
The Stream Software Connector Design Space:
Frameworks and Languages for
Distributed Stream Processing

Masiar Babazadeh
University of Lugano, Switzerland

masiar.babazadeh@usi.ch

Cesare Pautasso
University of Lugano, Switzerland

c.pautasso@ieee.org

Abstract—In recent years we witnessed the rise of applications
in which data is continuously generated and pushed towards
consumers in real time through complex processing pipelines.
Software connectors like remote procedure call (RPC) do not fit
with the needs of such applications, for which the publish/sub-
scribe and the stream connectors are more suitable. This paper
introduces the design space of the stream software connector
by analyzing recent stream processing engine frameworks and
domain specific languages featuring native streaming support.
On the one side, we want to classify and compare streaming
systems based on a taxonomy derived from the wide range of
features they offer (i.e., pipeline dynamicity and representation,
load balancing and deployment flexibility). On the other side,
the gaps in the design space we identify point at future research
directions in the area of distributed stream processing. To do
so, we gather valuable architectural knowledge in terms of
architectural issues and alternatives, elicited by surveying the
most important architectural decisions made by the designers of
several representative streaming framework architectures.

Keywords—stream; software connector; architectural decisions;

I. INTRODUCTION

The notion of “stream” has become of primary importance
nowadays with the emergence of applications in which data is
continuously generated and pushed through complex process-
ing pipelines towards consumers [1]. Examples range from
the banking, financial sector to pervasive computing (i.e., the
Internet of Things or the Web of Things [2]) as well as the
increased popularity of social media. In the last decades, many
attempts to natively embed the stream abstraction into software
frameworks and programming languages have been proposed.
One of the most recent standards is WebRTC [3], which
enables streaming peer-to-peer connections between HTML5
compliant Web browsers, paving the way for the real-time
Web [4].

This paper introduces a novel classification for such lan-
guages and frameworks by analyzing the most important
architectural-level issues covered during their design, and by
presenting which strategic design decisions have been taken to
address them. These architectural decisions [5] impact the ease
of use (in terms of programming abstractions) for developers
as well as other important quality attributes (i.e., performance,
dependability, scalability) of the resulting stream-based sys-
tem. The classification can be used to compare the architecture
of state-of-the-art software frameworks providing support for

the stream software connector abstraction [6], which together
with remote procedure calls, messaging, file transfer, and
shared database provides an important alternative solution
for the integration of different systems in large enterprise
architectures [7]. What is specific about streaming is the
ability to deliver a potentially infinite stream of messages.
As we are going to discuss, depending on the design of the
specific framework, streams may be used to build complex
topologies and be delivered with real-time guarantees that are
not commonly associated with other software connectors. As
a result of this survey, we have identified several gaps in the
design space of streaming software connectors that can lead
to further research in next-generation streaming middleware
systems.

The paper is organized as follows: Section II presents
the methodology used to choose and classify the systems; III
introduces the selected streaming connectors, frameworks and
languages; Sections IV and V enumerate the main architectural
design-time and run-time issues streaming systems should
address and discusses how the architectures of the streaming
systems we have selected address them. Section VI discusses
the results. Section VIII concludes the paper.

II. METHODOLOGY

To gather architectural decisions on stream software con-
nectors, we have focused on the functional characteristics
of a set of representative stream processing frameworks and
languages. The goal was to reconstruct and analyze the set
of principal design issues that, taken together, allow us to
classify and compare the capabilities and features of different
kinds of streaming connectors. To organize the architectural
knowledge [8], we follow a simple Issue-Based Information
Systems (IBIS) meta-model [9], where we enumerate a number
of design issues (or problems) and – for each issue – we
present a number of architecture alternatives (or solutions) that
have been chosen in the frameworks and languages we sur-
veyed. For each alternative, we outline the benefits, challenges
and concrete examples of how they are supported by one or
more representative connector. We decided to divide the design
issues into two categories: design-time and run-time. Design-
time issues describe what has to be taken into account for a
system before running it. For example, which kind of topology
it will implement, how the application is described, or where is
it going to be deployed. Run-time issues instead describe what
should be decided for the run-time of the system, for example,



if the topology is going to be flexible, if the system will tolerate
faults, or balance the load. The two dimensions are orthogonal
with respect to the time: deciding the type of topology, how
to write it, and where to deploy happens before running the
topology; concepts like dynamic adaptation, fault tolerance
and load balancing are mainly run-time notions. To recover
the architectural decisions, we followed a process similar to
Jansen et al. [10] where we gathered information about each
connector, testing it where possible, and harvested architectural
decisions from the available documentation. In particular, we
decided to include an issue in the design space only if we could
find more than one alternative for it. The choice of systems to
include in the survey has been based on the following criteria:
1) support for distributed stream processing; 2) availability of
prototypes or implementations with actual real-world usage. In
particular, for space reasons, we omitted redundant examples
with systems that are very similar or closely related (i.e., newer
systems were preferred to their predecessors). The selection
process resulted in a representative but also very diverse set
of stream software connectors, which allowed us to evaluate
the taxonomic power of the design space. As a result, we can
compare the different decisions behind the various systems and
also observe how technology trends have emerged and evolved
over the past 10 years.

III. BACKGROUND

From an architectural perspective, the stream software
connector is tightly linked to the well known pipe and filter
architectural style [11]. Early architectural description lan-
guages (i.e., UniCon [12]) introduced the Pipe connector to
exchange an infinite stream of elements. The stream may be
composed of raw bytes (as with TCP/IP socket connections)
or have a structured content (as with multimedia digital video
streams). Whereas the stream would initially connect local
processes or locally deployed components, very soon remote or
distributed implementations of streams became available with
various degrees of reliability and performance qualities.

From a data management perspective, streams have also
been the fundamental abstraction of Data Stream Management
Systems (DSMS) [13], which—as opposed to database man-
agement systems—feature support for consuming and generat-
ing infinite relationships by continuously running queries over
one or more sources of streaming data.

As opposed to the architectural perspective given by stream
software connectors, which focus on the architectural-level
connection and the runtime interaction between the interfaces
of software components, the data stream management system
perspective is devoted more to the content flowing through the
stream and dedicated to describing how to efficiently process
such content, by providing reliability and scalability guarantees
to deal with very large amounts of data flowing through the
streaming pipeline.

We have explicitly collected representative systems from
both the software architecture and the database areas, in order
to attempt to provide a unified perspective on the design
space presented in this paper. Given that different systems
use different notations and vocabulary to describe primitives
and basic building blocks of a stream processing system, in
this paper, we decided to introduce a common terminology.

Figure 1 shows the terms used in this paper in the context
of a simple example pipeline. With the term “system” we
address frameworks and/or streaming programming languages.
With the term “host”, we define the hardware where (part of)
the streaming system is run. The term “operator” indicates
a logical component of the pipeline. The term “worker” is
the runtime element (i.e., process or thread) dedicated to
processing the stream on the corresponding operator. For
scalability/reliability, multiple workers deployed on different
hosts can run the same logical operator. Workers are con-
nected through a stream of data, whose units are the “stream
elements”. Operators connected by the stream form a graph
according to a predefined topology.

In the rest of this section we briefly introduce the systems
we selected to be part of the survey.

a) Borealis [14] is a distributed stream processing engine
which inherits core stream processing functionality from Au-
rora [15] and distribution functionality from Medusa [16].
Aurora is a framework for monitoring applications; the high
level system model is made out of operators which receive
and forward data through continuous and ad hoc queries.
An extension of Aurora called Aurora* [17] adds distribution
and scalability to the framework. Borealis implements all the
functionalities from Aurora and is designed to support dynamic
revision of query results, dynamic query modification and to
be flexible and highly scalable.

b) CQL [18], in contrast to Aurora and Borealis, is not
a framework but a programming language and an execution
engine. CQL (for Continuous Query Language) is a declarative
language that extends SQL with the capability of querying
windows over infinite streams of data and runs on the Stanford
STREAM [19] runtime.

c) Discretized Streams (D-Streams) [20] is a system that
provides a set of stream-transformation which treat the stream
as a series of deterministic batch computations on very small
time intervals. In this way, it reuses the fault tolerance mech-
anism for batch processing, leveraging MapReduce [21] style
recovery.

d) DryadLINQ [22] enables a new programming model
for distributed computing on large scale. It supports general-
purpose declarative and imperative operations on datasets
by the means of a high-level programming language. A
DryadLINQ program is composed by LINQ [23] expressions
automatically translated by the compiler into a distributed
execution plan (which they call ”job graph”, a topology) passed
to the Dryad execution platform.

Host 0 Host 1

Operator 0 Operator 1 Operator 2

Workers Workers Workers

Stream Stream

Fig. 1. Example pipeline with the terminology used in this paper.



Issue, Alternative St
re

am
It

(2
00

2)

C
Q

L
(2

00
3)

Sa
w

za
ll

(2
00

3)

B
or

ea
lis

(2
00

5)

SP
C

(2
00

6)

St
re

am
Fl

ex
(2

00
7)

D
ry

ad
L

IN
Q

(2
00

8)

S4
(2

01
0)

St
or

m
(2

01
1)

W
eb

R
T

C
(2

01
1)

X
Tr

ea
m

(2
01

1)

D
-S

tr
ea

m
s

(2
01

2)

Ti
m

eS
tr

ea
m

(2
01

3)

Topology
Linear + + + + + + + + + + + + +
Parallel Flows + + + + + + + + + + + + +
DAG + + + + + + + + + + +
Arbitrary + +

Topology Representation
Textual, Declarative + + +
Textual, Imperative + + + + + + + + + + + +

Deployment
Cluster + + + + + + + + + + +
Cloud + + + + + +
Pervasive + +

D
es

ig
n

Ti
m

e
Is

su
es

Web Browser +
Dynamic Adaptation

Static + + + +
Dynamic: Operator + + + + +
Dynamic: Topology + + + + +

Fault Tolerance
Replication + +
Reconfiguration + + + + +

Load Balancing
Load Shedding + + +
Dynamic Reinitialization +

R
un

Ti
m

e
Is

su
es

Dynamic Adaptive Controller + + + +

TABLE I. SUMMARY OF THE DESIGN DECISIONS (+) OVER THE STREAM CONNECTOR DESIGN SPACE

e) The Simple Scalable Streaming System (S4) [24] is a
general-purpose, distributed platform similar to Storm, devel-
oped by Yahoo! and inspired by the Actor model [25] and
MapReduce. It allows programmers to develop applications
that process unbounded streams of data. Programmers can
build topologies out of Processing Nodes (PNs) that host
Processing Elements (PEs, operators). Each PE is associated
with a function and with the type of event that it consumes.

f) Sawzall [26] is a procedural domain-specific program-
ming language built upon MapReduce. It was introduced by
Google to process large batches of log records. Each Sawzall
script takes as input a single log record to be processed by
operators deployed on multiple machines; the output is emitted
in tabular form.

g) Storm [27] is a distributed real-time computational
environment, free and open source, originally developed by
Twitter. Information sources and manipulations are defined
by custom created ”spouts” (operators that produce a stream)
and ”bolts” (operators that receive streaming elements), used
to allow distributed processing of streaming data. These are
very similar to MapReduce jobs, but they can theoretically
run forever. Every spout and bolt can be run by one or more
worker, in which the core of a Storm computation is executed.

h) StreamFlex [28] is a programming model for high-
throughput stream processing in Java. It extends the Java
Virtual Machine with transactional channels and type-safe

allocation while providing a stricter typing discipline on the
stream components of the code.

i) StreamIt [29] is a programming language and a com-
pilation infrastructure. A StreamIt program is a hierarchical
composition of constructs called Filter, Pipeline, SplitJoin or
FeedbackLoop which restrict the topology and the message
rate.

j) Stream Processing Core (SPC) [30] is a middleware for
distributed stream processing targeting data mining applica-
tions. It supports applications that extract information from
multiple digital data streams. Applications are composed by
Processing Elements (operators) which implement application-
defined operators connected by stream subscriptions.

k) TimeStream [31] is a distributed system designed for
continuous processing of big streaming data on large cluster
of machines. It supports failure recovery and dynamic recon-
figuration to face load changes. TimeStream tries to combine
MapReduce-style and streaming database systems into one
framework. It is designed to preserve the programming model
of StreamInsight [32] (a platform used to develop and deploy
complex event processing applications) and thus can be used
to scale any StreamInsight application to large clusters without
modification.

l) Web Real-Time Communication (WebRTC) [3] is an
API drafted by the World Wide Web Consortium (W3C). It
enables browser-to-browser connectivity for applications such
as voice calls, video chat, and peer-to-peer file sharing. It



makes is possible to use the stream connector directly between
Web browsers.

m) XTream [33], [34] is a platform to support the de-
sign of data processing and dissemination engines at Internet
scale. XTream defines a model for building applications with
personal information streams. It is composed by slets, which
are what we call operators, and can appear in three different
aspects: α-slets (inputs), ω-slets (outputs) and π-slets (middle
of the topology). Slets can be loaded and unloaded at runtime,
giving the system high flexibility. One of the most interesting
aspects of XTream is the ability to instantiate and run other
kind of topologies (i.e. a CQL topology) within one of its slets.

Table I summarizes the stream connector design space as
well as the design decision taken by the designers of the
analyzed systems. The issues and alternatives are introduced in
the following two Sections, while Section VI discusses Table
I. Given the design decisions, we would like to (1) observe the
evolution over time of the decisions taken for each issue; (2)
discuss the decisions considered most and least viable while
presenting their impact on the system; and (3) predict possible
future research directions while analyzing the trending design
decisions.

IV. DESIGN-TIME ISSUES

This section describes the architectural issues that affect
how the stream connectors are used to design a stream-based
application. We will first look at the topology issue which
describes the arrangement rules of the operators in a pipeline.
Next, we show how topologies may be represented, that is,
how to build operators and wire them together. Finally, we
look at where these topologies may be deployed.

A. Design Issue: Topology

The topology of a streaming system describes how the
stream flows through multiple operators and in which order
these operators process one, or possibly multiple streams. As
a design issue, this has strategic importance as it impacts the
overall expressiveness of the streaming framework/language.
The most frequent alternatives we observed are: linear, parallel
flows, direct acyclic graph (DAG), or arbitrary topology.

1) Linear: The linear pipeline is the simplest kind of
topology. There are no splits or joins along the pipeline. When
an operator receives a stream element, it processes it and
forwards the result only to the single operator following it
downstream.
Benefits: The simplicity of a linear pipeline is sufficient for
applications that can contain all branching decisions within
the operators along the pipeline and no alternative flows are
needed to process different types of stream elements based on
intermediate results.
Challenges: This kind of pipeline has an underlying problem
of limited expressiveness. Developers may set up long linear
topologies but are not allowed to create branches in the
dataflow, thus this approach fits only a limited subset of
applications.
Example: Every connector we analyzed is able to construct
this kind of topology.

2) Parallel Flows: An extension to the previous alternative
can be built by following a data parrallelism approach: a single
data source where the stream starts, many identical linear
topologies that flow out of it and one final operator where
data is aggregated from the parallel stream flows.
Benefits: Having parallel flows with an initial operator that
scatters the work and possibly a final operator that gathers it
can help to cope with workload variations or high data rates,
for example exploiting a multicore architecture [35].
Challenges: As before, this approach lacks of expressiveness
as the data flows along identical parallel linear topologies.
Depending on the application semantics, it may be important
to ensure that the order of stream elements is preserved once
the parallel flows are merged.
Example: This kind of pipeline is usually found when
MapReduce-style data parallelization is combined with jobs
that are themselves parallelized along a linear pipeline.

3) Directed Acyclic Graph (DAG): In this case each op-
erator may be connected to one or more operators. The data
exchange may happen because of some branching condition,
or following a particular routing algorithm. The only constraint
of this alternative is not having cycles in the topology.
Benefits: With a DAG topology, users can structure more
complicated flows. For example, work may be split across
different operators and then the result may be gathered back
(e.g., with operators starting a MapReduce-like computation),
which a linear pipeline would not allow. Branches can be
task based, or heuristic (i.e. depending on the result of a
computation perfomed at a previous operator in the topology).
Challenges: Giving the possibility to create acyclic topologies
implies introducing complexity in the system to be built. Users
must be given the ability to decide how to split the work and
the possibility to ”reduce” it eventually. Heuristic choices must
be admitted as well.
Example: All the analyzed systems can run a DAG topology,
except D-Stream and Sawzall.

4) Arbitrary: A topology with an arbitrary topology gives
enough expressive power to setup any kind of topology for
the stream flowing through a directed graph of operators and
workers. As opposed to the DAG topology, the possibility to
create cycles needs to be handled carefully. With cycles, data
may flow indefinitely many times through the same operator(s)
before reaching the end of the topology.
Benefits: This alternative provides the highest level of ex-
pressiveness, whereby complex topologies can be built that
feed the output of downstream operators back into upstream
operators. These cycles in the topology may be useful to
process sensor data streams in control loops, or to perform
recursive computations.
Challenges: Cycles may cause deadlocks of operators waiting
to receive their own results as input. Alternatively, stream
elements may flow indefinitely throughout the topology. A
system supporting feedback loops need to address both of these
issues.
Example: The only connector supporting this alternative is
WebRTC.



B. Design Issue: Topology Representation

To use the stream connector, it is necessary to define and
link together two or more operators into a topology. To do so,
different alternative representations have been proposed, with
varying level of abstraction and expressiveness. We distinguish
between two main categories of textual representations: declar-
ative languages (i.e., rule-based) and imperative languages.
A visual representation can be added on top of both the
representations, increasing the level of abstraction.

1) Textual Representation, Declarative: A declarative
representation lets developers organize topologies by building
the structure of the system without describing its data flow.
Side effects are minimized or eliminated by characterizing
what the program should carry out as a result and not
describing how to obtain that result through a combination of
basic processing steps.
Benefits: Focusing on the specification of the result helps
to abstract the underlying implementation. The DSMS can
use the declarative specification to constrain or to guide the
runtime optimization of the topology. Existing declarative
languages can be extended with the notion of stream
(e.g., continuous queries, windows and stream-to-relation
mappings).
Challenges: Given the high abstraction level, the visibility into
the actual topology being executed may suffer. Additionally,
stateful operators are challenging to apply over an infinite
data stream. To do so, these operators (e.g., aggregation) are
usually applied over windows or limited-size buffers.
Example: This alternative is implemented by CQL,
DryadLINQ and TimeStream. DryadLINQ uses LINQ
(which also supports declarative statements) while CQL
works on top of STREAM [36], a Data Stream Management
System (DSMS) and has borrowed much of its representation
from the Structured Programming Language (SQL), which
is a special-purpose declarative programming language. The
following example shows a CQL query. It returns the total
cost of orders fulfilled over the last day by clerk ”Sue” for
customer ”Joe”.

Select Sum(O.cost)
From Orders O, Fulfillments F [Range 1 Day]
Where O.orderID = F.orderID And F.clerk = "Sue"

And O.customer = "Joe"

In this case there are two different streams. The first
is Orders (orderID, customer, cost) which is a
stream of orders with an order ID, the customer that made the
order and the total cost, while the second is Fulfillments
(orderID, clerk), a stream of fullfilled orders that in-
cludes the fulfilled order ID and the clerk that fulfilled the
order. The query is performed on the ”1 Day” window and
the result is the total income obtained by ”Sue” in the last
day on the orders submitted by ”Joe”. TimeStream adopts
the declarative programming model used by the Microsoft
StreamInsight framework [37], which is a LINQ-dialect.

2) Textual Representation, Imperative: Stream processing
is also possible with traditional imperative programming lan-
guages, which can make use of specific streaming libraries or
include specific streaming constructs.
Benefits: The same language is used to program the operators

as well as to configure the topology: existing code can be
repurposed as stream operator.
Challenges: A textual specification of the graph building the
topology may not be as easy to grasp as its corresponding
visual representation. The composition and the component
boundaries become blurred.
Example: Systems implementing this alternative are D-
Streams, DryadLINQ, S4, Storm, StreamFlex, StreamIt,
TimeStream, WebRTC and XTream. D-Streams makes use of
Scala; with StreamFlex, Storm, S4 and XTream users can code
directly in Java the operator functionality, while TimeStream,
despite adopting the StreamInsight programming model, sup-
ports user-defined functions, aggregators and operators written
in an imperative language. With WebRTC one can setup a
data stream between two Web browsers using JavaScript.
The following example shows the minimal StreamIt program
introduced in the StreamIt Cookbook.

void->void pipeline Minimal {
add IntSource;
add IntPrinter;

}
void->int filter IntSource {

int x;
init {

x = 0;
}
work push 1 {

push(x++);
}

}
int->void filter IntPrinter {

work pop 1 {
print(pop());

}
}

The example instantiates a filter that produces a series of
numbers and forwards it to the second filter which consumes
them. StreamIt embeds directly the topology inside the code
with the pipeline and add constructs and defines the
operator functionality within a filter. The push and pop
functions are used respectively to push the result of the
operator in the output queue and pop received messages from
the input queue.

C. Design Issue: Deployment Environment

The stream connector allows components deployed on
different environments to communicate while hiding the dis-
tributed nature of the interaction. The deployment issue distin-
guishes the type of environments that are specifically targeted
by a streaming framework. The following Section discusses the
four most common non-local types: cluster, cloud, pervasive,
and browser-based.

1) Cluster: A physical cluster of machines is the standard
target deployment for a streaming system that requires the
computing and storage capacity of more than one machine.
Benefits: Analyzing a high-throughput stream of data is a task
that may require a significant amount of computing power. A
cluster is a cost-effective solution to scaling out the available
computing resources, with the advantage that an optimized
local network interconnect can be used to reduce the latency
and increase the bandwidth available.



Challenges: A cluster of machines has to adopt good load
sharing and load balancing strategies to work. Unlike a single
machine, where parallelization is bound by the processor cores,
a cluster can parallelize the work by one or two orders of
magnitude, depending on the size of the cluster. Thus machines
have to work cooperatively to achieve the best parallelization
of the streaming topology possible, that is, depending on the
kind of data and the kind of computation, work along the
topology has to be balanced across multiple operators. It is
challenging to do so with arbitrary stream operators and with
varying data rate in the input streams.
Example: Every system mentioned in this survey is able to run
on a cluster of dedicated machines except CQL and WebRTC.
In principle, a system should be able to treat each machine
as an operator where it can instantiate workers and perform a
job.

2) Cloud: Conceptually, this alternative is very similar to
the previous one, with the key difference that the stream
is running across a distributed cluster of virtual machines,
deployed across one or more data centers.
Benefits: Adding resources is not a matter of physically wiring
machines into a cluster rack, but can be done in seconds
by renting and initializing a virtual machine. Every reachable
server on the cloud is now a potential operator for the compu-
tation, which can thus reach an even larger scale. Parts of the
topology can be deployed across different regions, bringing
the edges of the stream closer to the producers/consumers,
which may be located outside of the cloud data center. The
streaming system can potentially take advantage of the Cloud
virtualization layer to deal with load balancing and reliability
issues.
Challenges: Since there is limited control over the placement
of virtual machines in the cloud data centers, less guarantees
are provided over the actual network conditions. This implies
not only increased latencies, but also may make it more
challenging to ensure the Quality of Service of the resulting
stream.
Example: This alternative is currently supported by Borealis,
S4, SPC, Storm, TimeStream and XTream. The idea is similar
to the cluster of machines, with the only difference that the
machines now are in the cloud. Systems implemented with
this alternative have workers with socket connections able to
connect and send work to remote virtual machines.

3) Pervasive: The pervasive approach takes the distributed
deployment to the extreme with the possibility of running parts
of the topology directly on the stream data sources, such as
sensors or embedded/mobile devices.
Benefits: Direct access to streaming data sources allows the
streaming framework to optimize the flow of incoming data
(i.e., only interesting data samples are inserted into the topol-
ogy at the rate the topology can handle) as well as avoid
inefficient polling (where the data source must be periodically
sampled for new information).
Challenges: Although hardware is constantly improving as the
time passes by, small hardware and sensors are not yet suited
for heavy computation. Thus, parts of the topology may still
need to be deployed using the cloud, or on a dedicated cluster
of computers.
Example: Aurora, the predecessor of Borealis, was developed

to access and stream data from sensors. XTream, with the con-
cept of α-slets and ω-slets can incorporate pervasive devices.

4) Web Browser: With the advent of WebRTC, browser
to browser streaming of data has become possible through a
standard protocol. This way, browsers may become part of a
topology, playing the role of data producer, intermediate data
processor or data consumer.
Benefits: Establishing a direct browser-to-browser communi-
cation stream opens many opportunity for new kinds of Web
applications (i.e., videochat systems), especially considering
that HTML5 compatible browsers also run on the latest gen-
eration of mobile devices.
Challenges: A browser cannot easily discover the network
address of other browsers without support of a dedicated name
and directory service.
Example: Using WebRTC, to connect to another browser, a
browser has to generate an ID and request a Channel token
from a Web server, which in turn requests a channel and a
token for the client’s ID from the Channel API. The token
is sent back to the client, which opens a socket and starts
listening. A second client is going to follow the same procedure
so that it can be redirected from the server on the same channel,
where the direct stream connection is estabilished.

V. RUN-TIME ISSUES

Depending on the targeted deployment environment, a
stream connector will impact the run-time behavior of a
software architecture in terms of its flexibility and reliability.
In this section, we first look at the flexibility of operators and
topologies, that is, if they can be dynamically reconfigured,
migrated or replicated to provide additional processing capac-
ity and fault tolerance. We then discuss the impact on the
fault tolerance and load balancing capabilities of the different
connector variants.

A. Design Issue: Dynamic Adaptation

Flexibility determines if the topology has the ability to be
reconfigured at runtime. A static topology must be stopped
before it can be reconfigured. For a dynamic topology we
distinguish two orthogonal alternatives: whether the topology
can be changed or whether the configuration changes affect
the operators (e.g., by increasing or decreasing the resources
allocated to execute them).

1) Static: A static topology does not change at runtime.
Once the topology and deployment configuration are given and
the stream of data starts flowing, there is no way to change
the topology by adding or removing operators from it.
Benefits: The runtime system is simplified, since there is no
need to introduce support for adding or removing operators.
Challenges: Dynamic behavior (e.g., reordering or removal of
operators) can be achieved by appropriately using branching
operators, whereby parts of the pipeline can be skipped. This
however requires additional effort by the stream developer,
since all changes need to be planned for in advance.
Example: CQL (STREAM), D-Streams, StreamFlex and
StreamIt cannot modify the topology configuration after the
stream starts flowing through it.



2) Dynamic, Operator: This alternative allows to adapt
the operator configuration at runtime. The configuration may
include the parallelism level within the operator (i.e., the
number of workers dedicated to run it), the location and the set
of hosts allocated to run the workers, and the corresponding
routing/load balancing configuration.
Benefits: In presence of failures, the topology has the possi-
bility to repair the error by, for example, routing the traffic on
a different operator or restarting, recovering or migrating the
failed operator, while keeping the logical topology between
operators unchanged.
Challenges: Operator migration needs to be accomplished
without data loss. Some form of dynamic binding is required
because the route followed by the stream is not fixed, thus
increasing the complexity (and possibly the overhead) of the
stream connector.
Example: Among the systems analyzed, Borealis, S4, Sawzall,
Storm and TimeStream use this kind of dynamicity to handle
failures, as discussed more in detail in Section V-B.

3) Dynamic, Topology: With a fully dynamic topology,
operators may be re-arranged, added and removed from the
topology at runtime, to form new topologies without stopping
the stream.
Benefits: This high degree of dynamicity helps to introduce
a form of live programming [38] with stream processing,
where in case the topology needs to be extended or adapted to
changes into its input, it is possible to do so without stopping
the whole stream.
Challenges: The atomicity and the semantics of all change
operators need to be defined. It is possible that by removing an
intermediate operator, the data cannot be immediately routed to
the following one, thus making the whole topology temporarily
inconsistent and in need of further repair actions.
Example: DryadLINQ, SPC, WebRTC, TimeStream and
XTream are the systems implementing this alternative. We-
bRTC does not constrain how and when the browsers should
be connected. Thus, any kind of operator reordering, addition
and removal can be executed. If not handled, messages may
be lost in the process. SPC and XTream on the other hand
support connecting new operators to the topology at run time,
thus the topology can be extended while the stream flows.
DryadLINQ, through the Job Manager component, is able
to modify the topology according to user-supplied policies.
TimeStream supports dynamic reconfiguration of the topology
with a restriction that such reconfiguration must be a substitu-
tion of two equivalent sub-DAGs.

B. Design Issue: Fault Tolerance

Fault tolerance is a very important aspect for a stream
processing system. If an operator fails, it can compromise
the whole topology, thus failures have to be handled quickly.
While most frameworks support some form of fault tolerance,
CQL and StreamIt do not address the problem. Sawzall relies
on the underlying MapReduce infrastructure. Borealis takes
advantage of replication, while S4, Storm and TimeStream use
ad-hoc reconfigurations. WebRTC gives the choice between a
reliable data channel (TCP) or not (UDP). XTream relies on
the intrinsic dynamicity of its topology to cope with faults.

1) Replication: The concept of replication involves infor-
mation sharing to ensure the consistency between redundant
resources to improve accessibility, reliability and fault tol-
erance [39]. In streaming systems this concerns replicating
workers in a way that the stream can bypass the failure of
any of them.
Benefits: The main benefit of employing replication is the
possibility to deviate the flow of the stream from the failed
operator to one of its replicas. Replication is a good approach
for lightweight topologies, where the added computational and
communication cost of replicating operators remains limited.
Challenges: In addition to the extra resource consumption,
replication suffers from additional problems [40] that involve
mainly maintaining consistency of replicated state. If an op-
erator fails, the recovery protocol should not invalidate the
consistency of the replicas.
Example: In Borealis, when a failure of a worker is detected,
the system tries to find an alternative upstream replica to
continue processing the stream. In order to do so, however,
the upstream replicas must be consistent with each other.
Borealis defines an operator called SUnion that takes as input
multiple streams and outputs a stream with tuples ordered in
a deterministic way so that all the replicas process exactly the
same input. Support for replication is also mentioned as future
work for SPC.

2) Reconfiguration: Reconfiguration is the process of up-
dating the topology configuration as a consequence of a
failure. When a failed operator is detected, it is immediately
substituted or re-launched by the underlying runtime.
Benefits: There is no need to keep an active replica syn-
chronized, since failed operators are restarted or substituted
automatically.
Challenges: The automatic process of reconfiguration of the
topology needs a reliable monitoring component which con-
stantly checks the topology for failures.
Example: In Storm, failed workers are automaticaly restarted
by the topology supervisor. If the operator keeps failing and
is incapable of beginning to consume its dispatched stream
elements, the Nimbus daemon will reassign it to another host.
In D-Stream, lost stream elements are recomputed while an
operator is being reinitialized to speed up the recovery of the
topology. Also DryadLINQ supports the automated recompu-
tation of results produced by a failed worker, since these are
re-executed by the Job Manager component. TimeStream uses
the concept of Resilient Substitution to replace failed operators,
possibly by restarting them on a different machine. S4 can
reconfigure a topology splitting the operators deployed on a
failed host among the remaining available execution resources.

C. Design Issue: Load Balancing

A balanced topology can process the stream at a regular
data rate (or throughput) by making good use of the available
hardware resources to run the operators. In some applications,
it is difficult to predict the computational cost of each operator
(which may depend on the values of each stream element)
and also the rate of the incoming stream elements may change
dynamically and unpredictably. To deal with these unbalances
in the flow, different frameworks propose different approaches,



going from load shedding for static systems to more adaptive
or dynamic alternatives.

1) Load Shedding: Assuming the application can tolerate
data loss, load shedding will reduce the stream data rate
by dropping some stream elements along the topology. This
change of semantics results in a best-effort streaming system,
where no guarantees are made on the data reaching the end of
the topology. Since saturation is reached without overloading
the system, it is possible to give guarantees on the overall
throughput.
Benefits: Load Shedding is the simplest approach to deal with
congestion in case the application can tolerate loss of stream
elements which are dropped randomly along the topology
where bottlenecks occur.
Challenges: If we can assume that some stream elements are
more important than others, then load shedding can be refined
with the ability to control which elements are dropped to avoid
doing so at random. This requires the connector to know more
information about the application semantics of the stream.
Example: Aurora and Borealis implement two different load
shedding methods based on Quality of Service guarantees. The
first one consists into dropping tuples from queues buffering
stream elements in front of operators whose output can tolerate
their loss. By dropping randomly selected tuples at strategic
points in the topology, this approach effectively reduces the
workload. The second approach is called Semantic Load
Shedding and consists of dropping the least important tuples.
Importance is determined by the utility interval, which is
computed by observing the QoS of the application.

2) Dynamic Reinitialization: The whole topology is reini-
tialized by sending a special token through it that informs all
operators that they have to flush the remaining stream elements
and then re-initialize and re-allocate enough resources.
Benefits: Data loss is avoided since there is a clear mecha-
nism for dynamically changing the resources allocated, which
however requires to temporarily flush the topology.
Challenges: The stream protocol is more complex, since it
should both carry the normal data flow as well as special
control messages to re-initialize the topology. The decision to
re-initialize can be determined automatically by a controller or
it requires manual intervention.
Example: When a topology needs to be modified, the protocol
uses a init message. When such message is received by a
worker, it executes once more the initialization code of its
operator and can adjust the amount of resources allocated to
run it. This process is only theoretical, as it has been described
but never implemented. We decided nevertheless to keep it as
a feature offered by the system.

3) Dynamic Adaptive Control: A controller is introduced
to balance the load along the topology. If there are bottlenecks,
the controller takes action by, for example, adding more hosts
or workers to the topology, or trigger some optimizations at
the worker level.
Benefits: Through automated load balancing, the controller
can automatically trade off resource consumption against the
performance of the stream.
Challenges: Real-time monitoring of the system is required,
and the controller may need to be tuned to obtain good

performance. The dynamic reconfiguration of the topology
should be safe (to avoid data loss).
Example: There have been many different approaches to
support dynamic adaptive control. For example, Storm allows
to modify the number of operators at runtime by means
of a controller or a GUI/command line administration tool.
TimeStream uses its resilent substitution feature to deal with
bottleneck issues by automatically changing the number of
hosts on which a given operator of the topology is de-
ployed. Likewise, if an operator becomes the bottleneck, its
performance can be improved by boosting its parallelism.
DryadLINQ exploits hooks in the Dryad API to mutate on
runtime the topology to improve the performance by aggre-
gating operators and reducing I/O operations.

VI. DISCUSSION

A. Relationships

Figure 2 shows some of the most important relationships
between the issues and alternatives of the design space. The
issue with more impact on other issues and alternatives is the
dynamic adaptation. Dynamicity at the operator or topology
levels helps to achieve fault tolerance in general (as also
shown by Table I) while for what concerns load shedding,
dropping stream elements is the only alternative available
for a static topology. Instead, flexibility at the operator-level
avoids loosing stream elements and can allow to balance the
load with reinitialization, or an adaptive controller. Moreover,
a very flexible topology can support volatile operators, like
Web browsers. On the other hand, running a stream across
multiple Web browsers can only be supported by a very flexible
topology.

B. Evolution

We decided to divide the analyzed systems in three dif-
ferent generations based on their age and features. First gen-
eration systems (StreamIt, CQL, Sawzall) share the following
commonalities. Topologies are parallel linear or DAG, while

Pipeline Representation
Declarative
Imperative

Pipeline Topology
Linear
Parallel Flows
DAG
Arbitrary

Pipeline Flexibility
Static
Node
Topology

Load Balancing
Load Shedding
Reinitialization
Adaptive Controller

Deployment
Cluster
Cloud
Pervasive

Fault Tolerance
Replication
Reconfiguration

Browser

Fig. 2. Relationships among issues and alternatives.



the representation is purely with code (declarative for CQL,
imperative for StreamIt and Sawzall). The only target deploy-
ment is the cluster of machines (with the exception of CQL).
Given their age, it’s not surprising that no cloud deployment
option has been foreseen. These systems do not present a
flexible topology and do not address fault tolerance. As for
load balacing, CQL uses load shedding, while Sawzall bases
its own on MapReduce.

Borealis defines itself a ”second-generation distributed
stream processing engine” [14]. We also include in this cat-
egory SPC, StreamFlex, DryadLINQ and S4. Topologies are
more complex, the concept of deploying on the cloud has been
introduced as well as the idea of deploying on sensors (perva-
sive deployment). Topologies also become more flexible at the
operator level (Borealis, S4, Sawzall) as well as at the structure
level (SPC, DryadLINQ). Fault tolerance is introduced in these
systems with replication and reconfiguration. Balancing the
load sees a shift from the load shedding approach towards
a dynamic controller.

For the latest state-of-the-art streaming frameworks, we
presented a heterogeneous sample by including Storm, We-
bRTC, XTream, D-Streams and TimeStream. The topology
again includes DAGs, with the exception of D-Streams and
WebRTC that also supports an arbitrary topology. The repre-
sentation has narrowed to imperative, while the distribution
is more in favor of cluster of machines and the cloud (with
the exception of XTream and D-Streams). WebRTC, again, is
a special case which enables to deploy operators on a Web
browser. The system is dynamically adaptable at the operator
level (Storm, TimeStream) or at topology level (WebRTC,
TimeStream, XTream). D-Streams is again the only exception
because of its MapReduce nature. Fault tolerance is tackled
with reconfiguration, and load balacing presents the use of
a controller as standard solution, definitely abandoning load
shedding. We can define three different groups: Storm, XTream
and TimeStream leverage the work proposed by StreamIt. D-
Streams is an evolution of MapReduce, while WebRTC is a
new technology to exploit streams on a web browser.

The big picture shows an initial trend where the target hard-
ware architectures were fixed (cluster of machines), offering no
flexibility and barely any topology complexity. Fault tolerance
was mostly not supported, while load balacing was achieved
by relying on the underlying runtime platform. The trend shifts
over time, by first adding more deployment options and fault
tolerance and finally shifting towards (almost) arbitrary and
dynamic topologies, dynamic reconfiguration both for load
balancing issues and fault tolerance and almost the same
deployment options. It is interesting to observe that this trend
towards more and more runtime flexibility is obtained while
the representation alternative is constrained towards the use of
imperative languages.

C. Outlook

Given this overview of the evolution of the design space,
we can speculate on future trends. A traditional system would
tend to prefer a specific set of design alternatives to fit
the needs, while a general-purpose system would give more
degrees of freedom. Support for DAG topologies appears to be
an adequate level of expressiveness for most applications. With

the rise of hardware like Arduino, RasperryPi, Beaglebone or
Tessel, we expect the pervasive deployment alternative to be
re-explored while the pervasiveness of handheld and tablets
capable of running an HTML5 Web browser suggests that the
WebRTC APIs might be enable new kinds of stream-based
applications on the Web. Fault tolerance is likely to become
even more critical with the latest reconfiguration trend that
makes use of a centralized controller, which will also balance
the load (by adding or removing workers). Thus, we expect
to see systems where dynamicity will be featured both at
the operator and at the topology level. We also expect future
systems to be much more decentralized. In the past we had
DSMS deployed on a single-machine, which evolved into
systems distributed across a cluster of machines. These turned
into stream-based architectures running on virtualized clusters
on the Cloud, as well as spread across pervasive deployments
and more recently Web browsers. We foresee future systems
not only to be more and more distributed, but also starting
to introduce decentralized control architectures (i.e. more than
a single controller for fault tolerance and load balancing), to
better support very big topologies and to swiftly deal with
rapid changes in the environment.

VII. RELATED WORK

This paper takes inspiration from [6], which describes
a taxonomy for software connectors. Our work is entirely
focused on the stream software connector and gives a different
classification of the design issues and alternatives of a large
variety of streaming frameworks and languages. Many research
issues specific to Data Stream Management Systems have been
collected in this 2003 survey [13]. A more recent analysis spe-
cific to DSMS can be found in [41], covering the functional and
processing model, deployment model, interaction model (push
vs. pull) and date and time rules. Optimizations for stream
processing have been also analyzed in this 2011 survey [42],
which consolidates the prior optimizations work and provides a
guide for users and implementors. Our work is complementary,
both in terms of the different set of design issues we discuss
as well as the broader set of systems included which is not
limited to DSMS. A historical perspective on the evolution of
stream processing systems can be found in [43]. Data Streams:
Models and Algorithms [44] is a complementary study, focused
on stream mining algorithm study, classification and analysis
of data with a chapted dedicated to load shedding. A more
network-oriented perspective can be found in this work [45]
where the authors analyze subset of peer-to-peer streaming
systems (Octoshape, SopCast, TVAnts and TVU networks) and
test if they are suitable for mobile usage. A similar decision-
centric methodology to describe the design space of domain-
specific languages was taken in [46], [47].

VIII. CONCLUSION

This paper collects 6 design issues and 18 reusable design
alternatives that cover a significant portion of the design
space for the stream software connector. To reconstruct this
design space, we analyzed 13 frameworks and programming
languages that have been introduced over the last 10 years.
The result is a classification and a description of the evolution
over time of very different types of technologies to support
the abstraction of the stream software connector. From our



analysis, we made some predictions on likely future directions
for the evolution of this important software connector: we
expect to see more distribution for the deployment of the
operators, with more decentralization in the control structure
of the topology.

Acknowledgment: The work is supported by the Hasler Foun-
dation with the Liquid Software Architecture (LiSA) project. We are
grateful for the invaluable feedback of Gustavo Alonso, Zhengping
Qian, Robert Soulé, Bill Thies and the anonymous reviewers.

REFERENCES

[1] E. Della Valle et al., “It’s a Streaming World! Reasoning upon Rapidly
Changing Information,” IEEE Intelligent Systems, vol. 24, no. 6, pp.
83–89, 2009.

[2] D. Guinard, V. Trifa, F. Mattern, and E. Wilde, “From the internet of
things to the web of things: Resource-oriented architecture and best
practices.” in Architecting the Internet of Things, 2011, pp. 97–129.

[3] A. Bergkvist, D. C. Burnett, C. Jennings, and A. Narayanan, “Webrtc
1.0: Real-time communication between browsers,” Working draft, W3C,
2012.

[4] L. Zhang, F. Zhou, A. Mislove, and R. Sundaram, “Maygh: building a
CDN from client web browsers,” in Proc. of EuroSys, 2013, pp. 281–
294.

[5] A. Jansen and J. Bosch, “Software architecture as a set of architectural
design decisions,” in Proc. of WICSA, 2005, pp. 109–120.

[6] N. R. Mehta, N. Medvidovic, and S. Phadke, “Towards a taxonomy of
software connectors,” in Proc. of ICSE, 2000, pp. 178–187.

[7] M. Fowler and R. Parsons, Domain-specific languages. Addison-
Wesley, 2010.

[8] P. Kruchten, P. Lago, and H. van Vliet, “Building up and reasoning
about architectural knowledge,” in Proceedings of the Second interna-
tional conference on Quality of Software Architectures, 2006, pp. 43–58.

[9] W. Kunz and H. W. Rittel, Issues as elements of information systems.
University of California Berkeley, California, 1970, vol. 131.

[10] A. Jansen, J. Bosch, and P. Avgeriou, “Documenting after the fact:
Recovering architectural design decisions,” Journal of Systems and
Software, pp. 536–557, 2008.

[11] M. Shaw and D. Garland, Software Architecture: Perspectives on an
Emerging Discipline, 1996.

[12] M. Shaw et al., “Abstractions for software architecture and tools to
support them,” IEEE Trans. Softw. Eng., vol. 21, no. 4, pp. 314–335.

[13] L. Golab and M. T. Özsu, “Issues in data stream management,” ACM
Sigmod Record, vol. 32, no. 2, pp. 5–14, 2003.

[14] D. J. Abadi et al., “The Design of the Borealis Stream Processing
Engine,” in Proc. of CIDR, 2005, pp. 277–289.

[15] D. Carney et al., “Monitoring streams: a new class of data management
applications,” in Proc. of VLDB, 2002, pp. 215–226.

[16] S. Zdonik et al., “The aurora and medusa projects,” IEEE Data
Engineering Bulletin, vol. 26, no. 1, pp. 3–10, 2003.

[17] M. Cherniack et al., “Scalable Distributed Stream Processing,” in Proc.
of CIDR, 2003.

[18] A. Arasu, S. Babu, and J. Widom, “The CQL continuous query lan-
guage: semantic foundations and query execution,” The VLDB Journal,
vol. 15, no. 2, pp. 121–142, Jun. 2006.

[19] R. Motwani et al., “Query processing, approximation, and resource
management in a data stream management system,” in CIDR, 2003.

[20] M. Zaharia et al., “Discretized streams: an efficient and fault-tolerant
model for stream processing on large clusters,” in Proc. of the 4th
USENIX conference on Hot Topics in Cloud Computing, 2012, pp. 10–
10.

[21] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[22] Y. Yu et al., “DryadLINQ: a system for general-purpose distributed
data-parallel computing using a high-level language,” in Proc. of OSDI,
2008, pp. 1–14.

[23] E. Meijer, “The world according to linq,” Queue, vol. 9, no. 8, pp.
60:60–60:72, 2011.

[24] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed
stream computing platform,” in Proc. of the 2010 IEEE International
Conference on Data Mining Workshops, 2010, pp. 170–177.

[25] G. Agha, Actors: A Model of Concurrent Computation in Distributed
Systems. Cambridge, MA, USA: MIT Press, 1986.

[26] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan, “Interpreting the
data: Parallel analysis with sawzall,” Scientific Programming Journal,
vol. 13, no. 4, pp. 277–298, 2005.

[27] (2011) Storm, distributed and fault-tolerant realtime computation.
[Online]. Available: http://storm-project.net/

[28] J. H. Spring et al., “Streamflex: High-throughput stream programming
in java,” in Proc. of OOPSLA ’07, pp. 211–228.

[29] W. Thies, M. Karczmarek, and S. P. Amarasinghe, “Streamit: A
language for streaming applications,” in Proc. of the 11th International
Conference on Compiler Construction, 2002, pp. 179–196.

[30] L. Amini et al., “Spc: a distributed, scalable platform for data mining,”
in Proceedings of the 4th international workshop on Data mining
standards, services and platforms, 2006, pp. 27–37.

[31] Z. Qian et al., “Timestream: reliable stream computation in the cloud,”
in Proc. of EuroSys, 2013, pp. 1–14.

[32] M. H. Ali et al., “Microsoft cep server and online behavioral targeting,”
Proc. VLDB, vol. 2, no. 2, pp. 1558–1561, August 2009.

[33] M. Duller and G. Alonso, “A lightweight and extensible platform for
processing personal information at global scale.” J. Internet Services
and Applications, vol. 1, no. 3, pp. 165–181, 2011.

[34] M. Duller, J. S. Rellermeyer, G. Alonso, and N. Tatbul, “Virtualizing
stream processing,” in Proc. of Middleware, 2011, pp. 269–288.

[35] M. I. Gordon et al., “Exploiting coarse-grained task, data, and pipeline
parallelism in stream programs,” in Proc. of ASPLOS, 2006, pp. 151–
162.

[36] A. Arasu et al., “Stream: the stanford stream data manager (demonstra-
tion description),” in Proc. of SIGMOD, 2003, pp. 665–665.

[37] M. Ali, B. Chandramouli, J. Goldstein, and R. Schindlauer, “The
extensibility framework in Microsoft StreamInsight,” in Proc. of ICDE,
2011, pp. 1242–1253.

[38] B. Burg et al., “1st international workshop on live programming (live
2013),” in Proceedings of ICSE ’13, pp. 1529–1530.

[39] O. Wolfson et al., “An adaptive data replication algorithm,” ACM Trans.
Database Syst., vol. 22, no. 2, pp. 255–314, Jun. 1997.

[40] J. Gray, P. Helland, P. O’Neil, and D. Shasha, “The dangers of
replication and a solution,” in Proc. of SIGMOD, 1996, pp. 173–182.

[41] G. Cugola and A. Margara, “Processing flows of information: From
data stream to complex event processing,” ACM Comput. Surv., vol. 44,
no. 3, pp. 15:1–15:62, Jun. 2012.

[42] M. Hirzel et al., “A catalog of stream processing optimizations,” Tech.
Rep., 2011.

[43] R. Stephens, “A survey of stream processing,” Acta Informatica, vol. 34,
no. 7, pp. 491–541, 1997.

[44] C. C. Aggarwal, Ed., Data Streams - Models and Algorithms. Springer,
2007, vol. 31.

[45] J. Peltotalo et al., “Peer-to-peer streaming technology survey,” in Proc.
of the 7th International Conference on Networking, 2008, pp. 342–350.

[46] U. Zdun and M. Strembeck, “Reusable architectural decisions for DSL
design: Foundational decisions in DSL projects,” in Proc. of EuroPLoP,
2009.

[47] S. Aghaee, M. Nowak, and C. Pautasso, “Reusable decision space for
mashup tool design,” in Proc. of EICS ’12, pp. 211–220.

http://storm-project.net/

