

Web API Design and Evolution

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Souhaila Serbout

under the supervision of

Prof. Dr. Cesare Pautasso

February 2025

Dissertation Committee

Prof. Dr. Gabriele Bavota Faculty of Informatics of the Università della Svizzera italiana
Prof. Dr. Michele Lanza Faculty of Informatics of the Università della Svizzera italiana

Prof. Dr. Jordi Cabot Luxembourg Institute of Science and Technology
Prof. Dr. Uwe Zdun Faculty of Computer Science of the University of Vienna

Dissertation accepted on 19 February 2025

Prof. Dr. Cesare Pautasso
Research Advisor

Faculty of Informatics of the Università della Svizzera italiana

The PhD program Director
Prof. Walter Binder / Prof. Stefan Wolf

i

I certify that except where due acknowledgement has been given, the work presented in this thesis is that of the
author alone; the work has not been submitted previously, in whole or in part, to qualify for any other academic
award; and the content of the thesis is the result of work which has been carried out since the official commence-
ment date of the approved research program.

Souhaila Serbout
Lugano, 19 February 2025

ii

To my loved ones

iii

iv

Science will not give you part of itself until you
give it all of yourself

Avicenna

v

vi

Abstract

Web APIs (Application Programming Interfaces) are a cornerstone of modern software development, enabling inter-
operability and integration across diverse systems. Despite their importance, there is a lack of large-scale empirical
studies on the design, evolution, and versioning of APIs. This research addresses this gap by leveraging a compre-
hensive dataset of OpenAPI Specifications (OAS) from public repositories such as GitHub and SwaggerHub. The
thesis provides empirical results describing the Web API landscape, focusing on structural patterns, design smells,
changes, and versioning practices.

Through mining commit histories and metadata, the study identifies trends in API evolution and assesses their
adherence to versioning principles. Clustering techniques and natural language processing are employed to detect
common structural patterns and understand the semantic context of API elements. The research adopts a language-
agnostic, automated approach to analyze API design and evolution at scale. The goal is to answer questions on Web
API design and evolution without being tied to a specific programming ecosystem.

We empirically identified four recurring structural patterns in Web API designs to provide access to enumer-
able, dependable, and mutable collections, which serve as modular and reusable building blocks. Additionally, the
analysis uncovers design smells that hinder usability, maintainability, and security, providing actionable insights to
improve API quality.

Web API structures are inherently tied to the operations they provide for handling resources derived from specific
data models. As such, studying APIs requires a dual focus on their structural design and the underlying data models
to ensure coherence. We examined the relationship between API structures and their data models, highlighting
frequent misalignments with design principles such as logical structuring and consistent naming conventions.

Regarding API evolution, the study categorizes over 200 types of changes and reveals that breaking changes
occur 2.44 times more often than non-breaking ones. While many breaking changes appear minor, their cumulative
impact on client applications can be significant.

When it comes to Web API versioning, we detected a high level of diversity in the adopted versioning schemes.
In addition, APIs that claimed to use Semantic Versioning often failed to adhere to its basic rules.

The findings reveal that while Web APIs have been part of the software landscape since more than 20 years, they
still do not meet the theoretical design principles when it comes to their practical implementation and management.
This is explained by the lack of straightforward tools that can guide developers in adhering to best practices, iden-
tifying design flaws, and ensuring consistent versioning and evolution management throughout the API lifecycle.

In light of this empirical evidence, we propose supporting both API developers and users through language-
agnostic visualization tools that can be integrated into development environments (IDE-based) or easily accessible
for users who only want to learn about the API (web-based). The proposed tools are initial research prototypes built
based on our findings. OAS2tree enhances API feature navigation and integrates functionality to identify and flag
potential design flaws. APIcture offers a picture of API histories, providing an intuitive way to track their evolution.
Although effective in their initial form, these tools have the potential to be further refined through user feedback
and studies involving the target audience, ultimately improving their features, usability, and impact.

vii

viii

Acknowledgements

This thesis marks the culmination of a journey filled with challenges, growth, and discovery. It would not have been
possible without many individuals’ guidance, support, and encouragement, to whom I am profoundly grateful.

First and foremost, I would like to express my deepest gratitude to my advisor, Prof. Dr. Cesare Pautasso, for his
unwavering support throughout this long and challenging journey. His guidance, insightful feedback, and ability to
navigate decision-making processes have been invaluable. Prof. Pautasso has played a pivotal role in shaping this
thesis, and his mentorship has been an essential factor in bringing it to completion.

I am also immensely grateful to the internal committee members, Prof. Dr. Gabriele Bavota and Prof. Dr.
Michele Lanza, for their thoughtful and constructive initial feedback, which helped refine the direction of my work.
Additionally, I would like to extend my heartfelt thanks to Prof. Dr. Jordi Cabot and Prof. Dr. Uwe Zdun for serving
on my committee and for dedicating their time to reviewing this thesis.

To my family, your love, patience, and constant encouragement have been my anchor throughout this journey.
I will forever be grateful.

I also would like to express my heartfelt gratitude to Hassan Atwi, who has been more than a colleague during
this journey; he has been a true friend. Thank you, Hassan, for your camaraderie throughout this time. I wish you
the very best of luck with your own PhD thesis.

I extend thanks to all the colleagues with whom I has had the pleasure of collaborating during the past few
years. I am equally thankful to the old colleagues, including Alejandro, Masiar, Andrea, Ana, and Diego, whose
company brought joy and balance to this journey, and to the new colleagues, including Diana, Edoardo, Akshatha,
and Shifat, who have recently embarked on their own journeys. I wish you the very best of luck in your endeavors.

To my friends who are also navigating their PhD journeys, including Nouran and Fatima, your hard work and
dedication inspire me. I am confident that your perseverance will lead to well-deserved success.

I also want to extend my gratitude to everyone I have crossed paths with throughout this journey. Whether
through collaborations, discussions, or even brief encounters, each interaction has left a mark on this chapter of my
life. Listing all the names would require several pages, but please know that your presence and support, however
big or small, have been deeply appreciated. Thank you for being part of this incredible journey.

This thesis stands as a testament to my efforts and the collective support, guidance, and encouragement of all
those who have accompanied me on this path. Thank you.

ix

x

Contents

Contents xi

List of Figures xvii

List of Tables xxiii

I Contextualization 1

1 Introduction 3
1.1 Contextualization . 3
1.2 Thesis Goal . 4
1.3 Research Questions . 5
1.4 Research Approach . 7
1.5 Dissertation Outline . 7

2 State of the Art 9
2.1 Background on Web APIs . 9

2.1.1 Web APIs history . 9
2.1.2 Web API design and modeling: Interface Description Languages 10

2.2 Web APIs Analysis . 11
2.2.1 Analyzing Web API functional features through documentation 11
2.2.2 Analyzing Web API features changes over time . 12
2.2.3 Mitigating and facing web API evolution challenges . 14
2.2.4 APIs evolution in microservices-based architectures . 14
2.2.5 API changes across language ecosystems . 15

3 A Large Dataset of OpenAPI Specifications 17
3.1 Web APIs Specifications Dataset Utility . 17
3.2 Data Collection Approaches . 17

3.2.1 APIs.guru . 18
3.2.2 SwaggerHub . 18
3.2.3 GitHub . 22

3.3 OpenAPI Dataset Metrics . 32
3.3.1 API structure metrics . 33
3.3.2 API data model metrics . 33
3.3.3 API natural language descriptions metrics . 33

xi

xii Contents

3.3.4 API security metrics . 34
3.4 OpenAPI Dataset Exploration . 35
3.5 Web APIs Metric-based Exploration Through APIstic . 36

3.5.1 API size: structure and data model . 36
3.5.2 Web API structure and data model correlations . 40
3.5.3 HTTP methods usage . 41
3.5.4 API maintenance lifecycle . 42
3.5.5 Readability of natural language documentation . 43
3.5.6 Types of security schemes in APIs . 45

3.6 API Specification Dataset Usage in this Thesis . 46

II Web API structure and data model analysis 49

4 Web APIs Structure and Data Models Characteristics Analysis 51
4.1 Design Principles and their Impact on API Structures and data models 51

4.1.1 Path design principles . 51
4.1.2 Operation design principles . 58
4.1.3 Data model alignment considerations . 66

4.2 Towards Assessing Web API Complexity . 68
4.2.1 Existing definitions . 68
4.2.2 A Specific complexity metric for web APIs . 70

5 OAS2Tree: Visualizing Web APIs as Trees 75
5.1 Representing the API Structure as a Tree . 75

5.1.1 API Tree Model . 75
5.1.2 OpenAPI to Tree model transformation . 77

5.2 OAS2tree: Tool Support for API Tree Visualization . 81
5.3 OAS2Tree Features . 81

5.3.1 API Spec validation Design Smells Detection . 81
5.3.2 Navigation of API description through the tree visualization . 81
5.3.3 Web version of OAS2Tree . 83

5.4 Usage scenarios . 84
5.5 Web API modeling tools . 84

6 Web APIs Structural Patterns and Smells: A pattern map of API fragments 87
6.1 Mining Recurrent Web API Fragments . 87
6.2 API Fragments Mining Approach . 88
6.3 API Fragments Mining Outcome . 89
6.4 Analyzed Data . 89

6.4.1 OAS versions distribution . 90
6.4.2 HTTP methods usage . 91
6.4.3 API sizes distribution . 93
6.4.4 Domain Concepts . 93

6.5 API Fragments . 93
6.5.1 APIs fragmentation approach . 94
6.5.2 API Fragments Clustering and Selection . 94

6.6 Structural API Primitives . 99

xiii Contents

6.6.1 Enumerable Collection (P1) . 102
6.6.2 Appendable Collection (P2) . 109
6.6.3 Collection (P3) . 114
6.6.4 Mutable Collection (P4) . 121

6.7 From Primitives to Larger Structures and API Responsibility Patterns . 123
6.7.1 Composing Primitives . 123
6.7.2 Relation to Architectural Patterns . 124

III Web API changes analysis 127

7 Web API Changes 129
7.1 Web API Change . 129

7.1.1 Definition . 129
7.1.2 Web API changes traceability . 129

7.2 Related Work . 130
7.2.1 Change patterns extraction from explicit traces . 131
7.2.2 Change patterns extraction based on implicit traces: API usage logs 133

7.3 Web API Changes in a Large Dataset of Real-World Web API Histories . 137
7.3.1 Change extraction from OpenAPI histories . 137
7.3.2 Web API changes extraction pipeline . 138
7.3.3 Data selection and preparation . 139
7.3.4 Dynamics in Web API histories . 140
7.3.5 Types of changes and their impact on clients integration . 141

8 Web API Histories Visualization 155
8.1 Sunbursts of Web API histories . 155
8.2 Use Case Scenarios and Example API . 157
8.3 API VERSION CLOCK Visualization . 159

8.3.1 Visualization goal . 159
8.3.2 Building API VERSION CLOCK . 160
8.3.3 Visualization Structure . 160
8.3.4 API VERSION CLOCK Interactive Features . 162

8.4 API CHANGES Visualization . 162
8.4.1 Visualization goal . 162
8.4.2 Building API CHANGES . 163
8.4.3 Visualization structure . 164
8.4.4 API CHANGES Interactive Features . 164

8.5 API Evolution Gallery . 165
8.5.1 SunRocks API Evolution . 165
8.5.2 xOpera REST API Evolution . 165
8.5.3 IPFS Pinning Service API Evolution . 166
8.5.4 Xero Projects API Evolution . 166
8.5.5 OpenFairDB API Evolution . 166

8.6 Discussion . 166
8.6.1 API VERSION CLOCK . 166
8.6.2 API CHANGES . 167

xiv Contents

8.7 APIcture: Tool support . 167
8.7.1 Use case example . 171
8.7.2 Other supported cases . 174

IV Web API versioning analysis 181

9 Web API Versioning 183
9.1 Web API Versioning Challenges . 183
9.2 Web APIs Versioning Documentation . 183

9.2.1 Version Identifiers in Web APIs . 183
9.2.2 OpenAPI Versioning Metadata . 186
9.2.3 API stable releases . 186
9.2.4 API Preview Releases . 187

9.3 Methodology . 187
9.3.1 Dataset preparation . 187
9.3.2 Analysis methodology . 188

9.4 Results . 189
9.4.1 Metadata-based versioning . 189
9.4.2 URL-based versioning . 195
9.4.3 Path-based versioning . 195
9.4.4 DNS-based versioning . 198
9.4.5 Header-based versioning . 199
9.4.6 Dynamic versioning . 200
9.4.7 “Two in production" Evolution Pattern . 201
9.4.8 Version Formats adoption over the years . 204

9.5 Results structuring . 204
9.6 Web API versioning in OpenAPI 4.0: proposal . 208

10 Web API Changes and Versioning Consistency 211
10.1 Research Approach . 211

10.1.1 Semantic Versioning Change Classification . 211
10.2 Consistency Metrics . 213
10.3 Consistency Assessment Results . 215

10.3.1 Change-level compliance . 215
10.3.2 API-level Compliance . 219

10.4 Results Discussion . 220

V Conclusions 223

11 Conclusions 225
11.1 Summary of Research Contributions . 225
11.2 Threats To Validity . 227

11.2.1 Internal Validity . 227
11.2.2 External Validity . 227
11.2.3 Construct Validity . 227
11.2.4 Reliability . 227

xv Contents

11.3 Retrospective . 227
11.3.1 Contributions and key findings . 228
11.3.2 Research Limitations . 228
11.3.3 Future research directions . 228

11.4 Research Publications . 229

Bibliography 233

xvi Contents

Figures

2.1 Web APIs history timeline . 9

3.1 Categories of the APIs in the APIsGuru sources collection . 19
3.2 Top 20 web API providers in the APIsGuru sourced collection . 20
3.3 Monthly distribution by creation date of valid OpenAPI/Swagger specifications in SwaggerHub dataset 22
3.4 Distribution of ages of GitHub repositories to which the OpenAPI specification of the dataset belong.

A repository age is computed by subtracting from the 31st of December 2024 the repository creation
date . 25

3.5 Distributions of stars in Github repositories to which the OpenAPI specification of the dataset belong 26
3.6 Distributions of number of commits from each Github repository to which the OpenAPI specification

of the dataset belong. 26
3.7 Distributions of the number of API per GitHub repository . 27
3.8 Scatter plot showing the correlation between a repository age and the number of commits changing

the OpenAPI specification it contains . 27
3.9 Scatter plot showing the correlation between a repository age and the number of commits changing

the OpenAPI specification it contains (Zoomed-in: commits<500) . 28
3.10 Scatter plot showing the correlation between a repository popularity (number of stars) and the num-

ber of commits changing the OpenAPI specification it contains . 29
3.11 Scatter plot showing the correlation between repository popularity (number of stars) and the number

of commits changing the OpenAPI specification it contains (Zoomed-in: commits<500) 30
3.12 Monthly Distribution of Commits of Valid OpenAPI/Swagger Specifications in GitHub Dataset 30
3.13 Number of overlapping API specifications . 32
3.14 Comparative Analysis of Path Number Distributions Across All Sources 35
3.15 Comparative Analysis of Distinct Schema Number Distributions Across All Datasets 37
3.16 Distribution Number of Paths over the years in SwaggerHub Dataset . 38
3.19 Number of Created and Modified APIs each year in the SwaggerHub Dataset 38
3.17 Distribution Number of Paths over the years in GitHub Dataset . 39
3.18 Distribution Number of Distinct Schemas over the years in GitHub . 39
3.20 Example of BigQuery API Tree model including its structure and data model 40
3.21 Heatmap showing pairwise Pearson correlation coefficients between structure size metrics. Red in-

dicates a strong positive correlation, while blue represents a weaker or negative correlation. The
heatmap highlights key relationships, such as strong correlations between Paths, Operations, and
Used Methods, as well as weaker correlations involving Webhooks and optional HTTP methods like
Options and Trace . 41

3.22 Yearly Trends in API Method Usage in GitHub Dataset . 42

xvii

xviii Figures

3.23 Yearly Trends in API Method Usage in SwaggerHub Dataset . 42
3.24 Comparative Analysis of Endpoint Description Coverage Distributions Across All Sources 43
3.25 Comparative Analysis of Coleman-Liau Index Distributions Across Sources 44
3.26 Comparative Analysis of the Automated Readability Index Distributions Across All Sources 44
3.27 Comparative Analysis of Average Secured Endpoints Distributions Across All Sources 45

4.1 Distribution of API Paths (left), API Schemas (middle), and the correlation between Paths and Schemas
(right) – excluding APIs with no paths or no schemas. 52

4.2 Tree visualization of OpenAI API using OAS2Tree [1] . 55
4.3 Distribution of proportion of endpoints belonging to each category . 58
4.4 Usage of plural labels in endpoints and array in response data by type of HTTP method 59
4.5 Classification of APIs by HTTP method usage. The top plot shows the number of APIs for each cluster,

while the bottom plot illustrates the distribution of HTTP methods used within each classification . . 60
4.6 Transition chain analysis for APIs with more than 50 commits . 61
4.7 Yearly Distribution of Commits Classifications (2015–2024): The upper plot displays the raw counts

of APIs classified as CRUD, REST, RPC, Read-only, and Read/Write for each year. The lower plot shows
the normalized proportions of these classifications, highlighting trends in the relative distribution of
API functionalities over time. 62

4.8 Visualization of API classification transitions: Nodes represent API classifications (CRUD, REST, RPC,
Read-only, Read/Write), and directed edges indicate transitions between classifications from a com-
mit to another. Edge thickness corresponds to the frequency of transitions, highlighting the most
common paths such as CRUD to REST and Read/Write to REST . 63

4.9 Distribution of Schemas and Properties in Conforming vs Non-Conforming APIs. The left plot il-
lustrates the number of schemas per API, while the right plot shows the number of properties per
schema. Conforming APIs exhibit higher variability and concentration in both metrics compared to
Non-Conforming APIs. 68

5.1 Extracted API tree structure . 76
5.2 OAS2Tree visualization of API in Listing 5.1 . 77
5.3 Excerpt of the API Tree metamodel, highlighting the visualized elements 78
5.4 Visual representation of the Apacta API structure as a tree of resources and HTTP methods. This API

tree includes many reoccurring subtrees, which we extract as API fragments (Click for OpenAPI source) 82
5.5 Navigation between the diagram and the OAS code . 83
5.6 Save as URL functionality in OAS2Tree Web App . 84

6.1 API Analytics Pipeline: From API Specifications to Patterns . 88
6.2 API Collection Sample (sorted by Number of Paths) . 89
6.3 Yearly distribution of the specification in the analyzed snapshot . 90
6.4 Open API Specification Metamodel Versions: 2.0 vs 3.0 . 90
6.5 API Method Combination Overview . 91
6.6 API Method Combination vs. API size . 92
6.7 Domain concepts and their relations . 93
6.8 Example of a repetitive fragment with unusual parametric path segments labels 95
6.9 Example of a repetitive fragment with non-parametric path segments labels 95
6.10 Fragments semantic clustering pipeline . 96
6.11 Label sequences with container label “users" in Collection primitive . 98
6.12 Overview: API Structural Primitives and their variants and design smells 100

https://raw.githubusercontent.com/roscopecoltran/krakend-admin/f27bc4ee41d133f35301ef2fabf606cdce51b47b/shared/public/downloads/v2/specs/apacta.com/0.0.1/swagger.yaml
https://raw.githubusercontent.com/roscopecoltran/krakend-admin/f27bc4ee41d133f35301ef2fabf606cdce51b47b/shared/public/downloads/v2/specs/apacta.com/0.0.1/swagger.yaml

xix Figures

6.13 Overview: API Structure Collection Primitives . 100
6.14 Enumerable Collection - Overview of Variants and Design Smells . 102
6.15 Yearly distribution of the API specifications where the Enumerable Collection (P1) variants appear . 102
6.16 Enumerable Collection - GET Variant (P1.v1) Visualization . 103
6.17 Enumerable Collection - GET/PUT Variant (P1.v2) . 103
6.18 Tree Visualization of Columba API . 104
6.19 Enumerable Collection - PUT/DEL Variant (P1.v3) . 104
6.20 Invotra API Tree Visualization . 105
6.21 Enumerable Collection - GET/PUT/DEL Variant (P1.v4) . 105
6.22 Tree visualisation for the TVmaze user API (click for OpenAPI source) 107
6.23 Enumerable Collection - GET/POST Design Smell (P1.s1) . 109
6.24 Enumerable Collection - GET/DEL Design Smell (P1.s2) . 109
6.25 Appendable Collection Overview. 110
6.26 Yearly distribution of the API specifications where the Appendable Collection (P2) variants and smells

appear. 110
6.27 Appendable Collection - GET/PUT/DEL Variant (P2.v1) . 110
6.28 Tree visualization of an API for the COVID-19 Tracking QR Code Signin Server 112
6.29 Appendable Collection - GET/DEL Variant (P2.v2) . 113
6.30 Appendable Collection - GET Variant (P2.v3) . 113
6.31 Appendable Collection - PUT/DEL Design Smell (P2.s1) . 113
6.32 Appendable Collection - DEL Variant (P2.s2) . 114
6.33 Collection – Overview of Variants . 115
6.34 Yearly distribution of the API specifications where the Collection (P3) variants appear 115
6.35 Collection - GET/PUT/DEL/PATCH Variant (P3.v1) . 115
6.36 Tree Visualization of ID Vault API. This is an API example where the Collection - GET/PUT/DEL/-

PATCH Variant (P3.v1) appears several times, combined with one use of the GET/PUT/DEL (P3.v2)
variant. 116

6.37 Collection - GET/PUT/DEL Variant (P3.v2) . 117
6.38 Collection - GET/DEL/PATCH Variant (P3.v3) . 117
6.39 Tree Visualization of Passman Developers API. 118
6.40 Collection - GET Variant (P3.v4) . 118
6.41 Collection - PUT/DEL Variant (P3.v5) . 119
6.42 Collection - GET/DEL Variant (P3.v6) . 119
6.43 Collection - DEL Variant (P3.v7) . 119
6.44 Collection - PUT-Only Design Smell (P3.s1) . 120
6.45 Collection - GET/PUT Design Smell (P3.s2) . 120
6.46 Mutable Collection (P4) Overview . 121
6.47 Yearly distribution of the API specifications where the Mutable Collection (P4) variants and smells

appear . 121
6.48 Mutable Collection - GET/PUT/DEL/PATCH Variant (P4.v1) . 122
6.49 Mutable Collection - DEL Design Smell (P4.s1) . 122
6.50 Mutable Collection - GET/DEL Design Smell (P4.s2) . 123
6.51 Tree visualization of AnyPay API. AnyPay service targets parents and children who are making pay-

ments. It is an example of the usage of the GET/DEL (P4.s2) variant. 123

7.1 API Changes classification in [93] . 132
7.2 Changes extraction and classification pipeline . 139

http://api-ace.inf.usi.ch/openapi-to-tree/europlop-examples?api=columba.yaml
http://api-ace.inf.usi.ch/openapi-to-tree/europlop-examples?api=tvmaze.json
http://api-ace.inf.usi.ch/openapi-to-tree/europlop-examples?api=anypay.yaml
http://api-ace.inf.usi.ch/openapi-to-tree/europlop-examples?api=anypay.yaml

xx Figures

7.3 Affected HTTP methods in the top 50 detected web API changes . 146
7.4 Heatmap illustrating the co-occurrence of changes in APIs, where darker cells indicate more frequent

co-occurrence between specific changes . 148
7.5 Distribution of combination sizes is presented in two plots. The left plot displays the sizes of combi-

nations that include only the top 50 detected changes, while the right plot illustrates the distribution
of combination sizes involving all detected changes. 149

7.6 Graph visualization of Change Combinations with Normalized Coloring by Frequencies. For visibility,
the graph shows only the changes that have been combined together with others at least 50 times . . 150

7.7 Graph visualization of Change Combinations with Normalized Coloring by Frequencies. The graph
shows only the changes that have been combined together data at least 250 times 151

7.8 Correlation between the frequency of changes and its presence in combinations. The red area repre-
sents the confidence interval around the regression line. It indicates the range within which the true
regression line is expected to fall with a confidence of 95%. 152

8.1 API VERSION CLOCK (center) and API CHANGES until a given version of the Bmore Responsive API.
Legend explained in Figures 8.2 and 8.4. 156

8.2 API VERSION CLOCK Design visualizing the Bmore Responsive API . 159
8.3 API VERSION CLOCK and API CHANGES analysis and rendering pipeline 160
8.4 API CHANGES Design applied to the BMore Responsive API . 163
8.10 APIcture CLI when using the apict command . 168
8.11 Generated HTML metrics view using apict metrics <spec-path> without specifying a metric . . . 170
8.12 Help Command Output for APIcture Tool . 171
8.13 Repository Structure: OpenAI API . 171
8.14 apict output evolution visualizations generated in viz-openapi.html 173
8.15 apict command output folders structure . 173
8.16 apict terminal prompt evolution report . 174
8.17 APIcture in the case where no OpenAPI file is found in the project (run on the Kraken.js project) . . . 175
8.5 Visualizations of the SunRocks API Evolution (24 commits over 5 versions during 2114 days, 0ω) . . . 176
8.6 Visualizations of the xOpera REST API Evolution (42 commits over 14 versions during 408 days, 3ω) 177
8.7 Visualizations of the IPFS Pinning Service API Evolution (61 commits over 8 versions during 773

days, 84ω) . 178
8.8 Visualizations of the Xero Projects API Evolution (125 commits over 93 versions during 999 days, 80ω)179
8.9 Visualizations of the OpenFairDB API Evolution (144 commits over 52 versions during 1563 days, 53ω)180

184figure.caption.221
9.2 Number of artifacts in the GitHub and SwaggerHub datasets over the years 188
9.3 Versioning Analysis Pipeline . 188
9.4 20 most adopted version identifier formats used in metadata in each of the study datasets and

combined . 191
9.5 Number of artifacts with version identifiers used in metadata of stable and preview releases in each

of the study datasets and combined . 192
9.6 Most frequently adopted version identifier formats appearing in Path in each of the study datasets

and all combined . 197
9.7 Comparing the adoption of the least used formats classed in metadata-based and path-based version-

ing in all datasets combined. (Semantic Versioning and Major Version Number have been omitted). 198
9.8 Header-based adoption in SwaggerHub Dataset over the year over the years 202
9.9 Dynamic versioning over the years in Github Dataset . 203

https://github.com/krakenjs/kraken-js

xxi Figures

9.10 Dynamic versioning over the years in SwaggerHub Dataset . 203
9.11 The adoption of major version number vs other formats in identifiers found in the paths of APIs with

multiple versions in production in all datasets combined . 204
9.12 Usage of one or multiple format categories in path-based versioning of APIs with multiple versions

in production in all datasets combined . 204
9.13 Usage of one or multiple format categories in path-based versioning of APIs with multiple versions

in production . 205
9.14 Comparing the adoption of major version number vs other formats in identifiers found in the paths

of APIs with multiple versions in production . 206
9.15 Adoption of Semantic Versioning, Major version number and Date formats over the years 207
9.17 Adoption of different format categories in each dataset in Path-based versioning 208
9.16 Adoption of different format categories in each dataset in Meta-data based versioning 210

10.1 Data Analytics Pipeline . 214
10.2 Classification of the Major, Minor and Patch-level releases according to their mix of breaking (BC),

non-breaking (NBC), and undecidable (UC) changes. The values outside the circles refer to the
number of version changes with at least one type of API change . 219

10.3 Breaking changes proportion distributions for Upgrades (above) and Downgrades (below), catego-
rized by each type of version change . 220

10.4 Compliance ratio distribution . 221

xxii Figures

Tables

2.1 Overview of Web API Description Languages with Relative Popularity . 11

3.1 Top 20 Most Starred Repositories in which OpenAPI specification in our collection are found 31
3.2 Number of APIs making use of different OpenAPI Security Schemes across different datasets 46
3.3 Dataset snapshots used in Web API analysis Studies . 46

4.1 Logical Path Structure Analysis . 53
4.2 Usage of plurals in API paths and array type responses . 57
4.3 Transition chain analysis for APIs with more than 50 commits. Avg. AT (Average Active Time) is

the average number of days between the first and last commits, while Avg. A (Average Age) is the
average number of days from the first commit to December 31, 2024. The table also includes the
maximum, minimum, and standard deviation of ages. 64

4.4 Analysis of alignment of API datamodel . 67
4.5 Analysis of operations applies on potential immutable ressources . 68
4.6 Comparison of complexity metrics for two API examples . 73

5.1 API Tree notation . 76

6.1 Overview of distances between all the label sequences of each primitive and its variants/smells. . . . 97
6.2 Known Uses of Selected Fragments: Number of Distinct Label Sequences (nDLS) and their Occur-

rences within APIs. 99
6.3 Content of the description field of the DELETE method of the variant GET/PUT/DEL (P1.v4) 106
6.4 Methods description of a fragment of Enumerable Collection - GET/PUT/DEL Variant (P1.v4), ex-

tracted from the OpenAPI description of TVmaze user API . 108
6.5 Extracted description of the POST method for Enumerable Collection - GET/POST Design Smell (P1.s1)

. 108
6.6 Description and summary of the GET method in GET/PUT/DEL (P2.v1) 111
6.7 API Fragments Composing the Read-only Collection and the Collection primitives side by side 124
6.8 API Fragments Composing the Read-only Collection Primitives with Nesting 125

7.1 Statistical Analysis of Web API Changes . 140
7.2 List of API change types classified by their impact. Count represents the total presence of a change

across all diffs, while Operations, APIs, Commits, and Classification provide additional insights. . . 141
7.3 Top 10 Largest Combinations Appearing in at Least 10 APIs, Sorted in Descending Order by Size . . . 153

8.1 Color-coding for changes in the API VERSION CLOCK . 161

xxiii

xxiv Tables

8.2 Color-coding for the API CHANGES visualization . 163

9.1 Some detectors are used to classify the version identifier formats. In the format name, * stands for
an integer. 189

9.2 Number of artifacts featuring metadata-based versioning. 190
9.3 Number of artifacts with version identifiers used in metadata of stable releases in each of the study

datasets and all combined . 193
9.4 Number of artifacts with version identifiers used in metadata of preview releases in each of the study

datasets and all combined . 194
9.5 Number of artifacts featuring Path-based versioning across datasets . 195
9.6 Number of artifacts with Path-based versioning of stable and preview releases Usage of one or multi-

ple format categories in path-based versioning of APIs with multiple versions in production in each
dataset and all combined . 196

9.7 Number of artifacts with Path-based versioning of stable releases in each of the study datasets 199
9.8 Number of artifacts with Path-based versioning of preview releases in each of the study datasets

and all combined . 200
9.9 Number of APIs with DNS-based versioning . 201
9.10 Adoption of header-based versioning across the study datasets: BigQuery, GitHub, and APIs.guru. . . 201
9.11 Number of artifacts where dynamic version information endpoints is detected 202

10.1 Data cleaning steps . 212
10.2 Semantic versioning formats breakdown for all APIs adopting semantic versioning in all releases

(above) and for the subset with at least one version change (below) . 213
10.3 Classification of Version Changes . 213
10.4 Most frequent breaking changes in the selected dataset snapshot . 216
10.7 Classification of version changes (VC) indicating their occurrence (#VC), the total number of break-

ing, non-breaking and undecidable changes detected in conjunction with each type of version change,
as well as their prevalence within all APIs and within how many APIs with breaking changes 216

10.5 Most frequent non-breaking changes in the selected dataset snapshot . 217
10.6 All the non-breaking changes that were associated with a Major version change during which no

breaking changes occurred . 218
10.8 Number of breaking changes detected for each type of version change 218
10.9 Metrics comparison for APIs classified according to their compliance . 222

Part I

Contextualization

1

Chapter 1

Introduction

1.1 Contextualization

The Growing Complexity and Ubiquity of Web APIs In the contemporary digital landscape, Web Application Pro-
gramming Interfaces (APIs) have become fundamental to the fabric of modern software development [83]. They
serve as the backbone for a myriad of services, ranging from web applications to mobile apps and cloud-based so-
lutions. Rapid expansion and evolution of web technologies have led to a corresponding increase in the complexity
and diversity of web APIs [191]. This complexity presents significant challenges in terms of the design, develop-
ment, and maintenance of these APIs [52]. As such, there is a pressing need for systematic approaches to analyze,
understand, and improve the design of Web APIs [53].

From a business perspective, Web APIs allowed new business models to emerge, where providers can sell func-
tionalities or data accesses through endpoints. For example, a large number of brokerage service providers (such
as Swissquote) and financial data providers (such as Bloomberg) sell daily access to data through endpoint on fi-
nancial products to millions of consumers around the globe. Other service providers such as OpenAI and Claude
benefit from selling access to large language models by calling an endpoint and sending a data object that includes
a prompt, where users pay a monthly subscription or depending on the number of API calls made [27, 186].

From a software architecture perspective, Web APIs play a pivotal role in enabling modularity, scalability, and
interoperability within complex software systems. In a microservices architecture, Web APIs are foundational, as
they facilitate communication between independently deployable services that encapsulate specific business func-
tions [111, 165, 90]. By using RESTful or gRPC-based APIs, microservices can interact without direct dependencies,
promoting loose coupling and enhancing system flexibility and resilience [131, 165]. This decoupling allows for
independent scaling, deployment, and maintenance of each service, which aligns with DevOps practices and agile
development methodologies, making the architecture highly adaptable to changing requirements [47, 130].

Similarly, in event-driven architectures [103], Web APIs serve as critical conduits for event publication and
subscription, where components communicate asynchronously by producing and consuming events [85]. APIs in
this context support real-time data streaming and event propagation, enabling reactive systems that can handle high-
throughput, low-latency requirements. This architectural style is particularly effective for systems with fluctuating
workloads and real-time data needs, such as IoT platforms and e-commerce applications [13]. Furthermore, the
role of Web APIs in both microservices and event-driven architectures underscores their importance in achieving
distributed system scalability, fault tolerance, and service autonomy, aligning with modern architectural principles
of resilience and flexibility [152].

In addition to their roles in microservices and event-driven architectures, Web APIs gave birth to API-centric
architecture, which emphasizes APIs as the primary structural component and interaction layer within a system.

3

4 1.2 Thesis Goal

API-centric architecture adopts an API-first approach, prioritizing API design at the outset to ensure consistency,
usability, and well-defined contracts for both internal and external consumers. Unlike architectures where APIs are
layered on existing functionalities, API-driven architecture integrates APIs as the core framework through which
business logic and services are exposed [129].

API-first design is fundamentally supported by Interface Description Languages (IDLs) 1, which provide struc-
tured, standardized templates for defining API specifications early in the development lifecycle. By enabling clear,
formal descriptions of API structures, data types, and protocols, IDLs facilitate collaboration among developers,
stakeholders, and other teams, ensuring that API requirements are well-defined from the start. The history of IDLs
dates back to the 1980s when they were first used in distributed systems to outline communication protocols, with
DCE RPC or CORBA’s Interface Definition Language (IDL) pioneering interoperability between objects in different
programming languages in 1991.

As web services evolved, IDLs adapted to meet the needs of RESTful and gRPC-based systems, becoming es-
sential to API-first development practices [138]. Today, several IDLs are widely used in API-driven architectures.
The OpenAPI Specification (originally Swagger), introduced in 2011, offers a comprehensive, language-agnostic
framework for defining RESTful APIs, supporting automatic code generation, testing, and documentation [118].
RAML (RESTful API Modeling Language) [3], launched in 2013, emphasizes readability and modularity, promot-
ing reusability in collaborative environments. API Blueprint, introduced in 2013 as well, focuses on simplicity and
human readability, making it particularly effective for early design and documentation. For gRPC APIs, Protocol
Buffers (protobuf) 2, developed by Google and released in 2008, serves as an efficient IDL that defines structured
data and communication protocols in a compact binary format, optimizing for high performance.

Among these description languages, the OpenAPI Specification (OAS) has emerged as a leading standard for
describing the interface of HTTP-based APIs. Its widespread adoption offers a unique opportunity to mine a large
number of descriptions of real-world APIs.

1.2 Thesis Goal
The overall goal of this research is to understand the design of the current web API landscape, identify patterns and
recurrent practices, and pinpoint areas where API design and evolution practices meet established guidelines. By
analyzing real-world API implementations, this research seeks to provide a foundation of empirical evidence that
supports the need for API design and management tools focused not only on continuous integration and deployment,
as with existing API management tools 345, but also on the critical aspects of design and evolution. In addition to
identifying these gaps, this research aims to propose prototypes of tooling examples that can be built around Web
APIs to help maintain alignment with expectations and best practices. These prototypes would serve as practical
solutions, illustrating how API management6 can extend beyond basic deployment needs to support robust design,
high structural quality, and sustainable evolution.

The empirical analysis and tooling proposals of this thesis focus on three aspects of Web APIs:

• Web API Design: This involves defining the specific functionalities and data exposure required to meet func-
tional requirements. It requires careful consideration of the API’s usability and maintainability. Our goal is
to understand how developers implement specific functionalities and whether their implementation choices
accurately cover functional requirements.

1Interface Description Language. https://www.omg.org/spec/IDL
2Protocol Buffers. https://protobuf.dev/
3Kong API Management. https://konghq.com/
4Apigee API Management. https://cloud.google.com/apigee/docs/api-platform/get-started/what-apigee
5AWS API Management. https://aws.amazon.com/api-gateway/
6API lifecycle management. https://cloud.google.com/endpoints/docs/openapi/lifecycle-management

https://www.omg.org/spec/IDL
https://protobuf.dev/
https://cloud.google.com/apigee/docs/api-platform/get-started/what-apigee
https://aws.amazon.com/api-gateway/
https://cloud.google.com/endpoints/docs/openapi/lifecycle-management

5 1.3 Research Questions

• Web API Change: This involves introducing additions to extend the range of functionalities, modifying ex-
isting ones, or removing deprecated features. Such changes aim to adapt to new requirements. Our goal is to
understand the commonly introduced changes in Web APIs and the order in which they are typically applied
to build a knowledge base for expected evolutionary behaviors.

• Web API Versioning: Changing an API requires proper versioning to manage its evolution effectively and
inform clients about the available options. A consistent versioning strategy fosters the usability and reliability
of the API. Our goal is to examine versioning practices in Web APIs, including whether known versioning
schemes such as semantic versioning are accurately followed.

1.3 Research Questions
As APIs serve as the primary interface between systems, their design and management directly affect system in-
teroperability, security, and long-term maintainability. Although there has been extensive research on API design
principles [124, 100, 23, 184, 29] and individual case studies or evolution [154, 90, 93, 106, 125], comprehensive,
large-scale analysis in diverse real-world API ecosystems remains limited.

By examining real-world API designs and usage patterns, we can uncover how APIs evolve, where they commonly
diverge from best practices, and the factors that hinder their usability and maintainability. An empirical approach
provides a foundation for identifying recurring design flaws and inefficiencies, enabling us to establish data-driven
best practices[89]. This insight allows us to advocate for API management tools that prioritize deployment and
integration and continuous design validation and improvement, ensuring that APIs remain effective, user-centered,
and adaptable in the face of changing demands and technological advancements.

Having an overview of the Web API design space and how instances of these spaces evolve helps to build a
foundation for the prediction of the proneness to changes in the Web API [82].

Concretely, this thesis strives to fill part of the existing research gap by answering the following questions.

1. What identifiable structural patterns within Web APIs can serve as modular and reusable building
blocks to accommodate diverse application needs?

The goal of this question is to explore how identifying reusable structural patterns, a concept widely used in
software design to promote modularity and consistency, can be applied specifically to Web APIs. In software
development, patterns serve as proven solutions to recurring design challenges, enabling developers to cre-
ate scalable and maintainable systems. Similarly, for Web APIs, identifying structural patterns can provide
modular building blocks that streamline API design, reduce inconsistencies, and address the diverse needs of
applications.

Chapter 6, describes the approach we followed to identify and create structural building blocks we refer to as
“API fragments” by analyzing real-world API structures.

2. How are Web APIs and their data models interconnected, and to what extent is this relationship con-
sidered in designing APIs that align with expected design principles, enhance client developers’ expe-
rience, and ensure seamless integration [75]?

Adhering to established design principles is crucial for creating systems that are intuitive, efficient, and
developer-friendly. This is particularly true for Web APIs, where design choices directly impact the experience
of client developers and the ease of integration into their applications. By examining how often API designs
align with these principles, such as consistent naming conventions, resource exposure, and logical structuring,
it is possible to quantify their usability and know to what extent it is required to invest in adequate support
design tools.

6 1.3 Research Questions

Chapter 4 presents an analysis of the relationships between API features, focusing on how their structure
aligns with the data models of resources they handle. The study evaluates design principles identified by Jin
et al.[75] and Lauret[89] as essential for creating APIs that developers find intuitive and user-friendly. The
analysis investigates the extent to which real-world APIs adhere to these principles or whether they remain
theoretical ideals without practical implementation.

3. What types of changes are introduced in the evolution of Web APIs and what is their impact on API
clients?

In the evolution of APIs, changes are inevitable as they adapt to new requirements, technologies, and user
demands [97, 96]. Understanding the most common types of changes, such as modifications to endpoints,
updates to data models [21], and adjustments to authentication mechanisms, is crucial for assessing their
impact on usability and client integration. These changes often reflect efforts to introduce new function-
ality, improve performance, or enhance security. However, their implementation can create challenges for
client developers, particularly when changes are breaking or poorly communicated. By identifying patterns
in these changes, it becomes possible to evaluate how to evolve APIs effectively while maintaining backward
compatibility and minimizing disruptions.

Chapter 7 presents a detailed list of fine-grained changes observed in the histories of real-world APIs. This list
highlights the modifications that are most likely to occur during the evolution of Web APIs and emphasizes
the need to account for these changes when designing APIs. Chapter 8, suggests a visualization that can be
used to summarize the changes happening during a specific time frame of the API lifetime in a compact and
interactive manner.

4. What versioning practices are commonly applied in Web APIs, and how do they impact usability, relia-
bility, and client awareness?

Versioning practices are essential for managing the evolution of Web APIs and addressing the inevitable
changes introduced over time [106, 89]. Clear versioning practices enhance usability by clearly signaling the
scope of changes, improve reliability by maintaining predictable behavior across versions, and foster client
awareness by communicating when breaking changes requires action [170, 45].

Chapter 9 presents analysis results showing the commonly used versioning schemes for Web APIs. We ex-
tracted from real-world APIs a list of adopted version identifier formats and verified the extent to which
practices such as path-based and header-based versioning are implemented in real-world APIs.

5. To what extent do real-world APIs follow established versioning schemes, such as semantic versioning,
and what variations exist?

While many APIs claim to use semantic versioning [41], variations often emerge in practice, such as incon-
sistent handling of breaking changes or adopting custom versioning formats. These deviations can impact
the clarity and predictability of API updates, leading to integration challenges for client developers. As for
the adherence to API design principles exploring these variations in adherence to versioning scheme helps
highlight gaps between theoretical guidelines and practical real-world implementations [116, 101].

Chapter 10 focuses on Semantic Versioning, identified in Chapter 9 as the most widely adopted format for
version identifiers. The analysis investigates the extent to which APIs accurately convey the type of changes
introduced in a release through their version identifiers. It quantifies the proportion of APIs that consistently
adhere to Semantic Versioning principles across all releases and examines the proportion of individual releases
that maintain consistency with semantic versioning rules.

7 1.4 Research Approach

1.4 Research Approach
This research adopts a mining software repositories approach, inspired by methods outlined in works such as Mens
et al. [105] and Kagdi [78], to investigate the design, evolution, and versioning practices of Web APIs. Using a large
dataset of real-world API repositories, we analyze API specifications and repository metadata to uncover structural
patterns, common changes, and versioning practices. The MSR approach allows us to derive insights from historical
data and code artifacts, ensuring that the findings are firmly grounded in practice rather than theory.

To ensure wide applicability, this research uses language-agnostic analysis methods, similar to the approaches
recommended by Effendi et al. [50] for large-scale analysis of multi-language systems. This enables the identifica-
tion of reusable patterns and best practices in APIs across diverse programming environments.

1.5 Dissertation Outline
This thesis walks the reader through empirical results drawn from a longitudinal study of thousands of Web APIs,
utilizing different analysis approaches, including static analysis and patterns mining. These results show how exist-
ing Web APIs are designed and evolve in practice. Our empirical analysis has led to a set of contributions consisting
of empirical shreds of evidence, tools, and artifacts.

The analysis and their insights as details in eight chapters grouped into 4 parts :

• Part 1 - Web API Structural and Datamodel analysis

This part of the thesis spans three chapters, addressing the questions about the design and data models of
Web APIs.

The initial chapters present the Web API Tree, an intuitive visualization designed to represent the structure
of web APIs. This visualization, supported by a tool we call OAS2Tree7, showcases the branching relation-
ships between paths and their associated operations, parameters, and responses through a chosen graphical
notation.

Based on the Web API Tree representation, the second chapter in this part identifies structural patterns within
web APIs that can serve as modular, reusable building blocks for diverse application needs. By exploring these
patterns, the research highlights their potential to streamline API design, reduce inconsistencies, and promote
modularity and maintainability.

The second chapter in this part investigates the interconnection between Web APIs and their data models,
emphasizing how this relationship influences adherence to design principles, the client developers’ experience,
and seamless integration. The analysis delves into established principles like consistent naming conventions
and logical structuring, examining their application in real-world scenarios and assessing whether they remain
theoretical ideals or are practically implemented in existing APIs.

• Part 2 - Web API changes

This part focuses on the types of changes Web APIs undergo during their evolution and how these changes
impact clients [20]. It examines updates to endpoints, data models, and authentication mechanisms, iden-
tifying patterns in these modifications. Chapter 7 provides a detailed list of changes observed in real-world
APIs.

It also introduces visualizations to summarize and communicate these changes effectively. The visualization
can be automatically generated due to a CLI tool we implemented, which me name APIcture8.

7Demo Video Link: https://youtu.be/E48c9Rwntz8
8APIcture trailer video: https://souhaila-serbout.me/readmore/serbout2023interactively/post

https://youtu.be/E48c9Rwntz8
https://souhaila-serbout.me/readmore/serbout2023interactively/post

8 1.5 Dissertation Outline

Chapter 8 proposes compact and interactive methods to display API changes over time, helping developers
understand their impact and track API evolution.

• Part 3 - Web API versioning analysis

This part analyzes versioning practices in Web APIs and their impact on usability, reliability, and client aware-
ness. It examines how versioning methods, like path-based and header-based approaches, are implemented
in real-world APIs. Chapter 9 lists common versioning schemes and evaluates their effectiveness in signaling
changes and maintaining predictable API behavior.

It also explores the adherence to semantic versioning and variations in its application. Chapter 10 evaluates
how accurately APIs use version identifiers to reflect changes, identifying gaps between theoretical standards
and practical implementations. The findings highlight inconsistencies and suggest ways to improve versioning
practices.

• Part 4 - Conclusions

This part summarizes the key contributions of the research by answering the research question raised at the
start of this chapter and presents a section on research publications derived from the thesis, showcasing how
the findings have been shared with the broader academic communities.

Chapter 2

State of the Art

This chapter presents a review of the state-of-the-art studies on Web APIs in terms of design, analysis, evolution,
testing, and documentation. We begin by highlighting research contributions that adopted different approaches
to studying Web API characteristics, starting from different types of resources. The sections further explore the
research work on understanding the dynamic nature of Web API evolution, examining the impact of API changes
on client applications and the strategies for mitigating the challenges associated with frequent updates.

2.1 Background on Web APIs

2.1.1 Web APIs history

Web APIs have evolved significantly since their inception, becoming a cornerstone of modern software development
(Figure 2.1). The origins of APIs can be traced back to the early days of software engineering when the need to
enable communication between different software systems first emerged [55]. The advent of the World Wide Web in
the 1990s introduced the concept of web services, which laid the foundation for the first generation of APIs. These
early web services were primarily built using protocols such as SOAP (Simple Object Access Protocol) and XML-RPC,
which emphasized structured communication between systems. However, the complexity and overhead of these
protocols led to the development of more lightweight alternatives, culminating in the rise of REST (Representational
State Transfer), a paradigm introduced by Fielding in his doctoral dissertation [55]. REST provided a simplified
model for building APIs by leveraging HTTP protocols, focusing on statelessness, scalability, and resource-oriented
architecture, which gained widespread adoption during the early 2000s.

The growth of RESTful APIs coincided with the rise of major technology companies, such as Google, Twitter, and
Facebook, which began exposing their core functionalities as public APIs to foster innovation and integration within

Figure 2.1. Web APIs history timeline

9

10 2.1 Background on Web APIs

their ecosystems [83, 117]. This period also marked the emergence of API management platforms and marketplaces,
enabling developers to easily discover, integrate, and monetize APIs [104]. In recent years, the proliferation of
microservices architectures and cloud computing has further accelerated the adoption of APIs, as they serve as
the primary mechanism for inter-service communication. The introduction of the OpenAPI Specification (formerly
Swagger) in 2010 standardized the documentation and design of APIs, making them more accessible and easier to
adopt [118].

In the last decade, the integration of Web APIs with artificial intelligence (AI) has opened new frontiers for
innovation. In 2020, APIs like OpenAI’s GPT-3 enabled developers to access advanced AI models through simple API
calls, democratizing AI capabilities such as natural language understanding, text generation, and conversational AI
[163]. AI-first APIs have since proliferated, with platforms like Hugging Face providing access to pre-trained NLP
models and tools, and Stable Diffusion enabling developers to integrate generative AI capabilities with minimal
overhead [162]. This shift has fundamentally reshaped industries, as AI-driven APIs allow businesses to scale
their AI capabilities without needing deep technical expertise. APIs have become the backbone of AI services,
powering subscription-based business models and facilitating the rapid deployment of AI solutions in sectors such
as healthcare, finance, and education.

From the early days of SOAP to the modern era of REST and GraphQL Web APIs have evolved to meet the
demands of modern applications [67, 36, 69]. Today, APIs are indispensable for connecting systems, enabling
interoperability, and driving digital transformation in a world increasingly reliant on AI-powered technologies.

2.1.2 Web API design and modeling: Interface Description Languages

In [38], Davis suggests a set of principles for software design, among which reuse plays a prominent role: software
design should not reinvent the wheel, but can instead benefit from combinations of existing proven design patterns.
Following this recommendation, in the context of web API design [89], in our research, we focus on supporting and
investigating the modeling phase of web API creation. The first goal of our analysis is to assess the most frequent
design decisions made by developers to create their REST APIs [110]. In other words, we want to empirically detect
API design patterns [189] based on how current real-world APIs are designed. We want to achieve a fully automated,
systematic, and programming language-independent approach for capturing design decisions made by developers
in conceiving their Web APIs, depending on the API’s domain. For that, we planned to exploit API documentation
writing in machine-readable Interface Description Languages (IDLs) [61].

Before the appearance of adequate description languages, REST APIs were modeled using informal notation or
natural language, informal models, or general-purpose modeling languages. This lack of machine-readable descrip-
tion formats at the beginning of the 21st century urged the birth of some domain-specific languages for describing
web APIs over different aspects, such as RAML [3], WADL [62], WSDL [32], I/O Docs [4], and OpenAPI [118]
(Table 2.1), which gained more importance in the five last years, by being selected as a standard language for
APIs description. Moreover, thousands of these description documents can be easily found by crawling software
repositories shared in collaborative platforms, such as GitHub. In December 2020, we started to crawl open-source
software repositories looking for OpenAPI descriptions, assessing the feasibility of a large-scale analysis on API de-
scriptions, having the purpose of detecting recurring design decisions made by Web API developers. By classifying
the gathered descriptions by the year of the last commit, we noticed a clear increment in the number of OAS actively
updated each year (Figure 6.3), which is promising for further empirical research on API analytics. Previous re-
search work has exploited the granularity descriptions of the functional characteristics of Web APIs, written in OAS,
for purposes other than analytics, such as automatically generating Web frontends [84], and generating test cases
for REST APIs [48]. On the other hand, other works tried to extract formal API descriptions [?] written in RAML
or OAS from informal API descriptions web pages. Another work that intended to infer structured API descriptions
is [160], where the author combined the use of both API descriptions written manually by service providers and
the usage data of the API.

11 2.2 Web APIs Analysis

Having modeled the representation of Web API induces the feasibility of studies using Model-Driven Engineering
(MDE) techniques. MDE is a software development paradigm that advocates the use of models as active elements
in the development cycle [136, 46]. Such models can be created with General Purpose Modelling Languages (e.g.,
UML) or using a Domain-Specific Language (DSL), such as the ones in Table 2.1 in the case of Web APIs.

At the same time, AI and ML have shown their potential to enhance software engineering approaches in many
areas [11, 14, 181, 150], but their applications for addressing tasks in the modeling domain are still relatively recent.
For instance, in [112], neural networks are used to classify meta-models into application domains. In particular,
clustering techniques have shown their usefulness in organizing collections of models [16, 17], and graph kernels
have been proposed as a means to characterize similar models [33].

Most ML applications in MDE tackle tasks related to classifying models in a supervised manner [112] or in an
unsupervised manner [15, 16, 17] and only very few ones are designed to assist the modeler in modeling tasks. In
the case of Web API design, such modeling support tools are non-existent.

IDL Appearance Year Last Update Year Available Versions Relative Popularity

WSDL September 2000 June 2007 1.1, 2.0 1.7M
WADL August 2009 July 2018 2009 371k
RAML September 2013 May 2016 0.8, 1.0 6.6M

API Blueprint April 2013 June 2015 1A 15.7K
OpenAPI (Swagger) July 2011 February 2021 2.0, 3.0, 3.1 7.6M + 10.4M

Table 2.1. Overview of Web API Description Languages with Relative Popularity

Table 2.1 summarizes key Web API Description Languages (IDLs), including their appearance years, last update
years, available versions, and relative popularity based on the number of GitHub files referencing their names.

The OpenAPI Specification dominates in popularity, with 7.6M files referencing “Swagger” and 10.4M referencing
“OpenAPI” This reflects its widespread adoption and the transition from Swagger to OpenAPI as the preferred
standard for API documentation.

RAML follows with 6.6M references, indicating its niche adoption for reusable API definitions. WSDL, with
1.7M files, remains significant in legacy SOAP-based systems. In contrast, WADL and API Blueprint show limited
adoption, with 371k and 15.7k files, respectively, reflecting their declining relevance.

2.2 Web APIs Analysis

2.2.1 Analyzing Web API functional features through documentation

The existence of several approaches to document Web APIs in human and machine-readable formats leads to diverse
approaches for their exploitation to produce comprehensive descriptive insights. In 2010, Maleshkova et al. adopted
in [99] a manual examination approach to study 222 Web API descriptions from the ProgrammableWeb directory.
This study focused on technical aspects such as general API information, input parameters, output formats, and
invocation details. It revealed that 61% of the APIs were not used in any mashups, and only 12% achieved high
popularity, like the Flickr API with 506 mashups. The data used in this study contains mainly information about
API mashups and resources such as SDKs, libraries, and external documentation. It contains also documentation
of the API operations. However, these latter are not structured in a machine-readable way, which makes it difficult
to be exploited for API structure and data model analysis. Haupt et al. performed analysis on API structures in
[63, 64] starting from machine readable API descriptions. Unlike [99], the authors of [63, 64] built a systematic
approach based on Swagger and RAML. Their analysis involves transforming the API’s Swagger model into a defined

12 2.2 Web APIs Analysis

canonical metamodel that depicts the elements of the resources handled by an API and the methods it provides for
each resource. The metamodel also describes the relationships between the resources (navigation or creation),
which are not describable using the Swagger and RAML IDLs, but the authors’ approach infers these relationships
based on the hierarchical relationships between the paths. However, this work considers Swagger and OAS as
distinct IDLs, although they can be seen as different versions of the same language. The study presented in [63, 64]
is based on metrics related to the API structure, such as the size (number of resources), number of read-only
resources (around 24.5% of all APIs have a share of read-only resources between 90% and 100%), number of POST
and DELETE operations, number of root resources, number of links, and the number of components and their size.
The authors also defined metrics to measure the user-perceived API complexity, describing how a user judges the
complexity of the API without objectively measuring it. They performed an experiment with nine API developers,
applying the Analytic Hierarchy Process (AHP)[135] by carrying out a pairwise comparison of ten APIs out of the
286 selected ones. Participants indicated how much one API is more complex than the other using a scale (as
defined by Saaty[135]) ranging from 1 (equally complex) to 9 (extremely more complex).

While [63, 64] and [99] picked their APIs from documentation platforms, the authors of [110] chose to pick APIs
from popular hosting websites by examining the Alexa.com top 4000 most popular sites to identify 500 websites
claiming to provide a REST web service API. This study’s main goal was to assess these APIs’ compliance with REST
best practices, finding that only 0.8% of the selected services strictly comply with all REST design constraints[55].
Similar to [99], the authors performed a manual analysis of Web APIs, starting from their documentation, against
26 technical features, mostly collected from the literature (e.g., HTTP verb support, design schema used in URIs,
versioning use).

Unlike [64, 99] and [110], who focused more on metrics extraction and providing static results about the sample
under study, the authors of [120] performed an in-depth analysis to detect five REST design patterns and eight anti-
patterns. To do so, they defined and implemented detection heuristics. Other studies like [166, 175, 174, 31, 59]
have also analyzed Web APIs on different levels, such as usability, performance, and quality. However, none of them
performed systematic and quantitative studies to discover and abstract common structural design decisions adopted
by Web API creators.

While most of the main existing studies on Web API structure analysis have focused on API documentation rather
than their actual implementations, none have applied their approaches to a large sample of API documentation,
utilizing repository mining techniques to collect machine-readable specifications.

2.2.2 Analyzing Web API features changes over time

Web API changes analysis and classification

A key motivation for our focus on analyzing Web API evolution is the scarcity of studies that have explored and
identified the types of changes and evolution patterns in Web APIs. An API change can have a specific impact,
potentially breaking backward compatibility or maintaining it. Although some studies have examined the impact
of Web API changes and their alignment with versioning strategies, there is a lack of large-scale research that
comprehensively explores these changes and how they are reflected in versioning practices.

In a recent study performed by Koci et al. in [82], the authors explored the types of changes in Web APIs by
analyzing the DHIS2 API. However, they have only compared two consecutive versions of one API controller to
identify changes and examine four key artifacts: release notes, API documentation, issue trackers, and versioning
systems. Their approach involves categorizing changes by their types and causes, and assessing the impact on API
consumers through usage logs. They identified 38 changes, including 19 new parameters, 10 new endpoints, 5
removed endpoints, 2 new authorities, 1 changed authority, and 1 supported request method. Over 75% of these
changes were non-breaking, which explains why consumers often delay upgrading. The study found less than 50%
of changes were documented, with only 17 out of 38 reflected in at least one artifact, and only 5% documented in

13 2.2 Web APIs Analysis

all artifacts. Usage logs showed that only 10 out of 38 changes were adopted by consumers. The main limitation
of this work lies in its exclusive focus on an internally implemented API, which is largely due to the difficulty of
accessing the code or the usage logs for multiple real-world APIs. Additionally, the approach used in this study lacks
reusability, even if other API codes were accessible, as it relies on manual code analysis rather than a systematic
method.

In 2015, Sohan et al. [154] have also focused on how API changes are communicated as the APIs evolved. The
authors analyzed nine web APIs (Facebook, Twitter, WordPress, Salesforce, Google Calendar, Stripe, GitHub, Google
Maps, OpenStreetMap), through 18 randomly sampled change logs of these nine APIs, and found 114 moved, 31
renamed, and 247 behavior changes across releases (e.g., Facebook’s 11, Stripe’s 30, Google Maps’ 102). Most
releases broke backward compatibility, highlighting the need for semantic versioning. The study stresses the im-
portance of separate releases for bug fixes and new features and calls for automated, version-aware documentation
tools. Communication of changes often relied on unstructured text, suggesting a need for more structured methods
for logging and tracking API changes. The authors looked mostly at the official API websites to see how the changes
are communicated and how new releases are announced to the community. Nowadays, many providers such as
Meta, OpenAI, and GitHub use tools such as Discord to push notifications and share change logs.

Focusing on the impact of the introduced changes, in 2013 Li et al. [93] examined client programs of five popular
web APIs: Google Calendar, Google Gadgets, Amazon MWS, Twitter, and Sina Weibo. The study analyzed a total of
256 API changes across these APIs, finding that more than half of the old API elements became incompatible with
the new versions. Specifically, the study identified 16 change patterns, 12 of which caused compile time errors and
4 of which caused runtime errors. The authors discovered that web APIs change more frequently at the wrapper
library level than at the HTTP level. They identified six new challenges unique to web API migration, such as
transformations between JSON and XML and handling authorization protocol changes.

The impact of API changes on developers

The changes introduced in an API have a direct impact on their existing clients but also on the developers who
consume the APIs for their clients. Starting from this perspective, researchers have also investigated the challenges
faced by developers due to the evolution of Web APIs through interviews rather than only analyzing the client
software [52, 53, 171, 70]. Through semi-structured interviews with six developers and analysis of major Web
API providers (Twitter, Google Maps, Facebook, Netflix), Espinha et al.[52] uncover significant distress caused by
frequent and often unannounced changes, forcing developers to adapt their code continuously. Their research
highlights the impact of API changes on client software and identifies best practices for API evolution, emphasiz-
ing the need for better communication and stability from API providers. Extending their work in [53], Espinha
et al. provided a deeper qualitative analysis, including the server-side and client-side evolution of open-source APIs
(VirtualBox and XBMC), and underscore the maintenance burden imposed by frequent API changes.

API Changes and their consistency with versioning

Other studies have examined the correlation between software changes and versioning in package manager tools [128,
182, 116]. Ochoa et al.[116] replicated Raemaekers et al.[128] and found 83.4% of package upgrades comply
with semantic versioning, but 20.1% of non-major releases introduce backward incompatible changes. Non-major
breaking releases decreased from 67.7% in 2005 to 16.0% in 2018. Zhang et al.[182] studied 180 real-world ex-
amples to understand breaking issues in compatible version upgrades, identifying probabilities for changes (e.g.,
additional parameters) causing incompatibility. Li et al.[95] analyzed GoLang’s ecosystem, using GoSVI to detect
breaking changes in 124K libraries and 532K client programs, finding 86.3% compliance with semantic versioning
but 28.6% of non-major upgrades introducing breaking changes. They noted that 33.3% of client programs could
be affected.

15 2.2 Web APIs Analysis

identified, including 1132 breaking changes, of which 424 required manual intervention. The study involved col-
lecting and examining version histories, change logs, and migration practices from various companies to provide
a comprehensive understanding of the impact of API evolution. This study highlights the need for systematic ap-
proaches to mitigate the impact of API changes on client applications and provides insights into effective strategies
for managing API evolution [90].

Lercher et al. [90] explores the evolution strategies and challenges of microservice APIs. Conducted through 17
semi-structured interviews with developers, architects, and managers across 11 companies, the study used grounded
theory for analysis. Key findings include six evolution strategies such as maintaining backward compatibility, ver-
sioning, collaboration with consumer teams, designing flexible APIs, and extensive regression testing. For instance,
all participants (17/17) emphasized backward compatibility and versioning, with many (13/17) maintaining mul-
tiple API versions simultaneously. The study identified six primary challenges, including impact analysis difficulties
and consumer reliance on outdated API versions. Specifically, 14 out of 17 participants found manual change impact
analysis error-prone, and 12 out of 17 reported issues with consumers relying on old versions, leading to mainte-
nance overhead. The study highlighted two major problems: tight organizational coupling and consumer lock-in,
suggesting mitigation through automated change impact analysis and improved communication.

2.2.5 API changes across language ecosystems
Instead of targeting web APIs, studies on the impact of API changes have focused on specific ecosystems [87],
such as Pharo. Hora et al. [70] analyzed six years of evolution data, including 3,588 client systems and 2,874
contributors, to understand the propagation of API changes. They mined 344 API changes and focused on 118
significant changes, assessing the reactions of client systems. Spanning versions 1.0, 1.4, 2.0, and 3.0 of Pharo
Core, they excluded deprecations, resulting in 59 method suggestions and 59 method replacements. They found
that 53% of API changes caused reactions in at least one client system, involving 178 distinct client systems and 134
developers. Method replacements were followed more consistently than method suggestions. Earlier API changes
had a longer adaptation time, with a median of 284 days compared to 18 days for later changes.

Cossette and Walker [35] analyzed the evolution and migration of five Java-based APIs: Apache Struts, log4j,
jDOM, DBCP, and SLF4J. They manually investigated 697 binary incompatible changes (BIs) across these libraries
to determine adaptive changes for migrating client code. They found no single change recommendation technique
identified the correct replacement for more than one or two changes, with an average success rate of 20% per
technique. Hybrid techniques that combine multiple methods may be more effective. Most API changes were not
documented in release notes or source code comments, highlighting the need for better documentation.

In Summary
Most studies on Web APIs are limited by small datasets and manual methods, which reduces scalability and general-
izability. Automated large-scale analyses of API changes, their impact on usability, and alignment with best practices
remain underexplored. Critical gaps include understanding the link between API design and domain requirements,
the effects of changes on developers and clients, and real-world adherence to semantic versioning. This research
addresses these gaps by employing automated, scalable and language-agnostic methods to analyze large datasets
of web APIs.

14 2.2 Web APIs Analysis

One of our key objectives is to address the existing gap in understanding how Web APIs evolve and how this
evolution aligns with the type of release. Similar to the analyses conducted by Raemaekers et al. [128], Ochoa
et al. [116], and Zhang et al. [182] for software packages, we aim to assess the compliance of APIs with versioning
schemes such as semantic versioning.

2.2.3 Mitigating and facing web API evolution challenges

Addressing the challenges of web API evolution has become increasingly important due to the potential for unex-
pected impacts. Schmiedmayer et al. proposed an approach aimed at reducing the impact of breaking changes in
web service APIs, with a particular focus on mobile applications. They present an automated process that utilizes
type-independent evolution patterns to generate stable client libraries, thereby significantly reducing the manual
effort required for client-specific migrations. This approach was validated using 13 web service version increments,
demonstrating its effectiveness in adapting to API changes more seamlessly and improving overall software stabil-
ity [137].

To prevent potential breakages when updating to a new version of a third-party API, it is essential to commu-
nicate changes clearly, allowing developers to make informed decisions about the impact of the update [107, 74].
A common practice for maintaining backward compatibility is to keep older versions operational while notifying
clients of their eventual deprecation. Lübke et al.[98] outlines this practice, along with seven other patterns, to
effectively manage API evolution, tackling challenges like compatibility maintenance and the introduction of new
features. Key patterns include Semantic Versioning (a three-number versioning scheme), Two in Production (sup-
porting two API versions simultaneously), and Limited Lifetime Guarantee (providing a fixed support duration).
The study emphasizes the importance of strategic versioning and API descriptions, advocating for the use of both
minimal and elaborate descriptions to balance clarity and ease of maintenance. To examine the practical implemen-
tation of such practices, Yasmin et al. [179] focused on the deprecation mechanism [26], often adopted with Two in
Production and Limited Lifetime Guarantee pattern defined in [98]. They develop the RADA framework to analyze
deprecated API elements and their impact on client operations. Their empirical study on 1 368 RESTful APIs reveals
several issues in current deprecation practices, such as only 33% of APIs following the deprecated-removed pro-
tocol and insufficient deprecation-related information. These findings underscore the need for better deprecation
practices to mitigate the negative impact on client applications and provide insights for future improvements [179]

Refactoring is a key driver of API changes, offering a chance to improve the API’s structure and performance.
However, it also presents a risk, as these changes can inadvertently introduce bugs if not managed carefully [19].
To address specific refactoring-related challenges, Stocker and Zimmermann[157] propose a structured method
for managing API changes through an Interface Refactoring Catalog (IRC). This catalog includes 22 refactorings
designed to manage changes in API endpoints and operations effectively. Eleven of these patterns leverage existing
API design patterns, while the remaining focus is on renaming API elements and managing architectural changes.

2.2.4 APIs evolution in microservices-based architectures

APIs play a key role in microservices-based architectures [91, 123] and the operation of enterprise software sys-
tems [76], which are often based on heterogeneous IT infrastructures. This type of architecture allows the different
parts of the systems to evolve with different speeds [108]. At the same time, the API connecting them should also
be updated to ensure continued compatibility between these software components. In this direction, Knoche and
Hasselbring [79] presents an approach for interface evolution that is easy to use for developers, and also addresses
typical challenges of heterogeneous enterprise software, especially legacy system integration.

To understand the challenges faced, Lercher et al.[90] conducted an empirical study on microservice API evolu-
tion, focusing on maintaining backward compatibility and managing frequent changes. They analyzed real-world
scenarios involving 3896 API changes across several microservices, revealing that 86.1% of changes were correctly

16 2.2 Web APIs Analysis

Chapter 3

A Large Dataset of OpenAPI Specifications

This thesis is grounded in data-driven analysis to uncover insights about Web API design and evolution. This chapter
outlines the methodology employed to collect a large dataset of OpenAPI specifications from multiple sources and
examines its implications on the types of Web APIs represented by the collected specifications. Additionally, this
chapter introduces a set of metrics designed to quantify various aspects of Web API structures, data models, security
configurations, and the natural language descriptions of API elements.

3.1 Web APIs Specifications Dataset Utility
The dataset provides a source for benchmarks for API designers to assess quantitative aspects of their API in relation-
ship to a large collection of API descriptions mined from open source repositories (e.g., as shown in this threshold
derivation method [23]). API analytics researchers can also use the dataset to quantitatively observe the state of
the practice in API design, study to which extent some known API design patterns (or smells) are adopted in prac-
tice [191], select and extract smaller samples based on quantitative and domain-specific criteria for further study,
identify new indicators based on the given raw metrics that can help detect outliers or cluster similar API designs,
making it possible to assess and manage the quality of entire API landscapes [104]. By including artifacts obtained
from different sources, the dataset includes APIs at different stages of their development lifecycle: from early API
sketches found in GitHub repositories to mature APIs deployed in production by major service providers. Thanks
to the corresponding interactive exploration tool, researchers to search and filter our comprehensive API analytics
dataset for empirical studies and pattern mining. We aim to regularly update this public dataset with new features.

To demonstrate the dataset’s utility, this thesis includes a descriptive analysis of key API metrics, comparing
artifacts from various sources. We address questions about the variability of the metrics over time and across
datasets. For example, we observe the usage of specific HTTP methods and API security features as well as measure
the readability of natural language documentation.

The rest of this thesis exploits portions of this datasets to perform in-depth analysis on Web API design And
evolution.

3.2 Data Collection Approaches
To collect OpenAPI specifications a few potential data sources can be targeted:

• Documentation Pages: The OpenAPI specification is often hosted directly on the documentation pages of
API providers, allowing users to access detailed information about the API.

17

18 3.2 Data Collection Approaches

• GitHub: Many API providers use GitHub to share and maintain their OpenAPI specifications, offering version
control and collaboration features. When API providers do not offer machine-readable documentation (e.g.,
Google), independent developers often create and maintain GitHub repositories to host OpenAPI documen-
tation for popular APIs.

• APIs.guru: A community-driven initiative that aggregates and standardizes OpenAPI definitions for widely
used APIs. APIs.guru bridges the gap between incomplete or non-existent documentation and the need for
standardized machine-readable formats, enabling developers to integrate APIs more efficiently.

• SwaggerHub: A platform that provides a centralized hub for designing, documenting, and collaborating on
OpenAPI specifications. SwaggerHub offers tools for creating and maintaining machine-readable documen-
tation, enhancing collaboration for teams managing API ecosystems.

Targeting non-uniform data sources is not straightforward. We discarded scanning the web for API documenta-
tion pages because of the high complexity and resource requirements involved in identifying and parsing machine-
readable specifications from unstructured documentation. Additionally, such an approach often yields incomplete
or outdated results, as many API providers do not adhere to consistent formats or standards for publishing their
documentation. Instead, in addition to APIs.guru, we focused on repositories and platforms that explicitly host or
aggregate OpenAPI specifications, such as GitHub and SwaggerHub, ensuring a more reliable and efficient collection
of valid and standardized API definitions.

3.2.1 APIs.guru

To collect the specifications from APIs.guru, we could fetch them using the commands:

$ wget https://api.apis.guru/v2/list.json ; cat list.json | jq -r '.[]["versions"][]["swaggerUrl"]' >
ϵ→ urls

$ wget -i urls

The commands automate the process of downloading OpenAPI specifications listed in the APIs.guru directory.
The first command uses wget to fetch a JSON file (list.json) containing a comprehensive list of APIs and their
metadata from the APIs.guru repository. It then pipes the contents of this file through jq, a command-line JSON
processor, to extract all Swagger (OpenAPI 2.0) URLs from the swaggerUrl fields under the versions object of
each API entry, saving these URLs into a file named urls. The second command utilizes wget with the -i flag to
read the URLs listed in the urls file and download all the OpenAPI specification files they point to. We then process
these obtained files and store them alongside their metadata (provenance URL and processing date) in a MongoDB
collection.

The APIs in this collection have been manually classified into 18 categories where the most common category
is related APIs 3.1. This can be explained by the fact that most of the APIs in this collection are Azure, Google, and
AWS APIs 3.2.

3.2.2 SwaggerHub

While SwaggerHub does not offer an explicit API to retrieve the API specification, we exploited the API behind the
frontend (https://api.swaggerhub.com/apis/swagger-hub/registry-api/1.0.66) to retrieve the maximum
possible number of specifications using different combinations of the provided filters to build queries that will allow
us to fetch new specifications. Because SwaggerHub limits the maximum number of results to be retrieved by a
single query to 10 000.

https://api.swaggerhub.com/apis/swagger-hub/registry-api/1.0.66

19 3.2 Data Collection Approaches

Figure 3.1. Categories of the APIs in the APIsGuru sources collection

For instance, the query below allows retrieving more than 250k results containing URLs pointing to OpenAPI
specifications. However, the maximum number of pages that can be read is 99. Queries exceeding this limit return
a 500 response code.! "
https://app.swaggerhub.com/apiproxy/specs?specType=API&limit=100&sort=BEST_MATCH&order=ASC

ϵ→ &query=inventory&page=0# $
In the query below, I set the number of pages to 100:! "
https://app.swaggerhub.com/apiproxy/specs?specType=API&limit=100&sort=BEST_MATCH&order=ASC

ϵ→ &query=inventory&page=100# $
This results in the following error message when attempting to access any page beyond 99:! "
There was an error processing your request. It has been logged (ID: c00d620e1a75f747).# $
Thus, to read all the results, we use different combinations of filter values. The responses from these queries

allow for collecting a set of URLs pointing to OpenAPI specifications. These URLs are then placed in a queue
for a consumer to process, which fetches the specifications while ensuring that the rate limit is not exceeded.
Notably, SwaggerHub does not explicitly describe its rate limit in its documentation. To expedite the download and
processing of the specifications, a scheduler ensures that calls from different instances remain under the rate limit
1.

1Running the SwaggerHub crawler for a long period is not beneficial and is just energy-consuming since discovering new specifications is
faster when the number of undiscovered documents is large. Thus, to save bandwidth we run the crawler only for a few days until it stops
making new discoveries.

20 3.2 Data Collection Approaches

Figure 3.2. Top 20 web API providers in the APIsGuru sourced collection

We also have another mode in which the URL producer calls the GET /api/{owner} endpoint instead of GET
/specs. When we collect a newly discovered owner, we use it to call all the specifications collected by this owner.
A watcher on the collection instantiates a URL producer that calls the GET /api/{owner} with the newly discov-
ered owner. The watcher is aware of the consumer’s owners because they have persisted in a consumer_owners
collection. These producers are not run in parallel.

In Figure 3.3 we show that the monthly distribution of the created OpenAPI specification is SwaggerHub, clas-
sified by the specification version identifier used in the files to refer to the version of the used OpenAPI specification
language.

Listing 3.1. Example of MongoDB document corresponding a entry in the database for WILCO API
{
_id: ObjectId("65febec31375dedb07465fb9"),
_API_reference: "https://api.swaggerhub.com/apis/flightwatching/wilco-api",
_name: "WILCO API",
_description: "This API allows you to pull and push data with your WILCO deployment\n[https://github.

ϵ→ com/flightwatching/wilco-api](https://github.com/flightwatching/wilco-api) or on \n[www.
ϵ→ flightwatching.com](www.flightwatching.com).",

_created_at: "2017-06-07T12:08:30Z",
_last_modified: "2024-03-21T13:53:27Z",
_created_by: "",
_API_url: "https://api.swaggerhub.com/apis/flightwatching/wilco-api/3.0.0",
_version: "3.0.0",
_OPENAPI_version: "2.0",

21 3.2 Data Collection Approaches

api: {
swagger: "2.0",
info: {
x-errors: [],
description: "This API allows you to pull and push data with your WILCO deployment\n[https://github

ϵ→ .com/flightwatching/wilco-api](https://github.com/flightwatching/wilco-api) or on \n[www.
ϵ→ flightwatching.com](www.flightwatching.com).\n",

version: "3.0.0",
title: "WILCO API",
termsOfService: "http://www.flightwatching.com/terms/",
contact: {
email: "contact@flightwatching.com"

},
license: {
name: "Apache 2.0",
url: "http://www.apache.org/licenses/LICENSE-2.0.html"

}
},
....

},
isValid: false

}

The structure of the stored document in the collection includes the following fields:

• _id: A unique identifier automatically generated for each document in the MongoDB collection. This field
ensures each API entry is uniquely identifiable for efficient retrieval and management.

• _API_reference: A URL pointing to the SwaggerHub reference for the API. This field provides a direct link to
the public API documentation or definition hosted on SwaggerHub.

• _name: The name of the API, such as "WILCO API". This field serves as a human-readable identifier for the
API.

• _description: A textual description of the API, detailing its functionality and purpose. This may include links
to related resources or repositories for additional context.

• _created_at: The timestamp indicating when the API was first created or added to the database. This helps
track the API’s creation date for historical or analytical purposes.

• _last_modified: The timestamp of the most recent modification to the API entry. This field helps monitor
updates to the API’s information or specification.

• _created_by: The identifier of the entity or user who created the API entry. This field may be left empty if
the creator is unknown or unspecified.

• _API_url: The URL pointing to the specific version of the API’s definition. This field facilitates direct access
to the API’s OpenAPI specification or other documentation formats.

• _version: The version number of the API (e.g., "3.0.0"). This helps distinguish between different versions of
the API for versioning and compatibility purposes.

22 3.2 Data Collection Approaches

Figure 3.3. Monthly distribution by creation date of valid OpenAPI/Swagger specifications in SwaggerHub
dataset

• _OPENAPI_version: The version of the OpenAPI (or Swagger) specification used by the API. For instance,
"2.0" indicates that the API follows the OpenAPI Specification version 2.0.

• api: A nested object containing the parsed OpenAPI specification.

• isValid: A boolean flag indicating whether the API’s OpenAPI specification is valid. This helps filter APIs that
meet specification standards.

3.2.3 GitHub
Unlike SwaggerHub, GitHub explicitly offers a dedicated Search API which allows fetching data through queries
sent to the GET /search endpoints. This API enforced a rate limit of 5 000 calls per authenticated user. However,
identifying OpenAPI files among the 321 million results that GitHub sends back when searching for YAML or JSON
files is like looking for a needle in a haystack, as these files are often mixed with countless other configurations,
data structures, and unrelated documents. This immense volume of results makes it challenging to isolate OpenAPI
specifications efficiently, requiring precise filtering and advanced heuristics to pinpoint the relevant files.

We choose a heuristic to search by file content. However, GitHub only allows access to the first 10 pages, with a
maximum of 100 results per page. Thus, we decided to introduce another pagination mechanism where we query
with specific ranges of file sizes in bytes. This ensures that we retrieve only a manageable number of results fitting
the accessible limit per query.

Listing 3.2. OpenAPI search queries
// Define the maximum and minimum file size ranges in bytes
const FILE_SIZE_MIN = 1000; // Minimum file size in bytes
const FILE_SIZE_MAX = 104857600; // Maximum file size in bytes

// Define the queries used for searching
const QUERIES = [
"language:yaml language:json info title paths openapi",
"language:yaml language:json info title paths swagger",

23 3.2 Data Collection Approaches

];

// Example usage: Iterating over file size ranges and constructing queries
for (let size = FILE_SIZE_MIN; size <= FILE_SIZE_MAX; size += 1000) {
QUERIES.forEach(query => {
console.log(`${query} size:${size}`);

});
}

The fields: info, title, paths, and openapi or swagger, are required to be present in a valid specification. Thus
we use them as a heuristic for the content. 104 857 600 bytes is the maximum file size allowed by GitHub. Once
this maximum size is reached, the process restarts from the defined FILE_SIZE_MIN. This approach ensures the
discovery of newly pushed files. Separate scripts are employed to handle various tasks: one script fetches the
history of newly discovered files, while another keeps the history of previously fetched files up to date.

In an ideal scenario, a single query could potentially retrieve up to 1000 OpenAPI Specification (OAS) files,
calculated as 10pages↑ 100results per page. However, this is a highly optimistic scenario, because we lower the
range of sizes queried files to make sure no files will be missed and not being processed. Additionally, the results
from the search API do not include the file contents, which require separate API calls to fetch. Retrieving repository
metadata also requires additional calls. Specifically:

• To retrieve 1 000 files and their metadata, 3 000 calls are needed:

1000 (files)↑ 3(calls per file: search, content, metadata)

• To retrieve the commits metadata (without the file content at each commit), another 1 000 calls are required.

! Fetching 1 000 potential OpenAPI files content and their metadata (excluding commit contents) con-
sumes a total of 4 000 API calls. This nearly exhausts the maximum rate limit of API calls allowed per
hour, making it a resource-intensive process.

Our dataset of OpenAPI specifications sourced from GitHub comprises more than one million artifacts. It is the
largest OpenAPI collection that exists in the literature.

Listing 3.3. Example of MongoDB document corresponding a commit of the specifications of a HubSpot API
{
_id: ObjectId("6740f3701b7812026479a289"),
api_spec_id: 7040,
sha: "463b8cbc69682c92f60d87ad3324e4992a658ee9",
raw_url: "https://raw.githubusercontent.com/HubSpot/HubSpot-public-api-spec-collection/68238

ϵ→ e49d4635438ef136edc39ac744ef15c5f73/PublicApiSpecs/CRM/Associations/Rollouts/130902/v4/
ϵ→ associations.json",

file_url: "https://www.github.com/HubSpot/HubSpot-public-api-spec-collection/blob/main/
ϵ→ PublicApiSpecs/CRM/Associations/Rollouts/130902/v4/associations.json",

api: {
openapi: "3.0.1",
info: Object,
servers: Array(1),
tags: Array(3),
paths: Object,
components: Object,

24 3.2 Data Collection Approaches

x-hubspot-available-client-libraries: Array(4),
x-hubspot-product-tier-requirements: Object,
x-hubspot-documentation-banner: "NONE"

},
commit_date: "2024-05-15T08:02:42Z",
processed_at: "2024-11-22T21:11:12.887+00:00",
isValid: true,
api_title: "CRM Associations",
api_version: "v4",
commits: 1450,
repoDocId: ObjectId("673f38ba83fd560065c9cd53"),
commitMetadata: {
author: Object,
committer: Object,
message: "Updating spec file = PublicApiSpecs/CRM/Associations/Rollouts/130902/v...",
tree: {
url: "https://api.github.com/repos/HubSpot/HubSpot-public-api-spec-collection/...",
comment_count: 0

},
verification: Object

}
}

The structure of the stored document in the collection includes the following fields:

• _id: A unique identifier automatically generated for each document in the MongoDB collection. This field
ensures each specification is uniquely identifiable for efficient retrieval and management.

• api_spec_id: A custom ID assigned to each API. This allows tracking all the commits belonging the the same
API.

• sha: The SHA hash of the commit that corresponds to the specific version of the OpenAPI specification. This
ensures version control and allows linking the specification to its exact state in the GitHub repository.

• raw_url: The direct URL to retrieve the raw content of the OpenAPI file. This field facilitates automated
processing and downloading of the file for validation or analysis.

• file_url: The URL to the GitHub interface for the OpenAPI file. This provides a human-readable reference,
allowing users to view or edit the file directly on GitHub.

• api: A nested object containing the parsed OpenAPI specification.

• commit_date: The timestamp of the commit in which the OpenAPI file was updated. This is crucial for
tracking changes over time and understanding the evolution of the specification.

• processed_at: The timestamp when the specification was processed and stored in the collection. This helps
monitor the freshness of the stored data and identify when updates were last made.

• is_valid: A boolean flag indicating whether the OpenAPI specification passed validation. This helps quickly
filter valid specifications for further analysis.

• api_title and api_version: Metadata fields describing the title and version of the API as extracted from the
corresponding api.info fields.

25 3.2 Data Collection Approaches

Figure 3.4. Distribution of ages of GitHub repositories to which the OpenAPI specification of the dataset
belong. A repository age is computed by subtracting from the 31st of December 2024 the repository creation
date

• commits: The total number of commits associated with the OpenAPI file.

• repoDocId: A reference to another document in the repos_metadata collection in database containing meta-
data about the repository. This allows linking the API specification to its broader project repository context.

• commitMetadata: A nested object containing details about the commit, including the message describing
the change, the author and committer, and the tree object that links to the file hierarchy in the repository.
This field provides traceability and context for each version of the specification.

Listing 3.3 shows an example of an entry in the GitHub commit collection.

GitHub Dataset Overview

The collection includes commits of API specifications from repositories with up to 16 years of history. Most reposi-
tories are between 1 and 2 years old (Figures 3.43.6) and have fewer than 10 stars, although some are starred more
than 10 000 times (Figure 3.5). The top 20 most starred repositories are listed in Table 3.1. They include widely
know ones such are Kubernetes, Apache and meta-llama.

While the majority of the repositories contain only one API, Figure 3.7 shows that there is a number of reposi-
tories that contain specifications of more than one API.

Figures 3.8 and 3.9 shows that a repository’s age does not correlate with the number of commits modifying
the OpenAPI specification. Similarly, as seen in Figures 3.10 and 3.11, a high number of stars does not necessarily
imply frequent API changes.

Figure 3.12 illustrates the monthly distribution of commits in the collection, covering from 2015 to the end of
2024. The noticeable drop towards the end of the timeline is attributed to the methodology used for collecting
the specifications. Our approach focused on completing the historical data for the repositories already identified,

26 3.2 Data Collection Approaches

Figure 3.5. Distributions of stars in Github repositories to which the OpenAPI specification of the dataset
belong

Figure 3.6. Distributions of number of commits from each Github repository to which the OpenAPI specifica-
tion of the dataset belong.

27 3.2 Data Collection Approaches

Figure 3.7. Distributions of the number of API per GitHub repository

Figure 3.8. Scatter plot showing the correlation between a repository age and the number of commits changing
the OpenAPI specification it contains

28 3.2 Data Collection Approaches

Figure 3.9. Scatter plot showing the correlation between a repository age and the number of commits changing
the OpenAPI specification it contains (Zoomed-in: commits<500)

29 3.2 Data Collection Approaches

Figure 3.10. Scatter plot showing the correlation between a repository popularity (number of stars) and the
number of commits changing the OpenAPI specification it contains

30 3.2 Data Collection Approaches

Figure 3.11. Scatter plot showing the correlation between repository popularity (number of stars) and the
number of commits changing the OpenAPI specification it contains (Zoomed-in: commits<500)

Figure 3.12. Monthly Distribution of Commits of Valid OpenAPI/Swagger Specifications in GitHub Dataset

31 3.2 Data Collection Approaches

Table 3.1. Top 20 Most Starred Repositories in which OpenAPI specification in our collection are found

Owner Repository Age (Years) APIs Commits Stars

kubernetes kubernetes 10.51 41 1055 111588
portainer portainer 8.56 1 102 31113
AdguardTeam AdGuardHome 8.43 4 336 25809
OpenAPITools openapi-generator 6.58 58 376 22029
swagger-api swagger-codegen 13.43 30 272 17089
ory hydra 9.56 1 169 15644
apache incubator-answer 2.20 3 358 13025
ory kratos 6.54 1 285 11351
gravitl netmaker 3.71 2 87 9576
kubernetes client-go 8.30 4 12 9136
chaos-mesh chaos-mesh 5.27 2 114 6789
meshery meshery 6.07 2 216 6297
xinliangnote go-gin-api 5.30 2 40 5695
meta-llama llama-stack 0.46 3 51 4810
xlang-ai OpenAgents 1.34 30 30 4014
redpanda-data console 5.20 3 138 3845
frain-dev convoy 3.65 1 134 2477
open-ani animeko 2.36 2 12 2061
ArtalkJS Artalk 6.19 2 34 1696
actiontech sqle 4.01 2 763 1454

rather than continuously searching for newly created specifications on GitHub. This prioritization comes from the
fact that we use the number of commits as a maturity metric to do further filtering. And because of our interest in
analyzing Web API evolutions.

In addition to GitHub API, BigQuery [5, 54] allows accessing GitHub archive [6] data using its SQL-like query
language which makes it flexible and powerful but has limitations. The data is not real-time, typically lagging by
24–48 hours, and is limited to public repositories, excluding private data. The dataset retains only two years of event
history, with simplified payloads and file contents restricted to files under 1 MB. Complex queries can be expensive
due to BigQuery’s pricing model, and navigating the nested schema requires advanced SQL knowledge. While it
is excellent for large-scale aggregate analyses of public metadata, it lacks the granularity and real-time capabilities
provided by GitHub’s REST and GraphQL APIs, making it unsuitable for live monitoring or highly detailed repository
insights.

We received a 5 000$ credits from Google Cloud Research to use for querying data from BigQuery for research
purposes, in order to see whether it will allow discovering other files which were not reached using our queries
send through the GitHub API.

Listing 3.4. Query used to discover OpenAPI specification in the GitHub archive accessible through BigQuery
SELECT f.id, f.repo_name, f.path, f.ref, c.content, c.size
FROM `bigquery-public-data.github_repos.files` AS f
JOIN `bigquery-public-data.github_repos.contents` AS c

ON f.id = c.id
WHERE ((f.path LIKE '%.json'
OR f.path LIKE '%.yml'

32 3.3 OpenAPI Dataset Metrics

Figure 3.13. Number of overlapping API specifications
GitHub | SwaggerHub | APIs.Guru | BigQuery

OR f.path LIKE '%.yaml'
) AND
(c.content LIKE '%swagger%' OR c.content LIKE '%openapi%')
AND (c.content LIKE '%paths%'))

AND c.content IS NOT NULL
AND c.content != '';

Figure 3.13, shows that indeed searching in BigQuery allowed us to reach other files that were not discovered using
GitHub API

3.3 OpenAPI Dataset Metrics

Building upon the static analysis metrics proposed by Haupt et al., Bogner et al. in [63, 24] to study the size and
complexity of API structures, the metrics in our dataset share the goal of providing a quantitative assessment of the
size of API structures and data models, but also of selected quality attributes of API specifications, including their
complexity, readability, versioning and security [30].

Metrics are computed starting from bundled OpenAPI specifications by running custom analytics code. Some
metrics can be computed directly by running database queries, while others require parsing and processing the

33 3.3 OpenAPI Dataset Metrics

OpenAPI specifications with custom analytics scripts. The scripts we built to compute the metric and classifications
are all available in: https://github.com/souhailaS/APISTIC-public.

3.3.1 API structure metrics
By web API structure we refer to the part of the API that includes the endpoint paths, the operation methods, their
request parameters, and responses. The API structure metrics evaluate the size of the operational features of the
API, providing insights into its functional scope and diversity.
• Paths: The number of paths in the API. This metric indicates the breadth of the API’s functionality, with each path
representing the address of a different communication endpoint, resource or service provided by the API.
• Operations: The total count of operations available in the API. This reflects the API’s operational capabilities,
encompassing all possible actions that can be performed through it.
• Used Methods: The number of distinct HTTP methods (GET, POST, PUT, DELETE, etc) used across the API
operations. It signifies the diversity in the API’s interaction modes.
• Parametric Operations: The number of operations that use path or query parameters. This metric helps in
understanding the complexity and customization potential of the API operations.
• Distinct Parameters: The count of unique parameter names used across the API. It representing the variety of
parameters that the API can accept, reflecting its versatility.
• Used Parameters: The total number of times parameters are used in the API. This indicates how frequently the
API relies on parameterization for its operations.

3.3.2 API data model metrics
The data model refers to the data structures that are exchanged within the messages sent and received by the API,
which are also expected to be described in the OpenAPI specification, typically using JSON schemas. This API
datamodel of metrics delves into the structure and usage of data models within the API, highlighting the size and
complexity of its data representation.
• Defined Schemas: To gauge the size of the API data model we count the number of schemas defined in the API
description.
• Distinct Used Schemas: The total number of distinct schemas that are actually mentioned in API request or
response messages. This reflects the overlap between the theoretically provided API data model and the API data
model clients can use in practice.
• Properties: The total count of properties within those schemas represents the granularity and detail of the data
models used.
• Used Properties: The number of properties that are explicitly used as part of API request or response messages.
It indicates to which extent the data model of the API is usable by API clients.
• Distinct Used Properties: The unique property names count indicates the diversity of data attributes the API
handles.

3.3.3 API natural language descriptions metrics
These metrics focus on the quality and thoroughness of the API’s natural language documentation augmenting its
machine-readable, structured description [39]. APIs with extensive natural language descriptions can be considered
as high-priority candidates to use as inputs for machine learning models for clustering or classification tasks.

The OpenAPI specifications, which are machine-readable, can contain natural language descriptions in multiple
languages. Out of many possible metrics to assess the readability of natural language [34, 153, 10], to quantitatively
compare the expressiveness of these descriptions across various languages, we employed two widely recognized,

https://github.com/souhailaS/APISTIC-public

34 3.3 OpenAPI Dataset Metrics

language-independent indices. The Automated Readability Index (ARI) was chosen for its simplicity, easy compu-
tation, suitability for a range of texts, and language-agnostic nature. In contrast, the Coleman-Liau Index (CLI) is
preferred for technical texts due to its emphasis on letter count, and it is notable for its simplicity, making it easily
understandable.
• Coleman-Liau Index: A readability index computed based on readability formula designed to gauge the under-
standability of a text based on its characters per word and sentences per 100 words [34].

CLI is particularly suited for technical documents like API documentation, as it focuses on characters and sen-
tences rather than syllables, which are more challenging to accurately assess in technical language [183].

For each API, we compute the following two metrics:

• mccphw: Mean Character Count per Hundred Words.

• mscphw: Mean Sentence Count per Hundred Words.

The average mean sentence count per hundred words (Average mscphw) is calculated as the total mean sentence
count per hundred words for each path divided by the total number of paths. Mathematically, it can be represented
as:

avg_mscphw=
∑
(mscphw for each path)
Total number of paths

(3.1)

Similarly, the average mean character count per hundred words (Average mccphw) is computed as the mean
character count per hundred words for each path divided by the total number of paths:

avg_mccphw=
∑
(mccphw for each path)
Total number of paths

(3.2)

The Coleman-Liau index is then calculated using the formula:

Index= (0.0588↑ avg_mccphw)↓ (0.296↑ avg_mscphw)↓ 15.8 (3.3)

• Automated Readability Index: A readability index that estimates the understandability of a text based on its
character, word, and sentence counts [153]. This index provides an estimate of the US grade level needed to
comprehend the text. It is formulated as follows:

ARI= 4.71↑ characters
words

+ 0.5↑ words
sentences

↓ 21.43 (3.4)

Where the characters, words, and sentences are the average counts per API endpoint.
• Endpoints Description Coverage: This is a percentage value indicating the proportion of API endpoints that
include a non-empty description. It measures whether and to which extent all API endpoints have been completely
documented.

3.3.4 API security metrics

This section assesses the security protocols and strategies implemented in the API, reflecting its overall security
posture. OpenAPI provides explicit support for client authentication and authorization schemes such as API keys,
the OAuth2 protocol, or HTTP basic authentication. Developers can customize how such schemes are mapped to
the HTTP protocol request and response payloads and indicate in which endpoint they are employed.
• Security Schemes: The number of security schemes of each type listed in the API security component.
• Secured Endpoints: The number of API endpoints which explicitly employ specific security schemes.

35 3.4 OpenAPI Dataset Exploration

Dataset Max Min Average Median StDev

GitHub 657 0 15.82 7 24.36
SwaggerHub 2882 0 12.05 3 42.22
APIs.Guru 537 0 19.33 8 44.28
BigQuery 356 0 13.17 4 28.90

Combined 2882 0 14.94 7 29.52

Figure 3.14. Comparative Analysis of Path Number Distributions Across All Sources

3.4 OpenAPI Dataset Exploration

The pre-computation of metrics enables a filtering-based exploration of the dataset. We named this dataset with
computed metrics APIstic, which is publicly accessible at: http://openapi.inf.usi.ch/. The dataset is accessi-
ble through an API that supports a query language closely resembling MongoDB’s syntax, allowing users to filter
specifications based on combinations of metric values.

The APIstic dataset contains OpenAPI specifications gathered from various sources, such as APIs.guru, along
with pre-computed metrics. These metrics enable users to explore the dataset through filters, providing a structured
way to retrieve relevant API specifications. For example, users can filter specifications by specifying a source, such as
"source": "APIs.guru", or by applying conditions on metrics, such as "Endpoints Description Coverage":
"$gte": 80.

To make this exploration more user-friendly, we provide access to the dataset through an API that supports a
query language closely modeled after MongoDB’s syntax. This query language allows users to define conditions and
logical combinations of filters to retrieve data.

Query language overview

The query language supports a variety of operators, such as:

• $eq: Matches values equal to the specified value, e.g., "Title": "$eq": "Pet Store API".

• $gt and $gte: Match values greater than or greater than or equal to a specified value, e.g., "Operations":
"$gte": 50.

http://openapi.inf.usi.ch/

36 3.5 Web APIs Metric-based Exploration Through APIstic

• $lt and $lte: Match values less than or less than or equal to a specified value.

• $in and $nin: Match values in or not in a specified list, respectively.

• $regex: Allows searching using regular expressions, e.g., "Name": "$regex": "API.*".

• Logical operators like $and and $or combine multiple conditions.

Example queries

• Filter by Source: Retrieve specifications from APIs.guru:

{"source": {"$eq": "APIs.guru"}}

• Combine Conditions with AND: Retrieve APIs with category API Management and version 1.0.0:

{"$and": [{"Title": {"$regex": "banking"}}, {"Version": {"$eq": "1.0.0"}}]}

• Filter by Metric: Retrieve APIs with at least 80% of natural language description coverage:

{"Endpoints Description Coverage": {"$gte": 80}}

3.5 Web APIs Metric-based Exploration Through APIstic

3.5.1 API size: structure and data model

Are all the APIs across the datasets of the same structure size?

Figure 3.14 showcases the path count distributions for the GitHub, SwaggerHub, BigQuery, and APIs.Guru datasets
through violin plots. GitHub’s data indicates a moderate skew with an average of 15.82 paths and a median of
7, pointing to some APIs with many more paths than others. SwaggerHub’s distribution is more skewed, with an
average path count of 12.05, a median of only 3, and a range extending to 2882, signaling that a few APIs possess
a large number of paths. BigQuery’s trend is akin to SwaggerHub, with an average of 13.17 and a median of 4,
again showing a few APIs with elevated path counts. APIs.Guru differs, with a higher average path count of 19.33
and a median of 8, indicating a broader distribution of path counts among its APIs.

How does the size of data model vary across sources?

As shown in Figure 3.15, for GitHub collection, the maximum number of schemas is 325, with an average of
approximately 7.85, indicating a moderate concentration of APIs with a relatively small number of distinct schemas.
SwaggerHub, however, shows a strikingly high maximum of 1479 distinct schemas, but its average is the lowest
at around 0.35, suggesting that while most APIs have very few schemas, a few outliers are exceptionally having a
complex data model. BigQuery’s data displays a maximum of 286 schemas and an average of 10.31, aligning closely
with GitHub’s distribution. APIs.guru shows a higher diversity with a maximum of 360 schemas and an average of
about 12.92, indicating a slightly wider range of complexity for data models in its APIs.

37 3.5 Web APIs Metric-based Exploration Through APIstic

Dataset Max Min Average Median StDev

GitHub 325 0 7.85 2 16.88
SwaggerHub 1149 0 0.35 0 2.96
APIs.Guru 360 0 12.92 4 28.64
BigQuery 286 0 10.54 4 26.26

Combined 1149 0 6.37 0 15.63

Figure 3.15. Comparative Analysis of Distinct Schema Number Distributions Across All Datasets

Do fresher APIs have larger structure?

Analyzing the API paths in GitHub and Swagger datasets yearly, we can see from Figures 3.16 and 3.17 that the
APIs exhibit a clear upward trend, indicative of an increasing expansion of APIs structures between 2014 and 2017.
The intensity of this growth has decreased in the next years. However, the SwaggerHub dataset shows a more
pronounced variability and a higher presence of significant outliers, especially in the later years. But overall the
structure size distributions did not exhibit major change over the years.

Do fresher APIs have larger data models?

As shown in Figure 3.18, GitHub dataset reveals a consistent annual growth in the average number of distinct
schemas within APIs. This show that the specifications obtained from GitHub can be subject to farther Web API
data model evolution analysis.

38 3.5 Web APIs Metric-based Exploration Through APIstic

Figure 3.16. Distribution Number of Paths over the years in SwaggerHub Dataset

Figure 3.19. Number of Created and Modified APIs each year in the SwaggerHub Dataset

39 3.5 Web APIs Metric-based Exploration Through APIstic

Figure 3.17. Distribution Number of Paths over the years in GitHub Dataset

Figure 3.18. Distribution Number of Distinct Schemas over the years in GitHub

40 3.5 Web APIs Metric-based Exploration Through APIstic

Crawl OAS descriptions
from Github

Parse and validate OAS
descriptions

108 063 OAS

53 795 OAS

40 045 OAS

Extract data models and
their data types

297 018 Types

AuditConfig AuditLogConfig

Binding

CloudSqlCredentialCloudSqlProperties

Empty

Connection

ListConnectionsResponse

Expr

ConnectionCredential

SetIamPolicyRequest

TestIampermissionsRequest

Connection

GetIamPolicyRequest

Policy

TestIampermissionsResponse

GetPolicyOptions

Not Used

Method
DataType 2

DataType 1
Method

Request

Response

DataTypes 1, 2 used directly

DataType 3 used indirectly

DataType 4 not used

DataType 3 DataType 4 DataType 1 contains a
reference to DataType 3

Distinct OAS

Valid OAS

APIs having at least
 1 path and 1 defined

 data schema

compute the metrics

OAS containing a
real server address

Services APIs

Microservices APIs

31118 OAS

Segmetation

9160 OAS

4603 OAS

289 OAS

Crawl OAS descriptions
from Github

Parse and validate OAS
descriptions

108 063 OAS

53 795 OAS

40 045 OAS

Extract data models and
their data types

297 018 Types

Distinct OAS

Valid OAS

APIs having at least
 1 path and 1 defined

 data schema

compute the metrics

OAS containing a
real server address

Services APIs Microservices APIs

31118 OAS

Segmetation

9160 OAS 4603 OAS 289 OAS

Crawl OAS descriptions
from Github

Parse and validate OAS
descriptions

108 063 OAS

53 795 OAS

40 045 OAS

Extract data models and
their data types

297 018 Types

Distinct OAS

Valid OAS

APIs having at least
 1 path and 1 defined

 data schema

compute the metrics

OAS containing a
real server address

Services APIs

Microservices APIs

31118 OAS

Segmetation

9160 OAS

4603 OAS

289 OAS

Crawl OAS descriptions
from Github

Parse and validate OAS
descriptions

108 063 OAS

53 795 OAS

40 045 OAS

Extract APIs structures and
data models

Distinct OAS

Valid OAS

Dataset Segmentation

Metrics computation

For each segment

Crawler

Github
API Collection
(109 587 OAS)

Deduplication

Unique
API Collection
(56 411 OAS)

Parser and
Validator

Valid
API Collection
(42 194 OAS)

Size > 0
media_type: JSON

Valid, not-empty,
JSON

API Collection
(31 118 OAS)

(micro)service
detector

real server
detector

Service
APIs

(4025 OAS)

Microservice
APIs

(289 OAS)

APIs with real server
(9160 OAS)

CrawlerGithub
API Collection
(108 063 OAS)

Deduplication

API Collection
(53 795 OAS) Parser and Validator

Valid
API Collection
(42 XXX OAS)

Size > 0
media_type: JSON

Valid, not-empty
API Collection
(XXX OAS)

(micro)service
detector

real server
detector

Microservice
APIs

(289 OAS)

Service
APIs

(YYYY OAS)
APIs with real server

(9160 OAS)

API styles classifier

1

2 43

Crawler

Github
API Collection
(109 587 OAS)

Deduplication
Unique

API Collection
(56 411 OAS)

Parser and
Validator

Valid
API Collection
(42 194 OAS)

Size > 0
media_type: JSON

Valid, not-empty,
JSON

API Collection
(31 118 OAS)

AuditConfig
AuditLogConfig

Binding

CloudSqlCredentia

CloudSqlProperties

Empty

Connection

ListConnectionsResponse

Expr

ConnectionCredential

SetIamPolicyRequest

TestIampermissionsRequest

GetIamPolicyRequest

Policy

TestIampermissionsResponse

GetPolicyOptions

Not Used

POST

POST

POST

GET

POST

DEL

GET

PATCH

{resource}:testIamPermissions/

{resource}:setIamPolicy/

{resource}:getIamPolicy/

{parent}/ connections/

{name}/

v1beta1/

API Structure API Data Model

Method
DataType 2

DataType 1
Method

Request

Response

DataTypes 1, 2 used directly

DataType 3 used indirectly

DataType 4 not usedDataType 3

DataType 4

DataType 1 contains a reference
to DataType 3

Figure 3.20. Example of BigQuery API Tree model including its structure and data model

3.5.2 Web API structure and data model correlations

In Figure 3.20 we show an example visualization of the API structure and data model, where the arrows show the
relationships between the operations and the corresponding data model entities.

By examining the correlations between pairs of the structure and datamodel metrics, we can uncover relation-
ships such as how paths and operations scale together or identify independent API elements.

The correlation heatmap matrix in Figure 3.21 provides insights into the relationships between various structure
size metrics. Strong positive correlations are observed between Paths and Operations (r = 0.96) and between Paths
and Used Methods (r = 0.96), indicating that as the number of paths in the structure increases, the number of
operations and the variety of HTTP methods used also increase proportionally. Similarly, Parameterized Operations
and Used Parameters (r = 0.77) exhibit a notable correlation, suggesting that operations requiring parameters
scale with the overall parameter usage. Furthermore, GET operations are strongly correlated with both Paths (r =
0.89) and Operations (r = 0.92), highlighting its dominant presence in API functionalities compared to other HTTP
methods.

On the other hand, some metrics show weaker correlations. For instance, Put operations moderately correlate
with Paths (r = 0.56), and Distinct Parameters display a moderate relationship with Paths (r = 0.62), indicating
less dependency compared to the stronger correlations. Certain features, such as using the Webhooks and Options
method, exhibit negligible correlations with most other metrics, implying that their usage is largely independent of
structural changes or complexity.

41 3.5 Web APIs Metric-based Exploration Through APIstic

Figure 3.21. Heatmap showing pairwise Pearson correlation coe!cients between structure size metrics. Red
indicates a strong positive correlation, while blue represents a weaker or negative correlation. The heatmap
highlights key relationships, such as strong correlations between Paths, Operations, and Used Methods, as well
as weaker correlations involving Webhooks and optional HTTP methods like Options and Trace

3.5.3 HTTP methods usage

Does the proportional usage of di"erent HTTP methods change over time?

Figures 3.23 and 3.22 show trends in API method usage over nine years, detailing the changing prevalence of
methods like GET, POST, PUT. Each year is represented by a bar divided into sections for each method’s count,
with total operations annotated on top. Analysis of SwaggerHub and GitHub API operations reveals consistent
proportions of HTTP method adoption across years. GET (read-only) remains most common, followed by POST
(remote procedure calls). PUT and DELETE are used less frequently and do not show growth in recent years. Other
methods like PATCH, HEAD, OPTIONS, and TRACE are rare.

42 3.5 Web APIs Metric-based Exploration Through APIstic

Figure 3.22. Yearly Trends in API Method Usage in GitHub Dataset

Figure 3.23. Yearly Trends in API Method Usage in SwaggerHub Dataset

3.5.4 API maintenance lifecycle
Were the API specifications just created and then abandoned?

Figure 3.19 illustrates the lifecycle of APIs in SwaggerHub descriptions, focusing on whether APIs created in a
specific year underwent modifications in subsequent years. It is important to note that initial creations are also
counted as modifications. For instance, in 2023, Swagger Hub recorded 63,271 new API specifications. Additionally,

43 3.5 Web APIs Metric-based Exploration Through APIstic

Figure 3.24. Comparative Analysis of Endpoint Description Coverage Distributions Across All Sources

there were 4,124 modifications to APIs originally created in 2022, 1,293 modifications to those from 2021, 620 from
2020, 242 from 2019, 96 from 2018, and 31 from 2017. In particular, APIs created in 2016 and 2015 have not
been modified to the present day.

3.5.5 Readability of natural language documentation

How often are endpoints described in the APIs in each dataset?

In Figure 3.24, all of the datasets show a concentration of values at the upper end, suggesting a significant number
of endpoints with descriptions. SwaggerHub dataset displays a broader spread, indicating greater variability and a
higher likelihood of described endpoints in and API.

44 3.5 Web APIs Metric-based Exploration Through APIstic

How readable are the natural language operations descriptions found in OpenAPI specifications?

Figure 3.25. Comparative Analysis of Coleman-Liau Index Distributions Across Sources

For each data source, the distribution of the Coleman–Liau index (CLI) and Automated Readability Index (ARI) is
illustrated in Figures 3.25 and 3.26. These figures reveal relatively similar distributions for both indices, except for
a few outliers in GitHub with exceptionally high values. This indicates that the complexity of the text descriptions
is consistent across datasets.

Figure 3.26. Comparative Analysis of the Automated Readability Index Distributions Across All Sources

For instance, comparing two examples of from our dataset with distant index values, Elastic Email API, exhibits a
high ARI of 22.78, suggesting a text complexity that demands an advanced understanding, likely targeting specialists
or users with considerable expertise in the field. In contrast, the Cinema WebApp API, presents a significantly lower

https://raw.githubusercontent.com/lyekumchew/elasticemail-go/5d7b0b91e82c768919996bda0175040dd34d0855/api/openapi.yaml
https://raw.githubusercontent.com/Pater999/UNITN-IS2-Gruppo11-cinema-webapp/fe1dfdf6d42694df501ad177c2f4a165b42646f7/swagger.yaml

45 3.5 Web APIs Metric-based Exploration Through APIstic

ARI of 9.49. This score typically characterizes APIs used for educational purposes or as examples, indicating a more
accessible and user-friendly documentation, suitable for a broader audience, including beginners or students.

3.5.6 Types of security schemes in APIs

API security documentation is not required for a valid OpenAPI specification. The metrics we have established are
not suitable for assessing the frequency of security mechanism adoption in API endpoints. Instead, they serve as a
criterion to identify APIs with documented security features. Subsequent analyses can then be conducted on this
filtered group of APIs.

Dataset Max Min Average Median Std Dev

GitHub 1 0 0.47 0 0.49
SwaggerHub 1 0 0.03 0 0.15
APIs.Guru 1 0 0.69 1 0.46
BigQuery 1 0 0.51 1 0.49

Combined 1 0 0.30 0 0.45

Figure 3.27. Comparative Analysis of Average Secured Endpoints Distributions Across All Sources

How diverse are the security schemes types used in APIs?

Table 3.2 reflects diverse security practices in APIs across GitHub, SwaggerHub, BigQuery, and APIs.guru. The
usage of API keys is the most prevalent, followed by the OAuth2 protocol and the basic HTTP authentication scheme
(described as ’http’ in Swagger 2.0 and as ’basic’ in the more recent OpenAPI 3.0). OpenIDConnect is present only
in a small number of APIs.

In Table 3.2, we include the security schemes used in at least three of the four sources.

What is the average number of secured endpoints in APIs across datasets?

GitHub and APIs.Guru datasets show a higher average coverage of endpoints (Fig. 3.27), with GitHub being more
consistent. SwaggerHub has notably lower coverage, while BigQuery dataset suggests a moderate coverage. Ex-
cluding SwaggerHub, we clearly observe a bi-modal distribution of artifacts where either there is a high level of

46 3.6 API Specification Dataset Usage in this Thesis

Table 3.2. Number of APIs making use of di"erent OpenAPI Security Schemes across di"erent datasets

Type GitHub SwaggerHub BigQuery APIs.guru

apiKey 261358 6660 1770 528
oauth2 140227 5642 2651 2743
http 142906 2686 138 123
basic 37825 566 124 17
openIdConnect 4099 58 1 0

Secured APIs 26% 3% 74% 96%

coverage or no endpoints make use of security features. While almost all artifacts found in APIs.guru make use of
security features, only very few of the API descriptions sourced from

3.6 API Specification Dataset Usage in this Thesis
This dataset served as foundation of this research for studying the characteristics of Web API structures and data
models, as well as the evolution of Web APIs over time and their versioning practices. Since the dataset was
incrementally mined and steadily grew from the very first day of collection, the studies conducted leveraging this
dataset relied on different snapshots captured at various points in time. Each study focused on specific aspects of
the data, selecting relevant subsets based on the particular objectives of the analysis. The most recent snapshot of
the GitHub sourced specifications is used in Chapter 7, since we are interested in capturing the Web API evolution
patterns and analyzing them. The findings presented in that chapter haven’t been published.

Work Snapshot Size Updated at Source

EuroPLoP [148] Latest commit of 6 619 Specifications January 2021 GitHub
ICSA [139] Latest commit of 42 194 Specifications January 2022 GitHub
ICWE [142] 186 259 Specifications of API commits November 2022 GitHub
JWE [144] 603 293 Specifications of APIs July 2023 GitHub, SwaggerHub, APIsGuru
ICWE [145] 915 885 Specifications of API commits December 2023 GitHub
MSR [143] 1 275 568 Specifications of APIs October 2023 GitHub, SwaggerHub, APIsGuru
Chap. 3 1 894 505 Specifications of API commits December 2024 GitHub, SwaggerHub, APIsGuru
Chap. 7 1 372 550 Specifications of API commits December 2024 GitHub

Table 3.3. Dataset snapshots used in Web API analysis Studies

While we targeted different sources to discover API descriptions, GitHub remains the richest source since it also
provides contextual metadata including the provider, the project, the specification’ history and contributors.

In Summary
In this chapter we have described how we have collected a dataset of API specifications which serves as a resource
to extract samples for large-scale empirical studies in a field where most existing studies have been performed
considering up to a few thousand artifacts.

The current version of the dataset, presented in this chapter, comprises measurements and provenance metadata
of a substantial number of 1 894 505 API descriptions sourced from GitHub, SwaggerHub, BigQuery, and APIs.guru,
providing a comprehensive source to analyze current API practices and trends in API design, documentation, security

47 3.6 API Specification Dataset Usage in this Thesis

strategies, and data modeling. Particularly noteworthy is the portion of the dataset sourced from GitHub, which
includes historical data of APIs, providing insights into the evolution of these artifacts and their metrics over time.

48 3.6 API Specification Dataset Usage in this Thesis

Part II

Web API structure and data model analysis

49

Chapter 4

Web APIs Structure and Data Models
Characteristics Analysis

The complexity of the structure and data models of Web APIs play a critical role in determining their usability,
maintainability, and scalability. Measuring the API complexity involves analyzing factors such as the depth of hi-
erarchical models, the relationships between entities, and the overall data model schema design. Understanding
the correlation between structural complexity and data model intricacy could help to estimate maintainability and
evolution costs. Further refining the metrics defined in Chapter 3, this chapter explores these characteristics of
255 309 APIs, providing insights into how the complexity of API functionality can correlate with the complexity of
the corresponding data model.

4.1 Design Principles and their Impact on API Structures and data models

In addition to functional requirements, conventional web API design decisions have a direct impact on how the API
structure and datamodels are designed. Their design must balance functionality, usability, and robustness [109].
One major challenge is to ensure that APIs are intuitive and easy to learn for developers [75], which can be achieved
by following consistent design principles and providing comprehensive, clear documentation [100, 94, 25, 159].
Learnability is crucial to reduce the onboarding time for new developers and to minimize the probability of errors
or misuses [23]. Poorly designed APIs can cause misunderstandings about how the API should be used, resulting
in incorrect implementations and increased support costs [66].

In this analysis, we examine the adoption of seven design principles highlighted by both Lauret[89] and Jin
et al.[75], focusing on their application to API paths, operations, and data models.

4.1.1 Path design principles

Resource hierarchies should be reflected in paths.

The API paths design determines the endpoints with which the clients need to interact using specific HTTP methods
to use the API. The structure of the paths is expected to correspond to natural relationships within the data model.
For example:

• A parent-child relationship, such as Users and Orders, is commonly represented as /users/{userId}/orders.

51

52 4.1 Design Principles and their Impact on API Structures and data models

Figure 4.1. Distribution of API Paths (left), API Schemas (middle), and the correlation between Paths and
Schemas (right) – excluding APIs with no paths or no schemas.

• Resources at the same level in the hierarchy are typically represented without excessive nesting. Structures
such as /company/division/users/{userId}/orders/{orderId} are considered less clear unless all seg-
ments provide a meaningful context. In such cases, separate endpoints can be introduced to reflect different
resource relationships. For instance, /users/{userId}/orders/{orderId} may be used to represent user-
specific orders, while /company/division could serve to represent organizational structures independently.
This approach improves readability and reduces the complexity of understanding resource relationships.

The scatter plot in Figure 4.1 shows the correlation between the number of paths and the schemas, indicating
that as the number of paths increases, the number of schemas tends to increase as well. However, the variation
becomes more pronounced for APIs with a higher number of paths, suggesting diverse design practices in large
APIs.

Paths are generally structured to represent logical relationships.

Relationships in the data model, such as a one-to-many association, are typically mirrored in the path structure. For
example:

• A one-to-many relationship between Users and Orders is often represented as /users/{userId}/orders.

where user and userId are so semantically tied.
To verify the state of the art of the implementation of this principle we check how many out of the 3711 APIs

contain paths that are designed taking into account representing logical relationships. Each API path is decomposed
into its constituent segments, referred to as labels, while dynamic parameters enclosed in curly brackets (e.g.,
{groupId}) are extracted and normalized by removing the brackets. This ensures placeholders do not interfere with
the analysis. From the cleaned segments, consecutive pairs of labels are generated to evaluate their relationships.
For example:

• The path /group/{groupId}/members produces three labels: group, groupId, and members. The following
pairs are formed:

– (group, groupId)

– (groupId, members)

53 4.1 Design Principles and their Impact on API Structures and data models

Table 4.1. Logical Path Structure Analysis

Metric Count

Total Analyzed APIs (at leat 50 commits) 3711
APIs Using Logical Relationships 1229
APIs Without Logical Relationships 2482

• Similarly, the path /requests/{requestId}/request produces:

– (requests, requestId)

– (requestId, request)

For each pair of subsequent labels, we compute the semantic similarity using the GloVe pre-trained word
embeddings (glove-wiki-gigaword-100). These embeddings provide vector representations of words based on
large-scale text corpora. The similarity score is calculated as the cosine similarity between the vector representations
of two words, where a score of 1 indicates identical meaning and 0 indicates no semantic relationship.

For example:

• group and groupId yield a similarity score of 0.65, reflecting their conceptual connection.

• groupId and members produce a score of 0.71, indicating a logical relationship where members are part of a
group.

• logos and blob yield a score of 0.14, suggesting no meaningful semantic relationship.

• reports and metrics produce a score of 0.07, further demonstrating dissimilarity.

A path is classified as logically structured if at least one pair of its subsequent labels has a similarity score greater
than or equal to 0.5. This threshold ensures that relationships considered logical are semantically meaningful.

For example:

• The path /group/{groupId}/members is classified as logically structured because:

– (group, groupId)→ 0.65

– (groupId, members)→ 0.71

Both pairs exceed the threshold of 0.5.

• In contrast, the path /logos/urls/blob is not logically structured because:

– (logos, urls)→ 0.12

– (logoId, blob)→ 0.14

Neither pair meets the threshold.

Using this approach, we created a dataset consisting of 144 596 pairs of subsequent labels extracted from API
paths. Each pair is associated with its computed similarity score, which were later to determine whether a path in
logically structured or not.

We conducted the analysis on APIs with more than 50 commits. Out of the analyzed APIs, 1,233 were found
to include logical paths, with a maximum of 53 logical paths in a single API, a minimum of 1, and an average of

54 4.1 Design Principles and their Impact on API Structures and data models

3.79 logical paths per API, accompanied by a standard deviation of 5.07. The lengths of logical paths ranged from
a minimum of 2 segments to a maximum of 9 segments. In contrast, 2,478 APIs did not include any logical paths.

An example of an API that takes into account the logical relations between its resources in the API design, is the
the OpenAI API 1 represented in Figure 4.2. The API is well organized with clear separation of resources. Each re-
source focuses on a specific function. For example, the messages resource manages conversations with methods like
POST to send a message and GET to retrieve messages. The files resource handles file operations with methods like
POST to upload files, GET to retrieve file details, and DELETE to delete files. The models resource provides access to
AI models with methods like GET to list models or get model details. Each resource has its own methods and parame-
ters, keeping the API clean and easy to use. The depth of paths matches the logical relationships between resources.
For example, /models lists models, while /files/{file_id} operates on a specific file. This structure makes paths
intuitive and matches how resources relate to each other. Each resource focuses on a specific function. For example,
the messages resource manages conversations with methods like POST to send a message and GET to retrieve mes-
sages. The files resource handles file operations with methods like POST to upload files, GET to retrieve file details,
and DELETE to delete files. The models resource provides access to AI models with methods like GET to list models or
get model details. Each resource has its own methods and parameters, keeping the API clean and easy to use. The
depth of paths matches the logical relationships between resources. For example, /files/{file_id}/metadata
retrieves metadata for a specific file, while /models/{model_id}/versions/{version_id} fetches details about
a specific version of a model. These deeper paths show hierarchical relationships, where operations depend on
specific identifiers. This structure makes paths intuitive and matches how resources relate to each other.

Plural nouns are recommended for collections, and singular nouns are suited for individual resources.

This convention aligns the path structure with the resource representations provided in the API responses. For
example:

• /users is generally used to represent a collection of users. The response can either return:

– A plain array of user objects (4.1).

– An object that includes metadata (e.g., total_users) alongside the array of user objects (4.2).

• /users/{id} is employed to represent a specific user. The response should return a single user object. See
the OpenAPI schema in 4.3.

Listing 4.1. OpenAPI schema for a collection of users as an array.
paths:
/users:
get:
summary: Retrieve a list of users
responses:
'200':
description: A JSON array of user objects
content:
application/json:
schema:
type: array
items:
type: object
properties:
id:
type: string
description: Unique identifier for the user

name:

1https://github.com/openai/openai-openapi/blob/master/openapi.yaml

55 4.1 Design Principles and their Impact on API Structures and data models

Figure 4.2. Tree visualization of OpenAI API using OAS2Tree [1]

56 4.1 Design Principles and their Impact on API Structures and data models

type: string
description: Name of the user

Listing 4.2. OpenAPI schema for a collection of users with metadata.
paths:
/users:
get:
summary: Retrieve a list of users with metadata
responses:
'200':
description: A JSON object containing metadata and a list of users
content:
application/json:
schema:
type: object
properties:
total_users:
type: number
description: Total number of users available

users:
type: array
items:
type: object
properties:
id:
type: string
description: Unique identifier for the user

name:
type: string
description: Name of the user

Listing 4.3. OpenAPI schema for an individual user resource.
paths:
/users/{id}:
get:
summary: Retrieve a single user by ID
parameters:
- name: id
in: path
required: true
schema:
type: string

responses:
'200':
description: A JSON object representing the user
content:
application/json:
schema:
type: object
properties:
id:
type: string
description: Unique identifier for the user

name:
type: string
description: Name of the user

As illustrated in Listing 4.1, paths such as /users are used to represent collections, with the response typically
structured as an array of resource objects. Alternatively, as shown in 4.2, the response can include metadata—such
as total_users—alongside the resource array, providing additional context and improving API usability. These
metadata-enriched responses are particularly beneficial in scenarios requiring pagination or aggregation of data. In
contrast, singular nouns, as exemplified in 4.3, are reserved for paths like /users/{id} that operate on individual
resources. This distinction not only aligns the API design with developers’ expectations but also enhances the
semantic expressiveness of the interface.

57 4.1 Design Principles and their Impact on API Structures and data models

Table 4.2. Usage of plurals in API paths and array type responses

Label Response #APIs #Endpoints Min Endp. Max Endp. Avg. Endp. Stdev Endp. Median Endp.

Plural No Array in Response 101,282 989,240 1 709 9.77 19.77 4.00
Plural Array in Properties 70,445 394,464 1 513 5.60 13.07 2.00
Plural Array Response 477 925 1 204 1.94 9.39 1.00

Non-Plural No Array in Response 174,360 3,225,181 1 1,474 18.50 44.79 7.00
Non-Plural Array in Properties 86,796 712,007 1 650 8.20 18.66 3.00
Non-Plural Array Response 696 1,959 1 521 2.81 19.86 1.00

To determine whether the last segment label is a plural word, we use the spaCy library, a robust NLP tool that
provides part-of-speech tagging to identify plural forms. Specifically, we check if the word’s part-of-speech tag is
one of the plural noun tags (NNS for plural common nouns or NNPS for plural proper nouns), as shown in Listing 4.4.

Listing 4.4. Checking for plural words using spaCy
import spacy

Load spaCy model
nlp = spacy.load("en_core_web_sm")

def is_plural(word):
"""
Use spaCy to check if a word is plural.
"""
doc = nlp(word)
for token in doc:

if token.tag_ in ["NNS", "NNPS"]: # Plural common/proper nouns
return True

return False

In Figure 4.2, we analyze whether endpoints with a path segment ending with a plural label return an array of
results in their response. This can occur either through the response being of type “Array in Response" or through
one of the properties of the response object being of array type, referred to as “Array in Properties." When the
category is labeled “No Array in Response", it indicates that neither the response itself nor any of its properties is
of array type. In contrast, when categorized as “Array in Properties", the response is of an object type where at
least one of its properties is an array. We found that nearly a million endpoints use plural labels, while more than
3 million endpoints do not. The results show that when a response contains an array, it does not need to be paired
with an endpoint that ends in a plural label. In fact, it is twice as common for responses with arrays to come from
endpoints that do not use plural labels. Endpoints with plural labels are about four times less common than those
without plural labels. Another observation is that arrays in responses are more likely to be wrapped inside an object
(as shown in Listing 4.2) rather than being sent directly as standalone arrays (as shown in Listing 4.1).

! Endpoints with plural labels are less common, appearing in only a quarter of cases compared to non-
plural labels. When responses contain arrays, they are twice as likely to come from non-plural endpoints.
In addition, the arrays in the responses are more commonly encapsulated within objects than sent as stan-
dalone arrays.

Figure 4.3 shows the distribution of the proportion of endpoints that fall into a specific category among the total
endpoints for an API. The results show that there exist indeed cases where all the endpoints of an API are ending

58 4.1 Design Principles and their Impact on API Structures and data models

Figure 4.3. Distribution of proportion of endpoints belonging to each category

with plural labels or sending arrays in response. However, most of the cases of API having the majority or endpoints
not sending arrays and not ending with plural are widely dominant.

Figure 4.4 illustrates the usage of plural labels in API endpoints and the presence of arrays in response data,
categorized by HTTP methods. The upper graph highlights the absolute count of endpoints, while the lower graph
presents their proportional distribution.

For the GET and POST methods, there is significant variability, with a notable presence of non-plural labels and
arrays in responses. This suggests that these methods are often used to retrieve collections of resources (GET) or
create multiple resources (POST). In contrast, methods such as DELETE, PATCH and PUT show a smaller proportion
of plural labels or arrays in responses, reflecting their typical usage for single-resource operations. Lesser-used
methods such as OPTIONS HEAD and OPTIONS redominantly align with non-plural labels and do not involve arrays,
consistent with their more specific and low-level operational purpose.

4.1.2 Operation design principles

HTTP methods are mapped to CRUD operations based on the data model.

Operations are usually aligned with standard HTTP methods as follows:

• GET: Retrieval of resources is typically represented, such as /products/{id} for fetching a specific product.

59 4.1 Design Principles and their Impact on API Structures and data models

Figure 4.4. Usage of plural labels in endpoints and array in response data by type of HTTP method

• POST: Creation of new resources is generally indicated, such as /users for adding a new user.

• PUT: Replacement of an entire resource is commonly expressed, such as /users/{id} for updating all fields
of a user.

• PATCH Partial updates to a resource are typically represented, such as modifying specific fields of a user at
/users/{id}.

• DELETE: Deletion of resources is generally handled, such as /orders/{id} for removing an order.

Although the correlation can give an idea about the co-usage of the HTTP method, in Figure 4.5 we studied
the usage of HTTP methods in our collection. We clustered the APIs depending on the methods combinations they
employ, distinguishing between four categories. The top plot in Figure 4.5 shows the distribution of APIs across
different classifications, highlighting that APIs that are combining more than four methods (REST) are the most
common, with 70,061 instances. This reflects the widespread adoption of REST principles due to their flexibility
and ability to support various interaction patterns. Read-only APIs, which use only the GETmethod for data retrieval,
are the second most common, indicating their simplicity and efficiency for read-heavy applications. CRUD APIs,
which strictly implement GET, POST, PUT, and DELETE for complete resource management, follow closely. Read/Write
APIs, using only GET and POST, also represent a significant portion, suggesting their utility in scenarios requiring
basic read and write operations. Finally, RPC APIs, relying exclusively on POST, are the least common, likely due to
their more specialized use cases.

The bottom plot of Figure 4.5 examines the distribution of HTTP methods within each classification. CRUD APIs
show a balanced use of GET, POST, PUT, and DELETE, supporting the full lifecycle of resource operations. This result

60 4.1 Design Principles and their Impact on API Structures and data models

is slightly different than what we found in our study performed in 2021 [139] on a smaller set of API specifications
(31 118), where the proportion of GET methods was found to be slightly higher than the other methods. Read-
only APIs rely exclusively on GET, while Read/Write APIs primarily use a mix of GET and POST methods. RPC APIs
predictably use only POST, reflecting their specific focus on remote procedure calls. REST APIs demonstrate the
broadest method distribution, with significant use of GET, POST, and DELETE, as well as some usage of less common
methods like PATCH showcasing their adaptability to diverse use cases.

Figure 4.5. Classification of APIs by HTTP method usage. The top plot shows the number of APIs for each
cluster, while the bottom plot illustrates the distribution of HTTP methods used within each classification

API change their HTTP method usage style as they become more (or less) RESTful

The heatmap in Figure 4.6 shows how long it takes, on average, for APIs to change their use of HTTP methods.
APIs classified as CRUD (using exactly GET, POST, DELETE, and PUT) transition quickly to REST (using a wider mix
of methods) or vice versa, averaging around 8–14 days. Changes in Read/Write (using only GET and POST) take
a little longer, about 14 to 25 days, whether using CRUD, REST, or Read-only APIs. The slowest transitions occur

61 4.1 Design Principles and their Impact on API Structures and data models

Figure 4.6. Transition chain analysis for APIs with more than 50 commits

when APIs move from Read-only (using only GET) to RPC (using only POST), averaging 51 days, suggesting these
shifts are more complex and less common.

! We can conclude from the results that simpler changes, like expanding or limiting existing methods,
happen faster, while more significant changes in functionality, like switching from read-only to write-only
operations, take more time.

Figure 4.7 shows that using a combination of methods (classified as REST) consistently dominates the distri-
bution across all years, indicating its widespread adoption as the preferred API style for delivering functionality.
However, the proportion of CRUD APIs, initially significant, shows a slight decline over the years, suggesting a
move away from strictly standardized operations toward more flexible or specialized API behaviors.

Read/Write APIs, which combine basic operations like GET and POST, have grown in relative proportion, re-
flecting an increasing need for APIs that support both data retrieval and updates without full CRUD operations.

62 4.1 Design Principles and their Impact on API Structures and data models

Figure 4.7. Yearly Distribution of Commits Classifications (2015–2024): The upper plot displays the raw
counts of APIs classified as CRUD, REST, RPC, Read-only, and Read/Write for each year. The lower plot
shows the normalized proportions of these classifications, highlighting trends in the relative distribution of
API functionalities over time.

63 4.1 Design Principles and their Impact on API Structures and data models

CRUD

REST

283

RPC

13

Read-only

19

Read/Write
35

289

62

103

189

23

113

7

101

20

108

72

26

351

17

13

Figure 4.8. Visualization of API classification transitions: Nodes represent API classifications (CRUD, REST,
RPC, Read-only, Read/Write), and directed edges indicate transitions between classifications from a commit
to another. Edge thickness corresponds to the frequency of transitions, highlighting the most common paths
such as CRUD to REST and Read/Write to REST

Similarly, RPC APIs, characterized by POST methods, maintain a stable presence, indicating their continued rele-
vance for task-based and command-driven interactions.

Read-only APIs, which are limited to GET operations, hold a smaller but steady share, likely due to their specific
use cases in data retrieval and monitoring. This stability highlights their niche role in modern API development.

The graph in Figure 4.8, visualizes the transitions that occur when APIs change classification during their evolu-
tion. REST emerges as the central hub, acting as the most frequent destination and source of transitions, with 351
transitions from Read/Write and 289 from CRUD. This highlights REST’s dominant role in API design evolution.

CRUD APIs often transition to REST (283) and Read/Write (35), suggesting a shift from standardized operations
to more flexible designs. Conversely, Read/Write APIs frequently evolve into REST (189) and occasionally into RPC
(17), reflecting their adaptability for task-based or RESTful functionality.

RPC transitions are notable for their connections to both REST (113) and Read/Write (101), indicating that
RPC APIs sometimes adopt hybrid capabilities or RESTful designs. Read-only APIs show fewer transitions overall
but tend to evolve into REST (108) or remain isolated, emphasizing their niche, data-retrieval role.

Table 4.3 provides interesting insights into how APIs evolve and change over time. The most common transition
is from CRUD to REST, with 241 APIs making this shift. This transition often happens when developers need to go

64 4.1 Design Principles and their Impact on API Structures and data models

beyond basic operations like GET, POST, PUT, and DELETE, which are typical of CRUD, and adopt a broader set of
functionalities. These APIs have an average active time of about 1,019 days, meaning they tend to be stable and
actively maintained for nearly three years on average. This highlights that moving from CRUD to REST is a natural
step as systems grow more complex and require richer functionality.

Interestingly, the reverse transition, from REST back to CRUD, is also quite common, with 239 APIs undergoing
this change. This may happen when systems simplify their operations, focusing on essential actions. These APIs
show a slightly shorter active time of 961 days, suggesting that simplifying an API’s design might be a response to
changing priorities or a need for easier maintenance.

The heatmap of transition times gives additional context. Moving from CRUD to REST is one of the quickest
changes, taking an average of 14 days. This suggests that such transitions are relatively straightforward and likely
involve extending existing functionality rather than completely overhauling the design. On the other hand, tran-
sitions like Read-only (APIs using only GET) to RPC (APIs using only POST) take longer, averaging 51 days. These
slower changes likely reflect more significant shifts in how the API is used, such as moving from primarily reading
data to focusing on operations or commands.

Another notable trend is the stability of APIs that stick to simpler designs. For example, CRUD APIs, with 394
instances, are the backbone of many systems. These APIs have an average active time of 1,017 days and an average
age of 1,760 days. Their long lifespan shows that basic operations are fundamental to many applications and are
often preserved as core components over time.

Meanwhile, APIs moving from CRUD to REST and then to RPC are much rarer, with only two examples in the
dataset. These more complex transitions involve significant design changes and longer active times, averaging
1,565 days. Such transitions suggest a shift in the API’s role, possibly adapting to new architectural styles or system
requirements.

Table 4.3. Transition chain analysis for APIs with more than 50 commits. Avg. AT (Average Active Time)
is the average number of days between the first and last commits, while Avg. A (Average Age) is the average
number of days from the first commit to December 31, 2024. The table also includes the maximum, minimum,
and standard deviation of ages.

Transition Chain #APIs #Commits Avg. AT Avg. Age Max Age Min Age Std Dev Age

CRUD 394 40779 1017.2 1760.1 3363.0 25.0 761.6
CRUD→ REST 241 32353 1019.3 1818.3 3332.0 22.0 811.4
CRUD→ REST→ RPC 2 173 1565.1 1832.4 2385.0 979.0 688.7
CRUD→ REST→ RPC→ Read/Write 3 264 170.8 1266.6 1573.0 1159.0 151.5
CRUD→ REST→ Read-only 4 610 641.5 1678.2 1987.0 740.0 417.2
CRUD→ REST→ Read-only→ Read/Write 1 264 1392.0 1509.0 1509.0 1509.0 0.0
CRUD→ REST→ Read/Write 14 2001 1334.1 2114.9 2227.0 1154.0 328.2
CRUD→ RPC 4 1502 1439.7 1993.0 1993.0 1993.0 0.0
CRUD→ RPC→ REST 3 1414 731.6 892.6 2371.0 469.0 775.3
CRUD→ RPC→ Read/Write→ REST 1 40 854.0 1977.0 1977.0 1977.0 0.0
CRUD→ Read-only 4 574 1097.0 1452.7 2226.0 714.0 469.3
CRUD→ Read-only→ REST 3 318 1102.7 1458.6 2126.0 928.0 366.2
CRUD→ Read-only→ REST→ Read/Write 1 385 1265.0 1608.0 1608.0 1608.0 0.0
CRUD→ Read-only→ RPC→ REST→ Read/Write 2 207 1026.2 2328.4 2767.0 1054.0 749.4
CRUD→ Read-only→ Read/Write 1 24 1351.0 2589.0 2589.0 2589.0 0.0
CRUD→ Read-only→ Read/Write→ REST 4 247 339.7 1075.4 2196.0 637.0 619.2
CRUD→ Read/Write 4 300 1038.4 2072.7 2227.0 1593.0 272.5
CRUD→ Read/Write→ REST 8 1213 1328.4 2110.6 2368.0 1028.0 433.7
CRUD→ Read/Write→ RPC 1 59 1128.0 1647.0 1647.0 1647.0 0.0
CRUD→ Read/Write→ Read-only 3 1347 2061.0 2243.0 2243.0 2243.0 0.0
REST 1292 198916 923.8 1557.6 3335.0 21.0 846.5
REST→ CRUD 239 28960 960.8 1754.8 3596.0 227.0 633.3
REST→ CRUD→ RPC 1 121 1411.0 1663.0 1663.0 1663.0 0.0
REST→ CRUD→ Read-only→ Read/Write 2 104 727.0 995.0 995.0 995.0 0.0
REST→ CRUD→ Read/Write 3 254 202.2 2340.5 3562.0 1433.0 830.4

Continued on next page

65 4.1 Design Principles and their Impact on API Structures and data models

Table 4.3. Transition chain analysis for APIs with more than 50 commits

Transition Chain #APIs #Commits Avg. AT Avg. Age Max Age Min Age Std Dev Age

REST→ RPC 19 1922 922.8 1465.1 2932.0 611.0 453.7
REST→ RPC→ CRUD 8 1395 840.3 1545.0 1572.0 1048.0 116.0
REST→ RPC→ Read-only→ Read/Write 2 154 29.1 882.9 884.0 882.0 1.0
REST→ RPC→ Read/Write 11 2355 459.2 804.8 1979.0 411.0 434.9
REST→ RPC→ Read/Write→ CRUD 5 423 586.8 1221.0 1432.0 833.0 244.7
REST→ Read-only 24 2265 875.2 1544.3 2622.0 107.0 804.6
REST→ Read-only→ CRUD 11 1769 1567.8 2154.5 3034.0 819.0 879.5
REST→ Read-only→ CRUD→ Read/Write 1 66 593.0 654.0 654.0 654.0 0.0
REST→ Read-only→ RPC 1 15 288.0 1164.0 1164.0 1164.0 0.0
REST→ Read-only→ RPC→ Read/Write→ CRUD 1 108 1080.0 1175.0 1175.0 1175.0 0.0
REST→ Read-only→ Read/Write 16 1768 1021.4 1541.2 2678.0 718.0 500.2
REST→ Read-only→ Read/Write→ CRUD 7 1083 1334.9 1553.3 3416.0 573.0 1127.8
REST→ Read/Write 58 6861 1109.0 1507.0 3219.0 469.0 727.6
REST→ Read/Write→ CRUD 15 2344 643.2 1308.4 2869.0 725.0 564.9
REST→ Read/Write→ CRUD→ Read-only 1 62 26.0 1344.0 1344.0 1344.0 0.0
REST→ Read/Write→ RPC 2 104 905.0 2069.0 2069.0 2069.0 0.0
REST→ Read/Write→ Read-only 2 311 363.0 1336.5 2014.0 789.0 610.0
REST→ Read/Write→ Read-only→ RPC 1 107 1347.0 1953.0 1953.0 1953.0 0.0
RPC 146 13297 1202.4 1587.4 3118.0 469.0 534.4
RPC→ CRUD 5 380 448.9 1262.6 1705.0 931.0 286.8
RPC→ CRUD→ REST 2 356 1694.3 1812.3 1993.0 1047.0 372.4
RPC→ CRUD→ Read/Write→ REST 1 70 68.0 901.0 901.0 901.0 0.0
RPC→ REST 50 5682 957.2 1650.1 2782.0 287.0 536.2
RPC→ REST→ CRUD 15 2344 379.1 1300.2 2460.0 560.0 562.6
RPC→ REST→ Read-only 1 88 497.0 931.0 931.0 931.0 0.0
RPC→ REST→ Read-only→ Read/Write 1 100 308.0 1274.0 1274.0 1274.0 0.0
RPC→ REST→ Read/Write 17 1430 607.6 1828.3 2394.0 721.0 609.3
RPC→ REST→ Read/Write→ CRUD 2 170 789.4 1194.8 1687.0 654.0 517.5
RPC→ Read-only→ REST→ Read/Write→ CRUD 2 133 1460.6 1894.0 1894.0 1894.0 0.0
RPC→ Read-only→ Read/Write 1 64 27.0 1177.0 1177.0 1177.0 0.0
RPC→ Read-only→ Read/Write→ CRUD→ REST 1 63 781.0 1120.0 1120.0 1120.0 0.0
RPC→ Read-only→ Read/Write→ REST 1 90 102.0 1315.0 1315.0 1315.0 0.0
RPC→ Read-only→ Read/Write→ REST→ CRUD 1 63 781.0 1120.0 1120.0 1120.0 0.0
RPC→ Read/Write 59 8085 558.6 1205.1 2184.0 480.0 491.9
RPC→ Read/Write→ CRUD 5 388 968.9 2064.4 2574.0 1352.0 444.7
RPC→ Read/Write→ CRUD→ REST 2 217 77.5 1114.3 1594.0 918.0 307.6
RPC→ Read/Write→ CRUD→ Read-only→ REST 1 52 250.0 629.0 629.0 629.0 0.0
RPC→ Read/Write→ REST 29 3352 979.0 1468.6 2394.0 693.0 454.9
RPC→ Read/Write→ REST→ CRUD 21 3587 740.4 1497.4 1925.0 776.0 310.5
RPC→ Read/Write→ REST→ Read-only 3 1777 2403.0 2468.1 2540.0 1000.0 325.1
RPC→ Read/Write→ Read-only→ REST→ CRUD 1 250 381.0 602.0 602.0 602.0 0.0
Read-only 109 12070 867.6 1357.3 3247.0 469.0 582.8
Read-only→ CRUD 11 1704 1166.5 1695.0 2867.0 663.0 560.6
Read-only→ CRUD→ REST 14 1559 1351.3 1787.6 2840.0 340.0 602.7
Read-only→ CRUD→ Read/Write 1 56 178.0 967.0 967.0 967.0 0.0
Read-only→ CRUD→ Read/Write→ RPC→ REST 1 87 2968.0 3013.0 3013.0 3013.0 0.0
Read-only→ REST 77 8446 1075.4 1587.3 3516.0 602.0 596.5
Read-only→ REST→ CRUD 31 3786 882.3 1692.1 3111.0 622.0 612.5
Read-only→ REST→ RPC→ Read/Write 2 126 40.0 963.0 963.0 963.0 0.0
Read-only→ REST→ RPC→ Read/Write→ CRUD 1 118 140.0 1250.0 1250.0 1250.0 0.0
Read-only→ REST→ Read/Write 33 3775 1412.6 1958.9 3486.0 774.0 740.5
Read-only→ REST→ Read/Write→ CRUD 3 265 1181.3 2565.7 2806.0 1722.0 413.3
Read-only→ REST→ Read/Write→ RPC 1 153 314.0 2702.0 2702.0 2702.0 0.0
Read-only→ REST→ Read/Write→ RPC→ CRUD 1 57 25.0 1781.0 1781.0 1781.0 0.0
Read-only→ RPC 5 294 1325.0 1559.7 1613.0 1537.0 34.9
Read-only→ RPC→ REST 1 294 1474.0 1516.0 1516.0 1516.0 0.0
Read-only→ RPC→ REST→ Read/Write 1 57 2.0 629.0 629.0 629.0 0.0
Read-only→ RPC→ Read/Write→ REST→ CRUD 2 200 920.6 1804.4 2244.0 1535.0 345.0
Read-only→ Read/Write 59 4858 933.2 1612.3 3170.0 94.0 637.5
Read-only→ Read/Write→ CRUD 6 434 934.5 1917.1 2670.0 941.0 590.7
Read-only→ Read/Write→ CRUD→ REST 6 477 1192.5 2182.1 3266.0 941.0 703.1
Read-only→ Read/Write→ REST 69 6323 938.6 1691.4 3483.0 321.0 735.5
Read-only→ Read/Write→ REST→ CRUD 37 4033 681.9 1434.1 3099.0 234.0 647.8
Read-only→ Read/Write→ REST→ CRUD→ RPC 1 79 265.0 731.0 731.0 731.0 0.0

Continued on next page

66 4.1 Design Principles and their Impact on API Structures and data models

Table 4.3. Transition chain analysis for APIs with more than 50 commits

Transition Chain #APIs #Commits Avg. AT Avg. Age Max Age Min Age Std Dev Age

Read-only→ Read/Write→ RPC 6 1060 1326.2 1498.5 1595.0 1047.0 195.9
Read-only→ Read/Write→ RPC→ REST 1 95 813.0 861.0 861.0 861.0 0.0
Read-only→ Read/Write→ RPC→ REST→ CRUD 2 113 538.3 1643.0 2378.0 811.0 785.5
Read/Write 215 29305 896.2 1530.5 2888.0 23.0 516.9
Read/Write→ CRUD 20 2024 791.2 1555.4 3275.0 772.0 830.6
Read/Write→ CRUD→ REST 12 1210 566.3 1896.3 2765.0 1111.0 598.7
Read/Write→ REST 241 28727 1001.0 1702.9 3528.0 199.0 692.6
Read/Write→ REST→ CRUD 94 9902 1075.8 1831.7 3471.0 698.0 755.5
Read/Write→ REST→ CRUD→ Read-only 1 70 2569.0 2765.0 2765.0 2765.0 0.0
Read/Write→ REST→ RPC 5 635 698.2 1867.7 2831.0 1356.0 520.8
Read/Write→ REST→ RPC→ CRUD 1 221 2765.0 3412.0 3412.0 3412.0 0.0
Read/Write→ REST→ RPC→ Read-only 1 63 136.0 742.0 742.0 742.0 0.0
Read/Write→ REST→ RPC→ Read-only→ CRUD 1 150 1638.0 2345.0 2345.0 2345.0 0.0
Read/Write→ REST→ Read-only 7 468 622.9 1708.9 2907.0 1383.0 563.4
Read/Write→ REST→ Read-only→ RPC 2 340 915.9 1065.8 1110.0 1042.0 32.5
Read/Write→ RPC 10 613 612.4 3210.6 6435.0 715.0 2049.6
Read/Write→ RPC→ REST 4 352 948.2 1446.0 1925.0 948.0 342.0
Read/Write→ RPC→ REST→ CRUD 3 235 1054.1 1360.2 1417.0 1291.0 62.8
Read/Write→ RPC→ Read-only→ REST 1 51 82.0 1730.0 1730.0 1730.0 0.0
Read/Write→ Read-only 8 1207 913.3 1313.5 1680.0 713.0 325.6
Read/Write→ Read-only→ CRUD 1 147 452.0 851.0 851.0 851.0 0.0
Read/Write→ Read-only→ REST 24 2537 792.4 1538.2 2056.0 690.0 323.2
Read/Write→ Read-only→ REST→ CRUD 7 627 999.8 2412.2 3193.0 1303.0 617.3

! Most APIs with long histories (more than 50 commits) have simple functions, like CRUD-only (394
APIs) or REST-only (1292 APIs), meaning they stick to basic operations. However, some APIs are becom-
ing more complex, with transitions like CRUD → REST → RPC or REST → Read/Write → CRUD, though
these are less common. This suggests that while most APIs stay simple, a few are adding more features
and becoming more advanced over time, or simplifying existing operations.

4.1.3 Data model alignment considerations
The level of data normalization is considered.

Paths and responses are often aligned with the normalization state of the data:

• Normalized resources are typically exposed through separate endpoints, such as /products/{id} for individ-
ual products.

• Embedded-related data may be included in responses when appropriate to reduce client-side API calls. For
example, order details might include embedded user information.

Conforming to data normalization in APIs means ensuring that the structure of paths and responses aligns with
the normalized state of the data. This involves exposing individual resources through dedicated endpoints, such
as /products/{id} for accessing specific items, which reduces redundancy and provides a clean, scalable design.
Additionally, related data may be embedded in responses where appropriate to optimize client-side performance
and minimize multiple API calls. For example, an /orders endpoint could include embedded user details to avoid
the need for a separate request to /users/{id}. APIs that follow this principle achieve a balance between normal-
ized resource access and efficient data delivery, improving performance, scalability, and usability while reducing
redundancy.
We verify in our analysis conformance to data normalization by evaluating two key principles:

67 4.1 Design Principles and their Impact on API Structures and data models

Table 4.4. Analysis of alignment of API datamodel

Metric Count

APIs with Schemas 3377 (out of 3711)
APIs with Embedded-Related Data 3128
APIs with Normalized Resources 3202
APIs with Normalized Resources and Embedded-Related Data 2993

1. Normalized Resources: Endpoints must follow a standardized path structure, such as /resource/{id},
which is used to access individual items.

• For example, the endpoint /products/{id} retrieves details for a specific product.

This is achieved by matching API paths against a regular expression that identifies such patterns.

2. Embedded-Related Data: Response schemas are examined for embedded data, such as nested objects (type:
object) or arrays (type: array), that represent related resources. Including such data optimizes client-side
performance by reducing the need for multiple API calls.

• For example, an /orders endpoint might include user details directly as an embedded object to avoid
an additional request to /users/{id}.

The analyzer ensures that an API conforms to normalization if it satisfies at least one of the following conditions:

• It exposes resources through normalized endpoints (e.g., /resource/{id}).

• It includes embedded-related data in its responses.

By combining these checks, the script determines the degree to which APIs align with data normalization principles,
ensuring a balance between resource separation and efficient data delivery. Table 4.4 summarizes the analysis
output.

Figure 4.9 shows the distribution of the number of distinct schemas (left) and the number of distinct properties
of the schemas (right) between conforming and non-conforming APIs. Both plots show that the data model of the
conforming APIs tends to have a more diverse and rich data model in terms of number of schemas and diverse
properties.

Immutable resources are not expected to expose update methods.

Resources representing entities that should be immutable for clients, such as event logs or transaction records, are
generally read-only. Methods like GET are employed for retrieval, and POST is used for creation.

The verification of the adoption of this principle uses a heuristic approach to identify immutable resources by
matching their paths with predefined keywords like logs, transactions, or history, which typically represent
entities that should not be modified after creation. For each identified resource, the HTTP methods are analyzed
to ensure that only GET (for retrieval) and POST (for creation) are used. The presence of update methods (PUT or
PATCH) or delete methods (DELETE) on these resources is flagged as a violation, as such operations contradict the
immutability principle. This heuristic efficiently detects potential design flaws in APIs handling immutable entities.

The results in Table 4.5 show that out of the 4599 paths that seem to handle immutable resources, about 12%
of them also allow PUT, PATCH or DELETE.

68 4.2 Towards Assessing Web API Complexity

Figure 4.9. Distribution of Schemas and Properties in Conforming vs Non-Conforming APIs. The left plot
illustrates the number of schemas per API, while the right plot shows the number of properties per schema.
Conforming APIs exhibit higher variability and concentration in both metrics compared to Non-Conforming
APIs.

Table 4.5. Analysis of operations applies on potential immutable ressources

Metric Count

Total APIs Analyzed 3711
Total Paths Analyzed 110398
Paths Matching Immutable Resources 4599
Violating Paths (PUT, PATCH, DELETE on Immutable Resources) 549

4.2 Towards Assessing Web API Complexity
While size metrics defined in Chapter 3 helps to measure the size of a Web API in terms of its structure. They can
also be used to evaluate the complexity of the API.

Striking the right balance between functionality and simplicity is critical to ensuring that APIs are powerful yet
user-friendly, enabling seamless integration and long-term scalability. Moreover, adhering to the guidelines and
design rules[94, 89, 75] positively impacts the understandability of the API [23].

The complexity of an API should be controlled and driven by the design decision adopted taking into account
the alignment of the paths and operations with the underlying data model, answering the defined requirements
with the highest performance.

4.2.1 Existing definitions
Previous researchers suggested different methods to measure Web API complexity. The authors Jonnada and
Joy [77] represent each API resource as an undirected graph. In this graph, nodes represent the resource, its
methods (API calls), and the input parameters for these methods. Edges define the relationships between these

69 4.2 Towards Assessing Web API Complexity

components, such as links between the resource and its methods or between methods and their input parameters.
The complexity of this graph is quantified using Shannon’s entropy, which measures the information content based
on the connectivity of the nodes. The formula for the complexity of a node is:

Node Complexity= ↓
N∑

i=1

di

D
log2

#
di

D

$

where N is the total number of nodes, di is the degree (number of connections) of node i, and D is the total
adjacency, calculated as the sum of the degrees of all nodes. The total complexity of the resource (TRc) is the sum
of the complexities of its resource node, method nodes, and parameter nodes. By summing the complexities of all
resources, the total API complexity (APIc) is determined. This method provides a structured way to quantify the
complexity of an API based on its structure and relationships.

This complexity metric is meaningful in the context of graphs because it captures structural properties like the
number of nodes and edges, degrees of connectivity, and information content using Shannon’s entropy. In graph
theory, these properties are sufficient for understanding complexity since graphs are abstract representations of
relationships and do not require semantic or functional interpretation. For instance, the metric can effectively
compare graphs with different topologies by quantifying their structural differences.

However, in the case of Web APIs, the metric becomes less meaningful because APIs are not just structural entities
but also semantic and functional systems. Web APIs involve logical relationships between resources, hierarchical
path structures, and contextual interactions that go beyond simple node and edge connections. For example, a
deeply nested path like /models/{model_id}/versions/{version_id} represents a logical dependency that adds
semantic complexity not captured by graph-based metrics. Moreover, the uniform treatment of parameters and
methods in the metric overlooks critical aspects such as the variability of data types, the dynamic behavior of APIs,
and their state transitions. As other software, APIs are also designed with usability, scalability, and maintainability
in mind, which are qualitative dimensions that a purely structural metric cannot measure. Which makes this metric
insufficient to measure these aspects when used solely.

In the case of De Souza and Bentolila [40] who defined complexity metrics for APIs (rather than Web API), the
complexity is quantitatively assessed using structural metrics that evaluate the interface specifications of methods,
classes. The Interface Size Metric assesses the complexity of a method based on the number and types of its param-
eters, with methods having more and complex parameter types being considered more complex. The Interaction
Level Metric measures the degree of interconnectivity between components by evaluating the potential interactions
within a class or method, where higher interaction levels indicate greater complexity. Additionally, the Operation
Argument Complexity Metric evaluates the overall complexity of method parameters by assigning weights to differ-
ent parameter types based on their simplicity or complexity. These metrics are aggregated to determine the overall
complexity of an API, which is further benchmarked statistically against other APIs, placing their complexity scores
into deciles. This metric helps to evaluate the complexity from both the perspective of user and maintainer.

Complexity is also introduced with a high degree of feature diversity, especially when these features are not
intuitively designed or aligned with user and developer expectations [192]. Feature diversity, while potentially
powerful, increases cognitive load if users are required to navigate through disparate functionalities without clear
or predictable patterns. It also increase the maintainability costs since developers are supposed to assist a larger
set of functionalities. Intuitiveness is compromised when the tool deviates from established conventions, uses
inconsistent terminology, or presents unclear workflows. Complexity further escalates when features interact in
unexpected or non-transparent ways, requiring users to invest additional effort to understand dependencies and
outcomes. Thus, a tool’s complexity is not solely determined by the breadth of its capabilities, but also by how well
these capabilities are integrated into a cohesive, user-friendly experience.

70 4.2 Towards Assessing Web API Complexity

4.2.2 A Specific complexity metric for web APIs
Since Web API code is generally only accessible by its developers, we aim to propose a metric that can still reflect
the maintainability cost but does not require code-based measuring, such as known software complexity metrics
(e.g., Maintainability Index, Cyclomatic Complexity [173, 151, 102]). We define the complexity of a Web API as a
combination of the cognitive load introduced by a high number and diversity of features (endpoints), the complexity
of its data model (schemas size), and the divergences from expected design conventions, measured using specific
metrics. The API complexity score (CAPI) is calculated as:

CAPI = wf · FC + wDM · DMC + wS · SC + wd · DC

Where:

• Feature Complexity (FC): The feature complexity metric (FC =
No
Np

) focuses on the operational diversity per
path. It is calculated as the ratio of the total number of operations (No) to the total number of paths (Np)
in the API. This metric, referred to in Chapter 3 as Number of Operations per Path, provides insight into how
diverse the operations are for each path.

• data model Complexity (DMC): This metric measures the complexity of the API’s data model as the number
of properties per schema:

DMC =
Npr

Nsc

Where:

– Npr : Total number of unique properties across all schemas.

– Nsc: Total number of schemas defined in the API’s specification (e.g., request/response models).

This metric, referred to as Number of Properties per Schema in Chapter 3, reflects the density and complexity
of schema definitions.

• Size Complexity (SC): This metric quantifies the API’s size by combining the total number of paths and
schemas, with weights reflecting their importance:

SC = wpr · Np + wsc · Nsc

Where:

– Np: Total number of paths.

– Nsc: Total number of schemas.

– wpr : Weight for the importance of paths (default wpr = 1).

– wsc: Weight for the importance of schemas (default wsc = 1).

By adjusting the weights, this metric can prioritize either paths or schemas based on the API’s domain and
use case.

• Design Divergence Complexity (DC): This metric measures deviations from expected design conventions,
which can increase cognitive load and make the API harder to use [23]. It is calculated as:

DC =
Ne∑

i=1

ECi

Where:

71 4.2 Towards Assessing Web API Complexity

– Ne: Total number of endpoints.

– ECi: The divergence score for the i-th endpoint:

ECi =
Nd∑

j=1

wdj
· Dj

– Nd : Number of design rules evaluated for the endpoint. This allows for flexibility in adding or modifying
design rules.

– Dj: Deviation of the j-th design element. Examples include:

* Path and Naming Consistency: Plural resource names returning arrays (+0) vs. single objects (+1).

* Parameter Design: Query parameters as objects (+1) or nested structures (+1 per level).

* Response Format: Inconsistent or deeply nested responses (+1 per extra nesting level).

* HTTP Method Semantics: Incorrect usage, such as a ‘GET‘ operation modifying server state (+1).

– wdj
: Weight reflecting the importance of each design rule.

Weights (wf , wDM , wS , and wd): These weights allow prioritization of different aspects of complexity. For
example:

• A data-heavy API might assign a higher weight to wDM , emphasizing data model complexity.

• An API with many endpoints might prioritize wf to reflect the impact of feature diversity.

• If design consistency is critical, wd can be increased to penalize divergences more heavily.

By adjusting these weights, the metric can be tailored to reflect specific API design priorities, ensuring that the
complexity score aligns with the API’s intended purpose and domain.

This interpretation of the metric is meaningful when used to compare two APIs or as suggested by Lanza and
Marinescu[88] to compare an API with a set of pre-computed complexity values of a large number of APIs.

Example

As an example, in Table 4.6 we compute the complexities of the API described in the snippets in Listings 4.2 and 4.5.

Listing 4.5. OpenAPI schema for a collection of users with metadata and possibility to fetch users by their ids
paths:
/users:
get:
summary: Retrieve a list of users
parameters:
- name: page
in: query
schema:
type: integer

description: Page number
- name: limit
in: query
schema:
type: integer

description: Number of results per page
responses:
'200':
description: A JSON array of user objects
content:
application/json:

72 4.2 Towards Assessing Web API Complexity

schema:
type: array
items:
type: object
properties:
id:
type: string
description: Unique identifier for the user

name:
type: string
description: Name of the user

email:
type: string
description: Email of the user

address:
type: object
properties:
street:
type: string

city:
type: string

zipcode:
type: string

/users/{id}:
get:
summary: Retrieve details of a specific user
parameters:
- name: id
in: path
required: true
schema:
type: string

description: ID of the user
responses:
'200':
description: A JSON object representing the user
content:
application/json:
schema:
type: object
properties:
id:
type: string

name:
type: string

email:
type: string

address:
type: object
properties:
street:
type: string

city:
type: string

zipcode:
type: string

The Shannon entropy-based complexity is computed as:

• For the simple API (Listing 4.2):

N = 4, D = 6

di = {3,1, 1,1}

Substituting into the formula:

Node Complexity= ↓
#

3
6

log2
3
6
+

1
6

log2
1
6
+

1
6

log2
1
6
+

1
6

log2
1
6

$

73 4.2 Towards Assessing Web API Complexity

Metric Simple API (Listing 4.2) Complex API (Listing 4.5)

FC (Feature Complexity) 1 1
DMC (Data Model Complexity) 2 4
SC (Size Complexity) 2 4
DC (Design Divergence Complexity) 0 1
CAPI (Total Complexity) 2 · 1+ 1 · 2+ 1 · 2+ 1 · 0= 4 2 · 1+ 1 · 4+ 1 · 4+ 1 · 1= 11

Table 4.6. Comparison of complexity metrics for two API examples

Node Complexity= ↓ (0.5 · (↓1) + 0.167 · (↓2.585) + 0.167 · (↓2.585) + 0.167 · (↓2.585))

Node Complexity↔ 1.0+ 0.861+ 0.861+ 0.861= 3.583

• For the complex API (Listing 4.5):

N = 12, D = 16

di = {4,3, 2,1, 1,1, 1,1, 1,1, 1,1}

Substituting into the formula:

Node Complexity= ↓
#

4
16

log2
4

16
+

3
16

log2
3
16
+

2
16

log2
2

16
+ 7 · 1

16
log2

1
16

$

Node Complexity= ↓ (0.25 · (↓2) + 0.1875 · (↓2.415) + 0.125 · (↓3) + 7 · 0.0625 · (↓4))

Node Complexity↔ 0.5+ 0.453+ 0.375+ 1.75= 3.078

Compared to our proposed metrics, the Shannon Entropy does not reflect differences in complexity, as the simple
API appears slightly more complex. This is due to its inability to account for semantic depth or design intricacies
by considering all the nodes as similar API elements.

In Summary
The goal of the analysis presented in this chapter is to combine the metrics defined in Chapter 3, to be used as
indicators and study more complex features such as the correlations between data model and API structure, and
the relationships between the HTTP methods employed in these structures. Key findings reveal that while API
designs might be technically “RESTful”, they still exhibit unexpected design decisions, such as poor utilization of
logical relationships between path segments and inadequate labeling practices (e.g., using plural forms to retrieve
single resources or vice versa). These design inconsistencies with established expectations highlight the need for API
design tools that can proactively guide API designers by identifying potential design smells and providing actionable
warnings, thereby promoting more consistent, maintainable, and semantically aligned API designs.

74 4.2 Towards Assessing Web API Complexity

Chapter 5

OAS2Tree: Visualizing Web APIs as Trees

Web APIs are essential for enabling seamless communication between software systems [189]. However, their sheer
size and complexity [139] can make them challenging to understand [58]. While visualizing the overall architecture
can significantly aid in understanding the interactions between a system’s components, focused visualizations of
crucial elements within a complex system, such as web APIs, can clarify the structure, help ensure the correct flow
of data, and determine which operations should be exposed.

In this chapter, we introduce a visualization that emphasizes the tree structure of a web API. This representa-
tion, which we refer to as the web API tree, highlights the branching structure between paths and the operations,
parameters, and responses associated with them, using a selected graphical notation. The web API tree is supported
by a tool called OAS2Tree, which generates the tree structure from OpenAPI specifications. We present the design
and implementation of OAS2Tree, showcasing its features and use cases. In addition, we discuss the limitations of
the current version and explore potential future improvements and extensions.

5.1 Representing the API Structure as a Tree

5.1.1 API Tree Model

We transform the textual documentation related to the resources and the methods supported by the API into a
tree data model, to represent the nesting relationships between the API endpoint URIs, enumerated as paths in the
OpenAPI specification. This model has two purposes:

1. It can be used to visualize the functional characteristics of the APIs graphically, to provide a quick overview
supporting the understanding of the APIs structure.

2. The second purpose of this tree data model, described in Figure 5.3, is to help to rapidly spot commonly
used patterns by analyzing reoccurring fragments found within a large set of APIs. The elements colored in gray in
Figure 5.3 are the ones being mapped to graphical notations for being visualized in the API Tree representation.

An example of an API Tree model visualization is in Figure 5.4. Each API operation, originally listed in the
OpenAPI file, can be enumerated by following the path from the root until reaching a leaf of the tree. These later
represent the HTTP methods, enumerated in each path in the Open API description. The nodes within the tree
are labeled with the corresponding URI path segment and labeled depending on the type of the path segment
(Table 5.1). The types of nodes are explained in Section 6.5.2.Due to this graphical representation, we can also
visually detect a repetitive usage of an API Fragment in an API. This same fragment can also reoccur in other APIs,
with different labels.

In Table 5.1, we summarize the notation used in our APIs Tree visualization.

75

76 5.1 Representing the API Structure as a Tree

Table 5.1. API Tree notation

Name Notation Signification

Root R The root of the API Tree.

Method The HTTP methods, where each method has a spe-
cific color.

Static path segment Path segment with no parameter
Parametric path segment Path segment with single {parameter}
Unusual path segment Path segment mixing parameters with static labels
Query Parameter Collection ? A node connected the method to indicate the exis-

tence of a query parameter. It is colored with the
same color as the method.

Responses Collection > A node connected the method to indicate the exis-
tence of response schema object documentation. It
is colored with the same color as the method.

The HTTP Methods are visualized in a circular shape. We attribute a specific color to each HTTP method to
make it easier to identify them in the visual representation. The colors we adopted are closely similar to the color
coding used in Postman [126]. The colors are as follows:

GET POST PUT HEAD DEL PATCH OPT TRACE

Listing 5.1. Example of API paths description ins an OpenAPI document
paths:
/users:
get:
summary: "Retrieve the list of all registered users."
responses:
"200":
description: "A list of users."

/users/{id}/details:
get:
summary: "Retrieve details of a user by their ID."
responses:

/

users

{id}

details

GET

Req.
Params

Resp.
Status

GET

Req.
Params

Resp.
Status

posts

GET

Req.
Params

Resp.
Status

POST

Req.
Body

Resp.
Status

Figure 5.1. Extracted API tree structure

77 5.1 Representing the API Structure as a Tree

Figure 5.2. OAS2Tree visualization of API in Listing 5.1

"200":
description: "The user information."

"404":
description: "User not found."

/posts:
get:
summary: "List all posts"
responses:
"200":
description: "A list of all available posts."
parameters:
- name: limit
in: query
description: "The number of posts to return."
type: integer

- name: offset
in: query
description: "The number of posts to skip."
type: integer

post:
summary: "Create a new post."
responses:
"201":
description: "The created post."

5.1.2 OpenAPI to Tree model transformation

To visualize the OpenAPI specification as a tree structure, we transform the flat list of paths extracted from an API
description into a hierarchical structure by breaking down the paths into segments. When a segment is shared
between different paths, we check if these segments share the same sequence of parent segments. If they do, the
segments are merged into a single node, as they refer to the same container resource. Once the path segments tree
structure is complete we attach to each node the set of HTTP methods of the corresponding endpoint.

OpenAPI also includes details related to the responses of each endpoint and the parameters that can be passed to
the endpoint. We attach these details to the corresponding HTTP method node. In the current version of OAS2Tree,
we only visualize the response status codes but do not further drill down to show the data models of the request or
response schemas.

While the YAML or JSON syntax adopted by OpenAPI can make it hard to locate the operations that are appli-
cable over the same resources but with different HTTP methods, in the case of large APIs with many paths. This

78 5.1 Representing the API Structure as a Tree

Figure 5.3. Excerpt of the API Tree metamodel, highlighting the visualized elements

hierarchical representation clearly shows the shared segments and their relationships within the API structure.
For explaining the model transformation, responsible of producing the tree visualization of the OpenAPI de-

scriptions, we use the description example in Listing 1, which is an excerpt extracted from the OpenAPI description
of Apacta Web API whose API Tree is shown in Figure 5.4.

The path /cities only contains one path segment {1:cities} labeled cities. In our transformation, each
segment is transformed to a PathSegment object (Figure 5.3). We always connect the first path segment to the
Root object R , an added graphical element which helps to visualize the API model as a tree. The {1:cities} path
segment has no in-path parameters, thus it is mapped to the static path segment notation (Table 5.1). As a

result, the obtained first portion of the tree is R

cities
, where we label the path segment node ‘cities‘. Moreover,

the PathSegment object contains fields holding some original information such as the summary, description and the
parameters information, for further usages. In this study, we only distinguish between paths that are having in-path
parameters and the one that don’t have them. However we plan to extend the graphical visualization to include
also the other type of parameters and the responses details.

This path provides only one GET operation, which allows to get a city by its zip code. The HTTP methods are
transformed to the Method object, which also keeps most of the original information about the method, such as

79 5.1 Representing the API Structure as a Tree

paths:
/cities:

get:
parameters:
- description: Search for a city with specific zip code
in: query
name: zip_code
required: false
type: string

responses:
'200':
description: OK
schema:

...
'404':
description: Not found
schema:

...
summary: Get list of cities supported in Apacta

/cities/{city_id}:
get:

parameters:
- in: path
name: city_id
required: true
type: string

responses:
'200':
description: OK
schema:

properties:
data:

...
success:

default: true
type: boolean

'404':
description: Not found
schema:

...

Listing 1. Excerpt from the OpenAPI description of the Apacta API shown in Figure 5.4

the summary, description, and the response details. This Method object is mapped to the graphical notation: ,
which contains as a label the name of HTTP method and colored in specific color depending on the method. In this

case, the notation should be
GET

. And as a result, the whole path visual representation is:
R

cities
GET

Once all the methods of a path are all transformed, the algorithm jumps to the next path and start extracting
the path segments, and put them in a list, respecting their original order. In our example the second path is
/cities/city_id. It contains tow path segments { 1: cities, 2: city_id }. The path segment { 1: cities } has
already been created. Knowing that each next path segment is a child of the previous one, the path segment {2:
city_id} should be then connected to { 1: cities }, which is already created and added to the tree. This new node
is also mapped to the PathSegment object, and more specifically to the ParametricPathSegment object, which is
associated to the notation: . As consequence, the tree becomes :

80 5.1 Representing the API Structure as a Tree

R

cities
GET

{city_id}

Same as for the previous path, this path also provides only one Get HTTP method. So the API Tree corresponding
to the whole OpenAPI description example is:

R

cities
GET

{city_id}
GET

When a method has query parameters, this is visible threw the other node attached to the method with the “?"
mark. In this example the GET/cities uses pagination to list the cities using the parameter page.

R

cities
GET

{city_id}
GET

? page: number

When the

R

cities
GET

{city_id}
GET

? page: number

>

id: string

city_name: string

The corresponding API Tree Structure for this API Tree is simply obtained by removing all path labels and
ignoring the responses and query parameters details:

R GET

GET

Looking at the tree model visualization in Figure 5.4, we can notice this same portion of the tree, constructed
from the example in Listing 1, appears multiple times with different labels. For computing exactly how much
frequently, a specific structure of a tree fragment appears in the set of APIs in our collection, we proceed to apply
the fragmentation and matching technique presented in Section 6.5.

81 5.2 OAS2tree: Tool Support for API Tree Visualization

5.2 OAS2tree: Tool Support for API Tree Visualization
OAS2Tree dynamically generates visual representations of APIs described using the OpenAPI Specification (OAS) [118].
By offering developers a visual representation instantaneously synchronized from the OpenAPI description text, the
tool facilitates obtaining valuable insights and a deeper understanding of the API structure. Furthermore, our tool
goes beyond basic visualization capabilities by proactively identifying and highlighting design smells—common is-
sues or inefficiencies in API design. These design smells have been extensively discussed in our research study on
API structural patterns and design flaws [148] detailed in Chapter 6.

By providing real-time visual representations of API endpoint and operation structures, the tool facilitates val-
idating the consistent and regular design of API endpoints as a tree of URL paths with color-coded HTTP methods
as tree leaves. Additionally, its integration of design smell detection capabilities assists developers in identifying
potential issues and refining their APIs. Ultimately, our visualization tool aims to enhance the collaboration and
efficiency of incremental API design and review processes, resulting in the creation of well-designed APIs.

The tool is available as both a standalone web app [113] and as a Visual Studio Code (VSCode) extension [114],
catering to the diverse needs of developers. The web app version is designed for those who want a quick and
convenient way to visualize an API without the need for local tool installation and setup. On the other hand, the
VSCode extension version is intended for developers who prefer to have the visualization tool seamlessly integrated
into their development environment.

5.3 OAS2Tree Features

5.3.1 API Spec validation Design Smells Detection
OAS2Tree can be used to detect smells in the API design described in the specification. The tool currently supports
the detection design smells we empirically identified in our research study on API collection resource patterns [148]
presented in Chapter 6. The goal is to alert developers to potential design issues. The design smells detected by
OAS2Tree include:

• Ambiguous PUT and POST endpoints: When an API contains both PUT and POST operations with similar
paths, it can lead to confusion.

• Create without delete: When an API allows the creation of resources without providing a corresponding
delete operation, it can result in data inconsistencies.

• Delete without create: When an API allows the deletion of resources without providing a corresponding
create operation, it can lead to data loss.

• Write-only endpoints: When an API contains endpoints that only allow write operations without providing
read capabilities, it can limit the usability of the API.

In addition, OAS2Tree validates the API specification against the OpenAPI Specification schema to ensure that
it adheres to the standard, and highlights any errors or inconsistencies in the document and in the problems view
as depicted in Figure 5.5. For both smells and validation errors, the user can navigate to the problematic element
in the OAS document by clicking on the error message.

5.3.2 Navigation of API description through the tree visualization
The tree structure visualization allows users to navigate through the API description easily. By expanding and col-
lapsing nodes, users can explore the API structure and view the details of each endpoint, operation, and parameter.

82 5.3 OAS2Tree Features

Apacta ࠀ.߿.߿

GETPOST GET

GET

POST

GET

GET

GET

GETPOST

DEL

GET

PUT

GET

GET

GET

GET

GETPOST

DEL

GET

PUT

GET

GET

GETPOST

DEL

GET

PUT

GETPOST

DEL

GET

PUT

GETPOST DELGETPUT

GETPOST

DEL

GET

GETPOST

DEL

GET

PUT

GET

DEL

GET

PUT

GET

GET

GETPOST

DEL

GET

PUT

GET

GET

GET

GET

GET

GET DELGETPUT GETPOST

DEL

GET

POST

PUT

POST

GET

GET

PUT

GETPOST

DEL

GET

PUT

GETPOST

DEL

GET

PUT

GETPOST

DEL

GET

PUT

GET

GET

POST

GET

GET

GET

GETPOST DELGETPUT GET

GET

GETPOST

DEL

GET

PUT

GETPOST

DEL

GET

PUT

GET

GET

GET

GETPOST

DEL

GET

PUT

GET

GET

GET GET GET

GET

GETPOST

DEL

GET

PUT

POST

GET

GET

wall_posts/ {wall_post_id}/ wall_comments/

wall_comments/ {wall_comment_id}/

vendor_products/ {vendor_product_id}/

users/ {user_id}/

time_entry_value_types/ {time_entry_value_type_id}/

time_entry_unit_types/ {time_entry_unit_type_id}/

time_entry_types/ {time_entry_type_id}/

time_entry_intervals/ {time_entry_interval_id}/

time_entries/ {time_entry_id}/

stock_locations/ {location_id}/

projects/ {project_id}/

users/ {user_id}/

project_files/ {project_file_id}/

files/ {file_id}/

project_statuses/ {project_status_id}/

products/ {product_id}/

ping/

payment_terms/ {payment_term_id}/

payment_term_types/ {payment_term_type_id}/

materials/ {material_id}/ rentals/

{material_rental_id}/

checkout/

mass_messages_users/ {mass_messages_user_id}/

invoices/ {invoice_id}/

invoice_lines/ {invoice_line_id}/

forms/ {form_id}/

form_templates/ {form_template_id}/

form_fields/ {form_field_id}/

form_field_types/ {form_field_type_id}/

expenses/ {expense_id}/ original_files/ {file_id}/

expense_lines/ {expense_line_id}/

expense_files/ {expense_file_id}/

employee_hours/

currencies/ {currency_id}/

contacts/ {contact_id}/

contact_types/ {contact_type_id}/

companies/ {company_id}/ integration_feature_settings/ {integration_feature_setting_id}/

clocking_records/

{clocking_record_id}/

checkout/

cities/ {city_id}/

ࠁࠁ Feb ࠀࠁ߿ࠁ - commit 8ࠁ# 54ࠀ

Figure 5.4. Visual representation of the Apacta API structure as a tree of resources and HTTP methods. This
API tree includes many reoccurring subtrees, which we extract as API fragments (Click for OpenAPI source)

https://raw.githubusercontent.com/roscopecoltran/krakend-admin/f27bc4ee41d133f35301ef2fabf606cdce51b47b/shared/public/downloads/v2/specs/apacta.com/0.0.1/swagger.yaml
https://raw.githubusercontent.com/roscopecoltran/krakend-admin/f27bc4ee41d133f35301ef2fabf606cdce51b47b/shared/public/downloads/v2/specs/apacta.com/0.0.1/swagger.yaml
https://raw.githubusercontent.com/roscopecoltran/krakend-admin/f27bc4ee41d133f35301ef2fabf606cdce51b47b/shared/public/downloads/v2/specs/apacta.com/0.0.1/swagger.yaml

83 5.3 OAS2Tree Features

Figure 5.5. Navigation between the diagram and the OAS code

This interactive feature provides a comprehensive overview of the API architecture, enabling users to quickly locate
specific endpoints and understand their functionalities. On mouse over, the editor highlights the corresponding
element in the OpenAPI document in yellow. The description of the element is displayed in the tooltip. It is also
possible to navigate from the problems view to the problematic element in the OpenAPI document by clicking on
the error message.

5.3.3 Web version of OAS2Tree

OAS2Tree is also available as a standalone web application, allowing users to visualize API structures without the
need for a development environment. The web app version provides the same features as the VSCode extension,
including the ability to save the current specification being visualized and share it through a unique URL with other
users. The web app version is particularly useful for users who want to quickly visualize or sketch an API design
from their Web browser (Figure 5.6). An additional feature that the web version offers is the ability to navigate a
collection of API specification examples, and visualize them in the tree structure format. This feature can be useful
for users who want to explore different API designs and understand the common patterns and structures used in
API development, and how some features are documented in OpenAPI by other API designers1.

1http://api-ace.inf.usi.ch/openapi-to-tree/navigate-apis?limit=50&page=13

http://api-ace.inf.usi.ch/openapi-to-tree/navigate-apis?limit=50&page=13

84 5.4 Usage scenarios

Figure 5.6. Save as URL functionality in OAS2Tree Web App

5.4 Usage scenarios
OAS2Tree can be used by both API providers and API consumers in various use-case scenarios across the API devel-
opment lifecycle.
As an API Designer & Developer:

• API Design and Documentation: During the initial stages of API design, OAS2Tree can be employed to visu-
alize and refine the API structure. Since the visualization can also be generated from not fully complete OAS, it can
serve as a tool for sketching partial API structures, and have an early overview of it.

• API Review and Design Validation: Designers can use OAS2Tree not only to ensure conformance to the Ope-
nAPI standard, but also to ensure consistency in endpoint naming, parameter usage, and selection of HTTP methods.

• API Evolution: The tool can help find the adequate place of an extension.
As an API Consumer:

• Functionalities exploration: Client developers can use OAS2Tree to explore the endpoint structure and assess
whether the API meets their requirements.

• Documentation navigation: OAS2Tree can be used to navigate the API documentation and quickly locate
specific endpoints and operations, by hovering over the tree nodes, the corresponding element in the OpenAPI
document is highlighted.

• Visual comparison: OAS2Tree can be used to visually compare the structure of different versions of an API,
or the structures of different APIs.

5.5 Web API modeling tools
Most of the API lifecycle management tools currently widely used in the market234, including paid ones, offer
a Postman-like interface in their ‘API Design environment’, where the user can interact with the API, and test it.
However, none of them offers a tree-like visualization of the API structure, that can be used to understand the
overall API structure and navigate the documentation.

OAIE Sketcher5 offers another way to visualize the endpoints by emphasizing the relationships between the
schemas used in the request and response bodies. However, it lacks the hierarchical structure of the API paths
and the HTTP methods, and the visualization is not kept synchronized as the corresponding textual specification
changes.

The OpenAPItoUML tool [49] generates UML models from OpenAPI definitions, providing a means to visualize
both API endpoint structures and API data models using class diagrams. However, it does not provide a tree-like

2https://xapihub.io/features/designAndDev
3https://stoplight.io/drive-api-results
4https://apigit.com/why-apigit/api-design
5https://raw.githack.com/OAIE/oaie-sketch/master/sketch.html

85 5.5 Web API modeling tools

visualization of the API paths and operations, and it does not support the detection of any design smells in the API
specification or data schema issues.

In Summary
OAS2Tree is a Web API visualization tool, available as a Visual Studio Code extension and a web application, that
transforms OpenAPI specifications into a simple visual tree representation. It supports OAS v2.0, v3.0, and v3.1.
It provides a side panel in the VS Code editor to interactively display the API structure as a tree. The tool can be
employed by API designers to visualize and refine the API structure during the initial design phase, ensuring con-
sistency in endpoint naming, parameter usage, and HTTP method selection. It can also be used to validate the API
design and detect potential design smells early on. API consumers can use OAS2Tree to explore the functionalities
of an API and understand whether it meets their requirements. In addition, it contains a navigation feature that
can help to quickly locate the textual description of specific endpoints and operations.

The tool currently has about 600 users and has been used in teaching, research, and development projects.
In future work, we plan to extend the tool to support detecting additional design smells and enhance the repre-

sentation of the detected issues on the tree visualization to ease their location in the overall API structure. We are
also experimenting with embedding the visualization as part of the API documentation generated from the OpenAPI
description.

Demo Video Link: https://youtu.be/E48c9Rwntz8

https://youtu.be/E48c9Rwntz8

86 5.5 Web API modeling tools

Chapter 6

Web APIs Structural Patterns and Smells: A
pattern map of API fragments

Web APIs are theoretically designed to meet specific, predefined requirements. However, an important question
arises: do APIs that provide the same functionalities exhibit similar structural designs? Furthermore, are there
specific, repetitive components within these APIs that can be systematically extracted and analyzed?

In this chapter, we present the results of an analysis that draws an analogy between API structures and tree-like
representations, where an API is conceptualized as a set of branches (functional paths) and nodes (connections
between paths). Through this lens, we aim to explore the structural similarities and repetitive patterns in APIs by
mining the recurrent API fragment composing Web APIs.

6.1 Mining Recurrent Web API Fragments
The primary objective of this research is to investigate recurring structural patterns in Web APIs, focusing on their
design and evolution as described in OpenAPI specifications. Specifically, this study aims to identify and classify
repetitive components, referred to as API fragments, and analyze their relationships with higher-level API design
patterns and design smells. The overarching goal is to determine the extent to which these fragments can serve as
building blocks for designing consistent and reusable API structures, and how deviations from such patterns may
indicate inefficiencies or design flaws.

By conceptualizing API structures as tree-like representations presented in Chapter 5, where endpoints are
modeled as nodes and their relationships as branches, the study seeks to address the following questions:

1. Recurrent Structures : Which fragments of API structures occur repeatedly across APIs, and what functional
roles do these fragments serve?

2. Structural Smells: Are there structural anomalies, such as inefficient or ambiguous configurations, that may
hinder usability, security, or maintainability?

3. Semantic Variations: Using the semantic closeness between labels used in similar API Fragments, how diverse
is the semantic context in which a specific fragment is employed?

This research aims to provide both a theoretical framework and practical insights to assist API designers in cre-
ating consistent, reusable, and maintainable API structures. The findings also aim to contribute to the development
of tools and methodologies that enhance API design quality, promote alignment with best practices, and enable
pattern-driven API evolution.

87

88 6.2 API Fragments Mining Approach

GitHub Public Repositories

Crawler

OpenAPI Parser

API Specification Documents

API Structure Extraction

API Model

API Fragmentation

API Tree

Matching and Clustering

Labeled API Fragments

Selection

API Structure Primitives

API Structural Patterns API Design Smells

Figure 6.1. API Analytics Pipeline: From API Specifications to Patterns

6.2 API Fragments Mining Approach

Out of many existing kinds of APIs, in this research, we focus on Web APIs [158, 172, 121, 12, 132, 133] remotely
accessible through the HTTP protocol and described using the standard OpenAPI specification language [164]. We
do so because of the large number of API descriptions using this language which can be retrieved by crawling open
source repositories (Figure 6.3). While the original purpose of OAS was to generate human-readable documenta-
tion, it can also be used to generate interactive test clients, as well as client-side and server-side stubs [84, 119, 161].

we statically analyze a large collection of real-world API descriptions looking for recurring structures that can
play the roles of pattern primitives [180] which can be composed to obtain API design patterns [188]. In particular,
we are interested in the resources exposed by the HTTP API naming and in the relationship between resource
paths and the corresponding HTTP methods. This information can be used by clients to invoke the corresponding
operations.

As illustrated in Figure 10.1, our process begins by crawling open-source code repositories to gather API de-
scription documents that adhere to the OAS. These documents are then parsed and fed into a model to extract
API structure trees. These trees are fragmented, and the fragments are analyzed to identify recurring patterns.
Subsequently, these fragments are clustered to discern prevalent uses.

89 6.3 API Fragments Mining Outcome

Figure 6.2. API Collection Sample (sorted by Number of Paths)

6.3 API Fragments Mining Outcome
The contributions of this research include:

1. A method to detect similar reoccurring API structures, which takes into account natural language labels as-
sociated with each path segment. This method can be also used to compare the structure of different Web
APIs.

2. A collection of widely used API fragments, with a quantitative analysis of how frequently they occur across
the same or different real-world APIs.

3. A collection of structural pattern primitives which have been used as building blocks for HTTP-based APIs.
In particular, we selected API structures used to provide API clients with access to resource collections of
related items (e.g., user accounts, purchase orders and their items, computational jobs, blog posts and their
comments, videos, or audio tracks).

4. A classification of some design smells found across Web APIs.

5. Two composition operators for assembling the pattern primitives into larger API structures and a proposal for
connecting them with API design patterns and service contracts.

6.4 Analyzed Data
In this study, we analyzed a snapshot of the dataset that included specifications pushed to GitHub between December
2020 and January 2021, belonging to 6919 APIs, with an average size of 22.8KB, including specifications of some
well-known APIs such as Twilio, Slack, Flickr APIs, Google APIs, and Amazon APIs. All the APIs described in the

90 6.4 Analyzed Data

Figure 6.3. Yearly distribution of the specification in the analyzed snapshot

descriptions under study contain at least one method and one path. In this chapter, we include one visualization of
one of the largest APIs in the dataset (Figure 5.4), and other examples of smaller APIs to show how the detected
primitives are used as building blocks to construct the whole API’s structure.

The yearly distribution of the age of the OpenAPI documents in our dataset is depicted in Figure 6.3. The
horizontal axis refers to the year of the last commit that updated the document.

Figure 6.4. Open API Specification Metamodel Versions: 2.0 vs 3.0

6.4.1 OAS versions distribution

The collection studied in this work contains 6619 OAS descriptions. 28.9% are written in OpenAPI 3.0 and 71.1%
are written in Swagger 2.0, coming from more than 600 different providers.

The two versions are slightly different from each other on the content level, but they both allow us to describe
API structures with almost the same level of granularity. In Figure 6.4, we describe the main differences between
the two versions. The numbers (1), (2),.., (9), show the mappings between the sections of a description written in

91 6.4 Analyzed Data

OAS 2.0 and their correspondents in a description document written in OAS 3.0. The first difference is in the servers
details section. While in OAS 2.0 it was possible to include only one endpoint for an API, in OAS 3.0 it is allowed to
include multiple server objects. Other structural rearrangements have been done in OAS 3.0 in order to increase the
reusability of definitions, such as the inclusion of the Components section, where securityDefinitions, schema
definitions, parameters, and responses are defined. In addition, in OAS 3.0 a Component object can also contain
callback descriptions, which makes this version more efficient in describing asynchronous APIs. Moreover, OAS 3.0
improved the description of the parameters and supports more security schemes and bearer formats than OAS 2.0.

In our case, these differences between the two versions do not impact the results of the structural analysis and
the API fragments extraction, because our study focused on the paths and methods provided by APIs, which are
described in both versions.

Figure 6.5. API Method Combination Overview

6.4.2 HTTP methods usage
In Figure 6.2 we show an overview of HTTP methods usage in a subset of the APIs under study. We classify APIs based
on which HTTP methods they use following the RESTful maturity model [56], which distinguishes L0) APIs that
use only one endpoint and one method from L1) APIs that use multiple endpoints and still one method associated
to each endpoint, and L2) APIs which use multiple methods with multiple endpoints. Given the lack of support for
describing hypermedia in OpenAPI documents, we are unable to distinguish the highest level of the maturity model
L3, which includes the APIs that make use of the REST principle Hypermedia as the Engine of Application State
(HATEOAS).

Still, we can clearly see different types of APIs emerging if we simply count how many HTTP methods are
associated with each path enumerated in the API description (Figure 6.5). We have grouped the APIs into sets

92 6.4 Analyzed Data

according to their HTTP method combinations and depicted the results in the bar chart in Figure 6.5. The most
popular group makes use of the CRUD-like primitives of GET, PUT, POST, and DELETE. The second most popular
group only uses the read-only GET method. This is closely followed in terms of size, by the APIs which use only the
GET or POST methods. Another group of similar size can be observed by combining CRUD APIs that do not use the
PUT method (so they alias update and creation operations under the same POST method) together with APIs that
instead of using the PUT method replace it with the PATCH method. The next group includes the pure RPC APIs,
which only use the POST method. The last group worth mentioning is the ones that use all five methods, which
includes 442 APIs. The collection also includes about 500 APIs with different method combinations but of rather a
small size.

Figure 6.6. API Method Combination vs. API size

93 6.5 API Fragments

Figure 6.7. Domain concepts and their relations

6.4.3 API sizes distribution

Figure 6.6 presents an overview of the size of the APIs in the same groups, measured with two different metrics [65]:
a) the number of paths listed in the API description and b) the nodes present in the API tree. The boxplots in
Figure 6.6 represent the distribution of the size measurements for each API. Overall, the median values for the size
of the APIs in the collection reach approx. 50 nodes and 20 paths.

6.4.4 Domain Concepts

In this work, we focus on analyzing the structures of Web APIs with the goal of detecting APIs with similar structures.
Due to the granularity of API descriptions in OpenAPI models, we could create a tree model representation for each
API in the collection, which we call from now on API Tree. For lifting the level of abstraction of the tree model, we
unlabel all its nodes. We refer to the unlabeled tree model as API Tree Structure.

In our analysis, we aim to detect repetitive tree fragments in the API tree models. For that, we define an API
Fragment object, a subtree of an API tree. As for an API, the fragment also has an unlabeled version, which we
call henceforth Fragment Tree Structure. After matching and filtering the set of API tree structures extracted from
the whole API collection under study, we obtained a list of API structure primitives and another for API Structure
smells, as described in the domain concepts summary of Figure 6.7.

6.5 API Fragments

An API Fragment is any sub-tree (a connected sub-graph that includes some of the leaves of the original tree) of
an API tree structure. A sub-tree is also a tree, therefore a fragment can be also seen as an API itself, which can be
further decomposed. For instance, the excerpt in Listing 1, is an example of an API fragment extracted from the
Apacta API (Figure 5.4).

To achieve our goal of detecting recurrent fragments in the API structures, we present a two-step approach that
uses an algorithm that first extracts significant model fragments from a dataset of APIs models, and then compares
them across multiple APIs to detect recurring ones.

94 6.5 API Fragments

6.5.1 APIs fragmentation approach
A tree T is a non-linear data structure, where each non-leaf node can be seen as a root of one or many sub-trees.
The goal of the fragmentation function F : T → l f1, l f2, .., l fn is to extract all the possible sub-trees l f1, l f2, .., l fn
containing a sub-set of the ensemble of leaves of T . For collecting the nodes we walk T using Depth-First Search
(DFS). In this way, we can extract all the trivial sub-trees, which are the ones having as root the different nodes
of T . The algorithm extracts also non-trivial sub-trees , which are built by extracting all the branches of a sub-tree
having as root a node N , then reconstructing the Tree Structures from all the possible combinations of the branches.
Note that a branch starts from the root of the tree, and keeps all the methods attached to the deepest path segment
node of the tree. Doing so, we obtain all the possible sub-trees having as a root the node N . Once a sub-tree
is retrieved, it is serialized as JavaScript Object Notation (JSON) and stored in a MongoDB database. The same
process is repeated over all the nodes of T until no node is left.

We analyse each API description in the collection and extract T1, T2, .., Tm, where m is equal to the size of
our OpenAPI descriptions collection. Then we apply F on each tree to extract all possible labeled sub-trees, or
labeled fragments l f which include a subset of the leaves of the tree from where it was extracted T . While labeled
fragments carry the original path segments labels, unlabeled fragments f j only distinguish whether a path segment
is parametric or not, and if it contains an unusual label. The leaves of both labeled and unlabeled fragments refer
to the HTTP methods which can be applied to the corresponding sub-path.

We extract all fragments from all API trees in the collection and look for reoccurring ones. To speed up the pro-
cess, we first match unlabeled fragments based on their topology, then we further compare the semantic similarity
of labeled fragments sharing the same structure. To do so, we project the labeled fragments l f j into Label Sequences
which enumerate the labels found during the traversal of each node of the API fragment tree. In other words, we
apply the projection function P : l f j → (TSj , LSj), to obtain for each labeled fragment a Tree Structure TSj (also
called unlabeled fragment f j) and a Labels Sequence LSj . All the resulted output objects are also serialized as
JavaScript Object Notation (JSON) and stored in a MongoDB database.

6.5.2 API Fragments Clustering and Selection
Having obtained the set of all labeled API fragments, which in our collection corresponds to 277’094 entities, we
proceed to remove duplicates and cluster them.

For clustering the fragments, we followed a two-step similarity checking approach, which consists of exact
topologies matching and labels closeness similarity scoring:

1. first by their common structure (i.e., the unlabeled fragment),
2. then, we compute the average label semantic similarity for each cluster of fragments sharing the same struc-

ture.
The output of structural clustering consists of a set of clusters where the elements of each cluster share the same

API Structure, using different labels. We give higher priority to the larger clusters (more than 40 elements), knowing
that the size of the cluster reflects how common is a specific structure. These known uses are then considered as
candidate structural pattern primitives.

The goal behind semantically comparing the fragment sharing the same structure is to find out if there is a
common use context of a highly recurring API Structure.

Tree Structures matching

In our approach, we see an API fragment as a sequence of labels LS placed on the nodes of a Tree Structure TS. A
node of a TS can be either a path segment or a leaf representing an HTTP method. During our analysis, we decided
to distinguish between three types of path segments: segments containing a parameter, noted as single-word labels
between { }, segments that do not include a parameter, and segments holding labels with more complex parameter

95 6.5 API Fragments

notations, such as the example in Figure 6.8, which occurs 222 times. In our comparison approach, we consider
the type of the path segment to be part of TS. Thus, API Fragments in Figure 6.9 and Figure 6.8 are detected to be
distinct since the first structural clustering step. In this way, we already distinguish fragments, which even if they
have the same tree topology, have parameters in different positions along the tree.

Figure 6.8. Example of a repetitive fragment with unusual parametric path segments labels

Figure 6.9. Example of a repetitive fragment with non-parametric path segments labels

Following our fragments TS comparison approach, we extracted, from a set of 277’094 labeled fragments,
79’728 TS unlabeled fragments sharing the same tree structures, considering also the type of path segment node,
and the types of the HTTP method in the leaves.

Semantic closeness

Oftentimes, path segment labels carry some semantic meaning related to the resource handled by the path.
For that reason, we considered taking into account the labels of the fragment nodes. By doing so, we involve the
semantic context and have a better understanding of the common usage contexts of a specific fragment.

In our two-step similarity-checking approach, we first clustered the fragments by their TS, then extracted all
ordered sequences of node labels found for each TS of the labeled fragment (Figure 6.10). Doing so, we obtain
a collection of labels sequences for each TS. The size of the sequence is equal to the number of nodes of the TS,
excluding the leaves.

To compute the similarities between the label sequences, we use spaCy1, an open-source library for Natu-
ral Language Processing (NLP) in Python and Cython. In our case, we use a spaCy’s trained model for English
language [155], using the latest version of the "en_core_web_md" model package, multi-task CNN trained on
OntoNotes, with GloVe vectors trained on Common Crawl for spaCy.

We distinguish the following types of labels:
1. Single words (i.e., stream, details, etc as in the example fragment in Figure 6.9),
2. composed labels, which concatenate single words using camelcase, or a "-" or a "_" symbol (Figure 6.22),

1spaCy: https://spacy.io/

https://spacy.io/

96 6.5 API Fragments

Figure 6.10. Fragments semantic clustering pipeline

3. unusually long, complex labels (i.e., #x-amz-target=codedeploy 20141006deleteapplication),
We added a formatter to the spaCy’s processing pipeline in order to cover the different labels types cases we

have. We also added a filter at the end of the pipeline, which has a goal to exclude the labels that could not be
matched to any semantic concept.

We define the distance between two label sequences S = {l1, .., lp} and S↗ = {l ↗1, .., l ↗p} as :

dist(S, S↗) =
p∑

i=1

sim(nlp(li),nlp(l ↗i))
p

Where sim(A, B) =
%∑n

i=1

∑n
j=1(ai j ↓ bi j)2 is the Euclidian Distance between the matrices A = (ai j) and B =

(bi j). And where nlp(li) is the vectorizer function of a label li in S. We normalize these distances to values between
0 and 10. As much is d(S, S↗) closer to 0, S and S↗ are semantically close.

Doing so, within each TS cluster, we measure the semantic closeness of each sequence by calculating a similarity
score between the labels attached to the same nodes of the tree. This score consists of the distance between the
vectors representing the labels sequences of each fragment. Using Agglomerative Hierarchical Clustering, we obtain
the semantic clusters for each set of structurally similar fragments, by setting a threshold depending on the similarity
score distribution in each TS cluster.

Labels similarity results

We summarize the results with five metrics (Table 6.1):
1. The average distance between each couple of sequences: the goal of this metric is to depict how much are

each two labels sequences are alike or similar. A low average means that most of the labels sequences are composed
of semantically close elements.

97 6.5 API Fragments

Table 6.1. Overview of distances between all the label sequences of each primitive and its variants/smells.

The design smells are color-coded
Create without Delete, Delete without Create, Ambiguous POST, Ambiguous PUT, Write-only

Primitive Variant/Smell
Labels sequences distances

Clusters Threshold
Average Median Max

ENUMERABLE

COLLEC-
TION (P1)

GET (P1.v1) 3.07 5.87 9.97 218 5
GET/PUT (P1.v2) 2.60 5.23 9.01 20 5
GET/PUT/DEL (P1.v4) 2.89 5.80 9.79 34 5
PUT/DEL (P1.v3) 2.94 5.51 9.03 13 5
GET/POST (P1.s1) 3.26 7.53 9.42 14 5
GET/DEL (P1.s2) 2.54 5.56 8.65 8 6

APPENDABLE

COLLEC-
TION (P2)

GET/PUT/DEL (P2.v1) 2.41 2.16 9.87 24 5
GET/DEL (P2.v2) 1.90 0.00 9.86 23 5
GET (P2.v3) 3.06 5.58 9.98 52 5
PUT/DEL (P2.s1) 2.54 4.98 8.77 24 5
DEL (P2.s2) 3.33 6.78 9.48 23 6

COLLECTION (P3)

GET/PUT/DEL/PATCH (P3.v1) 1.93 3.06 9.28 19 5
GET/PUT/DEL (P3.v2) 2.62 5.02 9.81 120 5
GET/DEL/PATCH (P3.v3) 2.74 5.31 9.84 12 5
GET (P3.v4) 2.78 5.17 9.98 36 6
PUT/DEL (P3.v5) 2.54 4.72 9.91 25 5
GET/DEL (P3.v6) 3.07 5.77 9.98 39 6
DEL (P3.v7) 2.59 5.34 8.50 39 5
PUT-ONLY (P3.s1) 2.58 5.34 8.50 12 5
GET/PUT (P3.s2) 2.32 4.41 9.16 24 5

MUTABLE COL-
LECTION (P4)

GET/PUT/DEL/PATCH (P4.v1) 1.22 0.00 8.08 19 4
DEL (P4.s1) 2.55 5.49 9.70 10 5
GET/DEL (P4.s2) 2.51 0.00 8.93 20 5

2. The median of these distances: the median gives an idea about the distribution of the distances. A high
median means that the majority of the labels sequences are not semantically close.

3. The maximum distance between a couple of sequences.
4. The number of clusters that sequences were grouped by.
5. The threshold defining the maximum distances between all observations of two sets. This value was defines

based on the the distribution of the values in the distance matrix.
Table 6.1 shows that label sequences in different collections of fragments are semantically similar. For each

primitive, we will provide detailed examples of labels associated with each variant/smell in the next Section.

Labels usage

We calculated the occurrences of each label in each structural primitive. The labels are sorted first by their total
number of occurrences, then alphabetically so that it is easy to find at the top of the table which are the most used

98 6.5 API Fragments

labels in each primitive. The most used label for a specific variant is found by looking at the row which has the
darkest color in the variant’s column.

To know in which variant a specific labels sequences is used the most, it is enough to horizontally scan the
row for the label looking for the highest value, ignoring the last column in which the total number of occurrences
across all variants is reported. The heat maps only include the representative labels that we obtain using our labels
merging approach described in Section 6.5.2.

We merged labels sequences with common container labels such as the ones in Figure 6.11. These labels are used

Figure 6.11. Label sequences with container label “users" in Collection primitive

in different variants of the COLLECTION (P3) primitive and they share the same meaning, thus we decided merging
them in order to have concise guidance tables. In our labels processing approach, we ignore the case of the container

99 6.6 Structural API Primitives

Table 6.2. Known Uses of Selected Fragments: Number of Distinct Label Sequences (nDLS) and their Occur-
rences within APIs.

Design smells: The design smells are color-coded: Create without Delete, Delete without Create,
Ambiguous POST, Ambiguous PUT, Write-only.

Primitive Variant Occurrence Size nDLS
Most distant labels sequences

Sequence 1 Sequence 2

Enumerable
Collection P1

GET (P1v1) 1588 4 744 {operations, {operation}} {cidades, {nome}}
GET/PUT (P1v2) 99 5 43 acls, {user} users, {id}
PUT/DEL (P1v3) 40 4 26 {song, {id}} {oauth, {provider}}
GET/PUT/DEL (P1v4) 176 6 71 countries, {country} namespaces, {namespace}
GET/POST (P1s1) 77 5 22 msgs, {username} servers, {framework}
GET/DEL (P1s2) 56 5 26 {serveurs, {id}} {tasks, {task}}

Appendable
Collection (P2)

GET/PUT/DEL (P2v1) 194 6 64 item, {itemid} bucketlist, {id}
GET/DEL (P2v2) 145 5 43 vim, {vim uuid} v1, {album}
GET (P2v3) 202 4 127 {user2, {username}} {disease, {disease}}
PUT/DEL (P2s1) 50 5 31 rulesets, {rulesetName} pelicula, {peliculaId}
DEL (P2s2) 69 4 51 {token, {iat}} {jobs, {id}}

Collection (P3)

GET/PUT/DEL/PATCH (P3v1) 328 8 159 lenses, {key} movies, {movie}
GET/PUT/DEL (P3v2) 1123 7 574 nodes, {ip} tickets, {tid}
GET/DEL/PATCH (P3v3) 232 5 139 rooms, {key} taxrate, {zipcode}
GET (P3v4) 323 5 168 {deposits, {depositor}} {txs, {txid}}
PUT/DEL (P3v5) 169 6 84 pedidos, {numero} countries, {code}
GET/DEL (P3v6) 345 6 187 applications, {appid} caixa, {codigo}
DEL (P3v7) 201 5 87 byon, {id} client, {pubkey}
PUT-Only (P3s1) 78 5 38 {Chems, {chemid}} {users, {userid}}
GET/PUT (P3s2) 63 6 47 manager, {username} pessoas, {idPessoa}

Mutable
Collection (P4)

GET/PUT/DEL/PATCH (P4v1) 74 9 52 workflows, {name} boards, {id}
DEL (P4s1) 48 6 18 progress, {ordinal} beverages, {beverage}
GET/DEL (P4s2) 102 7 56 ciudad, {id} themes, {uuid}

resource label (e.g : dataPointer is equivalent to datapointer). We also remove all the special characters and
the spaces (e.g: dataPointers, data ↓ pointers, data_pointer are considered equivalent). Moreover, ignore
the singularity and plurality of the labels (e.g: data_pointeris equivalent to dataPointers). In the example of
Figure 6.11 the label users originally appears in different formats (e.g: user, Users, User), our merging algorithms
pick the most occurring form as a representative label of all the forms. The reason behind this clustering is to
give more insight about the labels’ usages and merge the ones that represent similar concepts in order to avoid
redundancy.

6.6 Structural API Primitives

Out of the results obtained from the fragmentation and clustering process, we selected a set of most occurring
fragments and classified them into four primitives (Figure 6.13), depending on their functionality based on their
structures.

100 6.6 Structural API Primitives

Figure 6.12. Overview: API Structural Primitives and their variants and design smells

Figure 6.13. Overview: API Structure Collection Primitives

The context for all pattern primitives is the same: a designer needs to use an HTTP-based API to provide access
to a collection of items which are stored on the server.

101 6.6 Structural API Primitives

All the primitives are used to expose in the API collections of items, where each collection if identified by a
statically-named container resource and its items are dynamically addressed within the container resource. We
distinguish each primitive based on which combination of HTTP methods are attached to the container resource.

R

container resource
... HTTP methods

{collection item address}
... HTTP methods

The ENUMERABLE COLLECTION (P1) primitive is used when clients can use the API to only discover the content
of the collection by retrieving a list of their items. The APPENDABLE COLLECTION (P2) primitive makes it possible
for clients to only append items into the collection exposed by the API. The COLLECTION (P3) primitive combines
both features of the APPENDABLE COLLECTION and the ENUMERABLE COLLECTION, so that clients may use it to both
append new items and list existing items. Since this primitive is the most commonly found one, we choose to name
it with the simplest and shortest name, while adding qualifiers to the names of the other primitives. Finally, the
MUTABLE COLLECTION (P4) primitive extends the COLLECTION with the ability to perform batch operations on the
entire collection (e.g., to delete the entire content or replace the entire content of the collection).

Within each primitive, we have collected many variants and design smells depending on which combination of
HTTP methods is attached to the collection item resource.

In Figure 6.12, we provide a more detailed overview showing for each primitive the corresponding variants
and design smells. Each variant and design smell of the same primitive are encapsulated in a gray frame. We also
show how each variant can be obtained by changing another one with the black and gray arrows. The black arrows
trace the paths that allow moving from a structure primitive to another by adding an operation on the items of the
collection. And the gray ones are showing which methods are added to the container resource. In the rest of this
section we present overviews focused on each structural primitive.

During our analysis, we have also detected some structural design smells, which we highlight in Figure 6.12
with colored frames. We classified the detected smells into the following categories:

Create without Delete: API structures that allow the clients to create elements from a collection, but do not
provide a possibility to delete elements from it.

Delete without Create: API structures that allow the clients to delete elements from a collection, but do not
provide a possibility to append elements to it.

Ambiguous POST: API structures that contain a POST operation on the items of a collection. Is this POST
method used to append items to the collection?

Ambiguous PUT: API structures that provide a PUT operation on the collection. Is this PUT method really
used to update the whole collection?

Write-Only: API structures that have no read operation neither on the whole collection nor on its items.
In Table 6.2, we show an overview of the selected collections of fragments, by listing their occurrences and the

number of unique label sequences used by the same structures in the same API or across different ones. We also
give an example of the most distinct sequences found among the unique labels sequences, in order to show the
extreme use contexts for each structure.

The rest of this section details each of the selected primitives where we present for each primitive the different
occurring variants.

In the Figures, we show the occurrences (counting how many times a Labels Sequence is used for the same TS)
of each cluster of labels in a specific variant/smell.

102 6.6 Structural API Primitives

The goal is to support designers who would like to introduce a collection for a specific class of items in their
API. They can take advantage of the observations we have collected as they attempt to look up the collection label
and see if there is a non-ambiguous mapping to a given primitive variant.

In order to give an idea about the yearly distribution of the variants ages and popularity, we calculate the number
of APIs in which a specific variant appears (Tables 6.15, 6.26, 6.34, 6.47).

6.6.1 Enumerable Collection (P1)
Summary

Expose an enumerable set of items within their own container resource.

Problem

How to make the collection items discoverable by clients?

Solution

Provide a unique address for each collection item. Allow clients to read the content of each item applying the GET
method to the address of the item. Group together related items under the same resource path prefix. And, allow
clients to enumerate the items within the collection by applying the GET method to the container resource.

Figure 6.14. Enumerable Collection - Overview of Vari-
ants and Design Smells

20
15

20
16

20
17

20
18

20
19

20
20

P1.s2 0 0 6 6 9 34

P1.s1 0 1 3 7 8 24

P1.v4 0 0 12 23 30 61

P3.v3 0 1 5 3 5 20

P2.v2 1 3 4 11 15 35

P1.v1 7 17 80 86 165 374

Figure 6.15. Yearly distribution of the API specifi-
cations where the Enumerable Collection (P1) vari-
ants appear

In Table 6.15, we can clearly see the increasing usage of the Variants and Smells in the API collection over time.
This increase can be both because of the yearly distribution of the API specifications gathered in our data set, and
to the popularity the structural primitives gained through the years.

• Enumerable Collection Variants

For the Enumerable Collection primitive we have identified 2 variants and 3 design smells (Figure 6.14).

GET (P1.v1)

The read-only variant is one of the most occurring structures, which allows clients only to enumerate the content
of the collection and to read the corresponding items. APIs use it to publish one immutable set of related items. By

103 6.6 Structural API Primitives

setting a threshold of 5 obtained 218 Labels Sequences clusters. Which depicts the variety of usage contexts of this
variant.

According to the whole label sequences set that we extracted, we noticed that this read-only structure is widely
used for different domains. We can notice that all the most frequent labels in the ENUMERABLE COLLECTION (P1)
are used by this variant, except 3 ones: ke ys and episodes, which are used by the variant GET/PUT/DEL (P1.v4)
which allows also to update and delete the items of the container resource, and cl ient, which is only used by
GET/PUT (P1.v2).

An example of API where this structure primitive is present several times, in the Apacta API showed in Figure 5.4.
In this API we can see clearly the high occurrence of GET (P1.v1) with different labels, combined with variants of
other primitives.

Size: 4 — Occurrence: 1588 — Distinct Labels: 744

Figure 6.16. Enumerable Collection - GET Variant (P1.v1) Visualization

GET/PUT (P1.v2)

This variant allows clients to use the GET and PUT methods on the collection items. This makes it possible to
read and update the content of individual collection items. This API structure also appears in Apacta API (Fig-
ure 5.4). Figure 6.18, is a use case example of this API structure. The GET operation in the resource handled by
the path /users/id/topics allows the client to get all the topics of a specific user. The get operation in the path
/users/{id}/topics/{topic_id} has as its goal to verify if a user is following a specific topic. The response is an
object of boolean type. In this case, the PUT operation is for interpolating the FOLLOW / UNFOLLOW relationship
between the user {id} and the topic {topic_id}.

Size: 5 — Occurrence:99 — Distinct Labels: 43

Figure 6.17. Enumerable Collection - GET/PUT Variant (P1.v2)

The Columba API 2 uses three instances of the GET (P1.v1) variant and one of the GET/PUT (P1.v2) variant.

2https://github.com/columbasms/columbasms.github.io

104 6.6 Structural API Primitives

Figure 6.18. Tree Visualization of Columba API

PUT/DEL (P1.v3)

The particularity of this variant is that it allows to both update and delete items, however, it does not allow the
client to create new items in the collection by using the container resource. Instead, it still allows them to do so by
invoking the PUT method directly on the items to be created. In this case, clients themselves should provide the
identifiers for the items to be added to the collection.

Size: 5 — Occurrence: 40 — Distinct Labels: 26

Figure 6.19. Enumerable Collection - PUT/DEL Variant (P1.v3)

This API structure appears one in the TVmaze user API showed in Figure 6.22. Where it is used for reading
the collection of shows and deleting or updating each, another API example where this structure appears is Invotra
API (Figure 6.20). In this case, adding a new user to the users’ collection is possible due to the POST operation of

http://api-ace.inf.usi.ch/openapi-to-tree/europlop-examples?api=columba.yaml
http://api-ace.inf.usi.ch/openapi-to-tree/europlop-examples?api=columba.yaml

105 6.6 Structural API Primitives

the path users. However, it seems that the client is not allowed to add new user memberships to a specific team.
While, according to the descriptions of the operations, it is possible to remove a user’s membership of the team or
update information about his team membership. Then, how can a team have new members? In this case, the user
object schema is having a teams property of array type. Thus, adding a new member to a team is performed by
means of the PUT operation provided in the path: /users/{userId}.

The Invotra API3 can be seen as a combination of GET/PUT (P3.s2) (occurs twice) and PUT/DEL (P1.v3).

Figure 6.20. Invotra API Tree Visualization

GET/PUT/DEL (P1.v4)

The main characteristic of this structure is that, in addition to the GET and PUT methods, it also exposes a DELETE
method on the collection items. This way, clients can not only read and write the associated content but can also
remove items from the collection.

Size: 6 — Occurrence: 176 — Distinct Labels: 71

Figure 6.21. Enumerable Collection - GET/PUT/DEL Variant (P1.v4)

While in general, it can be useful to allow clients to remove items from a collection, it is not clear whether an
API should support this for collections whose content can only be enumerated without providing the means for the
service to mint identifiers for new items. Instead, new items can only be added by clients as long as they provide
the new item’s identifier.

3https://github.com/invotra/api

106 6.6 Structural API Primitives

While this can lead to crashes when multiple clients attempt to invoke the PUT operation on the same item,
we have observed different semantics for the PUT and DELETE methods. For example, some APIs use the DELETE
method for something different: task cancellation. In this case, we assume that the tasks being performed within
the server can be monitored by clients and when necessary can be interrupted.

Table 6.3. Content of the description field of the DELETE method of the variant GET/PUT/DEL (P1.v4)

• Close an existing position

• Delete Link - Will not delete the target ob-
ject

• Delete a contact device for a user Delete a
contact device for a user

• Deletes the given device, and invalidates
any access token associated with it

• Delete a directory tenant under a resource
group

• Delete a node - Remove the node identified
by id. A node can only be deleted if it is
currently offline

• Delete a node - Remove the node identified
by id. A node can only be deleted if it is cur-
rently offline and does not host any master
deployments

• Delete file - Delete file uploaded to a
project from wall post or form

• Delete maintenance configuration

• Delete mock definition

• Delete snapshot repository - Deletes a
snapshot repository configuration by name

• Delete the scheduled override assignment -
Delete the scheduled override assignment

• Deletes a policy definition at management
group level

• Deletes a policy definition

• Deletes a product package

• Deletes a server communication link

• Deletes a user from the list of registered
users

• Deletes an acquired plan

• Deletes an existing server Active Directory
Administrator

• Deletes single user

• Deletes specified file container - Delete an
existing file container

• Deletes specified quota - Delete an existing
quota

• Deletes the MariaDB Server key with the
given name

• Deletes the MySQL Server key with the
given name

• Deletes the PostgreSQL Server key with the
given name

• Deletes the log profile

• Deletes the specified Azure key vault

• Deletes the specified application security
group

• Deletes the specified public IP address

• Remove a CIDR Map

• Remove a Geographic Map

• Remove a Property

• Remove a Resource

• Remove a single task

• Remove an episode vote

• The operation to delete a container service

• Unfollow a network

• Unfollow a person

• Unfollow a show

• Unfollow a webchannel

• Unmark an episode

• Delete an Ad - you must own the Ad and be
logged in to delete an Ad. Deleting an Ad
will also erase all pictures uploaded to the
API linked to it

107 6.6 Structural API Primitives

For a better understanding, we have extracted the content of the description field of the DELETE method.

Looking at the descriptions of the delete method extracted from the OpenAPI documents in Table 6.3 , it is clearly
understandable that the DELETE operation is not always meant for clients to delete an item from the collection.

More in detail, in the description D-40, the DELETE method is allowing the client to delete a person from the
list of followed people, but no append operation is provided. An example of an API where this fragment appears
is in Figure 6.22. In this API example, we look at the fragment with labels sequence S = people, {people_id}, in
which we can notice that the following operation is done through the PUT method. In this case, when following
a person, this new followed person is not appended to a collection of followed people, but instead, the followed
person is updated through the PUT operation with the information about a new follower.

Figure 6.22. Tree visualisation for the TVmaze user API
(click for OpenAPI source)

In the TvMaze API4 we can find six occurrences of Enumerable Collection - GET/PUT/DEL Variant (P1.v4),
combined with one read operation on the path /vote/shows.

4https://static.tvmaze.com/apidoc/

http://api-ace.inf.usi.ch/openapi-to-tree/europlop-examples?api=tvmaze.json
http://api-ace.inf.usi.ch/openapi-to-tree/europlop-examples?api=tvmaze.json
http://api-ace.inf.usi.ch/openapi-to-tree/europlop-examples?api=tvmaze.json

108 6.6 Structural API Primitives

Path segment Method Description

people GET List the followed people

{people_id}
GET Check if a person is followed

DELETE Unfollow a person
PUT Follow a person

Table 6.4. Methods description of a fragment of Enumerable Collection - GET/PUT/DEL Variant (P1.v4),
extracted from the OpenAPI description of TVmaze user API

Table 6.5. Extracted description of the POST method for Enumerable Collection - GET/POST Design
Smell (P1.s1)

• Generates customized software development kit (SDK) and or tool packages used to integrate mobile web or mobile app
clients with backend AWS resources

• "Write a range of table elements"

• Alert about something

• Builds templated versions of the challenge- Uses the flag format and seed to template out a new version of the challenge
This may take a signficant amount of time-

• Create a deployment request

• Create a new user in system

• Generate token for valid user

• Perform pruning on input resource name

• Post message by username- Creates a message with the username as author

• Save a new revision of a page given in HTML format

• Set automation state- Set automation state for the given automation type

• Sets the value of a float variable

• Sets the value of a string variable

• Sets the value of an integer32 variable

• This endpoint returns the result of executing this operation

• This endpoint returns the result of executing this test

• Upload an Attachment- Upload an Attachment-

• Enumerable Collection Design Smells

GET/POST (P1.s1)

Ambiguous POST As opposed to updating the content of individual items of the previous variants, in this variant,
the API makes it possible to fetch the current state of each item with GET and invoke some arbitrary operation on
each of them with POST.

109 6.6 Structural API Primitives

Size: 5 — Occurrence:77 — Distinct Labels: 22

Figure 6.23. Enumerable Collection - GET/POST Design Smell (P1.s1)

Coming back to the OpenAPI descriptions of the APIs where this variant of fragments appears, we extracted
the content of the summary and description fields for the POST method, which we list in Table 6.5. Based on the
descriptions, we can detect two main use cases for the POST methods on the collection items:

(1) Appending an item to the collection: in this case placing the POST operation over the collection items can
be seen as a common mistake.

(2) Updating an attribute of an existing item: in this case the POST is mistakenly used to perform the role of
the PUT method.

GET/DEL (P1.s2)

Delete without Create
This smell provides access to a collection whose items can be read and deleted, without offering clients the

possibility to append new items.
We found that this smell only appears with 26 distinct labels. It appears 21 times out of 56 with labels repre-

sented by the label instances. This same label appears only once with the GET (P1.v1) variant. Other labels found
in conjunction with this smell (e.g., tasks, jobs) would indicate uses for providing access to server-side resources
which can only be monitored and eventually removed by clients, which do not have any control over their lifecycle.

Size: 5 — Occurrence: 56 — Distinct Labels: 26

Figure 6.24. Enumerable Collection - GET/DEL Design Smell (P1.s2)

6.6.2 Appendable Collection (P2)

Summary

Append new items by posting them in the container resource

110 6.6 Structural API Primitives

Problem

How to offer clients the ability to add new items to the collection?

Solution

Allow clients to use the POST method on the container resource to append new items into the collection. The
address of the newly created items must be returned to the clients since this pattern does not feature the ability for
clients to enumerate the content of the collection.

Figure 6.25. Appendable Collection Overview.

20
15

20
16

20
17

20
18

20
19

20
20

P2.s1 0 0 0 4 12 25

P2.s2 2 2 3 4 8 38

P2.v3 1 3 13 20 34 104

P2.v2 5 10 14 16 25 68

P2.v1 4 9 19 25 53 63

Figure 6.26. Yearly distribution of the API specifica-
tions where the Appendable Collection (P2) variants
and smells appear.

• Appendable Collection Variants

The common point between the variants of this primitive is that they all only allow the client to append on a col-
lection, and to perform different operations on the items. Starting from the variant that allows all of GET/PUT/DEL
operations, until the one that only allows reading the items. For this primitive, we have detected a design smell,
where the client is not allowed to perform any read operation, neither of the collection nor on its items.

GET/PUT/DEL (P2.v1)

This variant allows clients full control over the items they have appended to the collection, as they can read, update
and delete them.

Size: 6 — Occurrence: 194 — Distinct Labels: 64

Figure 6.27. Appendable Collection - GET/PUT/DEL Variant (P2.v1)

111 6.6 Structural API Primitives

To understand the reason for the absence of a read operation on the collection, we extracted natural language
descriptions of the GET operation. We want to verify whether the designers mistakenly considered that the GET
operation on the item would also serve to list all the collection content. In Table 6.6, we list some of the summaries
and descriptions associated with the GET method. We can see from the descriptions that the GET operation is
indeed used to retrieve specific elements from the collection.

Table 6.6. Description and summary of the GET method in GET/PUT/DEL (P2.v1)

• Find Tracks by ID - Returns a single Track

• Find ad by ID - Returns a single Ad

• Find ad_html_meta by ID - Returns a single
AdHtmlMeta

• Find client by ID - Returns a single client

• Find course by ID - Returns a single course

• Find item by ID - Returns a single Item

• Find order by ID - Returns a single order

• Find pet by ID - Returns a single pet

• Find product by ID - Search one product by
id

• Find provider by ID - Returns a single
provider

• Find user - Returns a user

• Finds News by Id - Returns a single news

• Get Address by ID

• Get Student By Name - Get Student Details
by name

• Get Usage by id

• Get a Client Registration for a given Client
ID

• Get a Distribution - Get a Distribution

• Get a client by way of Client ID

• Get a project by project_id

• Get a single message

• Get a specific city

• Get a user by ID

• Get a user - Return a json object of the user

• Get an Assessment object

• Get bucketlist with given ID for loggedIn
User

• Get details of an Order

• Get infos about a specific exam - Returns
the exam id

• Get match

• Get one Product with specified ID

• Get provider by user code

• Get region by id

• Get scotch by id

• Get table

• Get team

• Get user by id - Get the user information by
its id

• Get user by user id

• Get user by user name

• Gets Business Partner Object

• Gets an annotation Caller must have READ
permission for the associated annotation
set

• Gets an annotation set Caller must have
READ permission for the associated dataset

• Gets the details for an order

• Look up a user by their user id

• Obter um momento

• Retrieve the information associated with a
signin record

• Return a Question by ID - Returns a single
Question object

• Returns a nomination based on a single ID -
Returns the nomination identified by ‘nom-
inationId‘

• Returns a single entry

112 6.6 Structural API Primitives

Figure 6.28 shows an example of the use of this variant, where it is combined with the GET/DEL (P2.v2) variant.
In this case, the PUT operation is used to update a sign-in record.

This is an API for the COVID-19 Contact Tracing QRCode Signin Server. It combines the GET/DEL (P2.v2) and
GET/PUT/DEL (P2.v1) variants of the APPENDABLE COLLECTION (P2) primitive with a set of paths with a unique
method (POST or GET).

Figure 6.28. Tree visualization of an API for the COVID-19 Tracking QR Code Signin Server

GET/DEL (P2.v2)

This variant only allows you to read or delete individual collection items. It occurred 145 times, however, with only
43 distinct Label Sequences.

A concrete usage example of this primitive is in Passman API (visualized in Figure 6.39), an open-source de-
velopers API for Passman extensions. In the case of this example, the GET/DEL (P2.v2) variant is used in order to
allow uploading and attaching a file to an item by means of the POST operation in the /file path. The client is also
allowed to delete or get the content of a specific file, using, respectively the DELETE and GET operations allowed in
the path /file/{file_id}. Another example is in Figure 6.28, where it is used beside the GET/PUT/DEL (P2.v1)
variant, allowing to create a team member (user) record, to retrieve the information associated with a user’s ac-
count, and finally to delete a team member’s user record.

113 6.6 Structural API Primitives

Size: 5 — Occurrence: 145 — Distinct Labels: 43

Figure 6.29. Appendable Collection - GET/DEL Variant (P2.v2)

GET (P2.v3)

This variant only allows the client to add elements to the collection, and then read each one, but it does not provide
the ability to edit or remove items. Collections featuring this primitive contain resources which are garbage collected
on the server-side, such as jobs, queries, or sessions. Another example is the append-only shopping cart in which
clients can only add items without ever removing them.

Size: 4 — Occurrence:202 — Distinct Labels: 127

Figure 6.30. Appendable Collection - GET Variant (P2.v3)

• Appendable Collection Design Smells

PUT/DEL (P2.s1)

Write-Only
Instead of a GET operation, this variant introduces a PUT. However, it does not occur as frequently as the variants

GET/DEL (P2.v2) and GET/PUT/DEL (P2.v1).
We have analyzed the 50 occurrences to attempt to determine how such a write-only API fragment would work,

since it appears it is only possible to append new items, update or delete them. Indeed, no occurrence supports the
ability to enumerate the content of the collection, nor it allows clients to read from its items.

Size: 5 — Occurrence:50 — Distinct Labels: 31

Figure 6.31. Appendable Collection - PUT/DEL Design Smell (P2.s1)

114 6.6 Structural API Primitives

DEL (P2.s2)

Write-Only
Same as PUT/DEL (P2.s1), this variant does not provide the client the possibility of performing GET operations.

Neither on the containers nor on the items. It only allows to append new items to the collection and delete them.
Such unreadable, write-only collection can still be useful, for example, to manage asynchronous jobs, or sub-

scriptions or messages submitted into the API which can be only canceled from the clients. Since the collection
cannot be enumerated, this works only if the address of the newly created items is returned to the client who
created it using POST.

Nevertheless, we tag this variant as a smell, because of the strong limitations imposed by offering a write-only
collection.

Size: 4 — Occurrence:69 — Distinct Labels: 51

Figure 6.32. Appendable Collection - DEL Variant (P2.s2)

6.6.3 Collection (P3)
Also known as

Enumerable-Appendable Collection

Summary

Use the container resource to enumerate its content and add new items.

Problem

How to make the collection items discoverable by clients? How to let clients add items to the collection?

Solution

Group together related items under the same prefix. Allow clients to enumerate the items within the collection
by applying the GET method to the container resource. Clients can use the POST method on the same container
resource to add new items.

• Collection Variants

We present different variants featuring different method combinations on the collection item, starting from the
one having four methods, all the way to fragments with a single method attached to the collection item.

In this primitive, we have detected two Design Smells (Figure 6.33), both are related to the Create without
Delete smell.

115 6.6 Structural API Primitives

Figure 6.33. Collection – Overview of Variants

20
15

20
16

20
17

20
18

20
19

20
20

P3.s2 0 1 1 11 6 30

P3.s1 0 1 6 11 14 17

P3.v7 2 10 7 16 28 84

P3.v6 1 3 33 43 40 134

P3.v5 1 0 12 23 38 76

P3.v4 1 17 33 36 51 112

P3.v3 0 4 10 15 38 75

P3.v2 6 89 53 91 157 287

P3.v1 0 1 8 6 18 101

Figure 6.34. Yearly distribution of the API specifica-
tions where the Collection (P3) variants appear

Even the simplest variants with only one operation on the item to delete or update them would appear to lack
the ability to directly read individual collection items. While this is the case, as opposed to the previously discussed
Appendable Collection smells, clients can still fetch the content of the entire collection using the GET operation
provided by the container resource and then extract the values for individual items from the result.

GET/PUT/DEL/PATCH (P3.v1)

The first variant in this collection is the one providing all of the GET, PATCH, PUT, and DELETE operations.

Although this variant includes most HTTP verbs and thus is the most expressive in terms of which operations
clients can perform on collection items, it is far from being the most frequently used in practice. An example of use
of this variant is in ID Vault API (Figure 6.36), where it appears 6 times.

Size: 8 — Occurrence: 328 — Distinct Labels: 159

Figure 6.35. Collection - GET/PUT/DEL/PATCH Variant (P3.v1)

116 6.6 Structural API Primitives

Figure 6.36. Tree Visualization of ID Vault API. This is an API example where the Collec-
tion - GET/PUT/DEL/PATCH Variant (P3.v1) appears several times, combined with one use of the
GET/PUT/DEL (P3.v2) variant.

GET/PUT/DEL (P3.v2)

Fragments of this variant combine both the POST and GET operations on the collection. With more than one
thousand occurrences, this variant (Figure 6.37) is the most occurring we have mined, not only within the variants

117 6.6 Structural API Primitives

of this collection but also among all the fragments having more than 3 distinct methods in their leaves. Several
instances of this primitive can be found with different labels in the Apacta API (Figure 5.4).

Size: 7 — Occurrence: 1123 — Distinct Labels: 574

Figure 6.37. Collection - GET/PUT/DEL Variant (P3.v2)

GET/DEL/PATCH (P3.v3)

This variant uses a PATCH operation instead of the PUT as in variant GET/PUT/DEL. The Passman API (Fig-
ure 6.39) is an example of an API in which this variant appears. The Passman API 5 combines all of the GET/DEL/-
PATCH (P3.v3) and GET/DEL (P2.v2).

Size: 7 — Occurrence: 233 — Distinct Labels: 139

Figure 6.38. Collection - GET/DEL/PATCH Variant (P3.v3)

5https://github.com/nextcloud/passman#api

https://github.com/nextcloud/passman#%23api

118 6.6 Structural API Primitives

Figure 6.39. Tree Visualization of Passman Developers API.

GET (P3.v4)

This is the simplest variant of this collection. The client cannot perform any operation on the collection items,
except to read their content. We have found examples of account collections, whose content cannot be modified
by clients. Likewise, this is a common structure for long-running operations [122], which are started with a POST
request used to transfer the input of the computation, while the status of the ongoing job and its result can be
retrieved from the corresponding item.

Size: 5 — Occurrence: 323 — Distinct Labels: 168

Figure 6.40. Collection - GET Variant (P3.v4)

PUT/DEL (P3.v5)

This variant makes the client unable to individually read each item of the collection. However, it is possible to
list them all, insert new items, delete or update them. Examples of such collections with unreadable items would
contain simple items whose address indicating their identity and existence is sufficient to control their lifecycle (e.g.,
using the PUT operation to control the video or audio track playback). Likewise, to set the quantity of individual
order line items or remove them from the order altogether one does not need to be able to retrieve any information
about them. Also because such information can be fetched when enumerating the content of the entire collection.

119 6.6 Structural API Primitives

Size: 6 — Occurrence: 169 — Distinct Labels: 84

Figure 6.41. Collection - PUT/DEL Variant (P3.v5)

GET/DEL (P3.v6)

This variant only allows to read or delete individual collection items. This is one of the most frequently found
variants, with a collection storing a wide variety of items. For example, once blog posts, comments, or questions
are published, they cannot be updated but just removed. Likewise, it appears there is no need to update the
ingredients of a recipe.

Size: 5 — Occurrence: 345 — Distinct Labels: 187

Figure 6.42. Collection - GET/DEL Variant (P3.v6)

DEL (P3.v7)

This is a simpler variant, where it is possible to the client to list the elements of the collection and insert elements
into it. Once the items have been added, it is only possible to remove them. In addition to bookings, this variant has
been frequently used for collections of blog post comments, product reviews, or favorite bookmarks, whose content
can be shown when retrieving the entire collection, but for moderation purposes, it may be necessary to be able to
remove individual items.

Size: 5 — Occurrence: 201 — Distinct Labels: 87

Figure 6.43. Collection - DEL Variant (P3.v7)

120 6.6 Structural API Primitives

• Collection Smells

PUT-Only (P3.s1)

Create without Delete
This smell provides only one operation to update individual items of the collection but lacks the affordance for

deleting individual items. This is used with collections of items whose state should be controlled by clients, for
example, to configure or simply switch on or off devices, gateways, or services through a management API.

Size: 5 — Occurrence: 78 — Distinct Labels: 48

Figure 6.44. Collection - PUT-Only Design Smell (P3.s1)

GET/PUT (P3.s2)

Create without Delete
Also, this smell does not allow clients to delete an item from the collection, however, it allows them to insert

items, read them, and update them.
It has been used to design APIs which provide access to collections of users, user accounts, customers, employees,

or withdrawals. These are resources which once they are created may need to be preserved forever for legal reasons,
due to data preservation or retention regulations.

Size: 6 — Occurrence: 63 — Distinct Labels: 47

Figure 6.45. Collection - GET/PUT Design Smell (P3.s2)

121 6.6 Structural API Primitives

Figure 6.46. Mutable Collection (P4) Overview

20
15

20
16

20
17

20
18

20
19

20
20

P4.s2 0 2 5 8 17 29

P4.s1 0 1 0 4 2 17

P4.v1 0 1 2 1 5 29

Figure 6.47. Yearly distribution of the API specifi-
cations where the Mutable Collection (P4) variants
and smells appear

6.6.4 Mutable Collection (P4)

Summary

Replace the content of the collection (PUT) or clear the entire content of the collection (DELETE)

Problem

How to let clients bring the whole content of the collection to a known state?

Solution

Add DELETE or PUT method to the container resource.

• Mutable Collection Variants

The two variants with PUT do not seem to be used to replace the content of the entire collection (only a few
exceptions). Instead, the PUT method is used to edit or update individual items, addressed by a query parameter
that identifies the item to be replaced. (Query parameters are not shown in the figure).

GET/PUT/DEL/PATCH (P4.v1)

This variant provides only a delete operation on the collection. This variant occurs 74 times. It provides besides
the DELETE and GET operations on the collection items, as well as PUT and PATCH operations. The second label
for all the labels sequences is {name} except one sequence S = {boards , {id}}

For verifying the purpose of use of the DELETE method over the collection, we have extracted the descriptions
associated with that method in the OpenAPI specification of the APIs where that fragment occurs. Indeed, in this
case, the DELETE operation is used to delete the whole collection. This "DELETE all" variant could be promoted to
a separate primitive named “Erasable Collection”.

122 6.6 Structural API Primitives

Size: 9 — Occurrence: 74 — Distinct Labels: 52

Figure 6.48. Mutable Collection - GET/PUT/DEL/PATCH Variant (P4.v1)

• Mutable Collection Design Smells

DEL (P4.s1)

Ambiguous PUT This structure provides both read and append operations over the collection, in addition to
a PUT operation. While the only operation that the client can perform over the collection items is a delete. For
verifying the real purpose behind having a PUT operation over the collection resource we extracted the descriptions
associated with this method in the OpenAPI documents. The text shows that, in reality, in almost all cases, the PUT
is used to update an item of the collection. The address of the item is provided as a request parameter, as opposed to
using the resource path as with most other primitives. Only in a few cases, it is actually used as one would expect,
for updating the whole collection with a single batch operation to replace its content.

Size: 6 — Occurrence: 48 — Distinct Labels: 18

Figure 6.49. Mutable Collection - DEL Design Smell (P4.s1)

GET/DEL (P4.s2)

Ambiguous PUT
The fragments of this variant combine all of GET, PUT, and POST operations on the collection. An example of

the most occurring fragment in this variant is in Figure 6.50. This fragment occurs 102 times with 56 distinct Label
Sequences.

Also, in this variant the PUT method on the container resource is used mostly to update the content of individual
itemss, thus leading to some ambiguity as it should have been associated with the collection item resource.

Figure 6.51 show an example of API where this variant is used twice.

123 6.7 From Primitives to Larger Structures and API Responsibility Patterns

Size: 7 — Occurrence: 102 — Distinct Labels: 56

Figure 6.50. Mutable Collection - GET/DEL Design Smell (P4.s2)

Figure 6.51. Tree visualization of AnyPay API. AnyPay service targets parents and children who are making
payments. It is an example of the usage of the GET/DEL (P4.s2) variant.

6.7 From Primitives to Larger Structures and API Responsibility Patterns

This section gives two examples of how the mined primitives presented in the previous sections can be used during
API design and API reviews. First, we discuss primitive composition. Next, we briefly outline how the structural
primitives from this chapter relate to previous work on API design patterns and interface description languages.

6.7.1 Composing Primitives

The basic collection primitives can be composed to form larger API structures in two ways:

http://api-ace.inf.usi.ch/openapi-to-tree/europlop-examples?api=anypay.yaml
http://api-ace.inf.usi.ch/openapi-to-tree/europlop-examples?api=anypay.yaml
http://api-ace.inf.usi.ch/openapi-to-tree/europlop-examples?api=anypay.yaml

124 6.7 From Primitives to Larger Structures and API Responsibility Patterns

Table 6.7. API Fragments Composing the Read-only Collection and the Collection primitives side by side

2015 2016 2017 2018 2019 2020
0

5

10

0 0

3
2

1

8

A
P
Is

w
it
h
fr
ag
m
en
t

Size: 12 — Occurrence: 33 — Distinct Labels: 12

Label clusters of sample known uses:
(O: Occurrence, C:Cohesion)

Cluster Label1 Label2 Label3 Label4 O C
C1 applicants {id} events {id} 2 8.33

users {id} teams {id} 1 8.16
users {id} tasks {id} 1 8.33
gst {gst_id} base_sl ice_des {id} 1 2.47
applicat ion↓ templates {id} applicat ions {id} 1 4.08

C2 contact_t ypes {contact_t ype_id} contacts {contact_id} 6 8.04
f orm_templates { f orm_template_id} f orms { f orm_id} 6 8.16
t ime_ent r y_intervals {t ime_ent r y_interval_id} t ime_ent r y_t ypes {t ime_ent r y_t ype_id} 6 8.04
t ime_ent r y_value_t ypes {t ime_ent r y_value_t ype_id} users {user_id} 6 8.04

C3 resources {locat ion} f unct ion { f unc_id} 1 2.66
C4 cookings {uuid} programs {uuid} 1 8.04

1. Unrelated collections can be added to the API by adding the corresponding container resource on the same
level as shown in the fragments of Table 6.7;

2. Related collections can be nested inside one another, by adding a sub-container resource within each item of
the main collection, as shown in the fragment of Table 6.8.

In general, we found that both side-by-side composition and nesting can be used together in the same API. The
Invostra API shown in Figure 6.20 is an example of an API entirely composed of two primitives.

6.7.2 Relation to Architectural Patterns
In the patterns community, technology- and platform-neutral interface representation and service design patterns
have been mined and published. The Microservice API Patterns (MAP) language [189], for instance, focuses on
the design of remote APIs — including but not limited to service-oriented architectures. MAP has two categories
that complement the API primitives and fragments carved out in this chapter, structure [190] (of request and re-
sponse message representations, not HTTP resource tree structures as covered in this chapter) and architectural
responsibility [185].

The HTTP methods found in the resource trees in Sections 5.1.2 and 6.6 map to the MAP language as this:

• HTTP GET methods are "Retrieval Operations"[185].

• HTTP POSTs can be "State Creation Operations" but also "State Transition Operations" (partial update variant)
[185].

https://microservice-api-patterns.org/patterns/responsibility/operationResponsibilities/RetrievalOperation
https://microservice-api-patterns.org/patterns/responsibility/operationResponsibilities/StateCreationOperation
https://microservice-api-patterns.org/patterns/responsibility/operationResponsibilities/StateTransitionOperation

125 6.7 From Primitives to Larger Structures and API Responsibility Patterns

Table 6.8. API Fragments Composing the Read-only Collection Primitives with Nesting

2015 2016 2017 2018 2019 2020
0

20

40

60

80

0 0 0 2 3

25

A
P
Is

w
it
h
fr
ag
m
en
t

Size: 8 — Occurrence: 32 — Distinct Labels: 13

Label Clusters of Sample Known Uses: (O: Occurrence, C: Cohesion)
Cluster Label1 Label2 Label3 Label4 O C

C1 companies {company_id} integration_ f eature_set t ings {integration_ f eature_set t ing_id} 5 6.66
identi t y ↓ classes {identi t yC lassI D} levels {identi t y Level I D} 1 7.44

C2 BRK_waardel i jsten {waardel i jst identi f icat ie} waarden {code} 2 4.98
tabel len {tabel identi f icat ie} waarden {code} 2 5.57

C3 components {component} resource↓managers {resource↓manager} 2 6.05
C4 stat ions {stat ionId} histor y {columnName} 1 5.65
C5 enti t ies {enti t yName} views {viewName} 3 7.64
C6 count ries {count r yCode} subdivisions {subdivisionCode} 1 8.05

• HTTP PUTs are "State Transition Operations" (full replacement variant).

• PATCHes correspond to "State Transition Operations" (partial update variant).

• DELETE methods are represented as variants of State Transition Operations.

The remaining operation pattern from MAP, "Computation Function", can be mapped to HTTP GET (if its request
parameters are simple) or POST (if request parameters are complex).

The collection primitives that we derived from URI structures in Section 6.6 correspond to the MAP endpoint
pattern "Information Holder" and its specializations[187]:

• "Master Data Holders" expose many GET retrievals and only a few bulky create POSTs and update PUTs. They
usually are enumerable, and also appendable (at least for certain clients).

• "Operational Data Holders" typically are Enumerable and Appendable Collections, often also Mutable Collec-
tions.

• "Reference Data Holders" are read-only and therefore Enumerable Collections.

• "Data Transfer Resources" are Mutable Collections decoupling multiple application clients.

• A set of related "Link Lookup Resources" forms a Collection as well; each item in such collection is mutable
and so is the entire collection.

In Summary
This chapter presents a data-centric pattern mining approach. We applied it to find recurring primitive structures
within Web API descriptions.

https://microservice-api-patterns.org/patterns/responsibility/operationResponsibilities/ComputationFunction

126 6.7 From Primitives to Larger Structures and API Responsibility Patterns

To do so, we extracted recurring fragments from a large collection of OpenAPI specifications gathered from open
source repositories. Reflecting the hierarchical nature of HTTP-based APIs, these fragments are represented as trees.
These trees are built out of resource identifiers; they can be traversed to obtain all paths that are present in the
original OpenAPI specification. The leaves of the API trees refer to the HTTP methods that invoke the corresponding
operations.

From a population of thousands of fragments, we selected those that a) frequently occur, b) have a relatively
small size, and c) are centered around the notion of resource collection. As shown in Figure 6.13, we distinguish
the following cases a) collections only offer operations on their items or on the collection level as well, b) their
content can be enumerated, new items can be created, and/or both enumeration and creation are supported, and
c) batch removal and update are provided.

For every primitive, we presented a selection of variants together with the corresponding label clusters and,
in some cases, descriptions associated with the operations. A few variants can be also seen as design smells, for
instance, if they use the HTTP method semantics incorrectly or inconsistently.

Our results are a collection of pattern primitives, which can be (and have been) composed to build larger
API structures. For instance, this becomes evident when connecting the syntactical patterns that we mined here
automatically with semantic architectural patterns previously mined manually by knowledge engineers [185, 187].

Part III

Web API changes analysis

127

Chapter 7

Web API Changes

This chapter lists the common Web API changes, empirically mined from the unique histories of nearly five thousand
APIs evolving across over a hundred thousand commits. The goal is to systematically identify and classify these
changes, shedding light on the evolution patterns of Web APIs and providing a deeper understanding of their
dynamics. By examining common types of changes—whether breaking, non-breaking, or undecidable—this analysis
aims to help developers anticipate potential changes they may need to address and highlights the importance of
developing tooling capable of detecting such changes proactively, mitigating their potential impact on clients.

7.1 Web API Change

7.1.1 Definition

A key concept in this chapter is “change”. A Web API Change refers to any modification in the structure, behavior, or
permissions of an API’ elements, which affects how clients interact with it. These changes can include modifications
to endpoints, request methods (e.g., GET, POST), parameters (query parameters, request bodies), response formats,
or security components.

In this context, we are specifically focused on interface-level changes—the external contract that a Web API
exposes to clients—rather than changes to any SDK (Software Development Kit) or client libraries that might
be generated or provided to consume the API. The key aspect is that these changes are analyzed independently of
the underlying framework, language, or platform used to implement the API. Our goal is to study the evolution
of Web APIs purely from an interface perspective, ensuring that the findings apply universally, regardless of the
technical stack used.

7.1.2 Web API changes traceability

When a Web API provider introduces changes in a new release, they must communicate these updates through one
or multiple channels. API consumers need to be aware of the methods the provider uses to stay informed and to
track those changes, enabling safer transitions and more informed decisions [98].

We classify the source of Web API changes traceability into explicit and implicit ones. Explicit traces are
intentional and well-documented changes made by developers to inform users about modifications, while implicit
traces include unintentional or informal records that can still provide insight into the evolution of an API. We list
in what follows some examples of these traces.

129

130 7.2 Related Work

Explicit Traces

1. Changelogs: Developers might explicitly document updates, including added, modified, or removed features.
These documents are meant to be used by the Web API consumer, so they might not depict all the changes
that the API undergoes with a low level of granularity. In addition, they are often not machine-readable and
do not follow a universal standard.

2. Versioned Documentation: Separate unstructured documentation for each version provides an intentional
reference for changes.

3. Semantic Versioning: APIs adopting the “Semantic Versioning” evolution pattern [98] (e.g., v1.0.0, v2.0.0)
explicitly indicate the type of change (major and breaking, minor and non-breaking, or bug fixes). This can
reflect the impact of the introduced changes, but we still need to go over other traces to be informed about the
changes. However, semantic versioning alone is not sufficient to be used to understand the potential impact
of the changes on certain clients.

4. Updated API Specifications (OpenAPI, Swagger): Formal changes in specification files that are easy to
compare across versions. Mainly because they are machine readable (YAML/JSON), which facilitates their
comparability and ensures that they are often aligned with the code, making it a reliable source for describing
the API’s behavior.

5. Release Notes: Detailed descriptions of new features, improvements, or removed functionality in each API
release. they often follow a structured format, but there is no standard to follow. The release notes can offer
a clear idea of the different improvements, fixes, and new features, but they may omit minor changes or
deprecated features.

6. Deprecation Notices: Notifications in the documentation and API response header signal the upcoming
removal of certain features. API users can easily miss these notices if they do not go back to the documentation
website or do not read the response headers. Links to details about formal procedures that outline when
features will be removed and how users should transition are often provided [44].

Implicit Traces

1. Commit Messages in Version Control (e.g., Git): Developers may leave descriptions of changes in commit
messages, but this is often for internal use rather than explicit API documentation.

2. Git Tags and Branches: While tags and branches can mark releases, they are often implicit and not always
used to provide clear information about API changes.

3. API usage logs: Error codes (e.g., 410 Gone) can signal the removal of endpoints, but they may not explicitly
describe what has changed.

4. Codebase Comments and Documentation: Comments in the code may explain changes but are generally
intended for developers and are not a formal record of API changes.

7.2 Related Work
Researchers have distinct approaches to explore the changes in Web API histories. We distinguish in what follow
between the ones that rely on explicit change traces and the ones that use implicit ones to mine changes from.

131 7.2 Related Work

7.2.1 Change patterns extraction from explicit traces
To study Web API changes, we first studied the literature on Web API evolution to identify the common changes
that researchers identified and the reasons behind each change.

In [154], Sohan et al. analyzed changes happening in a sample of nine famous Web APIs: Facebook Platform
API, Twitter REST API, WordPress REST API, Salesforce & Chatter REST API, Google Calendar API, Stripe Payment
Processor API, GitHub API, Google Maps API, OpenStreetMap API. The goal is to analyze how these APIs were ver-
sioned during their evolutions, and how the changes were documented and communicated, looking at the available
public resources (Explicit Traces) such as the API homes pages and API changelogs from multiple versions. The
authors analyze API evolution by tracking additions, deletions, and modifications that happen at the level of End-
points, Resources, Methods, Fields, Field Values, and other types of changes such as modifications of Error Handling,
or Behavior Changes which are not reflected by the interface, and Security (Authentication/Authorization).

In what follows I list the identified changes and discuss how we attempted to improve this classification and the
reasons behind that:

• " ET-Change 1: Added API Element

This includes any new addition to the API, such as introducing a new endpoint, parameter, or data property.

• " ET-Change 2: Deleted API Element

Refers to the removal of an endpoint, parameter, or data property. This change is significant as it can break
client applications relying on the deleted element.

• " ET-Change 3: Moved API Element

Refers to any instance where an API element is relocated, such as moving a parameter from one endpoint to
another or transferring a data property from one object to another.

• " ET-Change 4: Renamed API Elements

This refers to changes where an API element, such as a parameter or property, is given a new name.

• " ET-Change 5: Behaviors Changes

In this type of change, the authors mix up in the way they defined it both the backend functional or semantic
changes with the schema changes of the data that the API outputs in responses. In our classification, we are
contradistinguishing between these types of changes since we consider the data schema design a decision
tied to the interface’s design. Using our approach, we are not able to capture functional changes that are not
reflected in the API.

• " ET-Change 6: Post Condition Update

This change doesn’t alter the immediate result of the API call (e.g., the payment is still processed as usual).
However, new obligations are imposed on the developer after the API call. The developer must now set up
a system to handle post-call updates and comply with additional terms. For some reason, the researcher
classified this type of change under this category, while it actually falls also under the Behavior Changes.

• " ET-Change 7: HTTP Headers Change

The header changes can also fall under the Renamed API Elements or Moved API Elements categories, but the
authors decided to put it under a distinct category.

• " ET-Change 8: Error Handling and Messages Changes

These changes include modifications targeting the specific response code sent at each encountered error.

132 7.2 Related Work

Figure 7.1. API Changes classification in [93]

• " ET-Change 9: Change Field Datatype

Refers to changes in the data type of an API element, such as modifying a field from a string to an integer.
These changes can have significant implications for data validation and client compatibility.

• " ET-Change 10: Authorization/Authentication Changes

Includes updates to the security mechanisms of the API, such as introducing new authentication methods,
updating token structures, or modifying required permissions.

In this classification, the authors mix up any addition/deletion/moving that happens in the elements of the API,
such as moving a parameter from an endpoint to another one or moving a data property from a data object to
another. Since these types of changes do not necessarily have the same impact, in our classification, we attempt to
put under the same classification changes that will always have the same impact.

Same as for the Added/Deleted/Moved API Elements type of change, renaming a parameter does not necessarily
have the same impact as renaming a property of a data object. The impact also depends on whether these elements
are optional or required. In our case, we take into account this fine-grained classification.

The granularity level of this classification decision made by [154] is not uniform. While HTTP headers and error
codes change and grouped under the elements type, other changes like parameters renaming or operation addi-
tion/deletion are grouped under the action: API element renamed/deleted/added. Another type of classification is
suggested by Li et al. in [93], where they identified 14 types of changes by studying two consecutive versions of five
well-known APIs from distinct providers: Google Calendar, Google Gadgets, Amazon MWS, Twitter API, and Sina
Weibo. We aggregate these changes as follows depending on the API elements they target. The study was also done
by looking at Web API documentation available in their websites (Explicit traces). We summarize in Figure 7.1 the
changes that the authors have classified into errors that can happen at compile-time or run-time. Li et al. have not
included in their change impact analysis the changes that do happen but do not cause in any error either at the
level of the wrapper API or the HTTP API.

Li et al. identified two types of changes that were absent from the classification of Sohan et al.[154]:

• " ET-Change 11: Split methods

This change involves breaking down an existing method or operation into multiple smaller methods. This
may occur to simplify the functionality, improve clarity, or better align with RESTful principles. For instance,
an API operation handling both data creation and modification might be split into separate ‘POST‘ and ‘PUT‘
methods.

• " ET-Change 12: Combine methods

This change merges multiple operations into a single method. The intent is to reduce redundancy or con-
solidate related functionalities into one endpoint for ease of maintenance and usage. For example, merging

133 7.2 Related Work

separate GET operations for different filters into a single GET operation with query parameters to handle the
variations.

Stocker and Zimmermann[157] included six additional change patterns in their catalogue, each varying in its
impact on backward compatibility and client adaptation effort. These include introducing a Data Transfer Object
to encapsulate internal data structures without breaking the API contract, adding a Wish List parameter to pro-
vide clients finer control over response content, and introducing pagination to deliver large datasets in manageable
chunks, though not always recommended for backward compatibility. Other patterns include segregating com-
mands from queries to independently optimize read and write models using tools like API Gateways or Version
Mediators, introducing a Version Mediator to temporarily support deprecated APIs while ensuring a smooth tran-
sition for clients, and renaming, which was already listed by Li et al.. But in this case, Stocker and Zimmermann
refer to renaming happening at the level of data model.

7.2.2 Change patterns extraction based on implicit traces: API usage logs

Changes can also be extracted from implicit resources, such as API call logs, which are rarely publicly available
and difficult to obtain from API providers. Koçi et al. proposed in [81] a process mining-based approach taking
as import API call logs to propose the next needed modifications, additions, or deletions in a web API. They have
detected several different call patterns on which they based the next evolution possibilities. The changes extracted
by Koçi et al. show how the changes identified by Sohan et al.[154] and Li et al.[93] can be combined to reach a
specific functional feature change.

In what follows, I extract all the different types of changes that the Koçi et al. have identified and how these
changes can be detected based on OpenAPI specification modifications1.

Reflexive loop: This detected call pattern consists of an endpoint called several types with different values of query
parameters/body payload. It can be improved by making the endpoint take an array of values instead of a single
value – introducing a request bundle. However, this assumes that each subsequent call is not independent from the
results of previous calls.

The category query parameter only accepts a single value. To retrieve items from multiple categories, the
endpoint would need to be called multiple times, one for each category. In Listing 7.2 the categories query parameter
now takes an array of values, allowing consumers to retrieve items from multiple categories in a single API call. This
reduces the need for repeated calls and optimizes performance. This type of change can be detected in OpenAPI if
a parameter schema has changed type from a string to an array.

" IT-Change 1: Adding parameters to accept multiple values, reducing the need for repeated calls.

Risk: Unintended behaviors might occur if the feature is not used correctly. The client might send large data
that exceeds the URL length limit (2048 characters) or the web server’s request body size limit.

For instance, in the example of Listing 7.1, the GET /items endpoint allows fetching items classified in a specific
category. It might be that the subsequent calls depend on the number of items listed in previously fetched categories.

1Note that in this thesis, I am not going to explain in detail the call patterns but I am going to focus on the modifications they suggested
based on each detected pattern. And I will discuss the tradeoffs that each of these. And later explain how our analysis complete this approach.

134 7.2 Related Work

Listing 7.1. Before IT-Change 1
paths:
/items:
get:
summary: Retrieve items by a single category
parameters:
- in: query
name: category
schema:
type: string

required: true
description: Filter items by a single category

responses:
'200':
description: A list of items
content:
application/json:
schema:
type: array
items:
type: object
properties:
id:
type: integer

name:
type: string

category:
type: string

Listing 7.2. After IT-Change 1
paths:
/items:
get:
summary: Retrieve items by multiple categories
parameters:
- in: query
name: categories
schema:
type: array
items:
type: string

style: form
explode: true
required: false
description: Filter items by a list of categories

responses:
'200':
description: A list of items
content:
application/json:
schema:
type: array
items:
type: object
properties:
id:
type: integer

name:
type: string

category:
type: string

Direct-follow nodes: This pattern describes the case where the set of endpoints are always called together in a
specific order and never called independently. A suggested change would be to merge these endpoints in one that
offers all the functionalities. The authors do not explicitly state whether the old endpoints can be removed or should
be preserved.

" IT-Change 2: Merging the functionalities of two or more endpoints in one endpoint.

This means that two endpoints will be deleted and a new one will be created.

Risks: Merging endpoints can increase complexity, reduce flexibility, and introduce backward compatibility
and could also return unnecessary data (e.g., reviews when they are not needed). Additionally, it may complicate
error handling, testing, and versioning if not carefully managed.

In the example of Listing 7.3 there are two separate endpoints for handling items and their reviews. The GET
/items endpoint allows users to retrieve the details of a specific item bypassing the itemId as a query parameter,
returning information like the item’s ID and name. Meanwhile, the GET /items/itemId/reviews endpoint is
used to fetch a list of reviews associated with that item, such as review IDs and comments. These endpoints are
independent, and each serves a distinct purpose.

After the change, in Listing 7.4, the two endpoints are merged into a single endpoint /items. This new version
retrieves both the item details and its associated reviews in one call. The itemId parameter still filters the data for
a specific item, but now the response includes not only the item’s basic information (ID, name) but also an array
of reviews. This change streamlines the process, reducing the need for two separate API calls to get both the item
details and its reviews.

This change is represented in the OpenAPI specification by the removal of one endpoint, while the schema of
another endpoint is expanded to include the fields from the deleted endpoint’s schema.

135 7.2 Related Work

Listing 7.3. Before change IT-Change 2
paths:
/items:
get:
summary: Retrieve item details
parameters:
- in: query
name: itemId
schema:
type: string

required: true
description: Get details of a specific item

responses:
'200':
description: Item details
content:
application/json:
schema:
type: object
properties:
id:
type: string

name:
type: string

/items/{itemId}/reviews:
get:
summary: Retrieve reviews for an item
responses:
'200':
description: A list of item reviews
content:
application/json:
schema:
type: array
items:
type: object
properties:
reviewId:
type: string

comment:
type: string

Listing 7.4. After IT-Change 2
paths:
/items:
get:
summary: Retrieve item details along with reviews
parameters:
- in: query
name: itemId
schema:
type: string

required: true
description: Get details of a specific item and its

ϵ→ reviews
responses:
'200':
description: Item details and reviews
content:
application/json:
schema:
type: object
properties:
id:
type: string

name:
type: string

reviews:
type: array
items:
type: object
properties:
reviewId:
type: string

comment:
type: string

Two-node loop This pattern describes the case where two nodes are always called together but in interchanged
order. This indicates that the operations are complementing each other. A change that can minimize the number of
calls in this case is to make one endpoint generic.

For instance, the two endpoints:

GET /items/beauty?query=olive+oil and GET /items/home?query=olive+oil

allow both to get the products that have olive oil in both categories Home and Beauty. In that case, the client has
to make two calls. To avoid this, the API can instead offer a parametric endpoint GET /items?category={beauty,
home}&query=olive+oil.

" IT-Change 3: Replace a set of endpoints with a single generic endpoint that accepts a parameter or a request
body instead of a static path segment.

Risks: While this change might help reduce the number of calls in some cases, it could harm performance
due to added dynamic filtering logic. For example, clients who need only one category might experience slower
response times.

136 7.2 Related Work

Listing 7.5. Before change
paths:
/items/beauty:
get:
summary: Retrieve beauty products matching a query
parameters:
- in: query
name: query
schema:
type: string

required: true
description: Search for beauty products by query term

responses:
'200':
description: A list of beauty products
content:
application/json:
schema:
type: array
items:
type: object
properties:
id:
type: string

name:
type: string

category:
type: string

/items/home:
get:
summary: Retrieve home products matching a query
parameters:
- in: query
name: query
schema:
type: string

required: true
description: Search for home products by query term

responses:
'200':
description: A list of home products
content:
application/json:
schema:
type: array
items:
type: object
properties:
id:
type: string

name:
type: string

category:
type: string

Listing 7.6. After change
paths:
/items:
get:
summary: Retrieve products from specified categories

ϵ→ matching a query
parameters:
- in: query
name: category
schema:
type: array
items:
type: string
enum:
- beauty
- home

required: true
style: form
explode: false
description: Categories to filter products (e.g., beauty,

ϵ→ home)
- in: query
name: query
schema:
type: string

required: true
description: Search for products by query term

responses:
'200':
description: A list of products across the specified

ϵ→ categories
content:
application/json:
schema:
type: array
items:
type: object
properties:
id:
type: string

name:
type: string

category:
type: string

Fork2 This pattern is seen when two different endpoints are called after the same initial sequence of calls. The
authors suggest that these two endpoints share similar purposes and might be merged.

If after calling GET /items, users call either GET /details or GET /reportTables, merge them into GET
/visualization?type={chart,table}.

Merging GET /items/id/price and GET /items/id/stock into GET /items/id?include={price,stock}

" IT-Change 4: Merging endpoints that are called after the same initial sequence into a unified endpoint with

2Note that for these next identified API changes I am not going to show examples of how this changes are reflected in OpenAPI.

137 7.3 Web API Changes in a Large Dataset of Real-World Web API Histories

parameters to differentiate results.
Risks: This might introduce complexity in handling diverse data (price and stock), and increase payload

size, which can slow down responses for clients that only need one piece of information.
Inverted fork In this case, two different endpoints are always called before the same set of following endpoints.
This pattern suggests that the two starting endpoints may serve the same purpose and can be combined.

" IT-Change 5: Merging starting endpoints that lead to the same set of subsequent calls into a single endpoint
with parameters to differentiate the initial resource. Example: If both /rooms and /labs lead to the same endpoints
like /reservations, merge them into /spaces?type=room,lab.

Merging /items/home and /items/beauty into:
GET /items?category={home,beauty} before calling endpoints like GET /items/id/details.
Risks: The distinction between categories could be lost, making the API less clear. Clients may struggle with

the more generic endpoint, especially if specific logic applies to certain categories.
Choices This pattern occurs when two alternative endpoints are called in place of each other but within the same
context. It indicates that these endpoints may serve similar roles or be substitutes.

" IT-Change 6: Merging alternative endpoints into a single one with a parameter to differentiate between
options.

Merging GET /items/id/discounts and GET /items/id/promotions into:

GET /items/id/offers?type={discounts,promotions}

Risks: The merged endpoint could lead to confusion between discounts and promotions, and it might require
more complex validation logic to differentiate between types of offers.
Feed-forward This pattern is identified when two sequences of calls exist, where one sequence follows the full chain
of calls (e.g., A→ B→ X), and the other sequence skips an intermediate step (e.g., A→ X). This suggests that the
intermediate step (B) might be optional or supplementary. A change could be to consolidate the functionality of
the intermediate endpoint into the first one, or to make the intermediate step optional via a parameter.

" IT-Change 6: Consolidate optional intermediate steps into the main endpoint or make them optional through
parameters. Example: If some users call /competences → competences_type → subjects while others skip the
middle call, merge competences_type into /competences?includeType=true.

Merging /items→ /items/id/reviews and /items directly into /items?includeReviews=true.
Risks: Including optional reviews by default might increase response size and lead to unnecessary complexity

for clients who don’t always need the reviews, potentially causing performance degradation.
The pattern mines by Koçi et al. is a valuable input that can help interpreting the motives behind a combination

of API changes.
It is not clear if Koçi et al. have intentionally focused on detecting the changes that break backward compatibility.

The API changes we identified from Koçi et al.’s work are breaking changes, since they require the API clients to
adapt to be integrated with the new way the API operations are supposed to be called. In our case, we start first by
detecting all the changes, then once detected we analyze their potential impacts on the clients.

7.3 Web API Changes in a Large Dataset of Real-World Web API Histories

7.3.1 Change extraction from OpenAPI histories

In our case, we analyze API change from explicit traces consisting of git histories of OpenAPI specifications.
In the previous section, I showed how can the API changes that other researchers have identified, using different

techniques, be mapped to the OpenAPI definition of the API.

138 7.3 Web API Changes in a Large Dataset of Real-World Web API Histories

In the approach we followed we extracted those changes by studying the differences between consecutive com-
mits on OpenAPI specification. We have done this analysis at two levels:

• At the commit level: we have extracted changes happening at the commit level because they are associated
with other metadata such as the commit messages and the commit-er identity. The results of this extraction
are used in this chapter to create a taxonomy of recurrent API changes.

• At the version change level: the commits level might be very fine-grained because sometimes the commit
change is to revert previous changes and it does not have as goal to introduce new changes. The version
change level means the commits when the API changes the version. Looking at that level will help to verify
the consistency between the change’s impact and the versioning of the new release. The extracted results are
employed in Chapter 10 to analyze the alignment of the changes with the versioning practices being followed.

For both, we follow the same change extraction and analysis pipeline described in Figure 7.2. Using this approach
based on detecting changes based on documentation, we are able to track all functional changes, however, our
technique does not capture semantic changes, which often involve the meaning and intended behavior of APIs.
These semantic changes can sometimes be reflected in the description fields of the OpenAPI documentation but
detecting them requires either manual analysis, which is infeasible for large-scale datasets, or the use of heuristics,
which introduces uncertainty. Instead, we prioritize having a broader view of detectable API changes to create a
taxonomy of possible API changes, enabling a structured analysis.

7.3.2 Web API changes extraction pipeline

As shown in Figure 7.2, to extract the change at the commit level, for each of the API we go over each couple of
subsequent commits and compute the differentials between the specifications, then process these differentials to
extract the actual aggregated API changes that look like the example in Listing 7.8.

Listing 7.7. Example of extracted changes from subsequent commits
[
{
id: "new-optional-request-property",
text: "added the new optional request property 'short_description'",
operation: "POST",
path: "/v1/clubs",
section: "paths"

},
{
id: "new-optional-request-property",
text: "added the new optional request property 'short_description'",
operation: "PUT",
path: "/v1/clubs/{clubUUID}",
section: "paths"

}
]

As illustrated in Listing 7.8, the extracted changes are aggregated by their types, which serve as unique identifiers
for the change objects. Each change entry includes detailed information about the specific change and its location
within the API. To facilitate efficient querying and analysis, the list of changes is stored in MongoDB alongside
the corresponding commit specification. In this way, we not only enrich the database with detailed evolution and
change analysis data but also complement the metrics described in Chapter 3.

In the example of Listing 7.8, while the addition of the short_description field appears as a one schema
update in the specification, we trace its impact across all paths and operations using that schema. This identifies
every affected endpoint (e.g., POST /v1/clubs, PUT /v1/clubs/{clubUUID}), providing a more accurate measure

139 7.3 Web API Changes in a Large Dataset of Real-World Web API Histories

Figure 7.2. Changes extraction and classification pipeline

of the change’s scope and its impact on the API. This approach highlights the cascading effects of schema changes
on all related operations, ensuring a more accurate measure of their implications.

Once the whole extraction process is completed, and for all the APIs we have the list of changes that occurred
between each subsequent commit, we collect the list of ids of all the captured types of changes, we manually label
them to Breaking (BC), Non-breaking (NBC), or Undecidable (UC) depending on their perceived impact.
This first labeling step is done by one person, then reviewed and discussed by another reviewers person.

Breaking Changes (BC) can disrupt existing client implementations and require clients to adapt to these changes.
These changes include modifying existing properties or types (like changing types to enums), adding required to
request body properties, required request parameters or deleting paths or properties from response payloads, and
changing attributes values to nullable.

Non-Breaking Changes (NBC) do not require existing clients to change their implementations. These are gener-
ally additive changes such as adding new optional properties requests bodies or supporting additional media types,
and changing types where backward compatibility is maintained (like integer to number).

Undecidable Changes (UC) refer to those modifications whose impact on the client varies depending on the
client’s or backend’s tolerance level to dealing with unexpected message payloads [37]. For example, when remov-
ing authentication or authorization headers, old clients may not break if the security tokens they still send to a
tolerant API are ignored. Likewise, properties that are added to API responses may break strict clients that reject
unknown data elements. Undecidable changes, cannot be statically classified into breaking or non-breaking without
making further assumptions about the client and the API tolerance level.

The same process is followed for both when extracting the changes between subsequent commits or subsequent
commits where the version changes.

7.3.3 Data selection and preparation

Since we are interested in analyzing histories, we applied our analysis to specifications that had at least ten commits
modifying them. We haven’t applied any filtering criteria based on the repository characteristics because often
the specification is present in a repository that is only dedicated to manage the specification. For instance, while
OpenAI API is one the most popular APIs nowadays, its repository has, at the time of the writing of this thesis, only

https://platform.openai.com/docs/overview
https://github.com/openai/openai-openapi

140 7.3 Web API Changes in a Large Dataset of Real-World Web API Histories

1.2k stars ! and 121 watchers $, which does not reflect the actual popularity of the API. Same thing for the
GitHub API itself. While, in other cases, the specification is managed under the same repository containing the code
such as the openapi-generator repository, which has more than 20k ! but the specifications it contains are only
test ones, and they have less than 10 commits changing them. The only criteria we take into account, beside being
changes in at least ten commits, is to be a valid specification. This left us with 943 546 commits of APIs with at
least 10 commits.

A valid specification is an OpenAPI document that conforms to the OpenAPI Specifications (3.0 or 3.1) or
Swagger 2.0 standards and is parsable by standard OpenAPI tools. This means the document must adhere to the
structural and syntactical rules defined by its respective version (e.g., OpenAPI 3.x or Swagger 2.0) and be free of
critical errors that prevent it from being processed.

To validate our specifications, we utilized a Node.js validator and parser, specifically the @readme/openapi-
parser. One key validity criterion we enforce is the ability to resolve all references within the specification. During
the mining phase, if a specification referred to external resources (e.g., external schemas or components), these were
downloaded and incorporated directly into the specification. As a result, by the time of processing, all references
are internal, ensuring that the specification can be fully resolved and validated without dependency on external
resources. This guarantees that each specification is self-contained and parsable according to OpenAPI standards.

7.3.4 Dynamics in Web API histories
We performed analysis, shown in Table 7.1, and found that there exist a commit that includes up to 3120 changes
affecting different parts of an API. The changes in this API (Extrato Jurídico3) affected data model parts that were
used in 159 operations, which explains the high number of detected changes.

For APIs with more than 10 commits, most commits do not include any changes. On average, about 9.5 changes
happen in a single commit, showing that when changes occur, they are often grouped together in one commit.
Interestingly, the time between commits with no changes, documentation changes, and API changes is nearly the
same.

! One key finding is that in APIs with at least 10 commits, there is always at least one commit that intro-
duces API changes. There exist also cases, where every single commit sometimes includes changes, which
shows how active some APIs can be.

Table 7.1. Statistical Analysis of Web API Changes

Category Max Min Mean Median Stdev

Changes Per Commit 3180 0 9.50 0.0 62.54
Distinct Changes Per Commit 43 0 0.91 0.0 1.82

Changes Per API 140267 0 417.55 51 3176.28
Distinct Changes Per API 106 0 10.65 8 11.70

Commits With Changes Per API 1449 1 43.93 21 94.27
Commits Without Changes Per API 34 0 1.02 1 0.54

Time to Next Commit (Days) 2329 0 15.66 0 62.37
Time to Next Commit With Changes (Days) 2329 0 15.02 0 59.40

3https://extratojuridico.com/

https://github.com/OpenAPITools/openapi-generator
https://www.npmjs.com/package/@readme/openapi-parser
https://www.npmjs.com/package/@readme/openapi-parser
https://extratojuridico.com/

141 7.3 Web API Changes in a Large Dataset of Real-World Web API Histories

7.3.5 Types of changes and their impact on clients integration
Types of changes in Web API histories.

From the calculated diffs, we identified a total of 205 distinct changes. Among these, eight were aimed at extend-
ing API functionalities (e.g., adding a path or operation), 31 focused on refining API functionalities by imposing
restrictions on request parameters, and 87 involved restructuring the data model through modifications to request
bodies. Additionally, 66 changes were made to response bodies to remove data that was no longer required.

We group the detected changes into four clusters depending on the API feature they affect:

• Endpoint-related changes: include additions, removals.

• Request-related changes: include modifications to parameters, properties, and body elements, including ad-
ditions, removals, type alterations, constraints like length or patterns, and changes in optionality, default
values, and discriminators.

• Response-related changes: include modifications to response properties, statuses, and body elements, in-
volving additions, removals, type alterations, constraints on length or patterns, optionality, default values,
discriminator mappings, and changes in read/write-only behavior.

• Security-related changes: involves applying or removing a new security measure either locally or globally
over all the API endpoints. In addition, there can be find tuning of authorizations through changes of scopes
of the applied security measure.

Table 7.2. List of API change types classified by their impact. Count represents the total presence of a change
across all di"s, while Operations, APIs, Commits, and Classification provide additional insights.

API Feature API Element Change APIs Commits Count

Security Local security scope Removed 130 7571 207920
Local security scope Added 116 7568 207723
Local security Added 663 1243 11058
Local security Removed 393 742 6677
Global security scope Added 12 15 504
Global security scope Removed 13 15 30
Global security Added 497 1007 1153
Global security Removed 344 804 929

8 distinct changes Change types 5 0 3

Endpoints Endpoint Added 3169 31247 138686
Path Removed without deprecation 2518 13800 96010
Endpoint Removed without deprecation 1060 2356 3455
Path Removed with deprecation 132 235 754
Endpoint Removed with deprecation 9 12 27

5 distinct changes Change types 4 1 0

Request parameters Optional query parameter Added 1763 7257 26013
Parameter Removed 1636 5536 21716
Required query parameter Added 912 2318 7158
Parameter type changed 435 698 2618
In-path parameter Added 340 636 2377
Parameter enum value added 217 639 4341
Parameter enum value removed 164 333 2252
Parameter Became optional 298 596 1471
Parameter Became required 326 541 1464
Optional query parameter at path level Added 107 236 1058
Parameter type generalized 206 332 1228

Continued on next page

142 7.3 Web API Changes in a Large Dataset of Real-World Web API Histories

Table 7.2. Top Changes by Count with Classifications (Continued)

API Feature API Element Change APIs Commits Count

Parameter Pattern changed 42 100 683
Parameter Min length increased 37 56 554
Parameter Min length increased 37 56 554
Parameter Max length set 39 57 304
Parameter Min set 65 70 305
Parameter Pattern added 83 97 281
Parameter Max set 40 43 158
Parameter Default value added 98 152 597
Parameter Default value changed 81 192 599
Parameter Default value removed 47 78 229
Required query parameter at path level Added 40 49 450
Parameter Pattern removed 19 23 140
Parameter Min length decreased 19 26 93
Parameter Min increased 16 21 55
Parameter Min decreased 12 12 51
Parameter Max increased 20 30 51
Parameter Max decreased 10 10 15
Parameter Max length decreased 8 13 32
Parameter Max length increased 11 18 106
Parameter Min items increased 7 17 35
Parameter Min items decreased 7 15 25

31 distinct changes Change types 15 13 3

Request Body Optional property Added 1374 7423 56114
Property Removed 1324 5396 49498
Property type changed 833 2612 27472
Property Enum value added 548 1683 20639
Property Enum value removed 391 842 10458
Required property Added 672 1945 6466
Property type specialized 387 986 5821
Property Became optional 514 1106 5384
Property Became required 553 1067 5251
Request body Media type added 321 667 3142
Property type changed 242 662 3133
Request body Media type removed 306 629 2938
Property Became nullable 158 334 1845
Property Max length set 176 264 1724
Property Min length increased 132 195 1656
Property One of added 166 422 1535
Request body type changed 368 611 1325
Property Default value added 164 271 1121
Property Became not nullable 82 161 1121
Property Pattern changed 97 223 1088
Request body All of added 143 459 1027
Property Became enum 197 294 1025
Required request body Added 220 269 980
Property type generalized 112 181 909
All of property Added 97 227 907
Property One of removed 107 304 906
Request body All of removed 125 422 888
Property Default value removed 109 177 831
Optional property Became read only 59 107 813
Property Pattern added 116 174 798
Property Max length increased 43 74 725
Optional request body Added 176 267 606
Request body One of added 85 355 550
Property Min length decreased 84 131 540
Request body One of removed 82 323 499
Request body Became required 137 157 475
All of property Removed 76 179 445
Property Default value changed 74 182 444
Property Min set 89 107 407
Any of property Added 38 130 345

Continued on next page

143 7.3 Web API Changes in a Large Dataset of Real-World Web API Histories

Table 7.2. Top Changes by Count with Classifications (Continued)

API Feature API Element Change APIs Commits Count

Request body Became optional 68 93 306
Property Pattern removed 68 98 259
Property Max length decreased 26 46 253
Property Max set 56 81 242
Any of property Removed 41 111 240
Required property Became read only 22 46 173
Property type generalized 20 30 166
Request body Any of added 15 73 144
Required property became not read only 12 28 144
Required property Added with default value 33 70 144
Request body Any of removed 15 67 141
Property Became required with default 37 57 140
Property Discriminator added 24 36 122
Read only property enum value removed 8 22 118
Property Min items increased 31 43 112
Request body type generalized 32 43 82
Property Discriminator removed 20 34 59
Property Discriminator mapping added 13 31 53
Property Max increased 10 14 50
Optional property Became write only 8 10 49
Property Min increased 12 13 46
Request body Discriminator mapping changed 3 7 38
Request body Default value changed 6 27 38
Request body Discriminator added 16 18 33
Request body Default value added 8 26 33
Property Discriminator mapping deleted 11 17 31
Request body Discriminator removed 10 12 27
Property Discriminator mapping changed 2 3 26
Required property Became write only 8 9 24
Request body Max length set 6 6 23
Property Min decreased 12 13 21
Request body Discriminator mapping added 7 18 21
Request body Default value removed 7 12 18
Request body enum value removed 4 4 17
Request body Min items increased 8 16 17
Required property Became not write only 5 5 15
Request body Became nullable 6 6 14
Request body Max length increased 1 1 12
Request body Became not nullable 3 3 12
Property Max decreased 9 9 12
Request body Min length increased 4 4 10
Property x extensible enum value removed 1 1 8
Request body Discriminator mapping deleted 4 8 8
Read only property Min increased 1 2 4
Request body Became enum 2 2 2
Request body Min length decreased 2 2 2
Request body Discriminator property name changed 1 1 1

87 distinct changes Change types 60 21 6

Response body Optional property Removed 1494 6755 246016
Response optional property added 1749 11267 214875
Property type changed 1185 4292 102348
Property Enum value added 658 2425 57977
Required property added 916 3916 45445
Required property Removed 881 3138 44174
Property Enum value removed 515 1238 35891
Property All of added 374 1101 28340
Property Became required 662 1663 19458
Response media type Added 766 1479 16687
Property All of removed 320 842 15324
Property Became optional 500 1061 14379
Property One of added 217 741 10043
Property Became nullable 241 599 9973

Continued on next page

144 7.3 Web API Changes in a Large Dataset of Real-World Web API Histories

Table 7.2. Top Changes by Count with Classifications (Continued)

API Feature API Element Change APIs Commits Count

Response media type Removed 426 788 9536
Response body type changed 702 1449 6767
Property Pattern changed 79 178 5168
Property One of removed 173 604 3935
All of Added 246 854 3673
All of Removed 202 742 3173
Property Default value removed 94 147 2925
Property Default value added 134 197 2536
Property Any of added 68 243 2081
Property Pattern added 128 203 1983
Property Max length increased 65 144 1840
Property Max length unset 85 151 1787
One Of Added 132 503 1775
Optional property Became read only 91 176 1762
One Of Removed 112 470 1131
Property Min length decreased 81 134 1010
Property Any of removed 65 184 756
Required property Became read only 36 87 679
Optional property Became not read only 46 96 604
Property Default value changed 49 133 576
Property Pattern removed 69 93 491
Property Discriminator added 34 53 480
Response mediatype Enum value removed 10 18 454
Required property Became not read only 29 58 453
Property Discriminator mapping changed 6 9 175
Property Min items decreased 35 46 154
Property Discriminator mapping added 20 40 152
Property Discriminator removed 27 38 121
Discriminator mapping Added 6 12 85
Property Max increased 10 12 64
Any of Added 13 39 62
Any of Removed 13 36 61
Property Discriminator mapping deleted 12 23 61
Discriminator mapping Deleted 4 6 60
Property Min decreased 17 18 52
Required write only property Removed 10 10 42
Discriminator Added 17 24 34
Discriminator removed 15 23 27
Required write only property Added 4 4 21
Response body Max length increased 1 1 18
Optional property Became write only 3 3 17
Response body Min items decreased 10 10 14
Response body Became nullable 4 8 12
Default value Removed 2 2 7
Required property Became not write only 2 2 7
Required property Became write only 2 2 7
Response body Max length unset 5 6 7
Response body Min length decreased 5 6 7
Optional property Became not write only 2 2 6
Default value Changed 4 4 4
Default value Added 1 1 2
Discriminator mapping Changed 1 1 1

66 distinct changes Change types 45 14 7

Response code Non success status Added 1403 4027 25843
Non success status Removed 881 2146 11443
Success status Added 889 1749 3615
Success status Removed 686 1374 2851

4 distinct changes Change types 2 2 0

Request/response headers Optional response header Removed 120 263 2232
Response header Became optional 10 10 634
Required response header Removed 7 12 222

Continued on next page

145 7.3 Web API Changes in a Large Dataset of Real-World Web API Histories

Table 7.2. Top Changes by Count with Classifications (Continued)

API Feature API Element Change APIs Commits Count

Request header property Became enum 3 4 18

4 distinct changes Change types 4 0 0

Totals across API elements 205 distinct changes Change types 135 51 19
785 803 Total changes Changes classified 404 551 278 813 11 932

In Table 7.2, The table provides a detailed classification of 205 distinct API change types across various ele-
ments, categorized into (Breaking), (Non-Breaking), and (Undecidable) based on their impact on backward
compatibility. The “Count” column represents the total occurrences of each change, including repeated appearances
within the same commit, capturing the full extent of API modifications impacts. Among the change types, Break-
ing Changes dominate with 135 distinct types (65.85%), reflecting its significant role in altering API behavior and
often requiring client adjustments. Non-breaking ones accounts for 51 types (24.88%), focusing on extending
or enhancing API functionality without disrupting existing clients, while Undecidable changes make up 19 types
(9.27%), representing cases with unclear compatibility impact.

The most frequent changes overall are concentrated in response body modifications, security adjustments, and
endpoint restructuring. Notably, the removal of optional response properties (Removed) is the most common,
occurring 246 016 times, representing 43.02% of all response body changes. Similarly, the addition of optional
response properties (Added) appears 214 875 times, or 37.54%, highlighting the dynamic evolution of API re-
sponse structures. In the security domain, local security scope changes dominate, with 207 920 instances of removal
(Removed) and 207 723 instances of addition (Added), affecting over 7 568 commits, emphasizing the frequent
adjustments in API access control mechanisms. Endpoint modifications also play a major role, with 138 686 new
endpoints added (Added), making up 58.76% of all endpoint-related changes, and 96 010 paths removed without
deprecation (Removed), showcasing the significant structural evolution of APIs.

Request and response parameters are another area of high activity, with 26 013 optional query parameters added
(Added), comprising 31.53% of all parameter-related changes, and 21 716 parameters removed (Removed),
at 26.33%. Additionally, property type changes are frequent, with 102 348 instances in response bodies (Type
Changed) and 2 618 in request parameters (Type Changed), reflecting ongoing refinement of data models to
improve functionality and clarity.

Looking at the “Count” column in Table 7.2, the most impacting changes are those affecting the request body.
This is because modifications to the data model often propagate across multiple operations, as the same part of the
data model is reused in different contexts. As a result, several associated changes are recorded together, making the
total count of request body changes appear significantly high. However, when examining the number of impacted
APIs by a specific type of change, it becomes clear that changes at the endpoint level are the most frequent. Notably,
the addition of new endpoints stands out as the most common and distinct type of change.

! Breaking changes are approximately 2.44 times more frequent than non-breaking changes. However,
the most recurrent change is non-breaking. Additionally, changes in response body data models are the
ones with the most impact on the API backward compatibility, the addition of endpoints is the most com-
mon type of change shared between APIs.

Impacted HTTP methods for each type of API changes.

In the visualization of Figure 7.3, we show the impact of the 50 most frequent types of changes on HTTP methods,
focusing on both the number of affected methods and their proportional distribution. Changes related to response

146 7.3 Web API Changes in a Large Dataset of Real-World Web API Histories

Figure 7.3. A"ected HTTP methods in the top 50 detected web API changes

147 7.3 Web API Changes in a Large Dataset of Real-World Web API Histories

properties, such as adding or removing optional properties, modifying property types, or adjusting default values,
dominate across all methods, particularly affecting GET and POST, which are the most widely used HTTP methods.
PUT and DELETE are also notably impacted but to a lesser extent, while less common methods like PATCH OPTIONS
and HEAD re minimally affected. Security-related changes, such as the addition or removal of API security measures
or scope adjustments, highlight the evolving nature of API security, alongside functional changes like endpoint
additions and path removals, which significantly reshape the API structure. The proportional analysis shows the
widespread influence of these changes across HTTP methods, emphasizing the centrality of response and security
modifications in driving the impact on API operations.

Web API change types co-occurences.

Changes in commits do not always come individually. 63 817 of the commit changing the API (80 963) had more
than one change where 31 929 of them combined more than one change type.

It is worth highlighting that when using OpenAPI some of the co-occurring changes are for documentation pur-
poses. For instance, since security in OpenAPI is documented using reusable components, the changes in Listing 7.8
are likely to co-occur when a new security requirement is introduced and the corresponding component is not al-
ready defined. OpenAPI’s design encourages the use of a components.securitySchemes section to centralize the
definition of security mechanisms, such as the Basic authentication scheme in this example. The first change, api
security component added, adds this reusable definition, enabling it to be referenced by multiple endpoints or
operations across the API. Without this component, applying the security scheme directly to an endpoint would
violate the OpenAPI structure, as the security schemes must first be defined before they can be used. Consequently,
the second change, api-security-added, which applies the Basic scheme to the /login endpoint, depends on
the presence of the component. This sequential relationship makes the co-occurrence of these changes highly likely.
While the addition of the security component is a documentation-level update, the application of the scheme to
the endpoint is a breaking API change, as it alters the security requirements, potentially impacting clients. This ex-
ample highlights how OpenAPI’s modular documentation structure enforces a dependency between the definition
and application of security schemes, driving such co-occurring changes when introducing new security measures.
In our analysis of co-occurring changes we only take into account the change that are not only for documentation
purpose. Meaning that if a commit has only the changes in Listing 7.8, we count it only as one change of one type.

Listing 7.8. Example of expected co-occurent changes
{

"id": "api-security-component-added",
"text": "the component security scheme 'Basic' was added",
"level": 1,
"section": "components"

},
{
"id": "api-security-added",
"text": "the endpoint scheme security 'Basic' was added to the API",
"level": 1,
"operation": "POST",
"operationId": "login",
"path": "/login",
"section": "paths"

}

The heatmap in Figure 7.4 provides a visual representation of the co-occurrence relationships between the top
50 co-occurring types of changes in APIs. Each cell indicates the relative frequency of two specific changes appearing
together in the same commit or API update, with darker shades representing higher frequencies of co-occurrence.
This pattern reveals clusters of changes that commonly occur together, suggesting possible dependencies or design
trends in API evolution. For instance, changes related to response properties (e.g., “Response required property
added” – the first in the x-axis– and “New required request property”) are seen to co-occur frequently, likely due to

148 7.3 Web API Changes in a Large Dataset of Real-World Web API Histories

Figure 7.4. Heatmap illustrating the co-occurrence of changes in APIs, where darker cells indicate more
frequent co-occurrence between specific changes

149 7.3 Web API Changes in a Large Dataset of Real-World Web API Histories

Figure 7.5. Distribution of combination sizes is presented in two plots. The left plot displays the sizes of
combinations that include only the top 50 detected changes, while the right plot illustrates the distribution of
combination sizes involving all detected changes.

updates in the datamodel where a property of a specific entity is used in both a request body and a response. Other
frequent co-occurrences involving changes like the addition of new endpoints “Endpoint added” and “Path removed
without deprecation” could reflect intentional API restructuring, such as deprecating and replacing outdated func-
tionality, improving modularity, or implementing version updates. co-occurring changes such as “Response required
property added” and “Response required property removed” might be due to renaming of properties.

Certain changes, such as adding an endpoint, often appear in combinations with a diverse range of other
changes, reflecting their broad impact on the API structure. In contrast, changes like “Response success status
removed” frequently co-occur with changes like “Response success status added”, indicating fine-tuning or adjust-
ments to response codes rather than broader structural modifications. For instance, an API might simultaneously
add a new success status while deprecating an older one to align with updated requirements or simplify response
handling. This highlights how specific types of changes tend to cluster based on their functional purpose.

While the most common change combinations involve only two distinct types of change (26 105 out of 31 929
more than one change), Figure 7.5 shows that there exists commits that combine up to nine different types of
changes all at once. We distinguish in the left plot only the combinations involving the 50 most occurring changes
to see wether their presence impacts the distribution of the sizes of combinations.

Figure 7.8 that the most frequent changes tend to be also frequently used in combinations with other types
of changes. The plots illustrate the relationship between the frequency of changes and each of the distinct com-
binations involving the change (left) and the number of commits containing those combinations (right). The left
plot shows a moderate correlation (r = 0.63), indicating that more frequent changes are generally involved in
more distinct combinations, though with some variability. The right plot reveals a stronger correlation (r = 0.81),
demonstrating that changes with higher frequencies are consistently present in a larger number of commits contain-
ing those combinations. The narrower confidence interval in the right plot reflects greater certainty in this trend,
suggesting that frequent changes play a key role in shaping the overall evolution of APIs through repeated inclusion
in combinations of updates.

150 7.3 Web API Changes in a Large Dataset of Real-World Web API Histories

229

153

86

86

191

120

191

191

354

191106
64

734 61

101

61

69

489

183

215 65

170

288

85

1178
110

238

81

2748

1091
271

74

698

52

50

66

169

83

92

170

65

67

312

50

131

268

89

151

511
86

2012 177

101

290

98
114

102

6389

217
752

256

1303 219

131

735

238

217

130

50

500

92

529 340

157

191

277

86

191

86

191
191

86
370

86

191

197

391

408

112

129

53

57

58

63

143

53

236

86

86

64

86
86

51

63

147 428

417

55

411374

64

180

942

458

825

145

301
55

794

57

210

60

133

88

100

146

65

159

61

61

277
86

191

86

191
191

86

86

191

72

51

63

86

585

55

92

135137

79

376

116

202

93

176

521
120

8068

256

67

7575

1139

198

191
86

191

Figure 7.6. Graph visualization of Change Combinations with Normalized Coloring by Frequencies. For
visibility, the graph shows only the changes that have been combined together with others at least 50 times

151 7.3 Web API Changes in a Large Dataset of Real-World Web API Histories

New required request property

Response required property added

268

Request property removed

312

Response success status added

Response success status removed
489

Response property type changed

Response non success status added

Response non success status removed

354

Endpoint removed without deprecation

Path removed without deprecation256

Response property enum value added

Request body media type added

277

Request body media type removed

370

New required request parameter

Request parameter removed

734

API global security added

417

Endpoint added

428

New optional request property

Response optional property removed

698

Response optional property added
2748

Request property type changed

271

1091

529

Response required property removed

340

521

411

1139

374

458

794

301

8068

New optional request parameter

942

825

1178

376

288

Request property enum value added
500

511

2012

290

API global security removed

408

391

585

277

735

1303

752

256

Figure 7.7. Graph visualization of Change Combinations with Normalized Coloring by Frequencies. The graph
shows only the changes that have been combined together data at least 250 times

152 7.3 Web API Changes in a Large Dataset of Real-World Web API Histories

Figure 7.8. Correlation between the frequency of changes and its presence in combinations. The red area
represents the confidence interval around the regression line. It indicates the range within which the true
regression line is expected to fall with a confidence of 95%.

In Figure 7.6 we draw the network showing the occurrences of changes happening at least 50 times, where the
nodes stand for changes and they are colored by their occurrences, and the edges represent a co-occurrence. The
weights on the edge are the exact numbers of of occurrences. The network confirms the suggestion made earlier.
The most frequent changes (darker orange) seem to be more connected to more diverse types of changes.

In Figure 7.7, we show a simpler network showing only occurrences that happen at least 250 time. For instance,
some changes such as adding an enum value to a response property and adding it to a request property at the same
time is more frequent to happen only together rather than being combined with another type of change.

! The correlation analysis between a change frequency and appearance combined with other changes
shows that frequent changes are more likely to be involved in distinct combinations and appear consis-
tently across a larger number of commits in combination with other changes.

In Table 7.3 we list examples of groups of changes that happened together in at least 10 APIs.

153 7.3 Web API Changes in a Large Dataset of Real-World Web API Histories

Table 7.3. Top 10 Largest Combinations Appearing in at Least 10 APIs, Sorted in Descending Order by Size

Combination Size APIs Commits Min Max Median Mean

Path removed without deprecation
Endpoint added
New optional request parameter
Request parameter property type specialized
Request parameter removed
Response non success status added
Response non success status removed
Response success status added
Response success status removed

9 10 10 74 179 179.0 168.50

Path removed without deprecation
Endpoint added
New optional request parameter
Request parameter removed
Response non success status added
Response non success status removed
Response success status added
Response success status removed

8 10 28 21 179 169.0 165.32

Request body media type added
Request body media type removed
Response non success status added
Response optional property removed
Response property all of added
Response property one of removed
Response property type changed
Response required property removed

8 10 19 992 992 992.0 992.00

Request body media type added
Request body media type removed
Response non success status added
Response optional property removed
Response property all of added
Response property type changed
Response required property removed

7 89 172 293 2019 876.0 1085.65

Request body media type added
Request body media type removed
Response non success status removed
Response optional property added
Response property all of removed
Response property type changed
Response required property added

7 86 86 273 2338 864.0 1032.67

Path removed without deprecation
Endpoint added
New optional request parameter
New required request parameter
Request parameter removed
Response non success status added
Response non success status removed

7 11 20 19 57 56.0 53.70

Continued on next page

154 7.3 Web API Changes in a Large Dataset of Real-World Web API Histories

Table 7.3. Top Combinations by Size and Commits (continued)

Combination Size APIs Commits Min Max Median Mean

New optional request property
New required request property
Request property removed
Response optional property added
Response optional property removed
Response required property added
Response required property removed

7 15 17 18 295 57.0 72.41

New optional request property
Request property removed
Request property type changed
Response optional property added
Response optional property removed
Response property type changed
Response required property removed

7 12 12 28 1486 37.5 174.42

Path removed without deprecation
Endpoint added
New optional request parameter
Request parameter removed
Response non success status added
Response success status added
Response success status removed

7 10 12 15 149 144.0 133.67

Path removed without deprecation
Endpoint added
New optional request parameter
Request parameter removed
Response non success status removed
Response success status added
Response success status removed

7 10 12 14 155 150.0 139.08

In Summary
Introducing a breaking change is 2.44 times more likely to happen than introducing a non breaking change. How-
ever, the most frequent one is non-breaking. Most of the changes occur at the level of request and response param-
eters and schemas. This is due to the wide variability in tuning their attributes and applying restrictions. While a
single commit may include several changes of this type, at the API level, the most common changes are observed
at the endpoint level, primarily involving the addition of new endpoints.

While constructing a taxonomy of fine-grained changes occurring in Web API histories, understanding the driving
factors behind these changes is equally important. Our classification focuses on categorizing changes to assess
their potential impact on integration during evolution. Examining the combinations of changes provides a broader
perspective on their effects on API usability. For instance, co-occurring changes, such as the removal of an endpoint
alongside the addition of a new one, might signify an intentional renaming of a path. This analysis is possible due to
the provenance data persisted during our change extraction process, which meticulously tracks the exact location,
path, and operations associated with each change, as shown in the examples of Listings 7.8.

In this chapter, I present only the changes extracted across commits. However, the same approach was used to
extract changes occurring between version updates, enabling an analysis of the compatibility between API changes
and the versioning strategy employed. The results of this analysis are discussed in Chapter 10.

Chapter 8

Web API Histories Visualization

Developers and API users often struggle to comprehend the entire history of an API and track its changes over
time [52]. This lack of visibility can make it challenging to identify structural modifications and assess potential
backward compatibility issues.

This chapter presents a concrete example of how the Web API change analysis can be exploited to provide a
visual resource that developers can use to visually identify structural changes and potential backward compatibility
issues. We suggest two visualization that make use of the changes extraction mechanism at the commit level and
sunburst structure to capture historical information in a compact interactive artifact.

The visualizations, and evolution metrics reports, can be automatically generated using a publicly and open-
source tool provided called APIcture.

8.1 Sunbursts of Web API histories

We use the sunburst visualization towards understanding the evolution of Web APIs, specifically concerning tracking
the co-evolution of API structures and their versioning metadata. The main goal is to characterize and compare
how different Web APIs evolve over large periods of time, in order to visually identify different API evolution
patterns [98, 81, 156]. We introduce visualizations designed to distinguish which API elements have changed
often, how such changes impact clients [93, 176, 70], and whether API developers consistently update versioning
metadata to control client expectations about the impact of such changes [?]. The interactive visualizations and
their scalability have been tested by using it to explore a large collection of 3, 271 API change histories mined from
open source GitHub repositories. In this chapter we include a small sample, showing a rich diversity of Web API
evolution histories reflected in our visualizations.

More in detail, the API VERSION CLOCK visualization shows when each API change happened, what is their impact
on clients (e.g., classifying breaking vs. non-breaking changes), and their relationship with the API versioning
metadata. The goal is to help API developers reflect on the pace of their API evolution and remind them to bump the
versioning metadata to reflect the impact of changes on their API clients consistently. The API CHANGES visualization
complements it by precisely representing which elements of an OpenAPI (OAS) description [118] have changed.
The visualization can be applied both to study individual diffs, but also cumulatively over sets of changes up to the
entire API history. The visualization highlights the unstable elements of an API description by showing how they
have changed during a defined timeframe.

The visualization is supported by APICTURE, a CLI tool that offers the convenience of generating visualizations
directly from git repositories that already contain an OAS specification. The tool can be embedded into DevOps

155

https://github.com/souhailaS/APIcture
https://github.com/souhailaS/APIcture

156 8.1 Sunbursts of Web API histories

build pipelines [18] to generate updated visualizations at every commit so that API developers can effortlessly track
and understand the evolution of their Web APIs.

2020

Ap
r

8

1.
0.

2
Fi

rs
t C

om
m

it
1.

0.
2

1.
0.

3
ap

i v
er

si
on

 m
od

ifi
ed

16

18
:1

4:
43

1.
0.

3
AP

I t
ag

s
m

od
ifie

d
pa

th
 a

dd
ed

1.0
.3

Jun

1.2.0

5

1.2.0
path added

17:17:00
1.2.0

req property removed

Jul

1.2.1 api version modified

6 00:37:57 1.3.0
api version modified

summary of GET modified1.3.1 api version modified
1.3.1

1.3.2
api version modified

1.3.21.3.3

api version modified

A
ug

22 15:44:06
2.0.0

api version modified

API tags m
odified

path added

16:04:31
2.0.0

path added

16
:3

4:
56

2.
0.

0
pa

th
 a

dd
ed

2.
0.

02.
0.

0

pa
th

 a
dd

ed
2.0

.0

Sep

17

2.0.02.0.0

18

2.0.0
2.0.0

2.0.0
1.3.3

1.3.3 Oct

1.3.3

path added
1.3.3

Nov

30

1.3.3

1.3.3

2021

Jan

1.3.4

28

18:52:39

1.3.5

req property rem
oved

api version m
odified

1.3.4

api version m
odified

1.3.4

pa
th

s

GET

/c
on

ta
ct

/s
en

d
PO

ST

operations

GET

responses

404

info

version

tags

csv

pa
th

s

GET

op
era

tio
ns

GET

res
po

ns
es

40
4

infoversion

tag
s

cs
v

pa
th

s

/contact
operations

GET

params

query

type
value

lim
it

su
m

m
ar

y

/co
nta

ct/
se

nd

op
er

ati
on

s
PO

ST
re

qu
es

tB
od

y
co

nte
nt

sc
he

ma
pr

op
er

tie
s

en
tit

yI
ds

contactId
s

GET
responses

404

/contact/send
POST

in
fo

ve
rs

io
n

csv

tags

unimplemented

de
ve

lo
pe

r
de

sc
rip

tio
npaths

/contact
operations

GET
params

query
type

valuelimit

POST
requestBody
content

schema
properties

404

G
ET

inf
ove

rsi
on

1.0.3

1.2.0

2.0.0

pa
th

s

/roles

/co
nt

ac
t/s

en
d

op
er

at
ion

s
PO

ST
re

qu
es

tB
od

y
co

nt
en

t

sc
he

m
a

pr
op

er
tie

s

en
tit

yI
ds

co
nta

ctI
ds

GET

params

query

GET

tagscsv

description

infoversio
n

pa
th

s

/roles

/co
nta

ct
op

er
ati

on
s

GET
pa

ra
m

s
qu

er
y

GET
operations

requestBody

content

schema
properties

tagscsv

description

infoversion

1.3.0

1.3.3

1.3.4

Figure 8.1. API Version Clock (center) and API Changes until a given version of the Bmore Responsive API.
Legend explained in Figures 8.2 and 8.4.

This chapter makes the following contributions:
1) the API VERSION CLOCK visualization classifies all changes based on their impact on clients and captures

them in chronological order while putting them in relationships with the different API versions.
2) the API CHANGES visualization provides a precise localization and analysis of modifications within the API

description structure. This visualization aids in understanding the stability of specific API elements and fine-grained
evolution patterns of the API design.

3) the integration of API CHANGES with API VERSION CLOCK to provide a holistic view of the API’s evolution
journey, supporting the analysis of versioning practices and the localization of breaking and non-breaking changes

157 8.2 Use Case Scenarios and Example API

on the API structure and data model.
4) a small gallery of API evolution visualizations, derived from real-world APIs that test the scalability of the

visualization to increasingly larger histories (both in terms of versions and commits) and exhibit a variety of API
evolution patterns.

5) the APICTURE tool, which automates the process of generating both visualizations, providing API developers
and stakeholders with an interactive means to analyze, visualize and reflect on their API evolution and versioning
strategies.

8.2 Use Case Scenarios and Example API
In this section we use a real-world API to introduce and explain the design of the two visualizations and how
they are generated by leveraging the API’s git historical record of changes. The Bmore Responsive API [7] is an
emergency response and contact management API designed for monitoring and coordinating emergency responses
to critical scenarios, such as managing the status and needs of local nursing homes during a global pandemic,
identifying hospitals lacking power during natural disasters, and ensuring the safety of hikers in a national park
during snowstorms.

The API history includes a total of 49 commits spanning from the first commit on April 6, 2020 to the last commit
on February 28, 2022. The API has been actively maintained and evolved over a period of 693 days. Throughout its
693-day-long history, we found 13 distinct versions of the API (from 1.0.2 to 2.0.0, later reverted back to 1.3.4).

Developers are interested in reflecting on the history of the API to answer the following questions [104, 68, 51]:

• Q1: Did we correctly and consistently follow a semantic versioning [8] strategy?

• Q2: How often did we revert the API to a previous version?

• Q3: Did we follow a regular API maintenance and update cycle over time?

• Q4: Did we always ensure backwards compatibility of the introduced changes?

• Q5: Which are the stable and the unstable parts of the API structure and data model?

• Q6: Can we detect if our API followed a unique evolution path compared to other ones?

The interactive visualizations we propose are intended to help both API developers and developers of API clients
to answer such questions.

In particular, the API VERSION CLOCK visualization uses the sunburst plot to provide a compact chronological
view of the flow of changes over time. With it, developers can observe the progression of API versions. On the
other hand, the API CHANGES visualization uses the sunburst hierarchy to offer a detailed representation of the
accumulated changes that have occurred within a specific time frame. This visualization aids in localizing the specific
areas of the API structure where the changes have occurred. Figure 8.1 exemplifies this integration, demonstrating
how and when changes flow through specific time points in the history of the Bmore Responsive API. With the
assistance of the API CHANGES visualization, it becomes apparent which parts of the API have been affected by
these changes, enabling a more granular analysis of the API’s evolution.

Both visualizations represent the evolution of an API from a different and complementary perspective. By
default they display the entire API history, aggregating all changes into a single plot. If API designers are interested
to observe which change happened when they can use the API VERSION CLOCK to select a specific commit so that
the corresponding API CHANGES can show what API elements changed since the previous commit. Likewise, they
can select to view all changes leading up to a certain version of the API, or all changes that happened between two

https://zenodo.org/record/8253474
https://github.com/CodeForBaltimore/Bmore-Responsive.git

158 8.2 Use Case Scenarios and Example API

Algorithm 1: Web API repository analysis procedure
Input: repo_url

1 repo↘ clone_repository(repo_url);
2 files↘ find_OAS_specifications(repo);
3 if length(files) > 0 then
4 user_selection↘ select_file(files);
5 if length(user_selection) = 1 then
6 file↘ user_selection[0];
7 commits↘ fetch_commits(file);
8 foreach commit in commits do
9 spec↘ retrieve_file(commit, file);

10 if is_valid(spec) then
11 history_files↘ fetch_history_files(commit, file);
12 foreach consecutive f1, f2 in history_files do
13 diff↘ compute_diff(f1, f2);
14 changes↘ extract_changes(diff);
15 classification↘ classify_changes(changes);
16 store_classification(commit, classification);

17 build_sunburst_visualization();

18 else
19 express_js_repo↘ clone_express_js_repository(repo_url);
20 history↘ fetch_history(express_js_repo);
21 foreach version in history do
22 spec↘ extract_OAS_specification(version);
23 timestamps↘ get_commit_timestamps(version);
24 foreach timestamp in timestamps do
25 commit↘ find_commit(timestamp);
26 spec_commit↘ retrieve_file(commit, spec);
27 if is_valid(spec_commit) then
28 history_files↘ fetch_history_files(commit, spec);
29 foreach consecutive f1, f2 in history_files do
30 diff↘ compute_diff(f1, f2);
31 changes↘ extract_changes(diff);
32 classification↘ classify_changes(changes);
33 store_classification(commit, classification);

34 build_sunburst_visualization();

159 8.3 API Version Clock Visualization

different releases. As mentioned above, each API modification represented in API CHANGES can be contextualized
along the time dimension thanks to the API VERSION CLOCK, e.g., by highlighting the commit in which they occur.

path added

Year

X
.Y

.Z
Fi

rs
t C

om
m

it
1.

0.
2

1.
0.

3
1.

0.
3

1.0
.3

1.2.0

5

1.2.0

minor version upgrade

1.2.0
breaking change

Jul

1.2.1
6 1.3.0

1.3.1
1.3.1

1.3.21.3.21.3.3

Month

Day HH:M
M

:SS

2.0.0

api version modified

API tags m
odified

path added

2.0.0

Time

Version ID

API Change Description

2.0.0
1.3.3
1.3.3

1.3.3

2021

Jan

1.3.4

28

18:52:39

1.3.5

1.3.4
1.3.4

patch version upgrade

major version upgrade

V
ersion C

olors

no version upgrade

non-breaking change

metadata change

unclassified change

version reverted

Version
Change Colors

Figure 8.2. API Version Clock Design visualizing the Bmore Responsive API

8.3 API Version Clock Visualization

8.3.1 Visualization goal

This visualization serves as an evolutionary clock, providing a visual representation of the different types of changes
that occur during a specific timeframe in an API’s history. As depicted in Figure 8.2, in the Time ring – the fourth one
from the center – each version upgrade is assigned a unique color, allowing for a clear depiction of the progression
of version identifiers and the corresponding types of changes – shown in the outer rings – throughout the entire
history of the API. Notably, for APIs that adopt the semantic versioning format, the visualization incorporates, in
the Version ID ring, color coding to differentiate between major, minor, and patch-level upgrades.

The primary objective of API VERSION CLOCK is to assess the congruence between version identifier updates and
the relative significance of breaking and non-breaking changes introduced in the API over time. Developers can
leverage this visualization to gain insights into the adopted versioning strategy for a specific API and evaluate its
adherence to the principles of semantic versioning.

In the case of the Bmore Responsive API, according to the API VERSION CLOCK visualization in Figure 8.2,

https://github.com/CodeForBaltimore/Bmore-Responsive.git

160 8.3 API Version Clock Visualization

semantic versioning is not properly adopted. Breaking changes were introduced however this was not reflected by
the version identifiers. Moreover, the version identifier has been reverted twice during the API’s history.

8.3.2 Building API Version Clock

Using the running example, we will demonstrate how the visualization aids in understanding the chronological
sequence of changes within their temporal context, providing insight into the specific API version associated with each
modification. Additionally, the visualization depicts the classification of these changes, allowing for a comparison to
be made with the versioning strategy employed, thereby facilitating an assessment of the evolution and consistency
of the API over time.

Model generators

- hash: db5bb8d605a8e22eff54c8234c2713afd23b6505

 diff: "no diff"

 commit_date: '2020-04-08T00:42:57.000Z'

- hash: d42b004e837bc9e8f28febd9b604d9218bfb0a26
 diff:
 info:
 version:
 from: 1.0.2
 to: 1.0.3
 commit_date: '2020-04-08T16:18:07.000Z'

- hash: 9d719055cd97311138c622ec941813743d739d57

 diff:

 paths:

 added:

 - "/csv/{model_type}"

 endpoints:

 added:

 - method: GET

 path: "/csv/{model_type}"

 tags:

 added:

 - csv

 commit_date: '2020-04-16T16:14:43.000Z'

∆0

∆1

∆2

name: root

value: 3

children:

 - name: paths

 children:

 - name: added

 children:

 - name: "/csv/{model_type}"

 value: 1

 children:

 - name: GET

 value: 1

- name: info

 children:

 - name: version

 value: 1

- name: tags

 children:

 - name: added

 value: 1

 children:

 - name: csv

 value: 1

1

2 3

co
m

m
it

1
co

m
m

it
2

co
m

m
it

0

Git History Extracted diffs Extracted tree data structure Built portion of the visualizationx

All ∆s

oasdiff

diff analyser

Extract breaking changes

Extract non-
breaking changes

Breaking changes

Non breaking changes

Unclassified changes

Visualisation
tree model

Styles

M2M transformer

Versioning analyser

Echarts

Internal component
External component

 ...

- hash: 9d719055cd97311138c622ec941813743d739d57

 diff:

 paths:

 added:

 - "/csv/{model_type}"

 endpoints:

 added:

 - method: GET

 path: "/csv/{model_type}"

 tags:

 added:

 - csv

 commit_date: '2020-04-16T16:14:43.000Z'

 ...

...

∆2

3

co
m

m
it

1
co

m
m

it
2

Git History Extracted diffs Extracted tree data structure

name: 2020

children:

 ...

 - name: 16

 children:

 - name: '18:14:43'

 children:

 - name: no version change

 children:

 - name: 1.0.3

 children:

 - name: Meta data changes

 children:

 - name: API tags modified

 value: 1

 breaking: false

 - name: Non breaking change

 children:

 - name: path added

 value: 1

 ...

diff analyser

Versioning analyser

Transform the oasdiff
model to the tree model

M2M transformer

oasdiff

Extract the diffs from each
two consecutive commits

diff analyser

Versioning analyser

Analyse version changes

Inject changes classification and
versioning analysis to the model

oasdiff

Classify changes to breaking
non breaking, unclassified
and meta-data changes

...

Styles

Echarts

Render the model

GitHub
history

oasdiff

Meta-data changes

6

4

3

2

5

7

Inject styles1

All ∆s

Visualisation
tree model

M2M transformer Echarts

GitHub
history

oasdiff

Styles

oasdiff
diff analyser

Breaking changes

Non breaking changesUnclassified changes

API Versions Clock
Sunburst Model

API Versions Clock
Model generator

Versioning
analyser

ec
ha

rts

Internal component
External component

oasdiff

Meta-data changes

Changes
accumulator API Changes

Sunburst Model
∆

gi
t h

is
to

ry

Filter

Filter

Change classifiers

API Changes
Model generator

Styles

Ti
m

e
w

in
do

w

Changes classification

Generated models

Major

Pre-major

Minor

Pre-minor

Patch

Prepatch

Version changes classification

Minimum change frequency

APIcture

Figure 8.3. API Version Clock and API Changes analysis and rendering pipeline

As illustrated in Figure 8.3, the construction of the visualization involves retrieving all the git commits that made
modifications to the OAS description of the API. We then compute the differences between each pair of consecutive
commits, allowing us to identify the specific changes made during each commit. For extracting the changes we rely
on oasdiff [115], an open-source command-line tool and Go package that compares two OAS descriptions.

The extracted differential data serves as input for both the Versioning analyzer and the Change classifiers, which
generate classification results regarding version changes and the types of changes (breaking, non-breaking, meta-
data, unclassified). These outputs, along with the necessary visual elements described in Figure 8.2, are utilized by
the API Version Clock model generator, which then constructs the sunburst model. Finally, the generated model is
rendered using ECharts [92].

The Change classifiers consists of two components: oasdiff [115], the external tool responsible for detecting
breaking changes, and diff analyzer a tool developed as part of our work, which helps classify changes as non-
breaking or unclassified.

Breaking changes are modifications made to an API that disrupt existing functionalities and result in backward
compatibility issues with the latest deployed version [177]. These changes are identified and extracted from the
differential data using again oasdiff. Conversely, non-breaking changes refer to modifications that do not introduce
incompatibilities with existing functionality or the ability of clients to interact with the API. Unclassified changes,
in the current version of the tool, are non-breaking changes which we could not precisely determine which parts of
the API they affect.

8.3.3 Visualization Structure

In Figure 8.2, we illustrate the structure of the obtained API VERSION CLOCK visualization:
• Localizing change in its temporal context: The commits timestamps are mapped to the core rings of the sunburst

visualization, starting from the year, month, day, and time of each commit. These rings provide a temporal context

161 8.3 API Version Clock Visualization

Table 8.1. Color-coding for changes in the API Version Clock

Version Identifier Changes
The version identifier did not change.
The patch version counter was increased.
The minor version counter was increased.
The major version counter was increased.

API Changes
Breaking change.
Non-breaking change.
Metadata change.
Unclassified change.

for the visualization, allowing users to observe the chronological order of the commits in a clockwise direction.
They also allow users to hierarchically filter along the time axis by selecting to visualize only commits of a specific
year, month, or day.
• Localizing version change in its temporal context: Since the evolutionary analysis of our study relies on the git

commit history, the fourth ring of the version change visualization plays a crucial role in indicating the exact times-
tamp of each commit. This ring is color-coded based on the API version associated with that particular timestamp,
allowing for a clear visual representation of version changes over time (Figure 8.2). A unique color is associated
with each version identifier, currently based on a simple uniform mapping to the HUE component of HSL color
values.
• Discerning types of version change: While the inner core of the visualization is dedicated to the time of each

commit, the next layer represents the version identifier of the API at that time, extracted from the standard OAS
metadata. While the fourth ring highlights the version change, in the case where semantic versioning is used, we
distinguish in the Version ID ring the types of version change by assigning a specific color for each of the major,

minor, and patch releases.
With our analysis on version identifier changes [142], we could detect the presence of commits where the

version was reverted to a previous identifier. To highlight such backward evolution steps. An example of this case is
happening in Bmore responsive API, where the version was reverted from 2.0.0 back to 1.3.0 again in one of the
commits in late September 2020. As can be seen from Figure 8.2, we added an extra thin ring sandwiched between
the colored API version ring and the following one. The color of the ring is the same as the version to which the
revert happened. This ring will remain empty for APIs with a monotonic version identifier evolution and highlight
backward versioning steps otherwise.
• Detecting API backward incompatibility: Within the context of API elements, changes primarily pertain to

modifications in the structure of endpoints, request/response schemas, and security/authentication mechanisms.
These alterations directly impact the functional aspects of the API, potentially introducing breaking changes or
enhancements to its capabilities. On the other hand, changes in the metadata predominantly involve updates to
descriptive attributes that provide contextual information about the API. These include modifications to the API title,
version number, server URL, and details about the API provider. Such changes are typically non-breaking in nature
and focus on improving the clarity, documentation, or administrative aspects of the API [80]. Within each version
segment, the sunburst chart displays on the outer rings, how many changes were detected by comparing the current
commit against the previous commit. These changes are depicted first by distinguishing the breaking changes from
the non-breaking ones and then – in the outer ring – by further indicating the presence and the number of specific
types of changes.
• Assessing Semantic Versioning Compliance: To facilitate the assessment of compliance with semantic version-

ing practices, we intentionally utilize the same color scheme to represent both version identifier changes and the
classification of changes as breaking or non-breaking. This design choice allows for easy visual identification of
whether the API evolution aligns with correct semantic versioning principles. Commit nodes associated with break-
ing changes should correspond to major version upgrades (), while non-breaking changes should be observed
alongside patch-level version upgrades (). By examining the placement and distribution of these node types, we

https://github.com/CodeForBaltimore/Bmore-Responsive.git

162 8.4 API Changes Visualization

Listing 8.1. Tree model extracted from the di"s ω1 (between first and second commit in Bmore Responsive
API history) and ω2 (between second and third commit)
name: root
value: 3
children:
- name: paths
children:
- name: added
children:
- name: "/csv/{model_type}"
value: 1
children:
- name: GET
value: 1

- name: info
children:
- name: version
value: 1

- name: tags
children:
- name: added
value: 1
children:
- name: csv
value: 1

expect users to readily detect instances where changes are not in accordance with the expected versioning rules.

8.3.4 API Version Clock Interactive Features

The visualization employs interactive ECharts features for dynamic exploration of the sunburst plot structure at
various levels through zoom in and out. The zoom option aids in examining changes within specific timestamps or
periods. Tooltips are essential, showing the change count for a slice. For time rings, the tooltip displays how many
changes occurred at a given time.

8.4 API Changes Visualization

8.4.1 Visualization goal

The purpose of this visualization is to provide a clear understanding of the location of the changes occurring in the
API structure, its data model as well as related metadata information. By visually representing the deletions,
additions, and modifications happening at the level of metadata, structural and data model elements,
it becomes easier to localize the frequently occurring changes and comprehend the overall stability of the API design
(Figure 8.4).

One important aspect to highlight is that the changes visualization does not indicate when each change occurred.
This deliberate omission contributes to the scalability of the visualization, as it allows for the accumulated changes
across multiple API versions and commits within a specific timeframe to be captured in one visualization. This
approach simplifies the visualization process and enables a more efficient analysis, particularly when dealing with
APIs with long histories or many fine-grained granular changes applied to them.

163 8.4 API Changes Visualization

Table 8.2. Color-coding for the API Changes visualization

Type of modification
API element added
API element deleted
API element modified

API Elements
API structure element
API data model element
API metadata element

HTTP methods
GET POST PUT
DELETE PATCH HEAD
OPTIONS

pa
th
s

/roles

/co
nt
ac
t/s
en
d

op
er
at
ion
s

PO
ST

re
qu
es
tB
od
y

co
nt
en
t

sc
he
m
a

pr
op
er
tie
s

en
tit
yI
ds

co
nta
ctI
ds

GET

para
ms

que
ry

GET

tagscsv

description

info
ver
sio
n

pa
th
s

op
er
at
ion
s

PO
ST

re
qu
es
tB
od
y

co
nt
en
t

sc
he
m
a

pr
op
er
tie
sGET

para
ms

que
ry

GET

tags

info
ver
sio
n

HTTP Methods

URLs

Modification
Addition
Removal

GET
PUT

DELETE

Metadata

API Structure

API D
at

a
M

od
el

POST
PATCH

Changes

Figure 8.4. API Changes Design applied to the BMore Responsive API

8.4.2 Building API Changes

To build the visualization, we use the same differentials extracted for API VERSION CLOCK (See Figure 8.3) and
transform them into a sunburst model so that it can be rendered using ECharts [92]. The structure of the sunburst
tree reflects the OpenAPI specification structure. However, we only include OpenAPI elements which change at least
once. As we accumulate all changes from multiple commits, we keep track of many times each element change,
which is reflected in the relative ring sector angle. The elements represented in the sunburst plot are colored as
defined in Figure 8.4.

In the API CHANGES visualization, instead of explicitly displaying individual changes like in the API VERSION

CLOCK visualization, we employ an abstraction that focuses on measuring the frequency of different types of changes.

APICTURE provides users with CLI options that offers the ability to customize the API history timeframe of inter-
est. Specifically, in the context of API CHANGES visualization, APIcture allows users to filter out changes occurring
less frequently than a defined minimum threshold. These are represented as Filters in Figure 8.3. Note that the
Time window Filter can also be used to customize the history time frame for API VERSION CLOCK.

164 8.4 API Changes Visualization

8.4.3 Visualization structure

We tailored the sunburst visualization to characterize the nature and also represent the magnitude of the changes
occurring throughout the API lifespan and identify the unstable API elements that have undergone more frequent
modifications.
• API changes localization: The nature of the changes shown in the visualization is contingent upon whether they

occur within the API structure elements, API datamodel or the metadata elements, encompassing description fields,
API title, API version, server URL, and API provider information. By distinguishing between changes in each of the
later elements, the visualization enables a more comprehensive understanding of the different facets of changes
occurring within the API evolution. This distinction allows developers and stakeholders to assess the amount of
changes impacting both the functional behavior of the API and its associated contextual information.

By presenting the changes in a way mimicking a dereferenced version of the original OAS specification tree
structure, it becomes easier to discern the exact areas or elements of an API that have undergone most alterations
over time. The goal is to draw attention to the API elements affected by changes during its history. The wider the
ring sector angular extent, the more frequently the corresponding API element changes. Different change actions
affecting the API elements are highlighted using distinct colors (Figure 8.4): Deleted, Added, Modified.
These colored sectors refer to the type of changes applied to the element representing in their parent sector, the one
found immediately above towards the center of the sunburst. These light-colored action sectors serve as a visual
marker, drawing attention to the specific location within the API structure where the modification has taken place.

However, it should be noted that for non-object elements, such as the metadata element, and certain data types
(e.g., enumeration), the only discernible alteration that can be detected is when the value itself changes. In these
cases, there are no deeper levels or nested API elements to highlight, as the modification is confined to the value
itself.

The diagram illustrated in Figure 8.4 can be read as follows. The initial structure-related components encoun-
tered when traversing the API structure from the root of the OAS description are the paths. The paths can undergo
the tree types of changes Deletion of a path, Addition of a new path, Modification of a specific path. The
proportion of each type of change is shown in the next level, followed by a ring of sectors representing the actual
paths being affected by the change. This is followed by the specific set of path elements which can be either: param-
eters, operations or metadata elements (summary and descriptions), in addition to extension elements (elements
that start with an x- in an OAS specification).

In the case of modifications occurring at the path level, the subsequent rings within the visualization highlight
the nested API elements that are affected by the modification.

The precise location of the modification is indicated by the appearance of a new action ring. This action ring
serves as a visual marker, drawing attention to the specific location within the API structure where the modification
has taken place. This applies on all the API structure-related components of an object type.
• Quantifying change granularity: Change granularity can be assessed by examining the level (depth of the rings)

associated with a specific API element. For instance, if a specific endpoint is added (i.e., addition for a path), it
represents a less fine-grained change as compared to the addition of a specific query parameter. This can be seen in
API CHANGES of Bmore Responsive API in Figures 8.1 and 8.4.

Similarly, the addition of a new property to the schema of a response object for a specific operation signifies a
more fine-grained change when contrasted with the addition of a parameter.

8.4.4 API Changes Interactive Features

Similarly to the API VERSION CLOCK visualization, the API CHANGES visualization capitalizes on the interactive capa-
bilities provided by the ECharts sunburst. However, in this case, zooming helps to focus on the changes happening
within specific API elements. The user can click on the API element to focus on, in order to expand all the subse-

165 8.5 API Evolution Gallery

quent rings and have a more detailed view to identify the nested API elements and the changes unfolding within
them.

This capability can be exemplified by zooming in on the modifications occurring in the paths of the Bmore
Responsive API.

Interactive tooltips provide insights into the frequency of specific element occurrences within a change, while
also accommodating the display of labels identifying elements. To optimize readability, element labels are con-
cealed when the available angle is insufficient to exhibit them without overlap. Furthermore, using APICTURE the
generation of API CHANGES can be tailored by specifying a time frame and a minimum frequency value, granting
users control over which changes are visualized based on their significance. And can be exported as a PNG, SVG,
or an interactive HTML format.

8.5 API Evolution Gallery

In this section, we present five API evolution examples (Figures 8.5–8.9) growing from 24 commits up to 144
commits. They were selected out of a dataset of 3271 APIs, as they present different characteristics in terms of
their evolution dynamics, their use of semantic versioning, the reached level of maturity, and their co-evolution
with different repository artifacts. In the captions, we report the size of their evolution history (number of commits,
versions, and duration in days) and the number of GitHub stars for the corresponding repository, which were also
considered during the example selection process. The visualization gallery is obtained from a snapshot of the
corresponding git repositories taken on 26 June 2023. It can be explored in: https://souhailas.github.io/
VISSOFT2023/.

8.5.1 SunRocks API Evolution

The SunRocks’s API VERSION CLOCK visualization provides a chronological depiction of the changes occurring in the
SunRocks API from version 1.0.0 to version 4.0.0, spanning over a period of more than 5 years (Figure 8.5 left).
The majority of breaking changes took place within the first year, coinciding with two major version upgrades. No
minor version increments were observed, and only a single patch version upgrade occurred (3.0.1), accompanied
by a metadata change.

In all major version upgrades, there were always some unclassified or breaking changes, indicating that each
upgrade involved modifications with a potential impact on the API backward compatibility. Upon closer exami-
nation through the API CHANGES Visualization (Figure 8.5 right), it becomes evident that the changes primarily
manifested at the parameter level of POST methods of the /claims and /sales paths, with no significant alter-
ations reaching the data model. This observation suggests that the developers focused on refining the API structure
without requiring extensive modifications to the corresponding data representation.

8.5.2 xOpera REST API Evolution

Unlike the SunRocks API, the versioning strategy employed in the xOpera API (Figure 8.6 left) demonstrates a ten-
dency towards minor version upgrades and patch upgrades. Interestingly, these version upgrades were consistently
free of breaking changes. The largest evolutionary step happened on February 12th, 2021, when 15 paths were
removed without deprecation and 17 paths were added. This change was applied to the version 2.0.0 without any
immediate impact on the version identifier, which was changed 1 month later to 2.1.0.

The API CHANGES shows that all three types of structural changes occurred with the addition of 25 paths, the
modification of 21 paths, and the removal of 17 paths. Additionally, 26 changes impacted the API description

https://souhailas.github.io/VISSOFT2023/
https://souhailas.github.io/VISSOFT2023/

166 8.6 Discussion

metadata. Unlike the SunRocks API, some changes impacted the API data model, e.g., the removal or addition of
response schema properties.

8.5.3 IPFS Pinning Service API Evolution
The IPFS Pinning Service API (Figure 8.7) illustrates the early preview release [98] phase of an API, which after
almost one year of development reaches version 1.0.0.

Most of the API structure and data model appears to be in place since the beginning, as there are no addition-
s/removals neither at the level of paths or methods, nor at the level of the schema elements, as can be seen from
the API CHANGES visualization. 20 out of 22 modifications affected the GET and POST operations of /pins path.
The depth query parameter of the GET operation was added and subsequently removed.

Most of the breaking changes are concentrated in the early commits during the first few days of the project,
while the remaining commits (largely affecting the natural language documentation) are backward compatible or
unclassified. While version identifiers were gradually and regularly upgraded during the pre-release phase, the
version 1.0.0 identifier remains fixed, even with minor structural modifications being still applied months after the
initial release.

8.5.4 Xero Projects API Evolution
The Xero Projects API has been selected out of 11 APIs documented in a repository still under active development
at the time of writing. Most of the structural changes occurred in the first two months of a 3-year long history.
We can see 9 commits, from version 2.8.2 until 2.8.4, during which 13 paths were removed and 7 paths were
added. These breaking changes resulted in a patch version upgrade, up to version 2.8.5. This version was however
reverted back to the 2.8.4 identifier which remained constant until all remaining changes were committed. The
version identifier then started to grow all the way to 2.38.0, resulting in approx 50% of the API CHANGES, due to the
co-evolution of this API with the others in the same repository: whenever one API description changes, developers
bump the versions of all API descriptions in the same repository.

8.5.5 OpenFairDB API Evolution
The OpenFairDB API Evolution (Figure 8.9) is extracted from a repository in which both the API documentation and
the backend implementation are found. Thus, developers will often use patch version upgrades without any API
changes to track changes to the underlying backend implementation code. During the summer of 2020, a number of
breaking changes were however introduced while keeping the same version 0.8.20 identifier. Moreover, commits
of version upgrades never included structural changes.

Overall, there were more paths additions than deletions. And, most of the structural changes at the level of the
paths are modifications. The most modified path is the /search endpoint (affecting both its response schema and
query parameters), while the /search/duplicates path was added and later removed from the API.

8.6 Discussion

8.6.1 API Version Clock
One limitation of this visualization is that it may not scale well when dealing with longer histories of an API. The
representation of individual commits and their associated changes can become overwhelming and cluttered, making
it challenging to extract meaningful insights from the non-interactive visualization. The interactive version of the
visualization can be helpful to zoom into specific sections of the timeline. Alternatively, an icicle plot [169] layout

https://github.com/kartevonmorgen/openfairdb

167 8.7 APIcture: Tool support

could be used so that the long history of APIs with a large number of commits can be displayed in a scrollable
viewport.

To address this limitation and improve scalability, an abstraction technique can be applied to aggregate the
changes over longer periods of time in the case of APIs with many frequent commits or long history. For example,
all commits leading to a specific version change can be aggregated, considering that developers may first commit
changes to the artifact and only update the versioning metadata in a separate commit. This would not fundamentally
change the ring structure of the visualization, which would simply result in a less granular commit timestamp ring,
where each sector would account for all changes occurring during a certain API version.

The version color on the fourth ring could better reflect semantic versioning. As opposed to uniformly assigning
a distinct color to each version identifier, the mapping could use color shade variations for patch versions, similar
colors for minor upgrades and different colors for each major release.

Furthermore, a prior investigation into web API versioning practices [142] unveiled that semantic versioning,
following the MAJOR.MINOR.PATCH format, represents merely the most frequent one out of the 55 diverse API ver-
sioning formats. While the current version of the versioning analyzer already detects pre-release tags, it could be
further extended to support a broader range of commonly adopted formats, such as calendar-based versioning. In
this particular case, the same visualization would show the consistency between the commit timestamp and the
version timestamp.

As APIs occasionally change title during their evolution, we plan to enhance the visualization to show during
which timeframe each API title was in use. Likewise, it may be useful to filter the commits used to build the
visualization based on the specific value given to the API title.

8.6.2 API Changes

One of the key design decisions of the API CHANGES visualization is the lack of precise time information for each
individual change. While this enhances scalability by aggregating changes across multiple API versions, it can
hinder the ability to analyze the chronological order of changes and understand their possible causal relationships.
Given the atemporal nature of the API CHANGES visualization, it is not possible to perform such analysis with it. To
find out when a certain change occurred and which version was affected, the commit corresponding to the selected
change can be highlighted in the twin API VERSION CLOCK visualization.

The visualization’s color scheme can be further enhanced to distinguish other frequently changing API features
such as media types, security schemes, or other protocol-specific elements (e.g., response status codes). It would
also be possible to apply a color layer to distinguish which changes did break compatibility with clients and which
ones did not.

8.7 APIcture: Tool support

The creation of the visualization presented in this chapter is supported by a command-line interface (CLI) tool,
we name APICTURE that allows generating interactive and non-interactive visualization from a git software repos-
itory that includes either the code implementation or the OAS documentation of an API. It is publicly available on
NPM, facilitating easy access and utilization by researchers and practitioners alike. And, can be installed using the
command: npm install -g apict.

The APICTURE tool functions as a visualization tool designed to maintain a comprehensive record of all previous
versions of an OAS within a Git repository. It provides a command-line interface (CLI), build on top of ECharts [92],
for seamless interaction. By executing the command apict, the tool retrieves the complete historical data of the OAS
model from the repository, enabling the generation of three distinct visualizations that focus on key aspects: changes
localization, versioning versus changes types, and metrics evolution.

168 8.7 APIcture: Tool support

In addition, APICTURE has the capability to generate evolution visualizations directly from API implementation
in Express.js. This feature allows users to visualize and analyze the evolution of APIs even in cases where there is
no existing OAS description available for the repository. Using this functionality, developers can gain insight into
the evolution of APIs directly from the codebase, further enhancing the versatility and applicability of APICTURE.

If the OAS specification is located at the root level of the repository, there is no need to specify the path of the
specification. The following command lines can be executed:

APICTURE utilizes subcommands to allow focusing on specific perspective:

apict <spec-path>
apict changes <spec-path>
apict versioning <spec-path>
apict metrics <spec-path>
apict report <spec-path>

• apict <spec-path>: This command generates API evolution visualizations based on the OAS specification
located at the specified <spec-path>. It retrieves the history of the OAS model from a Git repository and
visualizes the changes that occurred over time.

As shown in Figure 8.10 apict command can also be used without a spec path when the command is run
from the folder containing the target API specification. In this case APICTURE will locate all the existing
specifications and asks to select the wanted one.

Figure 8.10. APIcture CLI when using the apict command

• apict changes <spec-path>: This command focuses specifically on the changes within the API. It gener-
ates visualizations that highlight and analyze the modifications, additions, and deletions made to the API
endpoints, data models, and other components defined in the OAS specification located at <spec-path>. As
for apict command without sub-commands, this command can also be run without a <spec-path>.

Options:

– Details: The ‘changes‘ subcommand offers a -details (-d) option, which introduces an additional level
of granularity to the generated visualization. By default, the visualization provides an aggregate rep-
resentation of changes at the path level, offering a comprehensive understanding of the overall change
patterns across all paths. However, by utilizing the -details option, users can access a more fine-grained
view of changes occurring at each individual path. This feature proves especially valuable when deal-
ing with APIs characterized by an extensive history. Analyzing changes at the path level facilitates the
identification of shared evolution patterns among different paths, enabling a more nuanced exploration
of the API’s evolution.

169 8.7 APIcture: Tool support

– Changes Frequency: The changes subcommand offers an additional option, -frequency(freq), which
allows the user to specify the minimum frequency of changes to be visualized. As not all changes have
the same occurrence rate throughout the API’s history, this option enables the generation of a focused
visualization that includes only changes that have occurred a specified minimum number of times. For
example:

apict changes --frequency 100

This command will generate a changes visualization that includes only those changes that have happened
at least 100 times during the API’s history.

• apict versioning <spec-path>: This command examines the versioning aspects of the API. It generates
visualizations illustrating the version upgrades and changes made to the API over time. By using this com-
mand, you can analyze the adherence to semantic versioning principles and gain insights into the evolution of
different API versions. As for apict command without sub-commands, this command can also be run without
a <spec-path>.

• apict metrics <spec-path>: This command generates visualizations focusing on the metrics related to
the API evolution. The apict metrics subcommand offers a range of options to enable users to select and
visualize specific API size metrics and observe their evolution over time. It provides insights into various
quantitative aspects of the API, such as the evolution of:

– --endpoints(-e): Count the number of endpoints at every commit timestamp.

– --paths(-p): Count the number of endpoints at every commit timestamp.

– --breaking-changes(-bc): Counts the frequent detected breaking changes in the API history.

– --methods(-m): The evolution of usage of HTTP methods in the API overtime.

– --breaking-methods(-bm): The types of API changes happening within specific HTTP method in the
API.

– --parameters(-param): Depicts the number of parameters and parameterized operations present in
the API and every commit timestamps. It also counts the number of distinct parameters used in the API
in every commit.

– --datamodel(-d): Reflect the evolution of complexity of API data model, by counting the number
of used schemas distinct and their properties, and the number of distinct proprieties at every commit
timestamp.

For instance, in the context of Web APIs primarily designed for accessing data in a fine-grained manner,
visualizing the evolution of parametrized endpoints and schema properties can provide valuable insights into
how the API enhances data access capabilities over time. By tracking the changes in endpoint parameters and
schema properties, it becomes possible to observe the iterative improvements made to the API’s data retrieval
mechanisms. It can be also used as an indicator of a need of migration to a GraphQL API [28].

Note that running the apict metrics command with no options generates a full report of metrics evolution.

The tool generates an HTML page with interactive visualizations. The page allows downloading the visual-
ization as SVG, or PNG.

In this initial version of the tool, we currently support cases where the OAS specification has always resided
in the same location during its evolutions.

170 8.7 APIcture: Tool support

Figure 8.11. Generated HTML metrics view using apict metrics <spec-path> without specifying a metric

For all the commands, APICTURE provides several options (Figure 8.12) to customize the visualization process
according to the users needs:

• -r, –repo <repo>: Specifies the path to the repository containing the API’s version history. By default, the
tool uses the current working directory as the repository location.

• -o, –output <path>: Defines the path to the output directory where the generated visualizations will be
saved. If not specified, the output will be saved in the default directory.

• -fs, –fast: Activates the fast mode, which optimizes the execution for faster generation of visualizations. This
mode can only be activated if the visualization has been already generated in normal mode. If not, this option
is ignored.

• -f, –format <format>: Specifies the desired output format for the generated visualizations. The available
formats include options such as PNG, SVG, and interactive HTML.

• -a, –all: Generates OpenAPI specifications for all OpenAPI files found in the repository. This option facilitates
generating visualizations for multiple specifications within the same repository.

• -fn, –filename <filename>: Specifies the output file name for the generated visualization. The tool saves
the visualization with the specified file name (without file extension) in the output directory.

• -h, –help: Displays the help information for the command, providing a concise overview of the available
options.

171 8.7 APIcture: Tool support

Figure 8.12. Help Command Output for APIcture Tool

Figure 8.13. Repository Structure: OpenAI API

8.7.1 Use case example
This section provides comprehensive instructions for generating visualizations from a real world repository using
the commands and options listed earlier.

For illustrative purposes, we have included sample API GitHub repositories containing OpenAPI specifications
in our GitHub Repository1.

We pick the OpenAI API2 as our example. Begin by cloning the repository to your local machine:

1https://github.com/souhailaS/APIcture/blob/main/vissoft/git_urls.json
2https://github.com/openai/openai-openapi.git

https://github.com/souhailaS/APIcture/blob/main/vissoft/git_urls.json
https://github.com/openai/openai-openapi.git

172 8.7 APIcture: Tool support

git clone https://github.com/openai/openai-openapi

Next, navigate into the repository:

cd openai-openapi

Figure 8.13 shows the structure of the OpenAI API repository, revealing the top-level placement of the OpenAPI
specification file (openapi.yaml).

To generate all evolution visualizations at once, simply execute: apict.

Alternatively, utilize the ‘apict‘ command with the ‘-r‘ option, which will run the visualizations generation
without need to navigate to the repository:

apict -r openai-openapi

In the absence of a specific file path, APIcture automatically locates all OpenAPI specification files within the
repository and prompts the user to select one (Figure 8.10).

To generate visualizations for all OpenAPI specifications within the repository, apply the ‘-a [-all]‘ option:

apict -r openai-openapi -a

Generated visualizations are stored within the APIcture folder, organized under a directory named after the
respective specification. For instance, in this case, the visualizations are located within APIcture/openapi (Fig-
ure 8.15). By default, if no format is given, the output format is HTML.

The generated HTML files are:

• changes-<openapi api file name>.html: an interactive format of the API Changes visualization.

• version-clock-<openapi api file name>.html: an interactive format of the API Version Clock visualiza-
tion.

• version-clock-<openapi api file name>.html: an interactive format of six API evolution metrics plots
(Figure 8.11).

• viz-<openapi api file name>.html: a single HTML page that includes all the previous interactive visual-
izations, in addition to a header showing history related metadata (Figure 8.14).

173 8.7 APIcture: Tool support

Figure 8.14. apict output evolution visualizations generated in viz-openapi.html

Figure 8.15. apict command output folders structure

When executing the apict command without specifying any additional options, it initiates the process of gen-
erating an evolution report directly within the terminal (Figure 8.16). Furthermore, for users seeking to access this
report independently of the complete visualization generation process, the report subcommand can be employed.

apict report -r openai-openapi

174 8.7 APIcture: Tool support

Figure 8.16. apict terminal prompt evolution report

Rather than being limited to using only the overarching apict command, users have the flexibility to employ
focused subcommands. Each of these subcommands generates a specific output individually, allowing for a more
tailored approach to visualization creation. In addition to this, the -fast option is provided to optimize the time
taken in the generation process, particularly when users are exclusively interested in obtaining a particular out-
put. This approach streamlines the generation time, making the process more efficient and relevant to the specific
visualization needs of the user.

8.7.2 Other supported cases

In scenarios where no OpenAPI file is detected within the repository (Figure 8.17), APIcture employs a distinct ap-
proach for Express.js projects. It systematically generates a corresponding OpenAPI specification from the project’s
codebase for each commit existing in the repository’s history. Subsequently, APIcture selects the specifications that
exhibit differences from the specification of the preceding commit. This generation process leverages ExpressO [149]3

a CLI tool designed to validly generate OpenAPI specifications from Express.js code. The generated specifications
are then utilized by APIcture to generate the intended visualizations.

https://www.npmjs.com/package/expresso-api

175 8.7 APIcture: Tool support

Figure 8.17. APIcture in the case where no OpenAPI file is found in the project (run on the Kraken.js project)

In the case where the project’s dependencies are not already installed, select (x) No then rerun the apict
command.

The showcased examples within our published gallery exclusively originate from projects that feature an Ope-
nAPI specification present within the repository. In this version of APIcture, the effective generation of visualizations
through Express.js code hinges on the capability of ExpressO to construct a specification from the underlying code-
base.

In Summary
API CHANGES and API VERSION CLOCK are interactive visualizations tailored for developers, researchers, and stake-
holders involved in API development, management, and evolution. The visualizations aim to offer valuable insights
into the recurrent API changes, and versioning practices, aiding in understanding the evolution and backward com-
patibility between consecutive API versions and the adherence of the API to semantic versioning practices. The
provided visualizations can be integrated into DevOps pipelines, helping to continuously gather awareness of the
entire history of changes and see the evidence needed to enforce the chosen versioning strategies [71, 134].

The availability of these visualizations through the APICTURE tool provides a tangible resource for API prac-
titioners and researchers, allowing them to explore and analyze API evolution in a comprehensive and intuitive
manner. It is released on NPM [2] as command-line tool that automatically generates the API CHANGES and API
VERSION CLOCK visualizations from any git repository containing the history of an OAS specification. The tool can
render each visualization separately as an SVG or PNG image, but also generate an HTML page with both interactive
visualizations, individually or side by side, together with various evolution metrics visualizations and metadata. It
can be installed using the command: npm install -g apict. A demo video of the interactive visualizations is
available at: https://www.youtube.com/watch?v=WtFm6VvKi20

While the visualizations have been originally designed in the context of APIs described using the OAS stan-
dard, they can be generalized to other artifacts. The API VERSION CLOCK requires a stream of commits with the
corresponding version identifiers together with metrics characterizing and classifying the changes w.r.t. the previ-
ous commit. The API CHANGES visualization is applicable to show how any nested object structure evolves, as it
only requires a lightweight customization for color mapping different properties. We plan to broaden the scope of
applicability of the visualization tool by decoupling it from its domain of inception in the near future.

https://github.com/krakenjs/kraken-js
https://souhailas.github.io/VISSOFT2023/
https://www.npmjs.com/package/apict
https://www.youtube.com/watch?v=WtFm6VvKi20

176 8.7 APIcture: Tool support

2017

Au
g

2

12
:2

0:
45

1.
0.

0
Fi

rs
t C

om
m

it
14

:3
1:

42
1.

0.
0

ne
w

 re
qu

ire
d

re
q

pa
ra

m

Oct

15
:5

3:
31

2.
0.

0

23

11
:2

7:
18

2.
0.

0

11:55:40
2.0.0

req
 pa

ram
 be

ca
me r

eq
uir

ed

body of parameter m
odified

10:49:53
2.0.0

new required req param

Nov

22 09:24:28 2.0.0

new required req param

req param removed23
09:41:31

3.0.0

new required req param

req param
 becam

e required

req param
 rem

ovedap
i v

er
si

on
 m

od
ifi

ed

bo
dy

 o
f p

ar
am

et
er

 m
od

ifi
ed

2018

Jan

23
12

:0
3:

02

3.
0.

0

ne
w re

qu
ire

d
re

q
pa

ra
m

12
:42

:29

3.0
.0

10:29:34

3.0.0

May

13:20:13

3.0.0

14:56:58

3.0.0

body of parameter modified

13:59:54
3.0.0

path removed without depr

2021Mar16:55:253.0.0path added
15:30:32

3.0.0

new required req param 14:55:42

3.0.0

 path removed without depr
11:17:24

3.0.0

path added

2022

Dec

15

14:01:00

3.0.0

path added

14:01:27

3.0.0

sum
m

ary of POST m
odified

14:03:54

3.0.1

api version m
odified

11:24:24

3.0.1

api contact m
odified

2023
M

ay

16:46:51

4.0.0

09:19:38
4.0.0

sum
m

ary of PO
ST m

odified

paths /s
al
es

op
er
at
io
ns

PO
ST

pa
ra
m
s

form
Data

for
mD

at
a

formData

/claims

operationsPOST

params

formData

form
Data

sum
m
ary

info
vers

ion

Figure 8.5. Visualizations of the SunRocks API Evolution (24 commits over 5 versions during 2114 days, 0ω)

177 8.7 APIcture: Tool support

20
20

Fi
rs

t C
om

m
it

ap
i d

es
cr

ip
tio

n
m

od
ifi

ed

20
21

Ja
n

29

17
:2

9:
44

2.
0.

0
AP

I t
ag

s
m

od
ifi

ed

pa
th

 a
dd

ed
ap

i d
es

cr
ipt

ion
 m

od
ifie

d

Feb

1

18:31:42
2.0.0

API
tag

s m
od

ifie
d

path
 ad

ded

api descr
iption modifie

d

12

17:04:26
2.0.0

 path removed without depr

res body type changed

res required property removed

summary of GET modified

API tags m
odified

path added

un
re

qu
ire

d
sc

he
m

a
pr

op
er

ty
 o

f r
es

p

ty
pe

 of
 sc

he
ma m

od
ifie

d

 pa
th

rem
ov

ed
 w

ith
ou

t d
ep

r

Mar

api versio
n modified

api version modified

api version modified
api version modified

May

Jun2.4.0res success status removed

resp added to POST

api version modified

res property type changed

api version modified

body of parameter modified

Jul

26

path added

 path removed without depr

2.7.0

api version m
odified

path added

O
ct

api version m
odified

api version m
odified

pa
th
s

/b
lu
ep
rin
t

op
er
at
io
ns

re
sp
on
se
s

co
nt
en
t

ite
m
sGET

cont
ent

sche
ma

ver
sio

n

Figure 8.6. Visualizations of the xOpera REST API Evolution (42 commits over 14 versions during 408 days,
3ω)

178 8.7 APIcture: Tool support

2020

Jul

0.
0.

1
Fi

rs
t C

om
m

it
0.

0.
2

9

0.
0.

2
0.

0.
2

0.
0.

2
re

q
pa

ra
m

 re
m

ov
ed

21
:1

8:
03

0.
0.

2
re

q
pa

ra
m

 d
ef

au
lt

va
lu

e
ch

an
ge

d

bo
dy

 o
f p

ar
am

et
er

 m
od

ifie
d

22
:05

:01
0.0

.2

re
q

pa
ra

m
 d

ef
au

lt
va

lue
 ch

an
ge

d

req
 pa

ra
m m

ax
 se

t

req
 para

m m
in se

t

body of p
arameter m

odifie
d

0.0.2

0.0.2

13

0.0.2
0.0.2
0.0.2 req body min items increased

0.0.2
0.0.2
0.0.2
0.0.2 api description modified

0.0.2
api description modified

0.0.20.0.2
api description modified

0.0.20.0.2

14

0.0.20.0.2

0.0.2

16

0.0.2
api description m

odified

0.0.2

0.0.2

20

0.0.2
0.0.3

api version m
odified

23
19:02:24

0.0.3
api description m

odified

api title m
odified

30
0.

0.
4

0.
0.

4
0.

0.
4

0.
0.

4

ap
i d

es
cr

ip
tio

n
m

od
ifi

ed
0.

0.
4

ap
i d

es
cr

ip
tio

n
m

od
ifi

ed

Aug
14

0.
0.

4

0.
0.

4

0.0
.40.0

.40.0.40.0.50.0.5

Sep

0.0.5

body of parameter modified

11

20:30:44

0.0.5

api description modified
desc of POST modifiedsummary of POST modified

18
0.0.5body of parameter modified
0.0.5
0.0.5
0.0.5

api description modified

23

0.0.5

0.1.1

api version modified

Oct

27

0.1.1

body of parameter modified 0.1.2

api version modified

2021

Feb

0.1.2

api description modified

1.0.0

api version modified

Apr

26

15:09:19

1.0.0

api description m
odified

body of param
eter m

odified

2022

1.0.0

api description m
odified

1.0.0

Jul

1.0.0

api description m
odified

1.0.0

body of param
eter m

odified
1.0.0
1.0.0

pa
th
s

/p
in
s

op
er
at
io
ns

GET
param

s
query

limit
schema

name

description

qu
er
y

POS
T
req

ue
stB

od
y

co
nte

nt

sch
em

a
202
conten

t

schem
a

/pins/{id}
operations

POST

description

ver
sion

Figure 8.7. Visualizations of the IPFS Pinning Service API Evolution (61 commits over 8 versions during 773
days, 84ω)

179 8.7 APIcture: Tool support

20
20

2021

Jan

22

00
:1

2:
16

2.
8.

2
 p

at
h

re
m

ov
ed

 w
ith

ou
t d

ep
r

pa
th

 a
dd

ed

23

01:31:30
2.8.3

 path
 re

mov
ed

 w
ith

ou
t d

ep
r

path added

27 21:09:14 2.8.2

 path removed without depr

path added

29

21:42:56 2.8.4 path removed without deprpath added

21:58:07
2.8.5

 path removed without depr

path added

22:49:01
2.8.4

 path rem
oved w

ithout depr

path added

Fe
b

2

20
:3

9:
19

2.
8.

4
 p

at
h

re
m

ov
ed

 w
ith

ou
t

de
pr

pa
th

 a
dd

ed
3

2.
8.

4

 p
at

h
re

m
ov

ed
 w

ith
ou

t d
ep

r

pa
th

 a
dd

ed
02

:3
2:

08

2.
8.

4

pa
th

 re
m

ov
ed

 w
ith

ou
t d

ep
r

pa
th

 ad
de

d

19:00:39

2.8.4

 path re
move

d with
out d

eprpath added

2022

May

in
fo

ve
rs
io
n

pa
th
s

Figure 8.8. Visualizations of the Xero Projects API Evolution (125 commits over 93 versions during 999 days,
80ω)

180 8.7 APIcture: Tool support

20
18

D
ec

Fi
rs

t
Co

m
m

it
pa

th
 a

dd
ed

2019

Ja
n

re
q

pa
ra

m
 re

m
ov

ed
re

s p
ro

pe
rty

 ty
pe

 c
ha

ng
ed

Mar

su
m

m
ar

y o
f G

ET
 m

od
ifie

d

bo
dy

 of
 pa

ra
m

et
er

 m
od

ifie
d

re
q p

ar
am

 re
mov

ed

ap
i v

ers
ion

 m
od

ifie
d

ap
i v

ers
ion

 m
od

ifie
d

api v
ersi

on m
odifie

d

path added

api versio
n modified

req param default v
alue changed

body of parameter m
odified

api versio
n modified

api version modified

Aug

path added

api version modified

api version modified

15

api version modified

summary of GET modified

api version modified
body of parameter modified
api version modified
path added13:42:24 0.5.12
 path removed without deprdesc of GET modifiedsummary of GET modified
path addedreq param removed

desc of GET modified

summary of GET modified

api version modified

api version modified

api version modified

body of parameter modified

api version modified

api version modified

api version modified

api version m
odified

api version m
odified

Nov

0.7.0

api version m
odified

sum
m

ary of GET m
odified

resp added to GET

api version m
odified

api version m
odified

sum
m

ary of G
ET m

odified

body of param
eter m

odified

api version m
odified

D
ec

api version m
odified

sum
m

ary of G
ET m

odified
body of param

eter m
odified

ap
i v

er
si

on
 m

od
ifi

ed

2020

Ja
n

ap
i v

er
si

on
 m

od
ifi

ed

ap
i v

er
si

on
m

od
ifi

ed

13

ap
i v

er
si

on
 m

od
ifi

ed

ap
i v

er
si

on
 m

od
ifi

ed

ap
i v

er
si

on
 m

od
ifi

ed

ap
i v

er
sio

n
m

od
ifi

ed

ap
i v

er
sio

n
m

od
ifie

d

de
sc

 o
f G

ET
 m

od
ifie

d

de
sc

 o
f G

ET
 m

od
ifie

d

ap
i v

er
sio

n
m

od
ifie

d

ap
i v

er
sio

n
m

od
ifie

d
Mar

ap
i v

ers
ion

 m
od

ifie
d

ap
i v

ers
ion

 m
od

ifie
d

api v
ersi

on m
odifie

d

May

api versio
n modifie

d

desc of PUT modified

0.8.19

path added

api version modified

Jul

20

13:52:22

0.8.20

desc of GET modified

summary of GET modifiedpath added

0.8.20
path removed without depr

desc of GET modified
summary of GET modified

body of parameter modified

21

19:28:42

0.8.20
desc of GET modified

summary of GET modified

path added

body of parameter modified

body of parameter modified

23

res body type changed

type of schema modified

16:16:23

0.8.20

 path removed without depr

req param removed

desc of GET modified

summary of GET modified

Aug

13

path added

 path rem
oved without depr

path added

api version m
odified

api version m
odified

api version m
odified

api version m
odified

api version m
odified

pa
th
s

operations
GET

responses

content

properties

items
items

query

su
m
m
ar
y

/e
xp
or
t/e
nt
rie
s

op
er
at
io
ns

GE
T

qu
er
y

GET

ve
rs
io
n

Figure 8.9. Visualizations of the OpenFairDB API Evolution (144 commits over 52 versions during 1563 days,
53ω)

Part IV

Web API versioning analysis

181

Chapter 9

Web API Versioning

This chapter highlights our findings on the current state of Web API versioning using static analysis techniques
applied to a snapshot of OpenAPI specifications comprising more than half a million specifications.

The analysis is performed over a snapshot of the specification dataset, including descriptions source from all of
GitHub, SwaggerHub, APIsGuru and BigQuery.

9.1 Web API Versioning Challenges

API versioning [57] is a fundamental practice that enables API providers to manage change effectively while ensuring
compatibility with existing clients. API providers often use version identifiers to make changes evident to clients,
allowing them to refer to specific versions of the API on which they depend. In some cases, providers make multiple
versions of the same API available to ease the transition for clients as they switch from retired versions to newer
versions [98].

The lack of a centralized registry for Web APIs, combined with the flexibility for service providers to use their
versioning approaches [127], has led to multiple and sometimes inconsistent practices in terms of discoverability and
notification of breaking changes [22]. While versioning metadata is required when describing Web APIs according to
the OpenAPI specification, developers use a variety of version identifier formats to express different concerns: when
was the API released, whether the API version is stable or still a preview release, whether the changes introduced in
the API are likely to break clients. Such variability in versioning practices raises questions about the prevalence of
semantic versioning [8] adoption among Web APIs and how to dynamically discover and select which API version
is available at runtime.

9.2 Web APIs Versioning Documentation

9.2.1 Version Identifiers in Web APIs

In the realm of Web APIs, there exist various options for including a version identifier, statically, as part of an API
description, or dynamically, as part of messages exchanged with the API. In this study we expect to find evidence
for the following practices:

183

184 9.2 Web APIs Versioning Documentation

Figure 9.1. Tree visualization of the structure of a subset of the Vercel API 1. Di"erent version identifiers
(v1-v12) are found in the path URL addresses.

185 9.2 Web APIs Versioning Documentation

• Metadata-based versioning: The version identifier is included within the API metadata. This can be achieved
using industry-standard formats like the OpenAPI Specification, which provides a comprehensive description of the
API, including versioning details, in a machine-readable manner or mentioning it on the API provider’s website or
documentation.
• URL-based versioning: The version identifier expected by the client can be embedded as part of HTTP request

messages as a parameter or a segment in the endpoint path URL, such as:

https://<server-address>/<path>?<query>

where:

<server-address> = <version-identifier>.<dns-domain>

<path> = <path>/<version-identifier>/<path> || <path> || ""

<query> = <query>&version=<version-identifier>&<query> || <query> || ""

For example:
https://v1.example.api/ | https://api.example.com/v1 | https://example.com/api?version=v1
Embedding version identifiers in endpoint URLs is commonly used also when multiple versions of the API coexist

simultaneously, known as the “two in-production” pattern [98]. The API server employs the version identifier found
within the request to route the request to the appropriate API version. For example, in the Vercel API 12 different
versions are accessible to clients (Fig. 9.1).
• Header-based versioning: Instead of embedding version information in the URL or other parts of the request,

when an API uses header-based versioning the client specifies the desired version using an HTTP header. This type
of versioning can be also applied at the operation level where the version is specified in the header of the request
associated with the operation, such as the example in Listing 9.1.

Listing 9.1. Header-based versioning applied to certain API operations
name: x-ms-version
in: header
description: The version of the operation to use for this request See https://docs.microsoft.com/en-us/rest/api/storageservices/

ϵ→ versioning-for-the-azure-storage-services for details
required: false
schema:

type: string

E.g., within our dataset, the Amaysim2 API serves as an illustrative example. It implements the utilization of the
accept-version header as a mechanism for transmitting the version identifier conforming to Semantic Versioning
(SemVer). In the event that no header is explicitly provided, the API defaults to invoking the latest available version:

One of the advantages of header based versioning is that the clients can seamlessly switch between versions
without modifying the request structure. The server interprets the header to route the request to the appropriate
version of the API.
• Dynamic versioning: In APIs using header-based versioning, developers must explicitly instruct API consumers

on specifying the intended API version in request headers. This information, encompassing the designated header
field (e.g., x-api-version) and the requisite version format (e.g., v1, 1.0), must be meticulously documented. API
consumers are then tasked with including the version data in the headers of their HTTP requests using the provided
header name and value or the version query parameter. For instance, the case of the GitHub API, developers are
informed about viable version header values through the invocation of a GET /versions endpoint. This endpoint
facilitates the retrieval of a list encompassing available version identifiers. Developers can thus reference this end-
point to ascertain the valid version options for configuration within their request headers. This practice augments
transparency and streamlines the process of selecting and incorporating appropriate API versions.

2https://www.amaysim.com.au/

https://github.com/psenger/product-offering-amaysim/blob/master/api/swagger.yaml

186 9.2 Web APIs Versioning Documentation

9.2.2 OpenAPI Versioning Metadata

API service providers typically provide API clients with information on how to use the API through a description,
which is often written in natural language [178] or based on a standard Interface Description Language (IDL), such
as OpenAPI [118]. This later has seen a widespread adoption across industries [168, 60, 167], which underscores
its pivotal role in modern API development and integration. It is also a form of documentation that is machine-
readable, enabling systematic analysis on a large scale.

OpenAPI offer a standardized, language-agnostic framework for documenting RESTful APIs, which facilitates
clearer communication among developers, accelerates development timelines, and ensures consistent API imple-
mentation. Moreover, it includes a specific required field {"version": string} in the info section pertaining
to the API’s metadata. However, there are no constraints on the format used to represent the version identifier.
Additionally, version identifiers can be embedded in the API endpoint addresses, which are stored in the server
and path URLs.

While the OpenAPI standard defines how developers describe their APIs, there is no centralized standard doc-
umentation manager service where developers can share API specifications. For example, SwaggerHub 3 does not
impose any rules on the format of version identifiers, nor does it require developers to upgrade them when publish-
ing a new version of the API description. We aim to study the resulting variety of version identifier formats found
in a large collection of OpenAPI descriptions.

9.2.3 API stable releases

API stable releases represent the versions of the API that are deemed ready for use in production environments.
These versions have undergone thorough testing and are considered reliable and stable for use by clients. The ver-
sion identifiers for stable releases often convey important information about the changes introduced in the release,
the compatibility with previous versions, and the maturity of the API.

In our study, we identified four primary classes of formats for stable release identifiers:
• Major Version Number: This format is characterized by a single integer value that increments with each major

release. It is a simplified form of semantic versioning, focusing only on major changes that are likely to be incompat-
ible with previous versions. This format is straightforward and easy to understand, but it does not provide detailed
information about minor updates or patches.

• Semver (Semantic Versioning): The goal of semantic versioning [8] is to reflect the impact of API changes
through the version identifier format MAJOR.MINOR.PATCH. The MAJOR version counter is incremented when incom-
patible API changes were introduced, the MINOR counter is upgraded when new functionalities were added without
breaking any of the old ones, and the PATCH increases for backwards compatible bug fixes.
Several widely known package managers, such as NPM [9], Maven [182], and PyPI, adopt semantic versioning as
a standard for package version identifiers. These package managers enforce the usage of semantic versioning and
perform version increment checks every time the package is republished [45].
We put under this category all the version identifiers that follow the semantic versioning format, regardless of the
number of digits used, starting from 2 digits.

• Date: Some APIs use the release date as the version identifier. This format can take various forms, such as
YYYY-MM-DD or YYYYMMDD. It provides a clear timeline of API releases and is easy to understand. However, it
does not provide any information about the changes introduced in each version.

• Tag: This format uses arbitrary word values as version identifiers, such as: “latest”, “newest”, “test", wich we
found as the most common words. This format provides the most flexibility, but it can also be the most difficult to
understand and manage, especially for large APIs with many versions.

3SwaggerHub API. https://app.swaggerhub.com/apis-docs/swagger-hub/registry-api/1.0.67

https://app.swaggerhub.com/apis-docs/swagger-hub/registry-api/1.0.67

187 9.3 Methodology

9.2.4 API Preview Releases
Test releases are often given specific marketing names to clearly reflect their purpose and distinguish them from sta-
ble releases. Marketing names help also to indicate the audience of the test releases, and allow users to understand
that they should expect bugs [101]45.

In our datasets, we identified the following six types of usage for preview release tags:
• Develop: A version under development is still in the process of being created and is not yet complete or stable.

It may contain new features or bug fixes that have not yet been fully tested, and may not be suitable for use in a
production environment. Developers may use dev versions to test new features and make changes before releasing
a final version to the public.

• Snapshot: These versions are automatically built from the latest development code and are intended to be
used by developers.

• Preview: These are unstable versions that are made available to users before the final release. Preview versions
are typically released to a small group of users or testers to gather feedback and iron out any bugs or issues before
the final release. They can also be used to give users a preview about new features to expect to see in the next
stable version.

• Alpha: These versions are considered to be very early in development and are likely to be unstable and contain
many bugs. They are often released to a small group of testers for feedback.

• Beta: These versions are considered to be more stable than alpha versions and are often released to a wider
group of testers for feedback. They may still contain bugs, but they are expected to be closer to the final release.

• Release Candidate (RC): These versions are considered to be very close to the final release and are often the
last versions to be released before the final version. They are expected to be stable and contain only minor bugs.

Our goal is to quantify how often such types of stable and pre-release versions are found, and whether developers
also use other kinds of tags to classify their API versions.

9.3 Methodology

9.3.1 Dataset preparation
Our analysis was performed on a snapshot of the OpenAPI files collection which comprised: GitHub (5 218 APIs,
165 939 commits); SwaggerHub (387 463 APIs), BigQuery (45 467 APIs), APIs.guru: (3 990 APIs), for a total of
602 859 API descriptions.

• GitHub: This historical dataset of 165 939 OpenAPI specifications, belonging to 5 218 APIs, was extracted
from GitHub utilizing its API. Similar to previous works [43], also in this study we have included only APIs
with the entire history of valid specifications and at least 10 commits in their version history, thereby filtering
trivial or inconsequential repositories.

• SwaggerHub: Out of the 432 265 specifications, we could keep 387 463 unique and valid specifications. This
collection has also time stamps of the update and creation of each entry.

• BigQuery: In this study, we used a total of 175 549 files, from which 45 467 represented unique and valid
OpenAPI specifications.

• APIs.Guru: From APIs.guru, we used 3990 OpenAPI files that were all valid.

4Fedora versioning. https://docs.fedoraproject.org/en-US/packaging-guidelines/Versioning/
5Release naming conventions. https://www.drupal.org/node/1015226

https://docs.fedoraproject.org/en-US/packaging-guidelines/Versioning/
https://www.drupal.org/node/1015226

188 9.3 Methodology

2015 2016 2017 2018 2019 2020 2021 2022 2023

0

0.2

0.4

0.6

0.8

1
·105

3,
69

2

6,
00

4

6,
33

7 11
,9

93 18
,1

37

30
,4

92 35
,3

44

43
,9

23

10
,0

02

1,
81

9 8,
01

1

36
,2

88

47
,3

13

51
,4

28

80
,2

25

78
,4

96

69
,5

51

31
,3

02

#
A

PI
de

sc
ri

pt
io

ns

GitHub
SwaggerHub

Figure 9.2. Number of artifacts in the GitHub and SwaggerHub datasets over the years

Figure 9.3. Versioning Analysis Pipeline

A distinctive feature of the GitHub dataset snapshot lies in the comprehensive historical record of API specifi-
cation commits, complete with their respective timestamps. Conversely, the artifacts in the SwaggerHub collection
include metadata such as their creation date and the last modification date of the specifications. In Figure 9.2, we
give an overview of the yearly distribution of the yearly API commits in the case of the GitHub dataset and the
number of APIs created every year in the case of the SwaggerHub dataset. This will make it possible to track the
adoption of API versioning practices over the past years.

The approach of the analysis remains consistent across all the specification from all sources. Only the datasets ob-
tained from GitHub and SwaggerHub provided the necessary timestamps for the creation of specifications. Utilizing
these timestamps enabled a time-series analysis to observe the adoption patterns of dynamic versioning (referenced
in section 9.4.6) and to track the evolution in the adoption of diverse formats over time (detailed in section 9.4.8).

9.3.2 Analysis methodology
To perform this study, we automated the extraction of versioning metadata and the detection of different versioning
practices by analyzing 602 859 API specifications written in the OpenAPI description language [118].

189 9.4 Results

Format Regular Expression

integer /^(\d{3}|\d{2}|\d{1})+$/i
v* /v\d*/i
semver-3 /^(v|)\d+\.\d+\.\d+$/i
date(yyyy-mm-dd) /^\d{4}-\d{2}-\d{2}/
date(yyyymmdd) /20[1-2][0-2](0[1-9]|1[0-2])(0[1-9]|[12][0-9]|3[01])$/i
date(Month yyyy) /(Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec) 20[1-2][0-9]$/i
date(yyyy.mm.dd) /\d{4}\.\d{2}\.\d{2}$/i
semver-dev* /^(v|)\d+\.\d+(\.\d)*(\.|-)dev\d*$/i
semver-snapshot* /^(v|)\d+\.\d+(\.\d)*(\.|-)SNAPSHOT\d*$/i
date-preview* [date](-|\.)preview$/i
v*alpha* /^v\d+alpha\d*$/i
v*beta* /^v\d+beta\d*$/i
semver-rc*.* /^(v|)\d+\.\d+(\.\d)*-rc\d*\.\d+$/i

Table 9.1. Some detectors are used to classify the version identifier formats. In the format name, * stands for
an integer.

As depicted in Figure 9.3, we first retrieved 10 221 distinct version identifiers from the info.version field in
each OpenAPI description in each dataset (see the third column of Table 9.2 for the number of unique version
identifiers found in each dataset). We then searched for any of these identifiers in the URL addresses listed as part
of the endpoints or server URL strings.

To classify the version identifiers, we employed a set of regular expression rules (Table 9.1). These detectors
were iteratively defined based on our observations to ensure that most of the samples could be labeled. We also
distinguished between version identifiers used to describe preview releases and stable versions of the APIs. The
complete list of regular expression rules are included in the replication package.

Given such a variety of sources, we examine the specifications and present the results collectively and individ-
ually, based on the origin of the specifications, to determine how the outcomes vary according to their sources.

9.4 Results

9.4.1 Metadata-based versioning

Metadata-based versioning involves encapsulating the API version identifier within the API documentation itself. In
the context of OpenAPI-documented APIs, this approach is facilitated by a designated info.version field within
the specification. This field empowers developers to explicitly denote the version of the web API being documented.
By articulating the version as a string in the OpenAPI specification, the practice of metadata-based versioning
establishes a clear means to communicate and represent the API’s versioning information.

Metadata-based versioning adoption overview

The info.version field, while obligatory for a valid specification, is found to accommodate various values including
empty strings and certain other non-conforming string entries, such as: "", "null", "undefined", "version

https://github.com/souhailaS/-JWE-API-Versioning-practices-detection/blob/main/metadata-versions-merged.json
https://github.com/souhailaS/-JWE-API-Versioning-practices-detection

190 9.4 Results

unknown", "-", "_", "unknown", "VERSION_PLACEHOLDER", "no version", etc. These non-compliant entries
were identified and subsequently excluded and considered as no metadata based versioning was used.

In Table 9.2, we report that the vast majority of artifacts (across all datasets, more than 90%) makes use of
metadata-based versioning. The number of unique version identifiers detected within each dataset is listed in the
third column. The most common version identifier is 1.0.0, while v1 is the mostly used one only in the APIs.guru,
where 7% of the APIs which use metadata-based versioning have the v1 identifier.

Version identifiers formats

Given that the version is represented as a string, discerning a consistent format for the extracted version identifier
becomes a non-trivial task. To address this challenge, we developed a parsing mechanism leveraging 257 regular
expressions. This tailored parser enables the detection and classification of diverse version formats employed within
the dataset, enhancing our ability to systematically analyze and categorize the extracted version identifiers. In
Table 9.4, we present the top 20 frequently employed version identifier formats observed in each of the the four
study datasets.

The format semver-3 was found to be most frequent format. But, looking at each dataset independently, we can
see that the most frequently adopted version identifier format varies depending on the source. For the SwaggerHub
dataset, the most common format is semver-3, accounting for 69.78% of the total. Similarly, the semver-3 format
is also the most prevalent in the GitHub dataset, representing 61.68% of the total.

In contrast, the BigQuery dataset primarily uses the date(yyyy-mm-dd) format, which constitutes 31.82% of
the total. The APIs.guru dataset also favors a date-based format, specifically date(yyyy-mm-dd), which accounts
for 39.77% of the total.

The Other category of formats encompasses all version identifier formats that could not be classified due to
their non-uniformity. These formats do not adhere to any of the common versioning schemes such as Semantic
Versioning or date-based versioning, and instead, they follow unique, custom formats devised by the API developers.
Its presence highlights the diversity and complexity of versioning practices in the real-world APIs. It underscores
the fact that despite the existence of widely accepted versioning schemes, a considerable number of APIs opt for
custom, non-standard versioning formats. However, the use of such formats can lead to inconsistencies, make
version management more complex, and potentially hinder the understanding and usage of the API for developers.
Therefore, while these non classifiable formats represent a small proportion of the total, it is an important aspect
of the versioning landscape that warrants further investigation and understanding.

The formats are categorized based on the versioning scheme they adhere to, such as Semantic Versioning
(SemVer), date-based versioning, and others. For each format, Table 9.5 lists the number of occurrences in each
dataset.

Table 9.3 and 9.4, provides a detailed breakdown of the version identifier formats used across the four datasets.

Dataset #APIs #Unique Version IDs Most Used ID #APIs Using Most Used ID

GitHub
5 107 (97.87%)

7 020 1.0.0
2 242

162 244 (97.77%) commits 42 416 commits

BigQuery 44 364 (89.94%) 1 941 1.0.0 4 987
SwaggerHub 381 437 (94.30%) 8 616 1.0.0 240 310
APIs.guru 3 988 (99.95%) 824 v1 275

Total 592 033 (98%) 10 221

Table 9.2. Number of artifacts featuring metadata-based versioning.

191 9.4 Results

Figure 9.4. 20 most adopted version identifier formats used in metadata in each of the study datasets and
combined

192 9.4 Results

Figure 9.5. Number of artifacts with version identifiers used in metadata of stable and preview releases in each
of the study datasets and combined

193 9.4 Results

Format SwaggerHub BigQuery GitHub APIs.guru Combined
#APIs #Commits

Major version number 25 139 2 884 326 9 747 512 36 608

integer 11 328 470 85 1 400 119 13 402
v* 13 489 2 346 240 8 183 376 25 634
v*# 120 49 5 132 11 317
v*-# 202 19 1 32 6 260

SemVer 350 012 13 480 4 800 143 557 1 161 504 010

semver-2 60 576 3 706 1 146 35 351 341 101 120
semver-2# 1 090 66 19 361 6 1 542
semver-3 282 597 9 465 3 787 102 359 792 397 000
semver-3# 4 457 199 475 4 709 13 9 853
semver-4 1 169 39 13 777 9 2 007
semver-6# 2 3 - - - 5
semver-4# 49 - - - - 49
semver-5 60 - - - - 60
semver-5# 6 - - - - 6
semver-6 6 - - - - 6

Tag 266 27 8 92 1 394

latest* 124 13 8 92 1 238
test* 128 12 - - - 140
new* 11 - - - - 11

Date 1 059 16 140 53 827 1 628 18 707

date(yyyy-mm) 22 4 19 327 - 372
date(yyyy-mm-dd) 568 15 761 16 202 1 587 18 134
date(yyyy-mm-dd)-# 112 234 3 18 28 395
date(yyyy-mm-ddThh:mm:ssZ) - 60 16 262 3 341
date(yyyy.mm.dd) 124 46 1 8 7 186
date(yyyymmdd) 112 21 2 10 1 146
date(yyyy.mm) 10 3 - - 1 14
vdate(yyyy-mm-dd) 8 5 - - 1 14
date(yyyy) 87 - - - - 87
date(yyyy-mm-dd).hh.mm.ss 1 - - - - 1
date(yyyy-mm-dd hh:mm:ss) 5 1 - - - 6

Table 9.3. Number of artifacts with version identifiers used in metadata of stable releases in each of the study
datasets and all combined

194 9.4 Results

Format SwaggerHub BigQuery GitHub APIs.guru Combined
#APIs #Commits

Develop 160 29 219 1 513 2 1 704

dev* 55 1 2 39 - 95
develop* 10 - 1 1 - 12
semver-dev* 66 12 217 1 473 1 1 552
v*dev* - 5 - - 1 6
semver-dev*.* 5 - - - - 5

Snapshot 977 52 64 313 1 1 343

semver-SNAPSHOT* 960 43 64 313 1 1 317
semver-SNAPSHOT*.* 2 - - - - 2

Preview 179 9 648 5 36 489 10 352

date(yyyy-mm-dd)-preview# 77 9 374 1 10 480 9 941
semver-preview* 23 128 1 12 6 169
semver-preview*.* 10 56 3 14 1 81
date(yyyy-mm-dd)-preview* 1 40 - - - 41
preview* 10 12 - - 1 23
semver-pre*.* 1 18 - - 1 20
semver-pre* 3 - - - - 3

Alpha 412 165 145 1 117 45 1 739

alpha* 50 5 2 27 2 84
semver-alpha* 161 18 25 551 - 730
semver-alpha*.* 45 1 118 472 - 518
v*alpha* 27 96 2 67 42 232
v*p*alpha* - 2 - - 1 3

Beta 456 555 42 942 132 2 085

beta* 91 3 2 68 2 164
semver-beta* 158 72 25 480 - 710
semver-beta*.* 27 3 3 10 - 40
v*.beta 3 - 11 364 - 367
v*beta* 24 383 2 20 119 546
semver (beta) - 7 - - - 7
v*p*beta* - 36 - - 11 47

Release Candidate 370 64 266 1 065 0 1 499

semver-rc* 176 5 9 107 - 284
rc* 19 1 1 15 - 35
v*rc* 15 2 1 10 - 27
semver-rc*.* 160 56 255 933 - 1 353

Table 9.4. Number of artifacts with version identifiers used in metadata of preview releases in each of the
study datasets and all combined

195 9.4 Results

9.4.2 URL-based versioning
URL-based versioning is a method of version control for web APIs where the API version is incorporated directly
into the URL structure. This version information can be embedded either in the API paths or within the DNS names.
When versioning is integrated into paths, it’s typically appended as a segment in the URL:

api.example.com/v1/resource)

Alternatively, with DNS-based versioning, the version is encompassed in the subdomain or domain:

v1.api.example.com)

The deployment implications of these approaches vary. Path-based versioning grants greater flexibility and
straightforward resource grouping. However, it can potentially lead to longer URLs as versions accumulate. DNS-
based versioning, on the other hand, offers cleaner URLs and enables physical separation of versioned APIs, but
requires more elaborate DNS configurations and management.

9.4.3 Path-based versioning
Path-based versioning adoption overview

Dataset Location #APIs #Unique Most Used #APIs

SwaggerHub Only paths 57 518 (15,11 %) 464 v1 27 390
Paths + Servers 72 951 (19,16 %) 957 v1 30 193

BigQuery Only paths 6 001 (13,20 %) 203 v1 1 947
Paths + Servers 7 599 (16,71 %) 261 v1 2 605

GitHub
Only paths 1 428 (27,37%) 124 v1 539

39 860 commits (23,93 %) 16 519 commits

Paths + Servers 1 793 (34,36%) 180 v1 861
51 113 commits (30,80 %) 24 055 commits

APIs.guru Only paths 935 (23,49 %) 138 v1 373
Paths + Servers 1 381 (34,69 %) 186 v1 480

Table 9.5. Number of artifacts featuring Path-based versioning across datasets

Table 9.5 provides an overview of the adoption of path-based versioning across the four datasets, showing that the
most commonly used version identifier in path-based versioning is ‘v1‘. The table differentiates between APIs that
include version identifiers within each individual path and those that employ a global identifier attached to the
server URL. The latter is located within the servers field.
• In the SwaggerHub dataset, 15.11% of APIs use path-based versioning with version identifiers in individual

paths, and this percentage increases to 19.16% when considering APIs that also use a global identifier in the server
URL.
• The BigQuery dataset shows a similar trend, with 13.20% of APIs using path-based versioning in individual

paths, and 16.71% when including APIs with a global identifier.
• The GitHub dataset shows a higher adoption rate of path-based versioning, with 27.37% of APIs using version

identifiers in individual paths at some point in their history, and 34.36% when considering APIs with a global
identifier.

196 9.4 Results

Table 9.6. Number of artifacts with Path-based versioning of stable and preview releases Usage of one or
multiple format categories in path-based versioning of APIs with multiple versions in production in each
dataset and all combined

• The APIs.guru dataset also shows a substantial adoption of path-based versioning, with 23.49% of APIs using
version identifiers in individual paths, and 34.69% when including APIs with a global identifier.

Path-based versioning identifiers formats

The results in Table 9.6 provide an overview of the most adopted version identifier formats appearing in paths
across the study datasets. The table presents the formats along with their occurrence in each dataset, expressed as
a percentage of the total number of APIs in the respective dataset.

The most common format across all datasets is v*, which represents a version number prefixed with the letter
’v’. This format is prevalent in all datasets, with the highest adoption in the GitHub dataset (11.96%), followed by
SwaggerHub (8.84%), APIs.guru (10.07%), and BigQuery (5.32%).

The “integer" format, denoting a numeric version identifier, is commonly utilized, particularly in the SwaggerHub
dataset. Additionally, the “test*" format, likely indicative of versions used for testing, is prevalent in both the
SwaggerHub and BigQuery datasets. Semantic versioning is a favored approach across all datasets, with “semver-
2" and “semver-2#" formats frequently used. The “latest*" format, suggesting the most recent API version, appears
less frequently in all datasets. The “version" format, acting as a placeholder for version identifiers, is employed
across all datasets but with lower frequency. Notably, the "preview*" format, signifying non-finalized versions, is
present in all datasets except BigQuery, while the “alpha*" and “beta*" formats, representing early version stages,
see lesser usage across all datasets.

197 9.4 Results

Figure 9.6. Most frequently adopted version identifier formats appearing in Path in each of the study datasets
and all combined

198 9.4 Results

Ta
g

Date

Dev
elo

p

Sn
ap

sh
ot

Pr
ev

iew
Alph

a
Beta

Rele
as

e Can
did

ate
Oth

er
0

1

2

3

·104

39
4

19
,7

07

1,
92

3

1,
40

7

10
,3

57

1,
88

4

2,
12

7

1,
76

5

11
,1

7212
,6

65

33
2

46
2

2

1,
73

2

40
8 1,
15

6

27
,2

15

N
um

be
r

of
A

rt
ifa

ct
s

Metadata-based versioning Path-based versioning

Figure 9.7. Comparing the adoption of the least used formats classed in metadata-based and path-based
versioning in all datasets combined. (Semantic Versioning and Major Version Number have been omitted).

We systematically classified the identified versioning formats into distinct categories, distinguishing between
stable and unstable release classes. The heatmap is Table 9.6 provides a detailed breakdown of the version identifiers
used in stable and preview releases across the study datasets. The table categorizes the identifiers into different
formats. The table presents the number of artifacts with each format in each dataset.

From Table 9.6, it is evident that “Major version number" and “Tag" are the most commonly used formats in
stable releases across all datasets (Table 9.7). This suggests a preference for these formats in stable releases, possibly
due to their simplicity and straightforwardness.

In preview releases (Table 9.8), the “Preview", “Alpha", and “Beta" formats are more prevalent. This indicates
that these formats are commonly used to denote early stages of the version lifecycle, where the API is still under
development and not yet finalized.

Regarding the “Others" category in Table 9.6 and Figure 9.7, it is worth noting that this category includes version
identifiers that do not fit into any of the predefined formats. The high number of artifacts with the “Others" format
suggests a diverse range of versioning practices across the study datasets or the fact that the paths are long enough
to make it more probable to detect identifiers that are not meant to be used for versioning purposes. This applies
also to the case of the “Tag” format.

Further analysis is required to understand the specific characteristics and patterns within the “Others" class.
This could involve examining individual API documentation or conducting interviews with API developers to gain
insights into their usage purpose.

9.4.4 DNS-based versioning
In DNS-based versioning, the version information is included in the server DNS name.

Table 9.9 presents the number of APIs that use DNS-based versioning across the four datasets, showing that
DNS-based versioning is not as widely adopted as path-based versioning.

199 9.4 Results

Format SwaggerHub BigQuery GitHub APIs.guru Combined
#APIs #Commits

Major version number 38 756 3 451 704 20 343 692 63 946

integer 3 465 107 48 1 587 10 5 217
v* 35 796 2 635 668 19 848 509 59 456
v*# 17 17 4 18 7 63

SemVer 2 833 225 36 1 680 36 4 810

semver-2 2 353 219 36 1 679 35 4 322
semver-3 479 5 1 1 1 487
semver-2# 4 1 0 0 0 5
semver-4 1 0 0 0 0 1

Tag 5 932 735 280 5 623 95 12 665

latest* 1 372 256 58 944 54 2 684
new* 1 748 68 88 1 580 17 3 501
test* 3 046 419 141 3 170 32 6 808

Date 238 73 0 0 21 332

date(yyyy-mm-dd) 159 65 0 0 21 245
date(yyyy) 69 0 0 0 0 69
date(yyyy-mm) 10 0 0 0 0 10
date(yyyymmdd) 1 0 0 0 0 1
date(yyyy-mm-dd)-# 0 1 0 0 0 1

Table 9.7. Number of artifacts with Path-based versioning of stable releases in each of the study datasets

Our analysis revealed that not many of the APIs documentation follow the standard URL format RFC 3986. In
OpenAPI formats without DNS name, such as “/v1/users” or “/” are valid values for server URLs.

The low adoption rate of DNS-based versioning showed in Table 9.9 can be attributed to the fact that not all
developers use a URL with the DNS name in the server field.

9.4.5 Header-based versioning

In Table 9.10 and Figure 9.8, we analyzed the approach’s prevalence across our four datasets, investigated the
header names used to denote API versions, and identified the most common ones.

The results of our analysis indicate that the header-based versioning approach is not as prevalent as path-based
versioning. A wide variety of header names used in the SwaggerHub dataset (Figure 9.8), indicating a lack of
standardization among the APIs adopting that practice.

In Figure 9.8 we depict the adoption of header-based versioning in the SwaggerHub dataset over the years.

200 9.4 Results

Format SwaggerHub BigQuery GitHub APIs.guru Combined
#APIs #Commits

Develop 338 5 7 111 1 462

dev* 328 1 7 111 - 447
develop* 10 - - - - 10
v*dev* - 4 - - 1 5

Snapshot 0 0 1 1 0 2

semver-SNAPSHOT* - - 1 1 - 2

Preview 1 098 58 23 537 16 1 732

preview* 1 097 51 23 537 16 1 724
date(yyyy-mm-dd)-preview# - 7 - - - 7
semver-preview*.* 1 - - - - 1

Alpha 100 217 3 43 45 408

v*alpha* 80 209 3 43 43 378
alpha* 21 7 - - 1 29
v*p*alpha* - 1 - - 1 2

Beta 190 666 9 163 128 1 156

beta* 86 3 5 143 1 238
v*beta* 103 628 4 20 117 872
v*p*beta* - 35 - - 10 45
v*.beta 1 - - - - 1

Release Candidate 0 0 0 0 0 0

Table 9.8. Number of artifacts with Path-based versioning of preview releases in each of the study datasets
and all combined

9.4.6 Dynamic versioning

In this chapter we examine the prevalence of APIs that offer endpoints for retrieving either the current version or
the list of available versions of the API. Our work also delves into understanding the potential correlations between
the adoption of dynamic versioning strategies and the utilization of header-based versioning in real-world APIs. In
Table 9.11 we show the number of APIs having one endpoint dedicated to fetch the current version/versions of the
API.

The GET /version endpoint, which retrieves the current version of the API, is more prevalent across all datasets.
In the SwaggerHub dataset, 1185 APIs provide this endpoint, while in the BigQuery, GitHub, and APIsguru datasets,
435, 67, and 11 APIs provide this endpoint, respectively. On the other hand, the GET /versions endpoint, which
retrieves the list of available versions of the API, is less common. In the SwaggerHub dataset, only 153 APIs
provide this endpoint. Similarly, in the BigQuery, GitHub, and APIsguru datasets, only 17, 4, and 8 APIs provide
this endpoint, respectively. These results suggest that while some APIs provide dynamic versioning capabilities,
the majority of APIs prefer to provide only the current version information. This could be due to the simplicity
and lower maintenance overhead of only managing a single current version. However, providing a list of available
versions can offer more flexibility to the clients, allowing them to choose the most suitable version for their needs.

Figures 9.9 and 9.10 illustrate the adoption of dynamic versioning over the years in the Github and SwaggerHub
datasets, respectively. Figure 9.9, the adoption of the GET /version endpoint in the Github dataset has been
relatively very low and non-stable over the years. On the other hand, the adoption of the GET /versions endpoint
has been minimal, with a small increase starting from 2020. In Figure 9.10, we can observe that the adoption of

201 9.4 Results

Dataset #APIs #Distinct Version IDs Most used ID Occurrence (#APIs)

GitHub 3 (215 commits) 1 {version} 3
BigQuery 21 2 {version} 19
SwaggerHub 64 8 {version} 57
APIs.guru 10 1 {version} 10

Table 9.9. Number of APIs with DNS-based versioning

BigQuery #APIs

x-ms-version 6
x-api-version 2
x-ph-api-version 1
x-amz-fwd-header-x-amz-version-id 1
accept-version 1
- -

APIs.guru #APIs

x-ms-version 3
x-readme-version 1
trakt-api-version 1
x-amz-fwd-header-x-amz-version-id 1
x-je-api-version 1
zuora-version 1

GitHub #APIs #Commits

basiq-version 3 180
cdi-version 1 39
x-myobapi-version 1 12
apiversion 1 6
version 1 3
x-api-version 1 30

Table 9.10. Adoption of header-based versioning across the study datasets: BigQuery, GitHub, and APIs.guru.

the GET /version endpoint in the Github dataset has been relatively very low and stable over the years. On the
other hand, the adoption of the GET /versions endpoint has been minimal all the time.

It is also worth noting that the adoption of dynamic versioning strategies does not seem to correlate with the
use of header-based versioning. We anticipated discovering a correlation between the utilization of header-based
versioning and dynamic versioning. However, our analysis revealed that this correlation was relatively scarce,
with only seven APIs (comprising six from BigQuery and one from SwaggerHub) where these two practices were
employed concurrently.

We looked at the correlation between the usage of dynamic versioning and query parameters where the clients
can send the version identifier. Within the APIs that feature dynamic versioning, we found 146 APIs in SwaggerHub,
320 APIs in BigQuery, 12 APIs in GitHub dataset (223 commits), and three APIs in APIs.guru dataset that have
version query parameters in at least one operation.

9.4.7 “Two in production" Evolution Pattern

We analyzed the usage of the “two in production" evolution pattern [98?] across the four study datasets by
examining the APIs that have paths with distinct version identifiers.

The examination involved an analysis of specifications containing descriptions of various API versions. This
analysis was predicated on the assumption that the presence of multiple versions within these specifications implied
the coexistence of these API versions in a production environment.

As demonstrated in the bar charts of Figures 9.11 and 9.12, our analysis revealed the presence of 22 632
adoptions the "two in production” evolution pattern: 11 870 in SwaggerHub, 9 465 commits in GitHub, 1 139 in
BigQuery, and 158 in APIs.guru collection (See Figures 9.13 and 9.14). in productions APIs across all the collections.
Notably, among these APIs of having more than 2 versions concurrently active. 419 APIs from BigQuery and 219
APIs from SwaggerHub exhibited the noteworthy characteristic of using different formats for each version.

As illustrated in Figure 9.11, for APIs maintaining two versions in production, approximately 51% employ the
Major Version Number as the format for the version identifier within the paths. This rate of adoption remains
consistent for scenarios involving three to six concurrent versions. Beyond this range, the Major Version Number
becomes the sole versioning format utilized.

202 9.4 Results

Header Name #APIs

api-version 84
x-api-version 73
app-version 22
x-app-version 17
Accept-version 13
appversion 9
accept-version 8
x-version 8
app_version 6
x-version-api 5

126 Distinct Names 549

0

50

100

#
A

PI
s

H
ea

de
r-

ba
se

d
ve

rs
io

ni
ng

#APIs

20
15

20
17

20
19

20
21

20
23

5 · 10↓2

0.1

H
ea

de
r-

ba
se

d
ve

rs
io

ni
ng

ad
op

tio
n

ra
te

(%
)

Adoption rate

Figure 9.8. Header-based adoption in SwaggerHub Dataset over the year over the years

Endpoint SwaggerHub BigQuery GitHub APIsguru

#API #Commits

GET /version 1185 435 67 2585 11
GET /versions 153 17 4 438 8

Table 9.11. Number of artifacts where dynamic version information endpoints is detected

The results presented in Figure 9.13 provide insights into the usage of multiple format categories in path-based
versioning of APIs that adopt the "two in production" evolution pattern in each dataset sparately, where we can see
that the adoption of Major Version Number slightly differs in the case of BigQuery.

In the APIs.guru dataset, the majority of APIs (79) use only one format category, while a smaller number (28)
use two format categories. Only a very small number of APIs (2) use three or more format categories.

A similar pattern is observed in the BigQuery dataset, with a majority of APIs (563) using one format category,
a smaller number (320) using two format categories, and a very small number (8) using three or more format
categories.

In the GitHub dataset, the majority of APIs (5 120) use one format category, while a smaller number (902) use
two format categories. Only a very small number of APIs (31) use three or more format categories.

In the Swagger dataset, the majority of APIs (6641) use one format category, while a smaller number (1339)
use two format categories. A slightly larger number of APIs (87) in this dataset use three or more format category
compared to the other datasets.

Wile the use of multiple format categories in path-based versioning is not uncommon, the majority of APIs prefer
to use a single format category. This could be due to the simplicity and consistency offered by using a single format
category.

In Figure 9.12, we quantify the number of APIs employing precisely one, two, or three or more format combi-
nations for APIs with more than one version in production. It is evident that, in the majority of instances, APIs tend
to use no more than one format for versioning.

The results presented in Figure 9.14 provide a comprehensive overview of the version formats used in APIs that

203 9.4 Results

0

200

400

600

#
C

om
m

its

GET /version
20

16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

0

1

2

0

200

400

600

GET /versions

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

0

1

2

A
do

pt
io

n
ra

te
(%

)

Figure 9.9. Dynamic versioning over the years in Github Dataset

0

50

100

#
C

om
m

its

GET /version

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

0

1

2

0

50

100

GET /versions
20

15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

0

1

2

A
do

pt
io

n
ra

te
(%

)

Figure 9.10. Dynamic versioning over the years in SwaggerHub Dataset

adopt the "two in production" evolution pattern in each of the datasets separately.

In the APIs.guru dataset, the majority of APIs (4470) use the "Major version number"format, while a smaller
number (3511) use other formats. This trend is also observed in the BigQuery dataset, with a majority of APIs
(2611) using the "Major version number"format, and a smaller number (3411) using other formats.

In the GitHub dataset, a similar pattern is observed, with a majority of APIs (199) using the "Major version
number"format, and a smaller number (692) using other formats. However, in the Swagger dataset, the use of the
"Major version number"format (4470) is almost equal to the use of other formats (3511).

These results suggest that while the Major version number format is the most commonly used format in path-
based versioning, a significant number of APIs also use other formats. This could be due to the flexibility and
adaptability offered by these other formats, allowing API developers to tailor their versioning strategy to the specific
needs and requirements of their API.

204 9.5 Results structuring

2 3 4 5 6 7 8 9 101112

0

0.5

1

1.5

·104

#Distinct Identifiers in Versioned Paths

N
um

be
r

of
A

rt
ifa

ct
s Major version number

Other formats

Figure 9.11. The adoption of major version number vs
other formats in identifiers found in the paths of APIs
with multiple versions in production in all datasets
combined

2 3 4 5 6 7 8 9 101112

0

0.5

1

1.5

·104

#Distinct Identifiers in Versioned Paths

N
um

be
r

of
A

rt
ifa

ct
s One format category

Two format categories

Three or more fmt. categories

Figure 9.12. Usage of one or multiple format cate-
gories in path-based versioning of APIs with multiple
versions in production in all datasets combined

9.4.8 Version Formats adoption over the years

Figure 9.15 shows that in 2015 Semantic Versioning (SemVer) held sway as the predominant versioning format,
constituting the choice in 59% of the analyzed APIs, while the utilization of the Major Version Number format
accounted for 38.11% of the cases. However, an observable shift occurred in the subsequent years. Notably, there
was a conspicuous decline in the adoption of the simplified format, characterized by solely the major version number,
accompanied by a notable resurgence in SemVer adoption during the year 2017. Nonetheless, the substantial surge
in SemVer adoption observed in 2017 was not sustained in the subsequent years. Instead, SemVer’s adoption
exhibited a relatively stable trajectory over the years, punctuated by occasional slight declines noted in 2021 and
2022.

9.5 Results structuring

Q1: What are the commonly adopted practices for Web APIs versioning?
Based on our analysis investigating the adoption of the versioning practices: metadata-based, URL-based, header-
based, and dynamic versioning, we detected the usage of these practices with different frequencies across the four
study datasets. Metadata-based versioning, where the version information is included in the API metadata, is preva-
lent in 98% of the APIs. This practice is favored due to its simplicity and the ease of managing version information
in a centralized location. URL-based versioning, where the version information is included in the URL of the API, is
adopted in 26.23% of the APIs. This practice offers the advantage of making the version information immediately
visible and accessible to the clients. Header-based versioning, where the version information is included in the
HTTP headers, is less common, being used in only 0.17% of the APIs. This could be due to the additional com-
plexity it introduces in managing version information. Lastly, dynamic versioning, where the version information
is discovered dynamically at runtime, is used in a minority of APIs (1088 APIs in all datasets).

Q2: How do developers distinguish stable from preview releases?
Developers distinguish between stable and preview releases primarily through the use of specific version identifier
formats. Our analysis of the study datasets revealed that the“Major version number" and “Tag" formats are the

205 9.5 Results structuring

2 3 4 5 6 7 8 12
0

50

100

#Distinct Identifiers in Versioned Paths

#
A

PI
s

APIs.guru

One format category

Two format categories

Three or more fmt. categories

2 3 4 5 6 7 8 11
0

500

#Distinct Identifiers in Versioned Paths

#
A

PI
s

BigQuery

2 3 4 5 6 7 8 9 11
0

2,000

4,000

6,000

#Distinct Identifiers in Versioned Paths

#
C

om
m

its

GitHub

2 3 4 5 6 7 8 9 10111213
0

2,000

4,000

6,000

8,000

#Distinct Identifiers in Versioned Paths

#
A

PI
s

Swagger

Figure 9.13. Usage of one or multiple format categories in path-based versioning of APIs with multiple versions
in production

most commonly used in stable releases across all datasets. This suggests a preference for these formats in stable
releases, possibly due to their simplicity and straightforwardness. In contrast, the “Preview", “Alpha", and “Beta"
formats are more prevalent in preview releases. This indicates that these formats are commonly used to denote
early stages of the version lifecycle, where the API is still under development and not yet finalized. For instance, in
the SwaggerHub dataset, the “semver-beta*.*" format was used in 27 APIs, the “v*.beta" format in 3 APIs, and the
“v*beta*" format in 24 APIs.

Q3: To what extent is the practice of semantic versioning adopted in Web APIs, and are there alternative versioning
schemes in use?
Semantic versioning (SemVer) is found to be widely adopted practice in Web APIs. Our analysis shows that in
2015, SemVer was the predominant versioning format, used in 59% of the analyzed APIs. However, its adoption
has seen some fluctuations over the years. For instance, in 2017, there was a significant increase in SemVer adoption,
reaching 89.12% of the APIs. However, this surge was not sustained in the subsequent years, with a slight decline
noted in 2021 and 2022. Despite these fluctuations, SemVer remains a popular choice, with its adoption rate in
2023 standing at 87.60%.
In terms of alternative versioning schemes, the Major Version Number format is the second most common, used
in 38.11% of APIs in 2015. However, its adoption has seen a decline over the years, dropping to 5.70% in 2023.
Another alternative is the Date format, which, although less common, has seen a tiny slight increase in adoption,
from 0.17% in 2015 to 0.36% in 2023.
These findings suggest that while SemVer is the most prevalent versioning scheme, there is a diversity of practices

206 9.5 Results structuring

2 3 4 5 6 7 8 12
0

50

100

#Distinct Identifiers in Versioned Paths

#
A

PI
s

APIs.guru

Major version number
Other formats

2 3 4 5 6 7 8 11
0

500

#Distinct Identifiers in Versioned Paths

#
A

PI
s

BigQuery

2 3 4 5 6 7 8 9 11
0

2,000

4,000

6,000

#Distinct Identifiers in Versioned Paths

#
C

om
m

its

GitHub

2 3 4 5 6 7 8 9 10111213
0

2,000

4,000

6,000

8,000

#Distinct Identifiers in Versioned Paths

#
A

PI
s

swaggerhub

Figure 9.14. Comparing the adoption of major version number vs other formats in identifiers found in the
paths of APIs with multiple versions in production

in Web API versioning, with some APIs opting for alternative schemes such as the Major Version Number or Date
formats.

Q4: What is the prevalence of APIs with multiple versions in production? how many concurrent versions exist?
Our analysis shows the presence APIs have multiple versions in production concurrently in all the dataset. Specifi-
cally, 14.29% of the APIs in the SwaggerHub dataset, 5.50% in the BigQuery dataset, 6.99% in the GitHub dataset,
and 3.96% in the APIs.guru dataset have multiple versions in production.
In terms of the number of concurrent versions, our analysis reveals a wide range. The majority of APIs with multiple
versions in production have between 2 to 5 concurrent versions. However, there are also APIs with a high number of
concurrent versions. For instance, in the SwaggerHub dataset, the maximum number of concurrent versions found
in an API is 13. This suggests that some APIs maintain a large number of versions in production, possibly to cater
to a wide range of clients with different version requirements.

Q5: How has the adoption of dynamic versioning and header-based versioning practices evolved over time?
Our analysis reveals interesting trends in the adoption of dynamic versioning and header-based versioning practices
over time. Dynamic versioning, despite its potential benefits of flexibility and adaptability, is used in a minority
of APIs across all datasets. This could be attributed to the additional complexity and overhead associated with
managing dynamic version information.
On the other hand, header-based versioning, where the version information is included in the HTTP headers, is
even less common. This could be due to the additional complexity it introduces in managing version information.
However, it is worth noting that the adoption of dynamic versioning strategies does not seem to correlate with the

207 9.5 Results structuring

0

2

4

6

8
·104

#
A

PI
s

us
in

g
fo

rm
at

SemVer Major Date

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

0%

20%

40%

60%

80%

100%

A
PI

s
us

in
g

fo
rm

at
(%

)

SwaggerHub

0

2

4

6

8
·104

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

0%

20%

40%

60%

80%

100%

A
PI

s
us

in
g

fo
rm

at
(%

)

GitHub

SemVer Major Date

Figure 9.15. Adoption of Semantic Versioning, Major version number and Date formats over the years

use of header-based versioning. We anticipated discovering a correlation between the utilization of header-based
versioning and dynamic versioning. However, our analysis revealed that this correlation was relatively scarce,
with only seven APIs (comprising six from BigQuery and one from SwaggerHub) where these two practices were
employed concurrently.
Although there is a diversity of practices in Web API versioning, the adoption of dynamic and header-based version-
ing practices has remained relatively low over the years. This highlights the need for more research to understand
the factors that influence these adoption trends.

Q6: How sensitive are the results to the source of the API descriptions?
The results show some sensitivity to the source of the API descriptions. For instance, the adoption rate of Semantic
Versioning (SemVer) in the SwaggerHub dataset was 87.60% in 2023, while in the GitHub dataset, it was 90.77%.
Similarly, the adoption rate of the Major Version Number format was 5.70% in the SwaggerHub dataset and 4.32%
in the GitHub dataset in 2023.
Figure 9.16, depict the adoption of identifiers format in Metadata-based versioning in each of the four dataset.
The adoption dominance of each format follows the same order in the case of BigQuery and APIs.guru datasets,
where the most common one is “Date”, followed by “Semver". Another particular noticed aspect is the presence of
a relatively hight number of “Preview" identifiers.
The higher prevalence of the “Preview" identifiers in the BigQuery and APIs.guru datasets could be indicative of the
experimental nature of many APIs on these data sources.
On the other hand, the SwaggerHub and GitHub datasets show a higher prevalence of the “SemVer" identifiers.
In terms of the “Major Version Number" format, its adoption is relatively consistent across all all of SwaggerHub,
GitHub and BigQuery datasets, ranging from 5.82% in the GitHub dataset to 6.25% in GitHub. While in APIs.guru
dataset, the adoption rate of this format goes up to 12.83%.
Figure 9.17 shows the the common traits between versioning formats in some of the datasets in Meta-data-based
versioning are not present in the case of Path-based versioning.
These differences suggest that while the overall trends in versioning practices are similar across different sources
of API descriptions, there are some variations in the specific adoption rates. This could be due to differences in

208 9.6 Web API versioning in OpenAPI 4.0: proposal

the communities of developers contributing to these sources, their preferences, and their familiarity with different
versioning schemes.

SwaggerHub BigQuery GitHub APIs.guru

0

2

4

6

8

10

12

14

16

18

7.
29

0.
44

12
.6

1

18
.1

0.
46

2
·1

0↓
2

1.
01

0.
93

1.
49

0.
17

3.
39

2.
46

0.
15

0 0

0.
55

1
·1

0↓
2

0 7
·1

0↓
2

3
·1

0↓
2

0 0 0 00.
12

1
·1

0↓
2

0.
32 0.
43

0.
44

0 3
·1

0↓
2

1.
181.

35

1
·1

0↓
2

0.
1

3.
283.

51

0.
32

8.
33

2.
81

A
do

pt
io

n
ra

te
(%

)

Major version number SemVer Tag Date Develop
Snapshot Preview Alpha Beta Other

Figure 9.17. Adoption of di"erent format categories in each dataset in Path-based versioning

9.6 Web API versioning in OpenAPI 4.0: proposal

The diversity of formats found in in the info.version field of the OpenAPI specification is due to the way to docu-
ment API versioning in OpenAPI, which does not provide any information about the type of versioning adopted by

209 9.6 Web API versioning in OpenAPI 4.0: proposal

the API, such as semantic versioning, date-based versioning, or custom versioning. It also does not explicitly support
the use of multiple versions of the API specification in the same document, which can be useful for documenting
deprecated or experimental features.

Introducing standardized metadata fields for version identifiers in the OpenAPI specification would significantly
enhance clarity and interoperability across web APIs. By clearly defining the type of versioning adopted—be it
semantic, date-based, or custom—developers and tools can more easily understand and manage API versions. This
standardization would facilitate automated tools in accurately interpreting version changes, thereby improving API
documentation, and would aid in the seamless integration of APIs with differing versioning schemes.

In our proposal in Listing 9.2, the existing info.version field would change type from string to an object
that comprises the value field to specify the version identifier string, the schema field to document and enforce a
precise, structured version format, and the upgrade field to define the version upgrade rules that should be followed,
depending on the chosen format. In addition, for recording the release date, we introduce a timestamp so that the
age of the API release can be tracked explicitly. Likewise, tags can represent the lifecycle phase to which the artifact
belongs. A separate build counter can complement the timestamp so that DevOps pipelines can use a fine-grained
identifier to stamp each artifact version without affecting the main version identifier.

Listing 9.2. Proposal for web API version in OpenAPI
version:

semantic-identifier: 1.2.3 # Semantic version identifier value
lifecyle: "stable" # stable, preview, rc, alpha, beta
timestamp: YYYY-MM-DD HH:MM:SS # optionally track the API release age
build: NNNN # an integer build counter

By knowing the versioning strategy (such as semantic versioning, date-based versioning, or custom versioning),
API consumers can better anticipate the nature of changes and updates. This aids in planning for potential compat-
ibility issues and migration efforts. The specification can serve as a reference point for all API development team
members, making it clear how version numbers are assigned and what each increment signifies.

In Summary
Versioning in Web APIs is a fundamental practice to ensure their compatibility and ease their maintainability. In
this empirical study we focused on version identifiers, observing their representation formats, static or dynamic
discoverability, and purpose across 4 different datasets of 602 859 OpenAPI descriptions. The vast majority utilized
static versioning in the API metadata (592 033; 98%), while only a subset include version identifiers embedded
in the API endpoint path URL addresses (133 456; 22%). Only a small fraction (4219; 0.7%) supported dynamic
discovery of the current version through a dedicated endpoint.

In terms of version format, we identified 10 221 distinct version identifiers and 59 distinct formats (28 stable, 30
preview, and other) used to distinguish stable and preview releases, with 23 251 pre-release versions across different
stages of the API release lifecycle. While most APIs use semantic version identifiers to indicate the expected impact
on clients of changes with respect the previous version, a few instead use version identifiers to track the age of the
API.

We also observed the usage of the “two in production” evolution pattern in 13501 APIs (4 250 with more than
2 versions): 158 in APIs.guru, 1139 in BigQuery, 365 (with 9 465 commits) in GitHub, and 11 839 in SwaggerHub.
In these cases, the most prevalent format for version identifiers attached to the path was to reference only the major
version.

210 9.6 Web API versioning in OpenAPI 4.0: proposal

SwaggerHub BigQuery GitHub APIs.guru

0

10

20

30

40

50

60

70

80

90

6.
21

5.
82 6.
25

12
.8

3

86
.4

3

27
.2

2

92
.0

2

29
.1

7
·1

0↓
2

0.
15

0.
15

3
·1

0↓
2

0.
26

32
.5

9

1.
02

40
.8

4
·1

0↓
2

6
·1

0↓
2 4.

2

5
·1

0↓
2

0.
24

0.
1 1.

23

3
·1

0↓
2

4
·1

0↓
2

19
.4

8

0.
1

12
.2

6

0.
1

0.
33

2.
78

1.
13

0.
11 1.

12

0.
81

3.
31

9
·1

0↓
2

0.
13

5.
1

A
do

pt
io

n
ra

te
(%

)

Major version number SemVer Tag Date Develop
Snapshot Preview Alpha Beta Release Candidate

Figure 9.16. Adoption of di"erent format categories in each dataset in Meta-data based versioning

Chapter 10

Web API Changes and Versioning Consistency

Given the public nature of Web APIs, the expectation is that their developers carefully assess the impact of every
change as they strive to avoid breaking their clients. But if breaking changes are introduced, are semantic versioning
rules properly followed? How often can clients rely on semantic versioning identifiers to set their expectations about
the impact of new releases they depend on?

Breaking changes are found to occur approximately twice as often as non-breaking changes (Chapter 7), setting
an expectation for providers to update the semantic versioning identifier accordingly.

This chapter presents the results of our analysis to evaluate this hypothesis, along with the approach we em-
ployed to carry out the evaluation.

10.1 Research Approach
In this research, we performed a data analysis method to statically classify 195 different types of changes that can
be detected by comparing OpenAPI [118] descriptions and predict whether they are likely to break clients with
different tolerance levels [37]. We apply the method to a collection of 3 075 API evolution histories mined from
open-source GitHub repositories. The main findings are that, in the best case, 1) almost one-third of APIs in our
sample (927) evolve in a backward-compatible way; 2) a minority of APIs (517) that introduce breaking changes
do so by consistently adhering to semantic versioning rules.

Before filtering, the snapshot we used in this study included a snapshot containing 915 885 valid specifications
from 270 578 APIs committed to GitHub between 2015 and January 2024. As described in Table 10.1, our analysis
focuses on the evolutionary aspect of APIs. Therefore, we specifically looked at APIs with a history of at least
10 commits, all containing valid OAS documents. Considering the goal of this study, to examine the practical
adoption of semantic versioning, we filtered for APIs that consistently use identifiers compatible with semantic
versioning throughout their entire history. Additionally, to be able to check the level of compliance with semantic
versioning rules, we identified APIs that have released at least one new version during their history that included
some modifications impacting the functionalities of the API. As a result, our study includes the history of 3 075 APIs,
with a total of 15 856 versions, corresponding to 506 273 changes introduced in their documentation.

10.1.1 Semantic Versioning Change Classification

Due to the lack of widely accepted semantics for arbitrary version identifiers, in this chapter we focus exclusively
on APIs which make consistent use of semantic versioning throughout their evolution history, in both stable and
preview releases.

211

212 10.1 Research Approach

More precisely, we analyzed API descriptions versioned with four different schemes: X (Major), X.Y (Ma-
jor.Minor), X.Y.Z (Major.Minor.Patch), and X.Y.Z-LABEL (Major.Minor.Patch-Release Type). Where the release
type, if present, labels the maturity of the artifact along the API release lifecycle. The version identifiers have been
matched with the following regular expression:

/^(?i)(v)?\d{1,3}(?:\.\d{1,3})?(?:\.\d{1,3})?(?:-LABEL))?$/

Where LABEL can be: alpha, beta, dev, snapshot, rc, preview, test, or private.
We limit the size of the numbers to three digits because we want to avoid catching identifiers using dates [57],

which are often used in versioning but do not provide a clear, incremental progression of versions, reflecting the
expected change impact between releases.

Based on the previous regular expression, the parsing operation p transforms a version string into a structured
tuple (X , Y, Z , Label). E.g,: p(v1)→ (1,0,0,Ø) and p(v3.0.1-alpha)→ (3,0,1,alpha).

In Table 10.2 we report the occurrence of each version identifier format.
To detect the type of semantic version change, we use a classification function c defined as follows. The function

reads the tuples V1 = (X1, Y1, Z1, Label1) and V2 = (X2, Y2, Z2, Label2) representing two distinct version identifiers.
It detects the following version changes:
Major (X.y.z): Incremented for incompatible API changes, signaling significant modifications that may require
client adjustments.

if X1 ≃= X2, then:

&
Major Upgrade, if X1 < X2

Major Downgrade, if X1 > X2

Minor (x.Y.z): Incremented for adding backward-compatible features, indicating enhancements without breaking
existing functionalities.

if X1 = X2 and Y1 ≃= Y2, then:

&
Minor Upgrade, if Y1 < Y2

Minor Downgrade, if Y1 > Y2

Patch (x.y.Z): Incremented for backward-compatible bug fixes, often associated with routine maintenance updates.

if X1 = X2 and Y1 = Y2 and Z1 ≃= Z2, then:

&
Patch Upgrade, if Z1 < Z2

Patch Downgrade, if Z1 > Z2

Label change (x.y.z-LABEL): Updated to reflect the current (e.g., alpha, beta, rc) pre-release stage, indicating
the API is not yet ready for production.

if X1 = X2 and Y1 = Y2 and Z1 = Z2, then:

&
Label Change, if Label1 ≃= Label2
No Change, if Label1 = Label2

Table 10.1. Data cleaning steps

Filtering Step # APIs # Commits

all valid commits 270 578 915 885
at least 10 valid commits 16 401 490 526
always use semantic versioning identifiers 14 489 413 463
have at least one version change 3 075 132 909

213 10.2 Consistency Metrics

Table 10.2. Semantic versioning formats breakdown for all APIs adopting semantic versioning in all releases
(above) and for the subset with at least one version change (below)

Format # APIs # Commits # Distinct IDs Most Common Occurrence

X 1 323 41 067 49 v1 26 596
X.X 3 510 99 633 370 1.0 51 300
X.Y.Z 10 261 257 854 6 444 1.0.0 100 732
X.Y.Z-Label 620 10 485 645 1.0.0-oas3 3 078
Any 14 454 409 039 7 508

X 193 4 114 36 v0 1 103
X.X 890 33 408 361 1.0 4 384
X.Y.Z 4 050 124 163 6 434 1.0.0 16 250
X.Y.Z-Label 518 7 947 638 1.0.0-oas3 2 138
Any 4 529 169 632 7 469

Table 10.3. Classification of Version Changes

Version Change Type Version Identifier Change

Major Version Change X→ X’ X.Y→ X’.Y X.Y.Z→ X’.Y.Z
Minor Version Change X.Y→ X.Y’ X.Y.Z→ X.Y’.Z
Patch Version Change X.Y.Z→ X.Y.Z’
Label Version Change X.Y.Z-label→ X.Y.Z-label’

! The emphasis on semantic versioning is twofold: first, its primary purpose is to indicate the types of
changes in terms of backward compatibility; second, our empirical analysis revealed that it is the most
widely adopted versioning scheme in the context of web APIs.

10.2 Consistency Metrics

We implemented a systematic approach to assess consistency between changes detected across API releases and
the corresponding types of semantic version identifier changes . The results of the analysis have been obtained by
running a pipeline with the following steps (Figure 10.1).

For each API, we retrieve the complete commits history from its respective GitHub repository. We then ensure
that the API meets the filtering criteria as detailed in Table 10.1. Following, we meticulously sift through the
commits to isolate the ones where a version identifier change has happened. The detected version change is then
classified to distinguish whether developers have made a Major, Minor, Patch-level release or simply changed the
release type label. Following this, we extract the differences between the two consecutive versions of the API, we
compare their respective specifications using the oasdiff library [115]. The extracted changes are then abstracted
by matching them against the known list of 195 change types, which have been pre-classified into the Breaking,
Non-Breaking, and Undecidable categories.

The outcome of the pipeline is a table listing, for all APIs and all their releases, the API version change classifi-
cation with the corresponding API changes. To give a quantitative assessment of the consistency between the two
according to semantic versioning rules we compute the following metrics:

214 10.2 Consistency Metrics

Fetch API commits
from GitHub

Filter Data
(Table 10.1)

Extract Version
Identifiers

Classify
Version Changes

(Table 10.7)

Compare
API Versions

Classify
API Changes

(Tables 10.4, 10.5, 10.6)

Assess Consistency
(Figs. 10.2, 10.3, 10.4)

(Table 10.9)

Figure 10.1. Data Analytics Pipeline

• Number of version changes (#VC), further subdivided into the number of Major, Minor, Patch and Label
changes (#Major, #Minor, #Patch, #LC)

• Number of API changes (#C), comprising the number of breaking changes (#BC), non-breaking Changes
(#NBC), undecidable changes (#UC).

• Proportion of Breaking Changes (BC%):

BC%=
#BC
#C

(Best Case) BC%=
#BC +#UC

#C
(Worst Case)

We assess adherence to semantic versioning by examining if version updates involving at least one breaking
change (#BC > 0) or, in the worst-case scenario, at least one undecidable change (#UC > 0), have been accurately
categorized as Major. For each API, we define its compliance ratio as CR= #V

#V C where #V is the number of versions
which comply with semantic versioning, according to the following rules:

#BC > 0 =⇐ Major upgrade (Best Case)

#BC > 0⇒#UC > 0 =⇐ Major upgrade (Worst Case)

This definition permits developers to produce Major releases without introducing breaking changes, as the
incompatibility indicated by the version identifier may be due to changes that do not visibly affect the API interface
itself.
Version Change Commits Identification. For each API we identify among all the commits the the set of commits
where a version change has happened. These particular commits are then used for the diff computation in order to
get a coherent view of the changes that happened between the the two consecutive versions of the APIs.
Diff Computation: For each pair of successive commits with version changes, we compute the differentials between
the specifications ωi = diff(ci , ci+1). This represents the differences or modifications between commit ci and its
immediate successor ci+1. To compute the diffs we use the oasdiff1 library.
Changes Extraction: We abstracted all the changes that were detected in the diffs and built for each diff the
corresponding list of API changes, excluding those types of changes affecting parts of the spec that have no impact
on the API Strcuture, Datamodel, or Security.

c1 c2 c3 c4 c5 c6
ω1 ω2 ω3 ω4 ω5

ω1 ⇑ω2 ⇑ω3

ω4

ϑV4 ϑV5

ωi = di f f (ci , ci + 1) and ϑVj is the version change between c3 and c4

1https://github.com/Tufin/oasdiff

215 10.3 Consistency Assessment Results

Classification of Changes. We manually classified 195 unique API change types by assessing their impact on clients.
This meticulous process allowed us to understand how each change potentially affects client integration.

Mapping API Changes to Version Changes. Our objective is to associate these identified changes with specific
version transitions, denoted as ϑVj . Each ϑVj represents a version change pinpointed at a particular commit. In
instances where a single version change is recorded in a day, we attribute all API changes identified on that day,
alongside the version change, to ϑVj .

Change Metrics Computation. For every new API version, we calculated the total number of breaking, non-
breaking, and undecidable changes. Additionally, we estimated the ratio of breaking changes under two scenarios:
the optimistic scenario (assuming undecidable changes do not result in breaking changes) and the pessimistic sce-
nario (assuming undecidable changes lead to breaking changes). Based on mapping between the changes and the
version transitions we computed the breaking change proportions for each type of version change

10.3 Consistency Assessment Results

We present the results of the analysis at two levels of granularity. First we quantitatively study each API release
independently by characterizing its type of version identifier change and the types of changes introduced in the API
itself, by classifying whether they are expected to break or not break clients. This allows us to determine whether
the release complies with semantic versioning. Then we proceed to aggregate each release along the history of the
corresponding API. This will make it possible to classify the APIs in the dataset according to various facets: which
type of changes they underwent at some release in their history, which type of version identifier change, as well as
to which extent the API consistently adhered to semantic versioning throughout its entire history. The raw results
are publicly shared in a replication package in GitHub.

10.3.1 Change-level compliance

Types of version changes. While the most frequently occurring type of version change (Table 10.7) is the “Patch
Upgrade”, “Minor Upgrades” can be found more widely across more than half the APIs in the dataset. Overall,
the 14 204 Upgrades outnumber the 1 131 Downgrades. As expected, major releases are the least frequent (both
concerning upgrades and downgrades). Among the 3 075 APIs, 2 198 APIs have combined at least two types of
version changes during their change history. 764 has only one version change. 133 APIs have more than one
version change, but they are all of the same type.

Types of API changes against types of version changes. In Table 10.4 we list the most recurrent breaking changes
(out of 96). The analysis of breaking change within our dataset prominently highlights “Response property type
changed" as the most frequently occurring type of change, followed by the removal of values from enumerated type
definitions. The most widespread change affecting 1211 APIs at least once is the removal of paths. Path removal is
the complementary change to Path addition, the most prevalent non-breaking change both according to the number
of occurrences but also the number (48.14%) of impacted APIs (Table 10.5).

There is no clear correlation between the presence of specific API changes (e.g., the addition or removal of paths)
and the corresponding version identifier changes (listed in the last four columns in the Tables 10.4 and 10.5). For
example, the removal of paths without deprecation is detected in 246 major releases, which correctly represent the
impact of such major change. However, also 629 minor and even 557 patch-level upgrades do include at least one
path removal, a clear violation of semantic versioning rules.

https://github.com/souhailaS/WebAPI-Change-vs-Versioning

216 10.3 Consistency Assessment Results

Table 10.4. Most frequent breaking changes in the selected dataset snapshot

Breaking Change Occ. #APIs #VC #Major #Minor #Patch #LC

Response Property Type Changed 23 048 714 872 100 335 406 31
Response Property Enum Value Removed 21 210 319 377 43 182 136 16
Path Removed Without Deprecation 15 877 1 211 1 463 246 629 557 31
Response Required Property Removed 12 587 409 547 68 244 205 30
Request Property Enum Value Removed 9 438 223 252 25 114 107 6
Path Parameter Removed 7 019 678 819 118 330 330 41
Response Media Type Removed 5 744 154 168 27 54 77 10
Response Property Pattern Changed 5 032 96 100 6 34 59 1
Response Property Became Optional 4 341 286 333 41 139 135 18
Response Property All Of Removed 4 261 185 240 27 119 87 7
Response Body Type Changed 3 906 351 380 37 170 163 10
Request Property Type Changed 3 872 448 502 40 188 259 15
Response Property Min Length Decreased 3 758 69 73 1 18 51 3
Request Required Property Added 2 524 339 394 62 169 154 9

Table 10.7. Classification of version changes (VC) indicating their occurrence (#VC), the total number of
breaking, non-breaking and undecidable changes detected in conjunction with each type of version change, as
well as their prevalence within all APIs and within how many APIs with breaking changes

#VC Upgrade #APIs #APIs with BC #BC #NBC #Undecidable

Major 1 296 1 058 883 14 797 18 416 10 132 450
Minor 6 496 6 037 1 806 58 955 75 975 89 723 1 284
Patch 7 541 7 107 1 692 69 643 80 997 70 088 1 232
Label Change 718 N/A 345 7 938 6 512 3 085 85

Total 16 051 14 202 4 533 179 727 181 900 173 028 3 051

#VC #APIs #BC #NBC #UC #APIs w/BC

Patch Upgrade 7 108 1 669 63 541 77 490 67 032 1 198
Minor Upgrade 6 038 1 774 54 443 70 820 87 471 1 240
Major Upgrade 1 058 808 11 920 14 854 7 866 375
Label Change 718 345 7 938 6 513 3 085 85
Minor Downgrade 459 265 4 508 5 160 2 252 210
Patch Downgrade 434 249 6 102 3 519 3 056 210
Major Downgrade 238 163 2 877 3 560 2 266 132

Total 16 053 3 075 137 842 169 677 165 454 2 487

#VC #UC #BC #NBC #APIs w/BC
Total Best Worst

Patch Upgrade 7 108 67 032 63 541 77 490 1 669 1 198 1 498
Minor Upgrade 6 038 87 471 54 443 70 820 1 774 1 240 1 412
Major Upgrade 1 058 7 866 11 920 14 854 808 375 422
Label Change 718 3 085 7 938 6 513 345 85 96
Minor Downgrade 459 2 252 4 508 5 160 265 210 233
Patch Downgrade 434 3 056 6 102 3 519 249 210 231
Major Downgrade 238 2 266 2 877 3 560 163 132 150

Total 16 053 173 028 151 329 181 916 3 075 2 148 2 487

217 10.3 Consistency Assessment Results

Table 10.5. Most frequent non-breaking changes in the selected dataset snapshot

Non-Breaking Change Occ. #APIs #VC #Major #Minor #Patch #LC

Path Added 37 928 2 182 2 881 405 1 201 985 290
Response Optional Property Removed 34 172 826 1 011 117 458 413 23
Request Optional Property Added 19 814 1 019 1 259 105 482 627 45
Response Property Became Required 18 112 507 647 80 280 259 28
Request Property Enum Value Added 15 853 324 399 35 178 174 12
Request Optional Parameter Added 12 794 1 343 1 737 447 775 490 25
Response Media Type Added 10 604 334 360 51 148 149 12
Response Non Success Status Added 8 452 704 790 96 362 317 15
Response Optional Header Removed 2 332 73 79 14 52 11 2
Response Property Pattern Added 2 316 81 88 14 31 41 2
Request Parameter Enum Value Added 2 063 148 171 17 77 74 3
Request Parameter Became Optional 1 523 161 165 14 86 65 0
Request Property Became Nullable 1 493 111 135 8 76 39 12
Request Property Became Optional 1 433 257 293 36 131 112 14
Request Optional Default Parameter Added 1 122 69 75 7 29 38 1
Response Success Status Added 1 052 315 336 53 129 151 3
Response Required Property Became Not Read-Only 925 15 21 0 9 8 4

Version Changes classification by API Change Type. How many major releases contain at least some breaking
changes? According to the aggregated results in Table 10.7 – listing the total number of breaking, non-breaking
and undecidable changes for each type of version change – there are 1 058 major upgrades with 7 866 breaking
changes in total. While according to semantic versioning, there should be no breaking changes for patch and minor
upgrades, we can read that the highest number of breaking changes (87 471) is actually detected in conjunction
with minor upgrades. Notably, label changes, despite their lower frequency, also account for a significant number
of breaking changes, indicating that clients can and will be broken as an API alpha release is updated to beta.

The total number of breaking changes listed in Table 10.7 is further decomposed in Table 10.8 with some
statistics. It stands out that the worst major release introduced 723 breaking changes. This is a small number,
however, if compared to the 2 508 breaking changes applied to one minor release. We also spot that the minimum
number of breaking changes is 0 across all version change types. This means that there at least some minor releases
without breaking changes. How many? Only 32% of the minor releases and 27% of the Patch releases do include
exclusively non-breaking changes as we can see from Fig 10.2, showing a complete, detailed map of the major,
minor and patch version changes classified according to the corresponding mix of API change types. For example,
we can see that while 705 major releases of 375 APIs contain at least one breaking change, 75 releases contain only
breaking changes. In the worst case, 813 major releases of 422 APIs contain both at least one breaking and one
undecidable change. There, we also observe that 37% of major releases include only non-breaking changes, all of
which are listed in Table 10.6.
Non breaking changes in Major releases. While it is not a violation of semantic versioning to launch a major
release that is fully backwards compatible, we observed that there is only a limited number of 12 non-breaking
changes when this happens (Table 10.6). Predominantly, the most frequent changes pertained to modifications in
the API structure, such as the inclusion of new paths or the addition of optional request parameters.
Version Change vs. Breaking Change Proportion. While in 594 major, 2 778 minor, and 3 220 patch releases do
include changes of exactly one type, 54% of major releases (57% of minor and also 57% of patch) do include a mix
of changes. It is thus worth to investigate how the proportion of breaking changes (BC%) relative to all changes
influences the decision for a version upgrade. Figure 10.3 illustrates the BC% distribution both for the best and

218 10.3 Consistency Assessment Results

Table 10.6. All the non-breaking changes that were associated with a Major version change during which no
breaking changes occurred

Non-Breaking Change Occurrences #APIs #VC(=#Major)

Request Optional Parameter Added 917 333 334
Path Added 763 118 141
Response Non Success Status Added 214 20 21
Response Optional Property Removed 10 5 5
Response Success Status Added 6 3 4
Request Parameter Became Optional 6 3 3
Request Optional Default Parameter Added To Existing Path 5 1 1
Response Media Type Added 3 3 3
Request Optional Property Added 2 1 1
Request Property Became Optional 2 1 1
Request Property Enum Value Added 2 1 1
Request Parameter Enum Value Added 1 1 1

Table 10.8. Number of breaking changes detected for each type of version change

#BC (Best) Max Min Average Median StdDev

#BC+#UC (Worst) Worst Best Worst Best Worst Best Worst Best Worst Best

Major Upgrade 723 509 0 0 18.70 11.27 1 0 64.97 42.77
Minor Upgrade 2 508 2 508 0 0 23.50 9.02 2 0 101.37 57.34
Patch Upgrade 2 308 1 692 0 0 18.37 8.94 2 0 94.25 57.29
Major Downgrade 553 518 0 0 21.61 12.09 5 3 50.60 39.11
Minor Downgrade 362 246 0 0 14.73 9.82 4 3 32.27 20.14
Patch Downgrade 559 349 0 0 21.10 14.06 4 3 58.60 43.12
Label Change 2 637 2 596 0 0 15.35 11.06 0 0 110.29 105.17

worst cases, with the APIs segmented according to the type of version change involved (Major, Minor, Patch, Label
Change) as well as whether the version was upgraded (top) or downgraded (bottom). The ’Normalized Frequency’
plots within the main histograms provide a relative comparison, allowing for the visual assessment of the impact of
the proportion of breaking changes on the decision to launch a major or minor release irrespective of the absolute
number of version changes.

In both the best and worst-case scenarios, the histograms show that most version changes have a null proportion
of breaking changes, as evidenced by the high bars at the left side of the histograms (BC% = 0%). This observation
is consistent with the fact that 54.68% of the APIs exclusively undergo non-breaking changes, thus maintaining
backward compatibility. The presence of bars across all intervals indicates that breaking changes are spread across
the entire spectrum, becoming more and more prevalent, up to thousands of releases which include only breaking
changes. The normalized plots reveal that, regardless of whether updates are classified as upgrades or downgrades,
the proportion of breaking changes does not significantly affect the assignment of a new version number to the API.
This trend persists even in cases where breaking changes constitute 100% of the alterations, indicating scenarios
where all the changes were breaking and developers still assigned a non-major version to the release. In the worst-
case scenario, we identified that there were 66 distinct types of breaking changes that were applied in the absence

219 10.3 Consistency Assessment Results

NBC BC

UC

1107 85%

483
37%

705 54%

75
6%

261
21%

72
5%

78
6%

36
3%

477 36%

291
22%

Major (1296)

NBC BC

UC

5536 85%

2062
32%

3232 50%

347
5%

1205
18%

838
13%

247
4%

369
6%

2885 44%

1431
22%

Minor (6497)

NBC BC

UC

6116 81%

2052
27%

3878 51%

758
10%

1349
18%

1201
16%

257
3%

410
6%

3382 45%

1514
20%

Patch (7542)

Figure 10.2. Classification of the Major, Minor and Patch-level releases according to their mix of breaking
(BC), non-breaking (NBC), and undecidable (UC) changes. The values outside the circles refer to the number
of version changes with at least one type of API change

of any non-breaking ones.

! At release level, no significant variation in the proportions of change types was observed across different
version update types. Breaking changes account for 50–54% of changes across major, minor, and patch
version updates.

10.3.2 API-level Compliance

APIs that adhere to semantic versioning are those that have consistently maintained backward compatibility or have
appropriately notified clients of any compatibility breaks through version identifiers. Within our dataset, under the
best case scenario, we identified a total of 962 adhering APIs (out of 3075 that experienced at least one instance
of breaking changes (BC), non-breaking changes (NBC), or undecidable changes (UC)). In the worst-case scenario,
this number decreases to 588 APIs. When examining the subset of 2487 APIs that introduced breaking changes, we
found that 517 APIs in the best case and only 180 in the worst case have adhered to semantic versioning principles
(Table 10.9). These APIs have the highest average number of major releases. The highest average number of
releases (#VC) overall, however, is found within the non-compliant APIs. These also underwent a significantly
larger number of changes (484 221) than the APIs which adhere to semantic versioning (31 244).

Figure 10.4 provides a nuanced view of the compliance ratio for both best and worst-case scenarios also dis-
tinguishing upgrades from downgrades. It illustrates that only some APIs do consistently adhere to (1 444 in the
best case, 768 in the worst) or always deviate (532 in the best case, 766 in the worst) from compliance across all
releases. Instead, there is a non-empty subset of 1541 APIs with partial compliance in the worst case. The central
peak with 50% compliance ratio accounts for the 582 APIs with two releases, out of which only one is compliant.

220 10.4 Results Discussion

Figure 10.3. Breaking changes proportion distributions for Upgrades (above) and Downgrades (below), cate-
gorized by each type of version change

! In the best case, when considering that the undecidable changes are non breaking, only 15% of the
APIs whose evolution contains breaking changes use version identifiers consistent with semantic versioning
at every release. In the worst case, when assuming that the undecidable changes are breaking, this propor-
tion of complying APIs drops to 6%.

10.4 Results Discussion

How often APIs introduce breaking vs. non-breaking changes?
The analysis of histories of 3,075 APIs that experienced changes affecting their functionalities, revealed that

80.87%, included backward incompatible changes. This finding reveals the considerable challenge developers face
in maintaining backward compatibility. The prevalence of such changes underlines the critical need for effective
versioning strategies and comprehensive documentation to mitigate potential disruptions and ensure a smoother
transition for API consumers.
Are there many Web APIs which consistently follow semantic versioning rules across their entire history?

Contrary to theoretical expectations, the study uncovered that only 577 APIs with breaking or potentially break-

221 10.4 Results Discussion

Figure 10.4. Compliance ratio distribution

ing changes adequately reflected these alterations by launching a major release, adhering to semantic versioning
principles in practice. Moreover, despite SemVer guidelines suggesting that minor versions should only introduce
backward-compatible features, 2 282 APIs did release breaking changes as minor or even patch-level updates. This
deviation could be due to a misinterpretation of what constitutes a breaking change or a desire to push new features
quickly without incrementing the major version.

We also found 910 APIs where Major version updates did not introduce any breaking changes. Interestingly,
these non-breaking changes (NBC) were categorized into exactly 12 distinct types. This observation suggests a
nuanced approach to versioning, where developers might choose to launch major releases for reasons other than
breaking changes, such as significant feature additions or improvements meant to attract new clients without break-
ing existing ones.

In Summary

The results of the study presented in this chapter underscore a critical need for tools and guidelines tailored specif-
ically for correctly applying semantic versioning to Web APIs. With an empirical analysis tracking the evolution

222 10.4 Results Discussion

Table 10.9. Metrics comparison for APIs classified according to their compliance

Adhering to Semantic Versioning Not Adhering
BC%= 0 BC%> 0 BC%> 0 Total

Metric Best Worst Best Worst Best Worst

#APIs 927 588 517 180 1 970 2 307 3 075
#VC 2 190 1 089 1 527 413 14 423 15 537 16 053

Avg #VC 2.36 1.85 2.95 2.29 7.32 6.73 5.22
Avg #Major 0.17 0.32 0.24 0.86 0.04 0.04 0.08
Avg #Minor 0.27 0.32 0.20 0.10 0.45 0.44 0.42
Avg #Patch 0.33 0.26 0.29 0.04 0.49 0.48 0.46

#BC 0 0 2 723 2 665 148 606 148 664 151 329
#NBC 8 226 4 558 7 584 3 896 169 774 173 462 181 916
#UC 5 523 0 7 188 1 440 165 840 171 588 173 028

Avg BC% (Best) 0.00 0.00 8.81 31.46 24.75 23.00 11.19
Avg BC% (Worst) 12.73 0.00 30.20 42.37 46.38 44.90 29.77

histories of 3 075 Web APIs, we found that in the worst case (assuming clients and backends perform strict checking
of message payloads) only 768 (25%) APIs consistently comply with Semantic Versioning by always releasing major
upgrades for breaking changes (180), or never breaking their backward compatibility (588). This number grows
to 1444 APIs (46%) when assuming clients and backends follow the “tolerant reader” pattern [37].

This finding highlights a discrepancy between the theory [8] and the state of the practice of semantic version-
ing within the Web APIs described using OpenAPI specifications, tracked using GitHub open source repositories.
Based on these results, there is a need for establishing standardized versioning protocols which can be embed-
ded into semantic versioning calculators [86, 182] to mitigate the observed inconsistencies, benefiting both Web
API developers and consumers by enhancing predictability, reducing potential disruptions, simplifying dependency
management, and fostering a more resilient Web API ecosystem.

Part V

Conclusions

223

Chapter 11

Conclusions

This chapter outlines the key contributions of this thesis through answering the research questions introduced
earlier. It also highlights the primary limitations of the study and presents research publications in which the
findings and contributions of this dissertation have been published.

11.1 Summary of Research Contributions
This research produced three types of contributions, consisting of empirical insights, tool research prototypes, and
data artifacts.

Our initial efforts focused on conducting extensive empirical studies of API Descriptions using OAS, a widely
adopted language for defining contemporary Web APIs. These studies analyze the decision-making processes of
Web API designers and identify structural patterns in existing API models through pattern mining in tree structures.

By adopting a metrics-based approach, we created a comprehensive picture of the current Web API landscape
based on metrics computed over nearly a million API specifications. This vast dataset facilitates segmentation based
on specific metrics, enabling the derivation of generalized, broadly applicable results. We also incorporated a tem-
poral aspect to gain deeper insights into evolutionary patterns and addressed challenges developers face during API
evolution, particularly in reflecting changes through versioning. To aid designers adopting an API-first strategy in
their design and maintenance tasks, we have developed prototype tools that offer guidance during API develop-
ment: • visualizing API structure and highlighting design smells, • generating comprehensive documentation from
code, • visualizing API history and highlighting changes for semantic versioning consistency.

This research allowed answering the questions raised in the introduction part.

1. What identifiable structural patterns within Web APIs can serve as modular and reusable building
blocks?
The analysis in this thesis identifies four recurring structural patterns, termed API primitives, that frequently
appear across Web APIs:

• Enumerable Collection (P1): Allows clients to retrieve and enumerate items using GET methods.

• Appendable Collection (P2): Enables clients to append new items to collections with POST methods.

• Collection (P3): Combines the functionalities of P1 and P2, offering enumeration and appending capa-
bilities.

• Mutable Collection (P4): Extends P3 with batch operations, such as deleting or replacing entire collec-
tions.

225

226 11.1 Summary of Research Contributions

These primitives were mined from a dataset of 277,094 API fragments extracted from OpenAPI Specifica-
tions, representing common and reusable structures in Web API design. In addition to these patterns, the
analysis uncovers five design smells prevalent in API structures, including issues such as "Create without
Delete" and "Ambiguous POST," which hinder usability, maintainability, and security.

These mined smells are integrated into a Web API visualization tool (OAS2Tree) that alerts users to the
presence of any identified smells in the API design. The tool also helps users pinpoint the exact location of
these smells within the API structure. This tool is meant to be used at any phase of the API life-cycle, whenever
modification need to be inserted.

2. How are Web APIs and their data models interconnected, and to what extent is this relationship con-
sidered in designing APIs that align with expected design principles?
The research establishes a connection between API structures and their underlying data models, revealing
misalignments with design principles like logical structuring and naming conventions. While we detected a
strong correlation between the API structure and its size, we found that there is often no paths structural
hierarchy that matches the types of resources. For instance, in several paths, the last segment’s label is plural
while the operations do not exchange a scalar data object. This was also perceived in operation using the GET
HTTP method.

This type of unexpected design complicates the learnability and usability of Web APIs [23].

3. What types of changes are introduced in the evolution of Web APIs, and what is their impact on API
clients?
This work categorizes common API changes, such as endpoint additions, parameter modifications, and data
model updates. A detailed analysis reveals that breaking changes occur 2.44 times more frequently than non-
breaking ones. Although many breaking changes are fine-grained and may initially seem insignificant, their
cumulative impact on client systems is substantial. The analysis quantifies this impact, emphasizing the critical
need for effective change communication and mitigation strategies to support seamless client integration.

We provide a list of about 200observed changes that happen in Web API histories classified based on our
estimate of their impacts.

Based on this understanding of Web API changes, we proposed how to visualize API histories from two perspec-
tives. One focuses on the overall changes that targeted API element during a time window (API CHANGES).
The other focuses on locating the changes in time and highlighting the compatibility of changes with the ver-
sion upgrade/downgrade (API VERSION CLOCK). The overall compliance of web API versioning with changes
is empirically analyzed and is discussed in Question 5.

4. What versioning practices are commonly applied in Web APIs, and how do they impact usability, relia-
bility, and client awareness?
The thesis examines real-world versioning practices, including semantic versioning, path-based, and header-
based approaches, uncovering significant inconsistencies in API versioning methods. Over 50 distinct version
identifier formats were identified in API metadata. Among path-based versioning, the most common format
was the use of the major version number (e.g., v1, v2). A key observation is a temporal shift in versioning
scheme preferences: in 2015, Semantic Versioning (SemVer) was employed by 59% of APIs, while the Major
Version Number format accounted for 38.11%. By 2023, SemVer’s adoption surged to 87.60%, whereas the
Major Version Number format declined to just 5.70%.

5. To what extent do real-world APIs correctly follow established versioning schemes, such as semantic
versioning, and what variations exist?
Real-world APIs show a notable adherence to established versioning schemes like semantic versioning, but

227 11.2 Threats To Validity

there are significant variations in practice. According to the research findings, semantic versioning (SemVer)
is widely adopted, with its usage peaking at 87% in average.

However, deviations from the expected semantic of semantic versioning are common. Many APIs do not
consistently follow the semantic versioning rules, particularly regarding breaking changes. For example, the
study found that a considerable number of APIs (2,282) released breaking changes as minor or patch-level
updates, contrary to SemVer guidelines, which suggest that such changes should trigger a major release.
Additionally, there are instances where major version updates do not introduce any breaking changes, with
only 12 distinct types of non-breaking changes identified in these releases.

11.2 Threats To Validity

11.2.1 Internal Validity
One potential threat to internal validity lies in the accuracy of the data collection and preprocessing pipeline. The
dataset was primarily sourced from GitHub repositories and other public platforms, where irrelevant OpenAPI
specifications of non-real APIs could have impacted the analysis. To address this, rigorous filtering was applied to
include only valid specifications with consistent histories, ensuring that invalid data entries were excluded. And,
also use maturity filtering criteria such as the number of commits which we limited to at least 10 commits that are
introducing changes in the API specification.

11.2.2 External Validity
The dataset consisted predominantly of OpenAPI specifications from public repositories, which might not fully
represent private APIs or those using other specification formats, such as RAML or WSDL. Although the focus on
OpenAPI was justified by its widespread adoption, the findings may not generalize to APIs adhering to alternative
paradigms. Expanding the analysis to include other specification formats in future research would help address this
limitation.

Another potential limitation is the scope of API versioning practices studied, which centered on semantic version-
ing. While – in theory – this is a widely accepted practice, some providers or application domains might prioritize
alternative strategies, potentially limiting the applicability of the insights to such contexts.

11.2.3 Construct Validity
The identification of structural patterns and smells relied on heuristics and tooling developed during the research.
These tools might still miss edge cases or yield false positives.

11.2.4 Reliability
The reproducibility of the findings could be affected by the dynamic nature of the repositories, where changes or
deletions might occur. To address this, a dataset archive has been made publicly available, ensuring that future
researchers can replicate and extend the studies.

11.3 Retrospective
This thesis presents insights from large-scale empirical analysis of Web APIs, focusing on their structural patterns,
evolution processes, and versioning practices. By leveraging a dataset of OpenAPI specifications collected from di-

228 11.3 Retrospective

verse sources, including GitHub and SwaggerHub, this work offers a data-driven exploration of real-world practices
in API design and management. The findings contribute to addressing gaps between theoretical concepts and real
world practiced and propose prototypes of tools for supporting web API design tasks and controlling their evolution.

11.3.1 Contributions and key findings

The analysis of structural patterns identified four recurring building blocks that support modularity and reusability:
enumerable, appendable, mutable, and collective structures. These patterns serve as foundational elements in Web
API design, promoting consistency and scalability across diverse applications. Furthermore, the investigation into
API structural alignment revealed frequent deviations from established design principles, such as logical structuring
and consistent naming conventions, highlighting the need for improved adherence to best practices.

The study of API evolution categorized over 200 types of changes, revealing that breaking changes occur 2.44
times more frequently than non-breaking changes. Although these breaking changes are often minor in isolation,
their cumulative impact on client applications can be significant. This underscores the necessity of effective change
management strategies and tools that mitigate disruption during API evolution.

In the context of versioning, the research uncovered a wide range of practices, from path-based and header-based
approaches to inconsistent applications of semantic versioning. Despite the widespread claim of semantic versioning
adherence, the analysis revealed that many APIs fail to meet its fundamental principles, resulting in potential
client confusion and integration challenges. These insights emphasize the need for more rigorous guidelines and
automated validation tools to support versioning consistency.

To address these challenges, the research introduced two prototype tools – OAS2Tree and APIcture – to assist
developers in visualizing API structures and tracking changes over time. OAS2Tree offers a hierarchical view of API
components, facilitating the detection of design inconsistencies and potential flaws. APIcture, on the other hand,
provides an interactive timeline of API changes, enabling stakeholders to understand the evolution process and its
impact on clients. These tools, though preliminary, illustrate the potential of integrating visualization and analysis
techniques into the API development lifecycle.

11.3.2 Research Limitations

Although a significant contribution of this thesis is the creation and analysis of a large dataset 1, one notable
limitation is the lack of direct involvement of human participants in the evaluation process. The research relied
exclusively on data-driven methodologies to derive insights and assess the effectiveness of proposed tools and pro-
totypes. Although this approach ensures objectivity and scalability, it does not capture subjective perspectives,
usability challenges, or real-world applicability experienced by developers who interact with these APIs. Incorpo-
rating human-centered evaluation, such as user studies, interviews, or surveys, could have provided deeper insights
into, for instance, how the proposed research tool prototypes align with developer needs, enhance usability, and
address practical challenges.

11.3.3 Future research directions

Building on the findings of this thesis, several opportunities for future research emerge. Expanding the dataset
to include private APIs and industry-specific use cases would provide a more comprehensive understanding of
API practices across different domains. The prototypes developed, OAS2Tree and APIcture, could be enhanced to
support real-time analysis and integration into popular development environments, enabling developers to receive
immediate feedback during API design and evolution.

1Publicly made accessible through an API: http://openapi.inf.usi.ch/

http://openapi.inf.usi.ch/

229 11.4 Research Publications

Moreover, conducting user studies to evaluate the usability and impact of these tools could inform their iterative
improvement and adoption. Investigating the role of machine learning in predicting API evolution patterns and
detecting design anomalies is another promising direction. By combining empirical evidence with predictive models,
future research could provide proactive recommendations to improve API quality and usability.

The findings of this research underscore the importance of standardization in API versioning and design prac-
tices. Collaborative efforts between academia and industry could lead to the development of standardized frame-
works and tools that support sustainable API design and management. Such efforts would not only bridge the gap
between theory and practice but also contribute to a more robust and user-centered API ecosystem.

11.4 Research Publications
Most of the findings presented in this thesis have been published as research contributions. The following is a list
of the research papers that I contributed to during my doctoral studies. The papers highlighted in bold represent
the core contributions that form the basis for the discussions in this thesis. A brief summary of its motivation and
key contributions is provided.

1. Diana Carolina Munõz Hurtado, Souhaila Serbout, Cesare Pautasso. Mining Security Documentation Practices
in OpenAPI Descriptions. 22nd IEEE International Conference on Software Architecture (ICSA 2025). April
2025. Odense, Denmark.

2. Patric Genfer, Souhaila Serbout, Georg Simhandl, Uwe Zdun, Cesare Pautasso, “Understanding Security Tac-
tics in Microservice APIs using Annotated Software Architecture Decomposition Models – A Controlled Exper-
iment”, Accepted to the Empirical Software Engineering Journal.

3. [146] Souhaila Serbout, Cesare Pautasso, “OAS2Tree: Visual API-First Design”, 18th European Confer-
ence on Software Architecture (ECSA). September 2024. Luxembourg.

→ In this demo paper, we present a visualization tool that generates a Web API tree based on an OpenAPI
specification, even if the specification is incomplete or invalid. The tool is designed for use during the modeling
phase or when learning the functionalities of a Web API. It is available as both a web application for easy access
and as a VSCode extension for seamless integration with development environments

4. Petr Pícha, Souhaila Serbout, “On the Adoption of Open Source Software Licensing – A Pattern Collection”,
28th European Conference on Pattern Languages of Programs (EuroPLoP). July 2024. Kloster Irsee, Germany.

5. [145] - Souhaila Serbout, Cesare Pautasso, “How Many Web APIs Evolve Following Semantic Version-
ing?”, 24th International Conference on Web Engineering (ICWE). June 2024. Tampere, Finland.

→ As the title suggests, this paper explores the adherence of Web APIs to semantic versioning principles. Our
approach involves mining git histories of OpenAPI specifications to analyze API changes between consecutive ver-
sions. The findings underscore the need for support tools integrated into development environments to manage
discrepancies between versioning and the evolution of Web APIs.

6. [143] - Souhaila Serbout, Cesare Pautasso, “APIstic: A Large Collection of OpenAPI Metrics”, 21st
International Conference on Mining Software Repositories (MSR). April 2024. Lisbon, Portugal.

→ The main contribution of this paper is a dataset of OpenAPI specification with computed metrics measuring all
of the APIs structure, data models, security and natural language documentation. The specifications are collected
from four sources and comprise over a million artifacts. We aim to help researchers select study samples based on
metrics combinations from the metrics dataset.

https://souhaila-serbout.me/readmore/oas2tree
https://souhaila-serbout.me/readmore/oas2tree
https://souhaila-serbout.me/pdfs/2024_APIACE_ICWE_VersioningVsChange.pdf
https://souhaila-serbout.me/pdfs/2024_APIACE_ICWE_VersioningVsChange.pdf
https://souhaila-serbout.me/pdfs/MSR2024-Serbout-Pautasso-APIstic.pdf
https://souhaila-serbout.me/pdfs/MSR2024-Serbout-Pautasso-APIstic.pdf

230 11.4 Research Publications

7. [144] - Souhaila Serbout, and Cesare Pautasso. “How Are Web APIs Versioned in Practice? A Large-
Scale Empirical Study”. Journal of Web Engineering, 23(4): 465–506, August 2024.

→ This paper is a journal extension version of the conference paper titled “An Empirical Study of Web API Ver-
sioning Practices”, presented at the International Conference on Web Engineering. In this extension, we investigate
additional versioning practices that were not covered in the original paper, such as header-based versioning. Fur-
thermore, we examine how our previous findings, based solely on data from GitHub, remain valid when expanding
the study to include data from other repositories like SwaggerHub and APIs.guru.

8. [141] - Souhaila Serbout, Diana Carolina M. Hurtado, and Cesare Pautasso, “Interactively exploring
API changes and versioning consistency”, 11th IEEE Working Conference on Software Visualization
(VISSOFT). October 2023. Bogota, Colombia.

→ In this paper, we propose two visualizations that depict Web API evolution from two different perspectives.
API Changes uses the sunburst metaphor to represent API elements that have been added, removed, or modified.
API Versions Clock employs the clock metaphor to display the chronological order of changes and their impact
(breaking/nonbreaking), alongside the API versioning. These visualizations are generated through a CLI tool,
which can be installed in the development environment to easily create interactive HTML visualizations that can
be integrated into any form of evolution documentation.

9. [140] - Souhaila Serbout, Amine El Malki, Cesare Pautasso, and Uwe Zdun, “API Rate Limit - A Pattern Col-
lection”, 28th European Conference on Pattern Languages of Programs (EuroPLoP). July 2023. Kloster Irsee,
Germany.

10. [142] - Souhaila Serbout, and Cesare Pautasso. “An empirical study of Web API versioning practices”
International Conference on Web Engineering (ICWE). June 2023. Alicante, Spain.

→While Semantic Versioning is the standard versioning scheme adopted by most well-known package managers
(e.g., Maven, NPM), this paper investigates whether the same applies to Web APIs. We analyzed the version
identifiers of a large number of APIs and identified 55 different versioning schemes, including various calendar-
based formats, labels, and combinations of formats. A key finding is that semantic versioning emerged as the
predominant scheme, with noticeable shifts toward it over time in a few cases.

11. [147] - Souhaila Serbout, Cesare Pautasso, and Uwe Zdun. “How Composable is the Web? An Empirical
Study on OpenAPI Data Model Compatibility.” 2022 IEEE International Conference on Web Services (ICWS).
July 2022. Barcelona, Spain.

12. [43] - Di Lauro Fabio, Souhaila Serbout, and Cesare Pautasso. “A large-scale empirical assessment of Web API
size evolution.” Journal of Web Engineering. 21(6): 1937-1979, November 2022.

13. [73] - Ivanchikj Ana, Souhaila Serbout, and Cesare Pautasso. “Live process modeling with the BPMN Sketch
Miner.” Journal of Software and Systems Modeling. 21(5), 1877-1906, October 2022.

14. [149] - Souhaila Serbout, Alessandro Romanelli, and Cesare Pautasso. “ExpressO: From Express.js Implemen-
tation Code to OpenAPI Interface Descriptions.” 16th European Conference on Software Architecture (ECSA).
September 2022. Prague, Czech Republic.

15. [44] - Di Lauro Fabio, Souhaila Serbout, and Cesare Pautasso. “To Deprecate or to Simply Drop Operations?
An Empirical Study on the Evolution of a Large OpenAPI Collection.” 16th European Conference on Software
Architecture (ECSA). September 2022. Prague, Czech Republic.

https://souhaila-serbout.me/pdfs/2023_ICWE_Versioning_JWE-4.pdf
https://souhaila-serbout.me/pdfs/2023_ICWE_Versioning_JWE-4.pdf
https://souhaila-serbout.me/readmore/serbout2023interactively/post
https://souhaila-serbout.me/readmore/serbout2023interactively/post
https://souhaila-serbout.me/readmore/serbout2023interactively/post
https://souhaila-serbout.me/pdfs/serbout2023empirical.pdf
https://souhaila-serbout.me/pdfs/serbout2023empirical.pdf

231 11.4 Research Publications

16. [139] - Souhaila Serbout, Fabio Di Lauro, and Cesare Pautasso. “Web APIs structures and data models
analysis.” 19th International Conference on Software Architecture (ICSA). March 2022. Honolulu,
Hawaii.

→ In this paper, we analyze the structures and data models of over 40,000 Web APIs, defining metrics to measure
quantifiable aspects of the APIs. Our findings reveal that approximately 30% of the analyzed Web APIs are read-
only, though this percentage decreases when focusing on APIs with more than three paths. Additionally, we found
that OpenAPI users effectively exploit the language’s modularity by reusing predefined schemas. In one case we
found that 151 out of the defined schemas were reused.

17. [148] - Souhaila Serbout, Pautasso Cesare, Uwe Zdun, Olaf Zimmerman. “From OpenAPI fragments
to API pattern primitives and design smells.” 26th European Conference on Pattern Languages of
Programs (EuroPLoP). July 2021. Kloster Irsee, Germany.

→ In this paper, we explore how recurring structural patterns in Web APIs can be identified and catego-

rized as API pattern primitives or design smells. Our approach involves extracting the API tree structure

from OpenAPI specifications and isolating API fragments as subtrees. We then apply clustering techniques

to detect recurring fragments, allowing us to assess the occurrence of API pattern primitives and a few

structural smell fragments.

18. [42] - Di Lauro Fabio, Souhaila Serbout, and Cesare Pautasso. “Towards a large-scale empirical assessment
of Web APIs evolution.” 21st International Conference on Web Engineering (ICWE). June 2021. Biarritz,
France.

19. [72] - Ivanchikj Ana, Souhaila Serbout, and Cesare Pautasso. “From text to visual BPMN process models:
Design and evaluation.” 23rd ACM/IEEE international conference on model-driven engineering languages
and systems (MODELS). October 2020. Montreal, Canada.

https://souhaila-serbout.me/pdfs/serbout2022web.pdf
https://souhaila-serbout.me/pdfs/serbout2022web.pdf
https://souhaila-serbout.me/pdfs/serbout2022web.pdf
https://souhaila-serbout.me/pdfs/serbout2021openapi.pdf
https://souhaila-serbout.me/pdfs/serbout2021openapi.pdf
https://souhaila-serbout.me/pdfs/serbout2021openapi.pdf

232 11.4 Research Publications

Bibliography

[1] [2022]. OAS2Tree VSCode. https://marketplace.visualstudio.com/items?itemName=oas2tree.
oas2tree. xviii, 55

[2] [2023]. APIcture. https://www.npmjs.com/package/apict. 175

[3] [n.d.a]. RAML. https://raml.org/. Accessed: 2021-06-01. 4, 10

[4] [n.d.b]. I/O Docs. https://support.mashery.com/docs/read/IO_Docs. Accessed: 2021-06-01. 10

[5] [n.d.c]. Google BigQuery API. https://cloud.google.com/bigquery/docs/reference/rest/. 31

[6] [n.d.d]. GitHub Archive. http://www.gharchive.org/. 31

[7] [n.d.e]. Bmore Responsive API. https://codeforbaltimore.github.io/Bmore-Responsive/. 157

[8] [n.d.f]. Semantic Versioning. https://semver.org/. 157, 183, 186, 222

[9] [n.d.g]. https://docs.npmjs.com/about-semantic-versioning. 186

[10] Aghajani, E., Nagy, C., Vega-Márquez, O. L., Linares-Vásquez, M., Moreno, L., Bavota, G. and Lanza, M. [2019].
Software documentation issues unveiled, 2019 IEEE/ACM 41st International Conference on Software Engineer-
ing (ICSE), IEEE, pp. 1199–1210. 33

[11] Allamanis, M., Barr, E. T., Devanbu, P. and Sutton, C. [2018]. A survey of machine learning for big code and
naturalness, ACM Comp. Surv. 51(4): 1–37. 11

[12] Allamaraju, S. [2010]. RESTful Web Services Cookbook: Solutions for Improving Scalability and Simplicity,
O’Reilly. 88

[13] Almeida, R. B., Junes, V. R. C., da Silva Machado, R., da Rosa, D. Y. L., Donato, L. M., Yamin, A. C. and
Pernas, A. M. [2019]. A distributed event-driven architectural model based on situational awareness applied
on internet of things, Information and software technology 111: 144–158. 3

[14] Alon, U., Zilberstein, M., Levy, O. and Yahav, E. [2019]. Code2vec: Learning distributed representations of
code, Symposium on Principles of Programming Languages 3(POPL): 1–29. 11

[15] Babur, Ö. and Cleophas, L. [2017]. Using n-grams for the automated clustering of structural models, Interna-
tional Conference on Current Trends in Theory and Practice of Informatics, Vol. 10139 of LNCS, pp. 510–524.
URL: http://link.springer.com/10.1007/978-3-319-51963-0%5F40 11

[16] Babur, Ö., Cleophas, L. and van den Brand, M. [2019]. Metamodel clone detection with samos, Journal of
Comp. Lang. 51: 57–74. 11

233

https://marketplace.visualstudio.com/items?itemName=oas2tree.oas2tree
https://marketplace.visualstudio.com/items?itemName=oas2tree.oas2tree
https://www.npmjs.com/package/apict
https://raml.org/
https://support.mashery.com/docs/read/IO_Docs
https://cloud.google.com/bigquery/docs/reference/rest/
http://www.gharchive.org/
https://codeforbaltimore.github.io/Bmore-Responsive/
https://semver.org/
https://docs.npmjs.com/about-semantic-versioning

234 Bibliography

[17] Basciani, F., Di Rocco, J., Di Ruscio, D., Iovino, L. and Pierantonio, A. [2016]. Automated clustering of
metamodel repositories, Int. Conf. on Advanced Information Systems Engineering, pp. 342–358. 11

[18] Bass, L., Weber, I. and Zhu, L. [2015]. DevOps – A Software Architect’s Perspective, Addison-Wesley. 156

[19] Bavota, G., De Carluccio, B., De Lucia, A., Di Penta, M., Oliveto, R. and Strollo, O. [2012]. When does a
refactoring induce bugs? an empirical study, 12th International Working Conference on Source Code Analysis
and Manipulation, IEEE, pp. 104–113. 14

[20] Bavota, G., Linares-Vasquez, M., Bernal-Cardenas, C. E., Di Penta, M., Oliveto, R. and Poshyvanyk, D. [2014].
The impact of api change-and fault-proneness on the user ratings of android apps, IEEE Transactions on Soft-
ware Engineering 41(4): 384–407. 7

[21] Beurer-Kellner, L., Von Pilgrim, J., Tsigkanos, C. and Kehrer, T. [2022]. A transformational approach to man-
aging data model evolution of web services, IEEE Transactions on Services Computing . 6

[22] Bogart, C., Kästner, C., Herbsleb, J. and Thung, F. [2016]. How to break an API: cost negotiation and commu-
nity values in three software ecosystems, 24th International Symposium on Foundations of Software Engineering,
pp. 109–120. 183

[23] Bogner, J., Kotstein, S. and Pfaff, T. [2023]. Do RESTful API design rules have an impact on the understand-
ability of web apis?, Empirical software engineering 28(6): 132. 5, 17, 51, 68, 70, 226

[24] Bogner, J., Wagner, S. and Zimmermann, A. [2020]. Collecting service-based maintainability metrics from
restful api descriptions: static analysis and threshold derivation, European Conference on Software Architecture,
Springer, pp. 215–227. 32

[25] Bojinov, V. [2016]. RESTful Web API Design with Node. js, Packt Publishing Ltd. 51

[26] Bonorden, L. and Riebisch, M. [2022]. API deprecation: A systematic mapping study, 48th Euromicro Confer-
ence on Software Engineering and Advanced Applications (SEAA), IEEE, pp. 451–458. 14

[27] Brandner, M., Craes, M., Oellermann, F. and Zimmermann, O. [2004]. Web services-oriented architecture in
production in the finance industry, Informatik-Spektrum 27(2): 136–145. 3

[28] Brito, G., Mombach, T. and Valente, M. T. [2019]. Migrating to graphql: A practical assessment, Proc. 26th
International Conference on Software Analysis, Evolution and Reengineering (SANER), IEEE, pp. 140–150. 169

[29] Brito, G. and Valente, M. T. [2020]. REST vs GraphQL: A controlled experiment, International Conference on
Software Architecture (ICSA), IEEE, pp. 81–91. 5

[30] Cheh, C. and Chen, B. [2021]. Analyzing openapi specifications for security design issues, Secure Development
Conference (SecDev), IEEE, pp. 15–22. 32

[31] Choi, M. [2012]. A performance analysis of restful open api information system, International Conference on
Future Generation Information Technology, Springer, pp. 59–64. 12

[32] Christensen, E. [2001]. Web services description language (wsdl) 1.1.
URL: http://www.w3.org/TR/2001/NOTE-wsdl-20010315 10

[33] Clarisó, R. and Cabot, J. [2018]. Applying graph kernels to model-driven engineering problems, Int. Workshop
on Machine Learning and Software Engineering in Symbiosis, pp. 1–5. 11

235 Bibliography

[34] Coleman, M. and Liau, T. L. [1975]. A computer readability formula designed for machine scoring., Journal
of Applied Psychology 60(2): 283. 33, 34

[35] Cossette, B. E. and Walker, R. J. [2012]. Seeking the ground truth: a retroactive study on the evolution
and migration of software libraries, Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, pp. 1–11. 15

[36] Daigneau, R. [2011]. Service Design Patterns: Fundamental Design Solutions for SOAP/WSDL and RESTful Web
Services, Addison-Wesley Professional. 10

[37] Daigneau, R. [2012]. Service Design Patterns: fundamental design solutions for SOAP/WSDL and restful Web
Services, Addison-Wesley. 139, 211, 222

[38] Davis, A. M. [1995]. 201 Principles of Software Development, McGraw-Hill. 10

[39] De Renzis, A., Garriga, M., Flores, A., Cechich, A., Mateos, C. and Zunino, A. [2017]. A domain independent
readability metric for web service descriptions, Computer Standards & Interfaces 50: 124–141. 33

[40] De Souza, C. R. and Bentolila, D. L. [2009]. Automatic evaluation of api usability using complexity metrics and
visualizations, 2009 31st International Conference on Software Engineering-Companion Volume, IEEE, pp. 299–
302. 69

[41] Decan, A. and Mens, T. [2019]. What do package dependencies tell us about semantic versioning?, IEEE
Transactions on Software Engineering 47(6): 1226–1240. 6

[42] Di Lauro, F., Serbout, S. and Pautasso, C. [2021]. Towards large-scale empirical assessment of web apis
evolution, International Conference on Web Engineering, Springer, pp. 124–138.
URL: https://link.springer.com/10.1007/978-3-030-74296-6%5F10 231

[43] Di Lauro, F., Serbout, S. and Pautasso, C. [2022a]. A large-scale empirical assessment of web api size evolution,
Journal of Web Engineering 21(6): 1937–1980. 187, 230

[44] Di Lauro, F., Serbout, S. and Pautasso, C. [2022b]. To deprecate or to simply drop operations? an empirical
study on the evolution of a large openapi collection, in I. Gerostathopoulos, G. Lewis, T. Batista and T. Bure!
(eds), Software Architecture, Springer, pp. 38–46. 130, 230

[45] Dietrich, J., Pearce, D., Stringer, J., Tahir, A. and Blincoe, K. [2019]. Dependency versioning in the wild, Proc.
16th International Conference on Mining Software Repositories (MSR), pp. 349–359. 6, 186

[46] Domingo, Á., Echeverría, J., Pastor, Ó. and Cetina, C. [2020]. Evaluating the benefits of model-driven devel-
opment, in S. Dustdar, E. Yu, C. Salinesi, D. Rieu and V. Pant (eds), Advanced Information Systems Engineering,
Vol. 12127 of Lecture Notes in Computer Science, Springer, pp. 353–367.
URL: http://link.springer.com/10.1007/978-3-030-49435-3%5F22 11

[47] Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M., Montesi, F., Mustafin, R. and Safina, L. [2017].
Microservices: yesterday, today, and tomorrow, Present and ulterior software engineering pp. 195–216. 3

[48] Ed-Douibi, H., Canovas Izquierdo, J. L. and Cabot, J. [2018a]. Automatic generation of test cases for rest
apis: A specification-based approach, Proceedings - 2018 IEEE 22nd International Enterprise Distributed Object
Computing Conference, EDOC 2018 pp. 181–190. 10

236 Bibliography

[49] Ed-Douibi, H., Cánovas Izquierdo, J. L. and Cabot, J. [2018b]. OpenAPItoUML: a tool to generate UML models
from OpenAPIdefinitions, in T. Mikkonen, R. Klamma and J. Hernández (eds), International Conference on Web
Engineering, Springer, Springer, pp. 487–491. 84

[50] Effendi, S. D. B., Çirisci, B., Mukherjee, R., Nguyen, H. A. and Tripp, O. [2023]. A language-agnostic framework
for mining static analysis rules from code changes, 45th International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), IEEE/ACM, pp. 327–339. 7

[51] Erder, M., Pureur, P. and Woods, E. [2021]. Continuous Architecture in Practice: Software Architecture in the
Age of Agility and DevOps, Addison-Wesley. 157

[52] Espinha, T., Zaidman, A. and Gross, H.-G. [2014]. Web api growing pains: Stories from client developers and
their code, 2014 Software Evolution Week-IEEE Conference on Software Maintenance, Reengineering, and Reverse
Engineering (CSMR-WCRE), IEEE, pp. 84–93. 3, 13, 155

[53] Espinha, T., Zaidman, A. and Gross, H.-G. [2015]. Web api growing pains: Loosely coupled yet strongly tied,
Journal of Systems and Software 100: 27–43.
URL: https://www.sciencedirect.com/science/article/pii/S0164121214002180 3, 13

[54] Fernandes, S. and Bernardino, J. [2015]. What is bigquery?, Proceedings of the 19th International Database
Engineering & Applications Symposium, pp. 202–203. 31

[55] Fielding, R. T. [2000]. Architectural Styles and the Design of Network-based Software Architectures, PhD thesis,
University of California, Irvine. Doctoral dissertation. 9, 12

[56] Fowler, M. [2010]. Richardson maturity model: steps toward the glory of rest.
URL: https://www.martinfowler.com/articles/richardsonMaturityModel.html 91

[57] Giretti, A. [2022]. Api versioning, Beginning gRPC with ASP.NET Core 6, pp. 223–237. 183, 212

[58] Grent, H., Akimov, A. and Aniche, M. [2021]. Automatically identifying parameter constraints in complex
web apis: A case study at adyen, arXiv preprint arXiv:2102.00871 p. 71–80.
URL: https://doi.org/10.1109/ICSE-SEIP52600.2021.00016 75

[59] Grill, T., Polacek, O. and Tscheligi, M. [2012]. Methods towards api usability: A structural analysis of usability
problem categories, International conference on human-centred software engineering, Springer, pp. 164–180.
12

[60] Grünewald, E., Wille, P., Pallas, F., Borges, M. C. and Ulbricht, M.-R. [2021]. Tira: an openapi extension and
toolbox for gdpr transparency in restful architectures, 2021 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW), IEEE, pp. 312–319. 186

[61] Guerrero-Garcia, J., Gonzalez-Calleros, J. M., Vanderdonckt, J. and Munoz-Arteaga, J. [2009]. A theoretical
survey of user interface description languages: Preliminary results, 2009 Latin American Web Congress, IEEE,
pp. 36–43. 10

[62] Hadley, M. J. [2006]. Web application description language (wadl), Technical report, USA. 10

[63] Haupt, F., Leymann, F., Scherer, A. and Vukojevic-Haupt, K. [2017]. A framework for the structural analysis
of rest apis, 2017 IEEE International Conference on Software Architecture (ICSA), IEEE, pp. 55–58. 11, 12, 32

[64] Haupt, F., Leymann, F. and Vukojevic-Haupt, K. [2018a]. Api governance support through the structural
analysis of rest apis, Computer Science-Research and Development 33(3): 291–303. 11, 12

237 Bibliography

[65] Haupt, F., Leymann, F. and Vukojevic-Haupt, K. [2018b]. Api governance support through the structural
analysis of rest apis, Comput. Sci. 33(3–4): 291–303. 93

[66] Henning, M. [2007]. API: Design matters: Why changing APIs might become a criminal offense., Queue
5(4): 24–36. 51

[67] Hentrich, C. and Zdun, U. [2011]. Process-Driven SOA: Patterns for Aligning Business and IT, Auerbach Publi-
cations. 10

[68] Higginbotham, J. [2021]. Principles of Web API Design: Delivering Value with APIs and Microservices, Addison-
Wesley Signature Series, Addison-Wesley. 157

[69] Hohpe, G. and Woolf, B. [2003]. Enterprise Integration Patterns: Designing, Building, and Deploying Messaging
Solutions, Addison-Wesley. 10

[70] Hora, A., Robbes, R., Valente, M. T., Anquetil, N., Etien, A. and Ducasse, S. [2018]. How do developers react
to api evolution? a large-scale empirical study, Software Quality Journal 26: 161–191. 13, 15, 155

[71] Humble, J. and Farley, D. [2010]. Continuous Delivery: Reliable Software Releases Through Build, Test, and
Deployment Automation, Addison-Wesley. 175

[72] Ivanchikj, A., Serbout, S. and Pautasso, C. [2020]. From text to visual bpmn process models: design and
evaluation, Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems, MODELS ’20, ACM, p. 229–239.
URL: https://doi.org/10.1145/3365438.3410990 231

[73] Ivanchikj, A., Serbout, S. and Pautasso, C. [2022]. Live process modeling with the bpmn sketch miner, Softw.
Syst. Model. 21(5): 1877–1906.
URL: https://doi.org/10.1007/s10270-022-01009-w 230

[74] Javan Jafari, A., Costa, D. E., Shihab, E. and Abdalkareem, R. [2023]. Dependency update strategies and
package characteristics, ACM Transactions on Software Engineering and Methodology 32(6): 1–29. 14

[75] Jin, B., Sahni, S. and Shevat, A. [2018]. Designing Web APIs: Building APIs That Developers Love, O’Reilly. 5,
6, 51, 68

[76] Johnson, P. [2002]. Enterprise software system integration: An architectural perspective, PhD thesis, KTH. 14

[77] Jonnada, S. and Joy, J. K. [2019]. Measure your api complexity and reliability, 2019 IEEE 17th International
Conference on Software Engineering Research, Management and Applications (SERA), IEEE, pp. 104–109. 68

[78] Kagdi, H. H. [2008]. Mining software repositories to support software evolution, PhD thesis, Kent State Univer-
sity. 7

[79] Knoche, H. and Hasselbring, W. [2021]. Continuous api evolution in heterogenous enterprise software
systems, 2021 IEEE 18th International Conference on Software Architecture (ICSA), IEEE, pp. 58–68.
URL: http://arxiv.org/abs/2103.11397 http://dx.doi.org/10.1109/ICSA51549.2021.00014
https://ieeexplore.ieee.org/document/9426799/ 14

[80] Koçi, R., Franch, X., Jovanovic, P. and Abelló, A. [2019]. Classification of changes in api evolution, 2019 IEEE
23rd International Enterprise Distributed Object Computing Conference (EDOC), IEEE, pp. 243–249. 161

238 Bibliography

[81] Koçi, R., Franch, X., Jovanovic, P. and Abelló, A. [2023]. Web api evolution patterns: A usage-driven approach,
Journal of Systems and Software 198: 111609.
URL: https://www.sciencedirect.com/science/article/pii/S0164121223000043 133, 137, 155

[82] Koci, R., Franch, X., Jovanovic, P. and Abelló, A. [2024]. Web api change-proneness prediction, 2024 IEEE
International Conference on Software Analysis, Evolution and Reengineering (SANER), IEEE, pp. 429–434. 5, 12

[83] Kopecky, J., Fremantle, P. and Boakes, R. [2014]. A history and future of web apis, Information Technology
56(3): 90–97. 3, 10

[84] Koren, I. and Klamma, R. [2018]. The exploitation of openapi documentation for the generation of web
frontends, Companion Proceedings of the The Web Conference 2018, ACM Press, New York, New York, USA,
pp. 781–787.
URL: http://dl.acm.org/citation.cfm?doid=3184558.3188740 10, 88

[85] Laigner, R., Kalinowski, M., Diniz, P., Barros, L., Cassino, C., Lemos, M., Arruda, D., Lifschitz, S. and Zhou, Y.
[2020]. From a monolithic big data system to a microservices event-driven architecture, 2020 46th Euromicro
conference on software engineering and advanced applications (SEAA), IEEE, pp. 213–220. 3

[86] Lam, P., Dietrich, J. and Pearce, D. J. [2020]. Putting the semantics into semantic versioning, Proc. of the 2020
ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software, p. 157–179.
URL: https://doi.org/10.1145/3426428.3426922 222

[87] Lamothe, M., Guéhéneuc, Y.-G. and Shang, W. [2021]. A systematic review of api evolution literature, ACM
Computing Surveys (CSUR) 54(8): 1–36.
URL: https://doi.org/10.1145/3470133 15

[88] Lanza, M. and Marinescu, R. [2007]. Object-oriented metrics in practice: using software metrics to characterize,
evaluate, and improve the design of object-oriented systems, Springer. 71

[89] Lauret, A. [2019]. The design of web APIs, Simon and Schuster. 5, 6, 10, 51, 68

[90] Lercher, A., Glock, J., Macho, C. and Pinzger, M. [2024]. Microservice api evolution in practice: A study on
strategies and challenges, Journal of Systems and Software 215: 112110. 3, 5, 14, 15

[91] Lewis, J. and Fowler, M. [2014]. Microservices: a definition of this new architectural term, https:
//martinfowler.com/articles/microservices.html.
URL: https://martinfowler.com/articles/microservices.html 14

[92] Li, D., Mei, H., Shen, Y., Su, S., Zhang, W., Wang, J., Zu, M. and Chen, W. [2018]. Echarts: a declarative
framework for rapid construction of web-based visualization, Visual Informatics 2(2): 136–146. 160, 163, 167

[93] Li, J., Xiong, Y., Liu, X. and Zhang, L. [2013]. How does web service api evolution affect clients?, 20th
International Conference on Web Services, IEEE, pp. 300–307. xix, 5, 13, 132, 133, 155

[94] Li, L. and Chou, W. [2011]. Design and describe rest api without violating rest: A petri net based approach,
2011 IEEE International Conference on Web Services, IEEE, pp. 508–515. 51, 68

[95] Li, W., Wu, F., Fu, C. and Zhou, F. [2023]. A large-scale empirical study on semantic versioning in golang
ecosystem, 2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE), IEEE,
pp. 1604–1614. 13

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

239 Bibliography

[96] Li, Y., Liu, S., Zhao, L. and Pan, G. [2017]. Self-adapted restful web api evolution model, Jisuanji Jicheng
Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS 23: 1020–1030. 6

[97] Linares-Vásquez, M., Bavota, G., Bernal-Cárdenas, C., Di Penta, M., Oliveto, R. and Poshyvanyk, D. [2013].
Api change and fault proneness: A threat to the success of android apps, Proceedings of the 2013 9th joint
meeting on foundations of software engineering, pp. 477–487. 6

[98] Lübke, D., Zimmermann, O., Pautasso, C., Zdun, U. and Stocker, M. [2019]. Interface evolution patterns:
balancing compatibility and extensibility across service life cycles, Proc. 24th EuroPLoP, EuroPLoP ’19, ACM,
pp. 1–24.
URL: https://doi.org/10.1145/3361149.3361164 14, 129, 130, 155, 166, 183, 185, 201

[99] Maleshkova, M., Pedrinaci, C. and Domingue, J. [2010]. Investigating web APIs on the world wide web, 8th
European Conference on Web Services, IEEE, pp. 107–114. 11, 12

[100] Mark, M. [2011]. REST API Design Rulebook: Designing Consistent RESTful Web Service Interfaces, O’Reilly. 5,
51

[101] Marquardt, K. [2010]. Patterns for software release versioning, Proc. of the 15th European Conference on
Pattern Languages of Programs (EuroPLoP). 6, 187

[102] McCabe, T. J. [1976]. A complexity measure, IEEE Transactions on software Engineering (4). 70

[103] McGovern, J., Sims, O., Jain, A. and Little, M. [2006]. Event-driven architecture, Enterprise Service Oriented
Architectures: Concepts, Challenges, Recommendations pp. 317–355. 3

[104] Medjaoui, M., Wilde, E., Mitra, R. and Amundsen, M. [2021]. Continuous API management, O’Reilly. 10, 17,
157

[105] Mens, T., Demeyer, S., D’Ambros, M., Gall, H., Lanza, M. and Pinzger, M. [2008]. Analysing software repos-
itories to understand software evolution, Software evolution pp. 37–67. 7

[106] Meshram, S. U. [2021]. Evolution of modern web services–rest api with its architecture and design, Interna-
tional Journal of Research in Engineering, Science and Management 4(7): 83–86. 5, 6

[107] Mujahid, S., Abdalkareem, R., Shihab, E. and McIntosh, S. [2020]. Using others’ tests to identify breaking
updates, 17th international conference on mining software repositories, ACM, pp. 466–476.
URL: https://doi.org/10.1145/3379597.3387476 14

[108] Murer, S. and Bonati, B. [2010]. Managed evolution: a strategy for very large information systems, Springer.
14

[109] Murphy, L., Kery, M. B., Alliyu, O., Macvean, A. and Myers, B. A. [2018]. Api designers in the field: Design
practices and challenges for creating usable apis, 2018 ieee symposium on visual languages and human-centric
computing (vl/hcc), IEEE, pp. 249–258. 51

[110] Neumann, A., Laranjeiro, N. and Bernardino, J. [2018]. An analysis of public rest web service apis, IEEE
Transactions on Services Computing 14(4): 957–970. 10, 12

[111] Newman, S. [2015]. Building Microservices: Designing Fine-Grained Systems, O’Reilly. 3

[112] Nguyen, P. T., Di Rocco, J., Di Ruscio, D., Pierantonio, A. and Iovino, L. [2019]. Automated classification of
metamodel repositories: A machine learning approach, Int. Conf. on Model Driven Engineering Languages and
Systems, pp. 272–282. 11

240 Bibliography

[113] OAS2Tree [n.d.a].
URL: http://api-ace.inf.usi.ch/openapi-to-tree/ 81

[114] OAS2Tree [n.d.b].
URL: https://marketplace.visualstudio.com/items?itemName=oas2tree.oas2tree 81

[115] OASDiff [n.d.]. oasdiff tool. https://github.com/Tufin/oasdiff. 160, 213

[116] Ochoa, L., Degueule, T., Falleri, J.-R. and Vinju, J. [2022]. Breaking bad? semantic versioning and impact of
breaking changes in maven central, Empirical Software Engineering 27(3): 1–42. 6, 13, 14

[117] Ofoeda, J., Boateng, R. and Effah, J. [2023]. An institutional perspective on application programming inter-
face development and integration, Information Technology & People . 10

[118] OpenAPI Initiative [n.d.]. OpenAPI Initiative. https://www.openapis.org/. Accessed: 2021-06-01. 4, 10,
81, 155, 186, 188, 211

[119] OpenAPI Generator [n.d.]. https://github.com/OpenAPITools/openapi-generator.
URL: https://github.com/OpenAPITools/openapi-generator 88

[120] Palma, F., Dubois, J., Moha, N. and Guéhéneuc, Y.-G. [2014]. Detection of REST patterns and antipatterns:
a heuristics-based approach, International Conference on Service-Oriented Computing, Springer, pp. 230–244.
12

[121] Patni, S. [2017]. Pro RESTful APIs, Springer. 88

[122] Pautasso, C., Ivanchikj, A. and Schreier, S. [2016]. A pattern language for restful conversations, Proceedings
of the 21st European Conference on Pattern Languages of Programs (EuroPLoP), Irsee, Germany. 118

[123] Pautasso, C., Zimmermann, O., Amundsen, M., Lewis, J. and Josuttis, N. M. [2017]. Microservices in practice,
part 1: Reality check and service design, IEEE Software 34(1): 91–98.
URL: https://doi.org/10.1109/MS.2017.24 14

[124] Petrillo, F., Merle, P., Moha, N. and Guéhéneuc, Y.-G. [2016]. Are rest apis for cloud computing well-designed?
an exploratory study, Proc. ICSOC, Springer, pp. 157–170. 5

[125] Polák, M. and Holubová, I. [2015]. Rest api management and evolution using mda, Proceedings of the Eighth
International C*Conference on Computer Science & Software Engineering, pp. 102–109. 5

[126] Postman [2021]. Postman, Postman. https://www.postman.com/. Accessed: 2024-06-01.
URL: https://www.postman.com/ 76

[127] Raatikainen, M., Kettunen, E., Salonen, A., Komssi, M., Mikkonen, T. and Lehtonen, T. [2021]. State of
the practice in application programming interfaces (APIs): A case study, Proc. 15th European Conference on
Software Architecture (ECSA), pp. 191–206. 183

[128] Raemaekers, S., van Deursen, A. and Visser, J. [2017]. Semantic versioning and impact of breaking changes
in the maven repository, Journal of Systems and Software 129: 140–158. 13, 14

[129] Rahmatulloh, A., Nugraha, F., Gunawan, R., Darmawan, I., Haerani, E. and Rizal, R. [2024]. Event-driven
architecture (eda) vs api-driven architecture (ada): Which performs better in microservices?, 2024 Interna-
tional Conference on Artificial Intelligence, Blockchain, Cloud Computing, and Data Analytics (ICoABCD), IEEE,
pp. 31–36. 4

https://github.com/Tufin/oasdiff
https://www.openapis.org/
https://github.com/OpenAPITools/openapi-generator
https://www.postman.com/

241 Bibliography

[130] Richards, M. [2015]. Microservices vs. service-oriented architecture, O’Reilly Media Sebastopol. 3

[131] Richardson, C. [2018]. Microservices Patterns, Manning. 3

[132] Richardson, L., Amundsen, M. and Ruby, S. [2013]. RESTful Web APIs, O’Reilly. 88

[133] Richardson, L. and Ruby, S. [2007]. RESTful Web Services, O’Reilly. 88

[134] Roche, J. [2013]. Adopting devops practices in quality assurance, Communications of the ACM 56(11): 38–43.
175

[135] Saaty, T. L. [2008]. Decision making with the analytic hierarchy process, International journal of services
sciences 1(1): 83–98. 12

[136] Schmidt, D. C. [2006]. Model-driven engineering, Computer-IEEE Computer Society- 39(2): 25. 11

[137] Schmiedmayer, P., Bauer, A. and Bruegge, B. [2023]. Reducing the impact of breaking changes to web
service clients during web api evolution, 10th International Conference on Mobile Software Engineering and
Systems (MOBILESoft), pp. 1–11. 14

[138] Schreibmann, V. and Braun, P. [2015]. Model-driven development of restful apis, International Conference on
Web Information Systems and Technologies, Vol. 2, SCITEPRESS, pp. 5–14. 4

[139] Serbout, S., Di Lauro, F. and Pautasso, C. [2022]. Web apis structures and data models analysis, 2022 IEEE
19th International Conference on Software Architecture Companion (ICSA-C), IEEE, pp. 84–91. 46, 60, 75, 231

[140] Serbout, S., Malki, A. E., Pautasso, C. and Zdun, U. [2023]. Api rate limit adoption - a pattern collection,
Proc. 28th European Conference on Pattern Languages of Programs (EuroPLoP 2023), EuroPLoP ’23, ACM, Kloster
Irsee, Germany.
URL: https://doi.org/10.1145/3628034.3628039 230

[141] Serbout, S., Muñoz Hurtado, D. C. and Pautasso, C. [2023]. Interactively exploring api changes and version-
ing consistency, Working Conference on Software Visualization (VISSOFT), IEEE, Bogota, Colombia, pp. 28–39.
230

[142] Serbout, S. and Pautasso, C. [2023]. An empirical study of web api versioning practices, in I. Garrigós, J. M.
Murillo Rodríguez and M. Wimmer (eds), International Conference on Web Engineering, Springer, pp. 303–318.
46, 161, 167, 230

[143] Serbout, S. and Pautasso, C. [2024a]. APIstic: a large collection of OpenAPI metrics, 21st International
Conference on Mining Software Repositories (MSR), MSR ’24, IEEE, ACM, pp. 265–277.
URL: https://doi.org/10.1145/3643991.3644932 46, 229

[144] Serbout, S. and Pautasso, C. [2024b]. How are web apis versioned in practice? a large-scale empirical study,
Journal of Web Engineering 23: 465–506. 46, 230

[145] Serbout, S. and Pautasso, C. [2024c]. How many web apis evolve following semantic versioning?, in K. Ste-
fanidis, K. Systä, M. Matera, S. Heil, H. Kondylakis and E. Quintarelli (eds), International Conference on Web
Engineering, Springer, Springer, pp. 344–359. 46, 229

[146] Serbout, S. and Pautasso, C. [2024d]. Oas2tree: Visual api-first design, 18th European Conference on Software
Architecture, Springer, pp. 29–44. 229

242 Bibliography

[147] Serbout, S., Pautasso, C. and Zdun, U. [2022]. How composable is the web? an empirical study on openapi
data model compatibility, 2022 IEEE International Conference on Web Services (ICWS), pp. 415–424. 230

[148] Serbout, S., Pautasso, C., Zdun, U. and Zimmermann, O. [2021]. From openapi fragments to api pattern
primitives and design smells, Proceedings of the 26th European Conference on Pattern Languages of Programs,
EuroPLoP ’21, ACM, pp. 1–35.
URL: https://doi.org/10.1145/3489449.3489998 46, 81, 231

[149] Serbout, S., Romanelli, A. and Pautasso, C. [2022]. Expresso: From express. js implementation code to
openapi interface descriptions, in T. Batista, T. Bure!, C. Raibulet and H. Muccini (eds), European Conference
on Software Architecture, Springer, Springer, pp. 29–44. 174, 230

[150] Shafiq, S., Mashkoor, A., Mayr-Dorn, C. and Egyed, A. [2020]. Machine learning for software engineering:
A systematic mapping, arXiv preprint arXiv:2005.13299 . 11

[151] Shepperd, M. [1988]. A critique of cyclomatic complexity as a software metric, Software Engineering Journal
3(2): 30–36. 70

[152] Singh, A., Singh, V., Aggarwal, A. and Aggarwal, S. [2022]. Event driven architecture for message streaming
data-driven microservices systems residing in distributed version control system, 2022 International Conference
on Innovations in Science and Technology for Sustainable Development (ICISTSD), IEEE, pp. 308–312. 3

[153] Smith, E. A. and Senter, R. [1967]. Automated readability index, number AD0667273, Aerospace Medical
Research Laboratories. https://apps.dtic.mil/sti/citations/AD0667273. 33, 34

[154] Sohan, S., Anslow, C. and Maurer, F. [2015]. A case study of web api evolution, 2015 IEEE World Congress
on Services, IEEE, pp. 245–252. 5, 13, 131, 132, 133

[155] Spacy [n.d.]. Models documentation.
URL: https://spacy.io/models/en 95

[156] Stocker, M. and Zimmermann, O. [2021]. From code refactoring to api refactoring: Agile service design
and evolution, Service-Oriented Computing (SummerSOC 2021), Vol. 1429 of Communications in Computer
and Information Science, Springer, pp. 174–193. 155

[157] Stocker, M. and Zimmermann, O. [2023]. Api refactoring to patterns: catalog, template and tools for remote
interface evolution, Proceedings of the 28th European Conference on Pattern Languages of Programs, EuroPLoP
’23, ACM, pp. 1–32.
URL: https://doi.org/10.1145/3628034.3628073 14, 133

[158] Sturgeon, P. [2016]. Build APIs you won’t hate, LeanPub.
URL: https://leanpub.com/build-apis-you-wont-hate 88

[159] Subramanian, H. and Raj, P. [2019]. Hands-On RESTful API Design Patterns and Best Practices: Design, develop,
and deploy highly adaptable, scalable, and secure RESTful web APIs, Packt Publishing Ltd. 51

[160] Suter, P. and Wittern, E. [2015]. Inferring web api descriptions from usage data, 2015 Third IEEE Workshop
on Hot Topics in Web Systems and Technologies (HotWeb), IEEE, IEEE, pp. 7–12.
URL: http://ieeexplore.ieee.org/document/7372275/ 10

[161] Swagger Codegen [n.d.]. https://swagger.io/tools/swagger-codegen/.
URL: https://swagger.io/tools/swagger-codegen/ 88

https://apps.dtic.mil/sti/citations/AD0667273
https://swagger.io/tools/swagger-codegen/

243 Bibliography

[162] Team, H. F. [2023]. Hugging face api: Pre-trained models for nlp and ai.
URL: https://huggingface.co/docs 10

[163] Team, O. [2020]. Gpt-3: Openai’s language model api.
URL: https://openai.com/api/ 10

[164] The Open API Initiative [n.d.]. Oai, https://openapis.org.
URL: https://openapis.org/ 88

[165] Thönes, J. [2015]. Microservices, IEEE software 32(1): 116–116. 3

[166] Tian, Y., Kochhar, P. S. and Lo, D. [2017]. An exploratory study of functionality and learning resources of
web apis on programmableweb, Proceedings of the 21st International Conference on Evaluation and Assessment
in Software Engineering, EASE ’17, ACM, pp. 202–207.
URL: https://doi.org/10.1145/3084226.3084286 12

[167] Tzavaras, A., Mainas, N., Bouraimis, F. and Petrakis, E. G. [2021]. Openapi thing descriptions for the web
of things, 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI), IEEE, pp. 1384–
1391. 186

[168] Tzavaras, A., Mainas, N. and Petrakis, E. G. [2023]. Openapi framework for the web of things, Internet of
Things 21: 100675. 186

[169] van de Wetering, H., Klaassen, N. and Burch, M. [2020]. Space-reclaiming icicle plots, 2020 IEEE Pacific
Visualization Symposium (PacificVis), IEEE, pp. 121–130. 166

[170] Varga, E. [2016]. Versioning REST APIs, Apress, Berkeley, CA, pp. 109–118.
URL: https://doi.org/10.1007/978-1-4842-2196-96 6

[171] Wang, S., Keivanloo, I. and Zou, Y. [2014]. How do developers react to restful api evolution?, Service-Oriented
Computing: 12th International Conference, ICSOC 2014, Paris, France, November 3-6, 2014. Proceedings 12,
Springer, pp. 245–259. 13

[172] Webber, J., Parastatidis, S. and Robinson, I. [2010]. REST in Practice: Hypermedia and Systems Architecture,
1st edn, O’Reilly Media, Inc. 88

[173] Welker, K. D. [2001]. The software maintainability index revisited, CrossTalk 14: 18–21. 70

[174] Wittern, E. [2018]. Web apis-challenges, design points, and research opportunities: Invited talk at the 2nd
international workshop on api usage and evolution (wapi’18), 2018 IEEE/ACM 2nd International Workshop on
API Usage and Evolution (WAPI), WAPI ’18, IEEE, ACM, pp. 18–18.
URL: https://doi.org/10.1145/3194793.3194801 12

[175] Wittern, E., Ying, A. T., Zheng, Y., Dolby, J. and Laredo, J. A. [2017]. Statically checking web api requests
in javascript, 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE), ICSE ’17, IEEE,
IEEE Press, pp. 244–254.
URL: https://doi.org/10.1109/ICSE.2017.30 12

[176] Xavier, L., Brito, A., Hora, A. and Valente, M. T. [2017]. Historical and impact analysis of api breaking
changes: A large-scale study, 2017 IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering (SANER), IEEE, pp. 138–147. 155

244 Bibliography

[177] Xavier, L., Hora, A. and Valente, M. T. [2017]. Why do we break apis? first answers from developers, Proc.
IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER), IEEE, pp. 392–
396. 160

[178] Yang, J., Wittern, E., Ying, A. T., Dolby, J. and Tan, L. [2018]. Towards extracting web api specifications from
documentation, Proceedings of the 15th International Conference on Mining Software Repositories (MSR), MSR
’18, ACM, pp. 454–464.
URL: https://dl.acm.org/doi/10.1145/3196398.3196411 186

[179] Yasmin, J., Tian, Y. and Yang, J. [2020]. A first look at the deprecation of restful apis: An empirical study,
2020 IEEE International Conference on Software Maintenance and Evolution (ICSME), IEEE, pp. 151–161. 14

[180] Zdun, U. and Avgeriou, P. [2008]. A catalog of architectural primitives for modeling architectural patterns,
Information and Software Technology 50(9): 1003–1034.
URL: https://www.sciencedirect.com/science/article/pii/S0950584907001073 88

[181] Zhang, D. and Tsai, J. J. [2003]. Machine learning and software engineering, Softw. Qual. 11(2): 87–119.
11

[182] Zhang, L., Liu, C., Xu, Z., Chen, S., Fan, L., Chen, B. and Liu, Y. [2022]. Has my release disobeyed semantic
versioning? static detection based on semantic differencing, arXiv preprint arXiv:2209.00393 pp. 1–12. 13,
14, 186, 222

[183] Zhou, S., Jeong, H. and Green, P. A. [2017]. How consistent are the best-known readability equations in
estimating the readability of design standards?, IEEE Transactions on Professional Communication 60(1): 97–
111. 34

[184] Zhou, X.-Y., Chen, W., Wu, G.-Q. and Jun, W. [2021]. REST API design analysis and empirical study, Journal
of Software 33(9): 3271–3296. 5

[185] Zimmermann, O., Lübke, D., Zdun, U., Pautasso, C. and Stocker, M. [2020]. Interface responsibility patterns:
Processing resources and operation responsibilities, Proc. of the European Conference on Pattern Languages of
Programs, EuroPLoP ’20, ACM.
URL: https://doi.org/10.1145/3424771.3424822 124, 126

[186] Zimmermann, O., Milinski, S., Craes, M. and Oellermann, F. [2004]. Second generation web services-oriented
architecture in production in the finance industry, Companion to the 19th annual ACM SIGPLAN conference on
Object-oriented programming systems, languages, and applications, pp. 283–289. 3

[187] Zimmermann, O., Pautasso, Cesare Lübke, D., Zdun, U., and Stocker, M. [2019]. Data-oriented interface
responsibility patterns: Types of information holder resources, Proc. of the European Conference on Pattern
Languages of Programs, EuroPLoP ’19, ACM.
URL: https://doi.org/10.1145/3424771.3424821 125, 126

[188] Zimmermann, O., Stocker, M., Lübke, D., Pautasso, C. and Zdun, U. [2020]. Introduction to microservice
api patterns (map), in L. Cruz-Filipe, S. Giallorenzo, F. Montesi, M. Peressotti, F. Rademacher and S. Sachweh
(eds), Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices
2017/2019), Vol. 78 of OpenAccess Series in Informatics (OASIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, Dagstuhl, Germany, pp. 4:1–4:17.
URL: https://drops.dagstuhl.de/opus/volltexte/2020/11826 88

245 Bibliography

[189] Zimmermann, O., Stocker, M., Lübke, D., Pautasso, C. and Zdun, U. [2021]. Microservice api patterns,
https://microservice-api-patterns.org/. 10, 75, 124

[190] Zimmermann, O., Stocker, M., Lübke, D. and Zdun, U. [2017]. Interface representation patterns: Crafting
and consuming message-based remote apis, Proc. of the 22nd European Conference on Pattern Languages of
Programs, EuroPLoP ’17, ACM, pp. 27:1–27:36.
URL: http://doi.acm.org/10.1145/3147704.3147734 124

[191] Zimmermann, O., Stocker, M., Lubke, D., Zdun, U. and Pautasso, C. [2022]. Patterns for API design: simpli-
fying integration with loosely coupled message exchanges, Addison-Wesley Professional. 3, 17

[192] Zuse, H. [2019]. Software complexity: measures and methods, Vol. 4, Walter de Gruyter GmbH & Co KG. 69

https://microservice-api-patterns.org/

	Contents
	List of Figures
	List of Tables
	I Contextualization
	Introduction
	Contextualization
	Thesis Goal
	Research Questions
	Research Approach
	Dissertation Outline

	State of the Art
	Background on Web APIs
	Web APIs history
	Web API design and modeling: Interface Description Languages

	Web APIs Analysis
	Analyzing Web API functional features through documentation
	Analyzing Web API features changes over time
	Mitigating and facing web API evolution challenges
	APIs evolution in microservices-based architectures
	API changes across language ecosystems

	A Large Dataset of OpenAPI Specifications
	Web APIs Specifications Dataset Utility
	Data Collection Approaches
	APIs.guru
	SwaggerHub
	GitHub

	OpenAPI Dataset Metrics
	API structure metrics
	API data model metrics
	API natural language descriptions metrics
	API security metrics

	OpenAPI Dataset Exploration
	Web APIs Metric-based Exploration Through APIstic
	API size: structure and data model
	Web API structure and data model correlations
	HTTP methods usage
	API maintenance lifecycle
	Readability of natural language documentation
	Types of security schemes in APIs

	API Specification Dataset Usage in this Thesis

	II Web API structure and data model analysis
	Web APIs Structure and Data Models Characteristics Analysis
	Design Principles and their Impact on API Structures and data models
	Path design principles
	Operation design principles
	Data model alignment considerations

	Towards Assessing Web API Complexity
	Existing definitions
	A Specific complexity metric for web APIs

	OAS2Tree: Visualizing Web APIs as Trees
	Representing the API Structure as a Tree
	API Tree Model
	OpenAPI to Tree model transformation

	OAS2tree: Tool Support for API Tree Visualization
	OAS2Tree Features
	API Spec validation Design Smells Detection
	Navigation of API description through the tree visualization
	Web version of OAS2Tree

	Usage scenarios
	Web API modeling tools

	Web APIs Structural Patterns and Smells: A pattern map of API fragments
	Mining Recurrent Web API Fragments
	API Fragments Mining Approach
	API Fragments Mining Outcome
	Analyzed Data
	OAS versions distribution
	HTTP methods usage
	API sizes distribution
	Domain Concepts

	API Fragments
	APIs fragmentation approach
	API Fragments Clustering and Selection

	Structural API Primitives
	Enumerable Collection (P1)
	Appendable Collection (P2)
	Collection (P3)
	Mutable Collection (P4)

	From Primitives to Larger Structures and API Responsibility Patterns
	Composing Primitives
	Relation to Architectural Patterns

	III Web API changes analysis
	Web API Changes
	Web API Change
	Definition
	Web API changes traceability

	Related Work
	Change patterns extraction from explicit traces
	Change patterns extraction based on implicit traces: API usage logs

	Web API Changes in a Large Dataset of Real-World Web API Histories
	Change extraction from OpenAPI histories
	Web API changes extraction pipeline
	Data selection and preparation
	Dynamics in Web API histories
	Types of changes and their impact on clients integration

	Web API Histories Visualization
	Sunbursts of Web API histories
	Use Case Scenarios and Example API
	API Version Clock Visualization
	Visualization goal
	Building API Version Clock
	Visualization Structure
	API Version Clock Interactive Features

	API Changes Visualization
	Visualization goal
	Building API Changes
	Visualization structure
	API Changes Interactive Features

	API Evolution Gallery
	SunRocks API Evolution
	xOpera REST API Evolution
	IPFS Pinning Service API Evolution
	Xero Projects API Evolution
	OpenFairDB API Evolution

	Discussion
	API Version Clock
	API Changes

	APIcture: Tool support
	Use case example
	Other supported cases

	IV Web API versioning analysis
	Web API Versioning
	Web API Versioning Challenges
	Web APIs Versioning Documentation
	Version Identifiers in Web APIs
	OpenAPI Versioning Metadata
	API stable releases
	API Preview Releases

	Methodology
	Dataset preparation
	Analysis methodology

	Results
	Metadata-based versioning
	URL-based versioning
	Path-based versioning
	DNS-based versioning
	Header-based versioning
	Dynamic versioning
	``Two in production" Evolution Pattern
	Version Formats adoption over the years

	Results structuring
	Web API versioning in OpenAPI 4.0: proposal

	Web API Changes and Versioning Consistency
	Research Approach
	Semantic Versioning Change Classification

	Consistency Metrics
	Consistency Assessment Results
	Change-level compliance
	API-level Compliance

	Results Discussion

	V Conclusions
	Conclusions
	Summary of Research Contributions
	Threats To Validity
	Internal Validity
	External Validity
	Construct Validity
	Reliability

	Retrospective
	Contributions and key findings
	Research Limitations
	Future research directions

	Research Publications

	Bibliography

