when solution is either internally in-
consistent (decisions contradict each other), or unacceptable (due to violation
of constraints). These two cases can be relatively easily eliminated when using
a systematic decision making process that includes solution validation activities
(see [23]). Tt is often the case that there are multiple valid, acceptable solutions.
In such situation the best solution candidate should be chosen by evaluating its
value for the stakeholders. Given that only some of the qualities of the solution
are easy to assess quantitatively, this process can be automated (see [7]) only to
a certain extent. When the alternative solutions lie on the Pareto frontier, it be-
comes necessary to trade-off different quality attributes against one another. It
is particularly challenging to do so without a high level of situational awareness
among the design team.

All in all, out these challenges, in this paper we target the need for 1) prepar-
ing the discussion by re-using existing architectural knowledge; 2) focusing the
attention of the team; 3) recording the individual position of each stakeholder;
4) making the consensus building process transparent.

2.2 From situational awareness to good decisions

One fundamental assumption that we are making in this paper is that good
design decisions are well-informed decisions made by a team with a high level of
situational awareness.

Situational awareness is the term used to describe the perception and com-
prehension of a particular environment, which can vary — as proposed by [8] —
across three levels:

4 Software Architecture Warehouse

— Perception (SA;) — the status, properties, features of relevant elements of
the environment are recognized and monitored,

— Comprehension (SAj) — making sense of, recognizing relations, and inter-
preting the values of the attributes perceived on the previous level (SA1),

— Projection (SAj3) — predictions over the future state of the environment
are made based on the knowledge about its current condition (SA;) and
expected dynamics (SAsq).

The original application of the concept of situational awareness was in the
applications involving efficient decision making within fast-changing, dynamic
environments such as emergency services or battlefield operations. Under such
conditions, for the sake of efficiency, decision making is often centralized and
authoritative and must happen within strict time limits. Such strategy is often
not suitable for the situations when the expertise required to make decisions is
distributed among multiple stakeholders.

Although conditions requiring situational awareness of the battlefield are sig-
nificantly different from the ones within an architecture design workshop, we find
a certain number of similarities that lead us to propose to apply the concept of
team situational awareness to enhance the efficiency and quality of the collabo-
rative architecture design process. In particular the situational awareness shared
among the whole team can help to efficiently argument and build consensus
about each decision. A design team sharing a high level of situational awareness
can gather relevant information, interpret it from different viewpoints of the
involved stakeholders, exchange (well grounded and justified) positions based
on assumptions, expectations and predictions over the quality of the resulting
architecture, and eventually converge to a single consensus decision.

3 Decision Model and Argumentation Viewpoint

The starting point of our considerations is the decision meta-model proposed

in the standard ISO 42010 [1] (see Figure 1). We propose to use the Archi-

tectural Decision entity (see Figure 2) to establish a relation between a design
issue (representing the problem domain) and multiple design alternatives (from

the solution domain). This is similar to what Kruchten proposes in [14] with a

relation type named is an alternative to which is meant to relate decisions

“addressing the same issue”. Similarly to [11], we propose to introduce the De-

sign Issue as a first-class entity. An advantage of representing design issues and

design alternatives explicitly, is that identification and reuse of design decisions

is promoted [15].

The argumentation viewpoint we propose consists of:

Design Issue — A reusable aspect of the system design (from the problem do-
main) that can can be addressed with one or more design alternative to
produce an architectural decision model.

Design Alternative — An action, method, or pattern that can be used to ad-
dress particular design issues. In some cases, each design alternative can be
reused within the context of multiple design decisions.

European Conference on Software Architecture 2013 5

Concern
raises 4 0...n | 4 pertains to
0...n 0..n
] 0

Architecture Element]
affects=

0...n .
— Rationale
<= justifies

Fig. 1. Elementary architectural decision meta-model after ISO 42010 [1]

Architecture Decision
depends upon J

Position — A subjective take of a design team member on a design alternative
applied in the context of particular design issue. For example, the position
can be positive, negative, or neutral. The rationale for the position can also
be captured with a natural language description. This can be complemented
by a weight associated to the uncertainty or confidence level of the position.

In the simplest case, undecided or open architectural decision would be rep-
resented just by the design issue with no alternatives or positions associated to
it. Normally, the agenda of a design workshop includes a set of open design is-
sues to be discussed. During the workshop, the design team elicits, generates or
captures one or more design alternatives that are related to the design decision
under discussion. At this point, positions are used to state the subjective eval-
uation of each stakeholder or each design workshop participant. Additionally,
positions can be justified by relating them to the decision force or an action
(see [22]) that a particular stakeholder recommends to be taken. This provides
added value by helping to refine and express the rationale justifying the position.
The uncertainty of the position can be explicitly expressed by the stakeholder
so that its weight can be taken into account while bringing the decision process
to the end. The result is a closed architectural decision which binds the design
issue with the chosen alternative.

addresses =-n
0...n 4= recommends 0..n 4‘ Design Issue
Action

0...n

0...n
l..n states= 0..nf » 0...n Architecture 1
Stakeholder POSIMn solves
0...n

__ 0...n = addresses 0...n 0...n 0..n
Decision Force 0...n i)
Design Alternative
addresses m

addresses § raises §

0...n

0...n
@: § pertains to
l..n

Fig. 2. The argumentation viewpoint meta-model of the architectural decision with
Position related to other decision model elements: Action, Stakeholder taken from [21],
Decision Force from [22].

6 Software Architecture Warehouse

Architecture Design Stakeholder

Design | o] -
esign Issue Decision Alternatives Positions

Al

WS-Security

Web Services
Security Mechanism

plain-text

Fig. 3. An example design decision from the service oriented architecture design space
together with a number of positions

In Figure 3 we present an example of a design decision from the design space
of service oriented architectures. Three design alternatives have been proposed
to address the design issue of selecting a Web services security mechanism. Six
stakeholders positions have been recorded. Colors and symbols reflect the actions
(see [21, Fig. C.3]): green (+) for validate and red (-) red for reject respectively.

3.1 The life cycle of positions within alternatives

At the beginning of the workshop, each architectural decision starts with no
stakeholders’ positions recorded (Figure 4). The aligned state is reached when all
the positions associated to one alternative refer to the same action. For example,
in Figure 3 all positions related to HTTPS are positive. This can be interpreted
as representing the state of consensus among all stakeholders. The colliding set
of positions exists when positions refer to more than one different action. In the
example, both positive and negative positions are associated with WS-Security.

In this situation, when stakeholders cannot agree on the action to be taken,
the architect leading the workshop can solve the conflict by overriding the con-
flicting positions expressed by the team members. Thus, after manually naming

Inconclusive Decided

No Positions Aligr]ed
Positions
Colliding Sealed
Positions

Fig. 4. The state diagram of the life cycle of architectural alternatives. The state of
the alternative is aggregated from the actions of its positions.

A\

European Conference on Software Architecture 2013 7

one action as being the outcome of the discussion, it will proceed to seal the al-
ternative, marking the end of the discussion. The state in which there are either
no positions recorded, or positions are colliding will be referred as inconclusive;
conversely aligned or sealed positions will be referred to as decided.

3.2 The life cycle of a design decision

The aggregated state of architectural decisions made over the design alterna-
tives within the context of a particular design issue can be conveniently used to
monitor the progress of the decision making process (see Figure 5).

Design decisions about a given design issue start their life-cycle with no
alternatives recorded. As the design progresses, stakeholders elicit (or reuse) one
or more relevant design alternative, leaving the design decision in the state with
no decisions, since no single alternative has yet been selected. Later, stakeholders
record their positions and make decisions. In the situation when at least one
alternative is in an inconclusive state, one can speak about incomplete choice.
The case when all design alternatives are decided, we recognize three types of
complete choice. To distinguish them we need to check not only whether there
is an agreement on the positions about the alternative, but also on whether the
agreement is about a positive (i.e., acceptance, validation, approval — see [21]),
or negative (i.e., rejection) decision. Rejected alternatives are discarded and
based on how many alternatives remain we distinguish: 1) the conclusive choice
happens when there is exactly one remaining alternative; 2) the inconclusive
choice happens where there are multiple acceptable alternatives; 3) the warring
choice represents the case where no alternative is left on the table.

In the example shown in Figure 6, we see a design decision with four alterna-
tives. The first two (BEEP, TCP) have been rejected, while the last two (MQ,
HTTPS) have been validated. Therefore the state of decision is inconclusive,
since there is more than one alternative left. Assuming that only one alternative
is required to settle the issue, another iteration of the discussion will be required
to refine the choice among the two remaining alternatives, for example, based on
additional constraints given by other design issues, concerns or decision forces.

Conclusive Inconclusive Warring
Choice Choice Choice

Complete Choice

Incomplete
> Choice

Fig. 5. The state diagram of the life cycle of a design decision. The state of the decision
is aggregated from the state of its alternatives.

8 Software Architecture Warehouse

Design Decided
Alternatives Positions

Design Issue Architecture Decision

[Transport Protocol

Fig.6. An example design issue of a transport protocol selection with four design
alternatives (protocols) and a complete, inconclusive choice between the alternatives

4 Shared situational awareness of the design space

In the previous sections we have introduced the concept of situational awareness,
we scoped the problem of collaborative decision making and finally, we proposed
the argumentation viewpoint for modeling architectural decisions. In this section
we combine those elements into a mechanism for supporting design teams in the
efficient design of software architecture.

First we shall explain that by shared situational awareness, in the context
of the architectural decisions, we understand 1) providing decision stakeholders
with a customized view over the design space that delivers exactly the infor-
mation needed for making high quality decisions, 2) providing the means to
synchronize the focus of attention of the team, and 3) recording, sharing and
analyzing the positions of the design workshop participants. The aim of the first
two techniques is to bring the situational awareness of the team to the level of
perception (SA;), whereas the third enables comprehension (SAs).

Architecture design is a process leading the design team towards the creation
of software architecture that has qualities desired by the stakeholders. In general
terms, decision making within the design can be principally divided into two
modes [12]. The first mode, so-called open, happens when the design discussion
tends to be divergent and exploratory both in the problem and the solution
domains. In this mode, new design alternatives are discovered and new design
issues are identified. The closed mode, instead, is used to evaluate features and
properties of elicited design issues and alternatives. At first, during the fast
triage, unfeasible design alternatives are quickly excluded from the scope of the
design space. Next, based on the stakeholder’s evaluation choices are made within
the “closed” project design space. In fact, there is no strict temporal separation
between these two modes of operation. Often, transitions between open and
closed are needed due to the refinement of the available domain expertise that
implies need for readjustment of the choices previously made. In a way, the
synergy between open and closed decision making modes is similar to the twin
peaks model relating software architecture and requirements engineering [16].

European Conference on Software Architecture 2013 9

Within these modes we are going to make a distinction between collocated
and distributed team configurations. In both setups we assume that all team
members have personal computers and network connectivity. In the collocated
configuration the team is sharing a meeting room with common facilities such as
whiteboard and beamer. In the distributed configuration, additionally we assume
that team sites are connected through audio (and video) conferencing systems.

4.1 Open mode, divergent discussion

In the open mode, the design team brainstorms freely over an open design space,
creates, edits and destroys design issues, alternatives and decisions. The main
needs of the team operating in this mode are related to the efficient capturing of
decision model items without getting in the way of the decision making process.
The captured information needs to be delivered to the all design team mem-
bers in a form that stimulates further brainstorming. Not getting in the way is
particularly important in the co-located scenario, when the bandwidth of the
face to face communication is very high and — for some kind of interactions — a
collaboration tool may become an obstacle. The clear benefit of tool-supported
collaboration in this phase lies in the efficiency of generating new design alter-
natives in parallel, since each participant can propose his ideas through the tool
interface. The moderator can drive the discussion towards the new contributions
in due time, but in any case, the proposed alternatives do not evaporate. Further-
more, thanks to the shared view over the design space and the low-latency with
which additions are propagated, everyone on the team is aware about everyone
else’s contributions (and thus redundant contributions can be culled).

4.2 Closed mode, convergent discussion

In the closed mode, the design team focuses mainly on the evaluation of the
elicited design elements in order to find and agreement over a possibly optimal
solution. To this end we find it particularly important to build a shared awareness
of stakeholders’ positions about the design alternatives in question. This can be
achieved by sharing each position in real-time within the context of particular
design issues and alternatives. For small, co-located teams such awareness can
be intuitively built by the design team leader summarizing the current state of
the discussion, but in large and/or distributed teams, management of explicit
stakeholders’ positions is essential.

The efficient capture and reuse of the design discussion comes with the risk
of easy derailment in case when it is not moderated appropriately. Discussion
moderation of the co-located team can be done by the lead architect by bringing
the attention of the group to the particular topic, which can be for example
visualized on the beamer. The non-verbal communication bandwidth in the dis-
tributed configuration is very limited, so we see a big potential in asynchronous
sharing of design space pointers and view references in a manner similar to in-
stant messaging systems. These pointers identify a design issue, alternative or a
decision and are particularly useful to bring the attention of the design team to

10 Software Architecture Warehouse

staging.saw.sonyx.net

Modes: Projects Active project: Web Services Logged as: marcin.nowak@sonyx.net
Status: Ready (0,0,0)

Design Issue details: EReXd W New Alternative

Name ServiceCompositionLanguage m

The discussion accompanying SE Radio episode 85 touches upon the topic: http://www.se-radio.net/podcast/2008-
Background 02 /episode-85-web-services-olaf mann "Web Services Platform Architecture” by S. Weerawarana et al provides
an in-depth introduction to the relevant standards.

Con

Importance of standardization and tool support, as well as expressivity of the workflow language and required education
Drivers are some of the key decision drivers. Here, we assume that the Service Composition Paradigm, decided on the ¢ Proprietary languages

conceptual level, is workflow. cannot be used by
other engines.
Proprietary languages
B I U:iZi= have proprietary
development tooling.

Status to be reviewed semi-anually

BPEL i the recommended, state-of-the-art choice for true, long-running workflow scenarios; proprietary languages in

Recommendation |sofrware package can be used if such packages are already in use. Java development is a solid fallback. Service Proprietary languages
composition is a key element of the SOA value proposition; flexibility is a key requirement. The decision scope might be lacks support for
process, subprocess or service - one-size-fits-all desired, but not always possible. standardized forms of

compensation, event
handling, and fault
Handling.

Status: No decisions were made yet

@ Alternative (0 Decisions, 3 in other projects) L SL %o i Positions O B R e D
Name Other workflow language, midd|eware or software package (e.g. FDL, jOpera, SAP) Positive workflow pattern
KnownUses Many existing workflow references Negative B
B Open benefits of workflow
Background Product information pattern
Pros (empty) * Proprietary
technology
Cors (empry) ® Rather steep |earning
Incoming relations: curve, graphical
(reverse) programming not
[ii] Tagging (Pro) Typically, vendor-specific languages can make use of vendor-specific runtime features mainstream
Pro

(reverse) (Con) Proprietary languages cannot be used by other engines. Proprietary languages have

.

Typically, vendor-

[ill Tagging Y tooling. Proprietary | lacks support for standardized forms of y
by compensation, event handling, and fault Handling. specific languages
(reverse) can make use of
[ii] Tagging (Project) IBM adWiki SOA sample vendor-specific
by runtime features

.

Mature, typically same
as Level 3 choice, so
less education efforts

‘Outgoing relations:
[ill Solves (Issue) ServiceCompesitionLanguage

Fig. 7. A detailed view of the design issue during the collaborative editing of one of
its attributes

a particular attribute or feature. Being able to efficiently share a precise refer-
ence to a view over the design space is very useful to synchronize the focus of
attention quickly and then proceed with the decision making to converge.

5 The Software Architecture Warehouse

In this section we present details of the prototypical functionality that we im-
plemented in the Software Architecture Warehouse (SAW) to address the needs
and requirements introduced in the previous sections.

5.1 Shared design space awareness

SAW is implemented as a tool to help the entire software architecture design
team achieve a high level of situational awareness about architectural decisions
and the corresponding design space being traversed during a design workshop.
In order to provide designers with an elementary (perception) level of the shared
awareness (SA;) we have introduced the live design document metaphor. Any

European Conference on Software Architecture 2013 11

800 staging.saw.sonyx.net

@ [@ staging.saw.sonyx.net

Modes: Projects Active project: Web Services Logged as: marcin.nowak@sonyx.net
Status: Ready (0,0,0)

Issue: Status: No decisions were made yet [5G RNE GRS Details Remove Delete New |ssue

Service Description

Alternatives: (" Import Project |
[ii WADL No positions " Export Project
[ii] Textual Documentation No positions T —
o te Proje
[u] XML Schema No positions Py
i WL No positions (Report (Tabular} |
Type to search or add new Alternative ... "Report (Bullets)

P— " Reuselssue
Issue: status: No decisions were made yet [GLPNEGETEY (o 01 Ramgva D€|5l8
Reliability

Alternatives:
[ii] Native No positions
[il] HTTPR No pesitions
[ii] WS-Reliability No positions
[ii] ws-ReliableMessaging No positions
[ii] Do-it-yourself No positions
Type to search or add new Alternative ...

Issue: Status: Decided Add Alternative] Details

Web Services Security Mechanism

Alternatives:
[ii] plain-text Aligned: Negative
[il] HTTPS = HTTP + S5L Aligned: Positive

[ii] WS-Security Aligned: Negative
Type to search or add new Alternative ...

Fig. 8. A project details view listing referenced design issues together with design
alternatives

change to the design elements and relations between them are immediately prop-
agated (with low-latency) to all the design team members participating in the
workshop (see Figure 7). Due to the connected nature of the architectural deci-
sion representation, the live-document paradigm extends beyond content updates
within particular views. To this end, SAW propagates design space alterations
to all views. For example alterations made to a design alternative are instantly
reflected in the project details and project summary views (see Figure 8). To
deal with conflicting edits, SAW follows an optimistic strategy whereby users
can see which parts of the document are being edited by others and thus can
refrain from entering concurrent modifications. The same mechanism also helps
users to see where the attention of other users is being directed.

Additionally, in order to ease interpretation of the decision state, and thus
bring users to a higher level of situational awareness (comprehension - SA;) we
have implemented visual aids indicating the state of particular design space el-
ements. For example the decision status of the design issues and alternatives is
color-coded so that stakeholders can get an overview at first glance about the
level of consensus (see Figure 9). Also in the case of positions, new contribu-
tions can be entered in parallel and updates are immediately propagated to all
participants.

Targeting the projection level of situational awareness (SAs), participants
may base their positions on the knowledge associated with each design issue al-
ternative (e.g., decision drivers, concerns). Likewise, they may navigate through
the design space following arbitrary kinds of relationships (influence) between

12 Software Architecture Warehouse

eoe staging.saw.sonyx.net "

(sl IE2[© st saw sorye et ¢ Juieadeall 0]

Modes:

Projects Active project: Web Services Logged as: John Smith
Status: Ready (0,0,0)

Design Issue details: EE$®XCd W New Alternative
Name Web Services Security Mechanism
Background (empty)
Drivers Vendor support, encryption strength
Status open for new developments

Recommendation simplicity and flexibility

Status: Alternatives have colliding decisions.

) Alternative (2 Decisions, O in other projects) Lol Y4 Wi} Positions
Name plain-text Revoke
Decision Rationale Author Timestamp
[i] MNegative lack of encryption is unacceptable marcin.nowak@sonyx.net 20:13 2013-04-15 Open
[i] Positive fast and simple John Smith 14:48 2013-04-16 Edit Rationale
) Alternative (1 Decisions, 0 in other projects) <<% X3d 1 Positions
Name HTTPS = HTTP + SSL Positive
Decision Rationale Author Timestamp Negative
fij Positive simple and marcin. k yx.net 20:13 2013-04-15 Open
) Alternative (2 Decisions, O in other projects) Lol Y4 Wi Positions
Name WSs-Security Positive
Decision Rationale Author Timestamp
il Negative burdened with compatibility problems marcin.nowak@sonyx.net 20:14 2013-04-15 Open

b

Negative implementation problems John Smith 20:18 2013-04-15 Edit Rationale

Fig.9. A view presenting a design issue with three alternatives, two of which have
aligned positions (second and third), the other (first) has colliding positions.

issues and/or alternatives. This way, the impact of decisions can be analyzed
from a global perspective.

5.2 System architecture

Client-Server split — Traditional Web applications rely on the thin-client
paradigm. Over time, many server-side Web-frameworks were conceived to cope
with the growing complexity of Web applications (RoR, Django, etc.). The tra-
ditional Web applications leave all MVC layers to be handled by the server side,
leaving only view rendering for the Web browser. This approach has the advan-
tage of containing all application code within a single location, however it is not
suitable to support the live document metaphor. Since every user interaction
with the system triggered a call to a rather heavy server-side stack, the result
was rather limited scalability. In the process of architecting and implementing
SAW we have soon realized that the level of interactivity required to realize the
desired liveness of the user experience could not be implemented with the use
of traditional server-side frameworks. To this end we have implemented server-
side SAW as a thin layer wrapping a NoSQL database. The interactive user-
interface is implemented following the MVVC pattern in JavaScript (with Back-
bone http://backbonejs.org/ and Marionette http://marionettejs.com/).

European Conference on Software Architecture 2013 13

Node graph observer, notification system — SAW uses the graph paradigm
to persist decision models and design spaces. In order to deliver high user aware-
ness over the shared design space, a suitable data replication mechanism is
needed. We have implemented a light-weight notification mechanism, which dis-
tributes identifiers of the altered graph nodes, so that clients can reload node
data if needed. In case when the graph structure changes, by creating or remov-
ing edges between nodes, a notification of this event is propagated to the nodes
influenced by the change (see Figure 10). The notification system is very general
and has also been used to implement the view pointer broadcast feature.

Decision

Legend

Design Item

1

:

Tagging

Ta .
9 Alternative

Fig. 10. Event propagation over the shared graph model. Views can subscribe to ob-
serve changes within a certain distance of their model elements

6 Formative Evaluation

The concept of team situational awareness and its support within the Software
Architecture Warehouse has been validated through three formative evaluation
cycles over the past 2 years. Different releases of SAW has been used in more
than 50 co-located design workshops, with groups of 5-10 students attending
each session. In some cases, the same participants have repeatedly used the tool,
and provided us with feedback about its progress, performance and usability.
The participants played the role of software architects (including the lead ar-
chitect), software developers as well as other stakeholders, such as customers or
end-users of the systems being designed. SAW has also used in distributed design
workshops over conference calls and in hybrid workshops with some co-located
participants and others connecting remotely. For space reasons we focus in ana-
lyzing the experience we have gathered in the co-located design workshops. The
feedback received has helped to refine the concept of team situational awareness
and improve the tool usability and scalability.

We have observed that the usage patterns and load may greatly vary in
intensity over a design workshop session (in average 2h), making the real-time

14 Software Architecture Warehouse

performance requirement very challenging to achieve without sufficient resources
on the server-side and over an unreliable network. We have tested the perfor-
mance of the system, and there is no noticeable delay of event propagation with
up to 20 participants who are collaboratively editing a design space made of up
to 100 issues (with 5 alternatives each). The tool is also ready for a Cloud-based
deployment and each tier can be separately distributed for additional perfor-
mance.

Concerning the impact on the cognitive load of the lead architect, we have
found out that only users that have accumulated some experience with the tool’s
user interface can be effective in capturing the discussion while leading it. In
other cases we had to resort to recruiting minute takers (or scribes) that would
act as a proxy between the lead architect at the whiteboard and the design
decisions tracked by the tool and displayed with the beamer. In general, since
all participants have the possibility to contribute their input into the shared
knowledge repository, over multiple sessions, we observed that it was no longer
necessary to employ a single dedicated scribe as this role was spontaneously
shared among all participants, after they realized about the presence of the
additional communication channel.

The feature to broadcast pointers over the design space was suggested by one
user in order to make it efficient to navigate to a specific design view. The user
would copy and paste the URI of the page displaying the relevant information
and share it with the rest of the participants with an instant messenger. After
observing this behavior we decided to implement explicit support for this feature
by taking advantage of the existing notification infrastructure. This way we can
guarantee that it is very efficient to ensure that all participants are seeing the
same view at the same time.

Concerning the tracking of positions within the argumentation view, we ex-
perimented with two levels of detail. The initial lightweight solution was a simple
positive or negative vote over each alternative. Then we added the ability to re-
tract positions and recast votes, since people needed to be able to change their
mind as the consensus building process was taking place. At a more fine-granular
level, users can also enter the rationale and confidence level of their position. This
required additional time and effort and has been met with some resistance. In
particular, not all users can immediately and independently provide a rationale
for their position and prefer to wait for others to express their viewpoints and
piggy back their position on the previous ones.

Another feature added based on explicit user feedback, was the ability to seal
the state of decisions to explicitly mark the conclusion of the discussion over
certain issues. This has also been used to track the progress of the workshop.
This way the tool can provide a separate list of open issues, which need to be
decided upon - this list keeps shrinking during the closed phase of the discussion,
providing all participants with a sense of accomplishment, while the list of sealed
and decided issues grows.

We have also observed that SAW added an additional communication chan-
nel to the discussion, in a way that workshop participants could contribute to

European Conference on Software Architecture 2013 15

the design space without interrupting the ongoing discussion. Similarly, some
participants which were intimidated by the lead architect, felt empowered to
make their contributions through SAW, silently and in the background. Once
discovered by the rest of the team, these contributions have often proven to be
highly relevant for the quality of the final design.

In the feedback surveys we conducted, the majority of workshop participants
reported that thanks to the possibility to access shared positions of other de-
signers, they felt more confident about the quality of the decisions being made
during the design workshops actively supported with SAW.

7 Conclusion

In this paper we have performed an analysis of the problem of collaborative de-
cision making in the context of software architecture design workshops. Based
on the idea of enhancing the situational awareness of the whole design team, we
have proposed a novel argumentation viewpoint of the standard software archi-
tectural decision model and discussed the life cycle of design decisions within the
open and closed phases of a lightweight collaborative design process. The con-
cepts presented in this paper are fully implemented by the Software Architecture
Warehouse, a prototype architectural decision management tool targeting real-
time support for co-located and distributed design teams. Selected aspects of
the tool architecture have been discussed together with the promising results of
our preliminary evaluation.

Future work aims on developing metrics and detection strategies to raise
further the team situational awareness to the projection level (SA3). In the near
future we plan an extensive evaluation with our industry partners for closely
studying the dynamics of collaborative design processes within distributed design
teams.

Acknowledgement This work is partially supported by the Swiss National
Science Foundation with the CLAVOS project (Grant Nr. 125337).

References

1. ISO/IEC 42010 — Systems and software engineering — architecture description,
2011.

2. T. Al-Naeem, I. Gorton, M. A. Babar, F. Rabhi, and B. Benatallah. A quality-
driven systematic approach for architecting distributed software applications. In
Proc. of the 27th International Conference on Software Engineering, 2005.

3. M. A. Babar, T. Dingsgyr, P. Lago, and H. van Vliet. Software Architecture Knowl-
edge Management - Theory and Practice. Springer, 2009.

4. M. A. Babar and I. Gorton. A tool for managing software architecture knowl-
edge. In Proceedings of the Second Workshop on SHAring and Reusing architectural
Knowledge Architecture, Rationale, and Design Intent, SHARK-ADI 07, 2007.

16

o

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Software Architecture Warehouse

R. Capilla, F. Nava, S. Pérez, and n. Juan C. Due’ A web-based tool for managing
architectural design decisions. SIGSOFT Softw. Eng. Notes, 31(5):4, 2006.

J. Conklin. Dialogue Mapping. Wiley, 2006.

T. de Gooijer, A. Jansen, H. Koziolek, and A. Koziolek. An industrial case study
of performance and cost design space exploration. In International Conference on
Performance Engineering, 2012.

M. R. Endsley. Theoretical underpinnings of situation awareness: a critical review.
In M. R. Endsley and D. J. Garland, editors, Situation Awareness Analysis and
Measurement, Mahwah, NJ, USA, 2000. Lawrence Erlbaum Associates.

D. Falessi, G. Cantone, R. Kazman, and P. Kruchten. Decision-making techniques
for software architecture design: a comparative survey. ACM Computing Surveys,
43, 2011.

R. Y. Hirokawa and M. S. Poole, editors. Communication and Group Decision
Making. SAGE Publications, Inc, 2nd edition, 1996.

A. Jansen and J. Bosch. Software architecture as a set of architectural design
decisions. In Proceedings of the 5th Working IEEE/IFIP Conference on Software
Architecture WICSA 05, 2005.

D. S. Kerr and U. S. Murthy. Divergent and convergent idea generation in teams:
A comparison of computer-mediated and face-to-face communication. Group De-
cision and Negotiation, 13:381-399, 2004.

G. Klein. Sources of Power. MIT Press, 1999.

P. Kruchten, P. Lago, and H. van Vliet. Building up and reasoning about archi-
tectural knowledge. Quality of Software Architectures, pages 4358, 2006.

M. Nowak, C. Pautasso, and O. Zimmerman. Architectural decision modeling
with reuse: Challenges and opportunities. In Proceedings of the 5th Workshop on
Sharing and reusing architectural knowledge SHARK 10, 2010.

B. Nuseibeh. Weaving together requirements and architectures. IEEE Computer,
pages 115-119, 2001.

C. Potts and G. Bruns. Recording the reasons for design decisions. In ICSE, pages
418-427, 1988.

C. Potts and G. Bruns. Recording the reasons for design decisions. In Software
Engineering, 1988., Proceedings of the 10th International Conference on, pages 418
—427, apr 1988.

M. Shahin, P. Liang, and M.-R. Khayyambashi. Architectural design decision:
Existing models and tools. In Joint Working IEEE/IFIP Conference on Soft-
ware Architecture 2009 and European Conference on Software Architecture 2009,
WICSA/ECSA 2009, pages 293-296, 2009.

A. Tang, Y. Jin, and J. Han. A rationale-based architecture model for design
traceability and reasoning. Journal of Systems and Software, 80(6):918-934, 2007.
U. van Heesch, P. Avgeriou, and R. Hilliard. A documentation framework for
architecture decisions. Journal of Systems and Software, 85(4):795-820, 2012.

U. van Heesch, P. Avgeriou, and R. Hilliard. Forces on architecture decisions - a
viewpoint. In Joint Working IEEE/IFIP Conference on Software Architecture and
European Conference on Software Architecture, WICSA/ECSA, Helsinki, Finland,
August 20-24. IEEE, 2012.

O. Zimmermann, J. Koehler, F. Leymann, R. Polley, and N. Schuster. Managing
architectural decision models with dependency relations, integrity constraints, and
production rules. Journal of Systems and Software, 82(8):1249 — 1267, 2009.

