ExpressO: From Express.js implementation code
to OpenAPI interface descriptions

Alessandro Romanelli, Souhaila Serbout, and Cesare Pautasso
alessandro.romanelli@usi.ch, souhaila.serbout@usi.ch,
c.pautassoQieee.org

Software Institute (USI), Lugano, Switzerland

Abstract. This tool demo paper brings forward a new CLI tool called
ExpressO for developers who need to analyze a Web API implemented
using the Express.js framework, and automatically extract a specification
written in OpenAP]I, a standard interface description language. The gen-
erated specification includes all of the implemented endpoints along with
their response status codes and path and query parameters. In addition
to automatic API documentation generation, developers can also use it to
automatically determine whether the interface of a Web API matches its
implementation based on the Express.js framework. The tool has been
released on the npm component registry as ‘expresso-api’, and can be
globally installed using the command: npm install -g expresso-api.

Keywords: OpenAPI Specification - REST API - Express.js - Docu-
mentation generation.

1 Introduction

In Continuous Software Development (CSD), the usage of modern software ar-
chitecture tooling [16] and executable documentation is highly recommended [25,
27]. Ensuring that documentation is continuously consistent with the implemen-
tation throughout the software development cycle is required in order to avoid
informal communication and tacit knowledge sharing between the software de-
velopment team members [17]. Web APIs are a particular type of software for
which producing up-to-date documentation is a must because it is a crucial ar-
tifact to support the API’s learnability by developers [20]. Documenting small
systems may be trivial, however when scaling up the size of the backend, pro-
ducing and maintaining the desired documentation can prove challenging and
quite resource-intensive.

As an attempt to solve this problem, ExpressO is a tool that helps Ex-
press.js [26] developers to generate documentation for their APIs taking nothing
as input other than the backend code they already wrote. The obtained doc-
umentation is compliant with the OpenAPI specification [1]. While the auto-
matically generated artifacts can be manually augmented with natural language
descriptions, easing the rapid generation of API documentation, ExpressO can
also check the consistency of the interface extracted from the implementation

2 A. Romanelli et al.

with the existing documentation, thus highlighting gaps between the interface
documentation and the corresponding implementation code.

We target the Express.js framework due to its wide adoption and the lack
of tools that can extract the OpenAPI description only based on the imple-
mentation code itself. Existing tools such as Express OpenAPI [24] or swagger-
autogen [6] require additional code annotations or time-consuming configuration
steps to produce similar results.

2 Background: OpenAPI

APIs can be described using natural language, informal models, or general-
purpose modeling languages. There exist also machine-readable Domain Specific
Languages [12] for describing them, such as RAML [2], WADL [15], WSDL [9],
I/O Docs [3], and OpenAPI [1], which gained more importance in the five last
years by being selected as a standard language for APIs description.

For what concerns our tool, OpenAPI describes an API as a set of endpoints
&, which may receive zero or more parameters P and produce one or more
expected responses for each endpoint R.

APIComponents = {c,c€ EUPUR}

From now on we call the endpoints, the parameters and the responses: ‘API
Components’.

OpenAPI descriptions comprehend also metadata about the APT and descrip-
tion fields with values written in natural language. They also contain detailed
descriptions of operations’ request and response bodies, which can be specified
using JSON Schema when exchanging JSON message payloads.

There is a broad set of emerging tools and approaches centered around the
OpenAPI standard: test cases generation [10, 18] , API analytics tools [23, 11], as
well as implementation code for client skeletons and server stubs (e.g. [19]). Ex-
pressO focuses on the opposite problem: generating interface descriptions start-
ing from the implementation code.

3 Related work

While other approaches tried to extract structured REST API documentation
from non-structured resources [8], in this work we focus on documentation gen-
eration directly from the source code, under the assumption that the API has
been implemented using the Express.js framework.

While ExpressO does not require the user to feed it with any input other
than the Express.js backend code, Express OpenAPI [24] requires the user to
give as input an OpenAPI description containing the API’s metadata. More-
over, the tool requires developers to explicitly annotate each Express.js routes
with the corresponding OpenAPI metadata. In this case, the developer can also
include natural language descriptions that will be included in the resulting API.

ExpressO 3

However, the specification of the interface and the implementation are mixed in
the same source code.

swagger-autogen [6] allows the user to run it together with the backend to
generate documentation each time the backend is run. The modules are com-
pletely independent of any backend framework and make the only assumption
of having the backend implement routes following the Express.js conventions.

In Table 1 we summarize the different types of inputs required by ExpressO,
Express OpenAPI, and swagger-autogen.

The comparison results of the ExpressO’s Comparator are more granular and
detailed than the ones produced by similar tools. 0AS Diff [13] only provides
a count of the modified or added API Components. Instead, OpenAPI Diff by
Microsoft Azure [14] has as main goal to detect breaking changes as it outputs
a report that classifies the changes affecting each API Component.

4 Use Cases

In the design of the tool we envisioned the following use cases:

1. Helping developers to keep both the implementation code and the inter-
face documentation continuously synchronized; For that, the user can use the
‘expresso generate’ CLI command to generate the new specification corre-
sponding to the current version of the implementation.

2. Helping API designers to verify whether the implementation matches the
structure they modeled and track the progress of an API development project;
This corresponds to the CLI command ‘expresso compare’ which compares
two given input specifications, or the ‘expresso test’ which generates an Ope-
nAPI specification for the backend then compares it to an input reference spec-
ification. The tool will generate both a human-readable and a machine-readable
report about what has been matched and what is missing for each specification.

3. Making it easier for developers to detect breaking changes by using Ex-
pressO to compare the OpenAPI description of the current version of the API
with a previously generated specification, also using the ‘expresso compare’.
The comparison report can be used as ground truth to perform Regression Test-
ing on the new changes;

4. Supporting researchers who want to perform empirical studies on real-
world APIs. Using ExpressO they can automatically extract well-formatted knowl-
edge from the Express.js source code of a large set of projects, by simply running
the ‘expresso generate’ for each of the projects.

Table 1: Inputs required by different OpenAPI generation tools

Code annotations Basic description Config file Backend code

Express OpenAPI 2015 Yes Yes No Yes
Swagger-autogen 2020 No No Yes Yes

ExpressO 2022 No No No Yes

4 A. Romanelli et al.

5 ExpressO

5.1 Approach

ExpressO is a CLI-based tool that extracts from the source code of an Express.js
project the necessary components to describe the REST API in a valid OpenAPI
specification. The tool combines both static and dynamic analysis. The dynamic
part of the analysis consists of the injection of a Proxy. It is a component that
substitutes the express npm package in the input project, in order to intercept
the calls to configure the API routing table and extract the code of the corre-
sponding function handlers. Then the Analyzer statically analyzes such code to
gather request parameters and response status codes.

The only input that the system requires to generate a specification is the
original source code. The tool does not alter the source code, as it simply auto-
matically replaces the express.js NPM package with an instrumented version of
the same: the Proxy.

Our proxy acts as intermediary, whilst providing access to the original ex-
press functionality, but also keeping track of calls being made by the ‘Ex-
press.Application’ object. By intercepting every call made to the Express frame-
work, the tool collects a data structure within the Proxy that is able to store
all the information needed to reconstruct the API description. In particular,
the Proxy builds the API routing table linking each endpoint path and method
combination with the corresponding handler function. And, by running a static
analysis on the handler code we retrieve the response codes, parameters of a
given endpoint.

This hybrid approach mixing static and dynamic analysis makes it possible to
retrieve the endpoints of deeply modular backends, without having to statically
analyze their entire code.

5.2 Architecture

We depict an overview of the logical view of the architecture of ExpressO in
Figure 1. In the rest of this section, we explain in detail the different software
components part of the ExpressO tool, which will be separately demonstrated.

CLI Application The interface that ExpressO uses to expose the system’s
functionalities is the CLI Application. The supported command lines are shown
in Figure 2. Most parameters have default values so that in the simplest case
developers can run the tool with expresso generate. The other commands are
shown in Figure 2.

Replacer The replacer module is responsible for creating a working copy of
an Express.js backend that can be started by the CLI Application module as a
Child Process. It also overrides the express package by replacing it inside the
node_modules folder with the Proxy component.

ExpressO 5

ExpressO\

] &
CLI Application Proxy %O)A{ Target ‘ O)_ji\

User

] ~] Lo
Replacer O ’ Analyzer P_O

~]
O

Fig. 1: Logical view of ExpressO

= ~
Comparator O

[~] expresso ——help 11:42:37
Usage: expresso [expresso-options] [command] [command-options]

Available options:
-H —-help Prints to console command line commands and options
-V —-version Prints to console the current version of expresso

Available commands:
generate Generates OpenAPI specification for the Express.js project in the current directory
test Generates OpenAPI specification and compares it with a user-provided ground truth
compare Compares two OpenAPI specifications regardless of version or format

All commands can be further inspected with: expresso [command] [-H | —-help]

Fig. 2: ExpressO Command Line Help

Proxy The Proxy module takes care of intercepting all calls to the express
framework and storing all the information representing the routes and the corre-
sponding request handler code that is used to extract the API components used
to later generate a valid OpenAPI specification.

It is worth noting that no calls to the actual API endpoints need to be per-
formed by any test client, as the Proxy is meant to intercept the route configu-
ration setup calls on the express framework itself, which are usually performed
when the API backend starts. While the command used to start the backend
can be customized, in our experiments we used the basic npm start command
with no extra input.

Analyser The analyzer module is in charge of parsing the intermediate model
representation — stored as JSON — back into a working data structure so that it
can be statically analyzed using the abstract-syntax-tree [5] npm package.

Comparator The comparator module reads and compares two given OpenAPI
descriptions (APIsourceand APIiqrger), which can be written in similar or dif-
ferent versions of OpenAPI, in either YAML or JSON format, according to the
criteria described in the rest of this Section.

6 A. Romanelli et al.

5.3 API Comparison and Coverage Report

While comparing the two API descriptions, the comparator computes and re-
ports the following:

— Matched: the set of API Components present in both descriptions.
M = APIsource N APIta’rget

— Partially matched: when some API path parameters are present in both
specifications, but their names do not exactly match.

PM ={c,c € APLigrget N3¢ € APIoyreelc = '}

This partial matching helps to reconcile differences in which developers may
name path parameters in the Express.js routes (found in the code) and in
the corresponding paths of the target OpenAPI description being compared.
When performing the match, parameter names are not required, since path
parameters are positional and their name serves only to identify them as
they are referenced from the code. As a consequence, within the target spec-
ifications, they are usually human-comprehensible names, whereas the name
obtained when we generate our specification comes directly from the imple-
mentation code.

For instance: p; : /users/{userId} a path of an endpoint F; in APl oy ce
and p;- : /users/{username} a path of EJ’ in API;4rget. These two paths
represent the same endpoint template, with a fixed /users/ segment followed
by one parametric segment. Therefore they can and should be matched: p; =
pg Thus, we consider that the endpoints are partially matching: F; ~ Ej
independently of the path parameter names.

— Missing: elements that are only present in the target specification;

MISS ={c,c € APLigrger NC ¢ API urcet
— Additional: elements that are only present in the compared specification;
ADD = {c,c € APl purce NC & APLigrget}

While the comparator module can be also used to compare the structure of
any two HTTP APIs described using OpenAPI, it is mainly designed to measure
the level of coverage that has been reached when comparing the generated de-
scription to a ground truth description. For that, we define two metrics to asses
the level of coverage on the level of each API Component:

— Strict Coverage: how many matched API Components over the total num-

ber of API Components; Cyirict = Si:géi\f)
— Broad Coverage: how many matched and partially matched APT Compo-

nents over the total number of API Components; Chroaq = W

ExpressO 7

[backend-viajes] expresso test swagger.yaml 11:54:04 . master
Results for OpenAPI specification comparison between the following files:

- swagger.yaml

- ./expresso-openapi.json

Endpoints coverage 100.00% (5/5 Endpoints)
Strict coverage (no partials) —————————————— 60.00% (3/5 Endpoints)
INNNNERNENENNNENENNANENNNNNNNENANENNRRNNER

No missing entities detected

Extra (1):
GET /

Matched (3):

GET /api/vl/travels

POST /api/vl/travels

GET /api/vl/travels/find
Partially matched (2):

DELETE /api/vl/travels/{_id|id}
PATCH /api/vl/travels/{_id|id}

Fig. 3: Snapshot of a portion of the human readable coverage report generated
by ExpressO for an Express.js project found in GitHub [4]

The goal of these metrics is to concretely measure how close the generated
documentation is to the ground truth. Even though human-generated documen-
tation can be more detailed, we are mostly concerned with making sure that we
can correctly list all the endpoints with their relative responses and parameters.

Besides printing the coverage metrics of the API Components in a machine-
readable file format (JSON). This module also acts as a reporting tool that
outputs the comparison data to a human-readable output, generating a report
in the terminal (Figure 3).

6 Performance Evaluation

In [22], we presented an extensive evaluation of ExpressO using a dataset of 91
Express.js projects collected from GitHub. These projects have been selected
because they include the OpenAPI description of the corresponding API that
we used to compute the coverage metrics, using the original specification shared
in the software repository as a ground truth.

As swagger-autogen requires a time-consuming manual configuration step
every time it needs to be used with a new project, in our study — after checking
the correctness of the produced output — for the comparative evaluation, we
further restricted the sample to a smaller subset of 23 working projects.

While in the case of ExpressO, the time that matters is the one it takes
to analyze code, and generate the specification, in the case of swagger-autogen
to produce a specification it is needed to keep in mind that it involves manual
configuration. We distinguish: (1) Time To Start (TTS): the time elapsed from
when a project is cloned and installed, to the moment that we are able to run
our analysis; (2) Time To Run (TTR): the time taken to analyze the backend
and produce the specification.

To the TTR of swagger-autogen, we should add the time required to set
up the swagger.js file by configuring it correctly. This is a manual activity that

8 A. Romanelli et al.

Table 3: Corr. of Time To Run (TTR)
Table 2: Performance Comparison against implementation size (LOC) and

(Average Execution Time) output API size (Endpoints)
TTS TTR Total Correlation p-value
LOC - 0.9999 0.000
swagger-autogen >0 265ms >265ms LOC Swaggereigzgzz 0.2202 0.3310

expresso 5917ms 123ms 6040ms -
Endpoints expresso 0.4841 0.030

Endpoints swagger-autogen -0.220 0.3501

requires different times depending on the user’s experience with swagger-autogen
and familiarity with the backend. During the first run, we may consider our
system to have a superior performance if a user is unable to perform the required
steps to use swagger-autogen within 5.8 seconds (Table 2). To be fair, in the
following executions, such a manual step is no longer required.

In Table 3, we compute the Pearson correlation between the express project
size measure in lines of code (LOC) and the TTR time taken by the tools to try
to establish whether there is a statistical correlation between these two variables.
In the first row, we can see that there is a high correlation between the LOC of
a project and the time taken by swagger-autogen, while the correlation between
the API size (Number of Endpoints) and the TTR of ExpressO is medium.

7 Conclusion

In this tool demo paper, we have introduced ExpressO, a tool for automatically
extracting a skeleton of OpenAPI descriptions from the corresponding JavaScript
implementation based on the Express.js framework. As opposed to existing au-
tomatic generation tools such as swagger-autogen, ExpressO does not require
any time-consuming manual configuration as it can be used immediately on any
Express.js compliant project. Most existing tools for extracting interfaces from
implementation are meant to support a code-first approach to API development,
where the implementation is manually annotated with metadata that should be
extracted and published as part of the OpenAPI description. ExpressO instead
supports an API-first approach [7], as it can compare the API description ex-
tracted from the code with a given OpenAPI description to check whether the
paths, operations, response codes, and parameters are indeed implemented as
advertised.

While the tool currently only supports Express.js backends, its hybrid ap-
proach combining static and dynamic analysis can be applied to other backend
frameworks whose route configuration settings can be instrumented and inter-
cepted in a similar way. We are working on extending the tool to support a
broader set of inputs (APIs whose backend is implemented using other frame-
works and other programming languages) and outputs (API descriptions con-
forming to other specifications, e.g. RAML). ExpressO is freely available on the
npm registry under the “expresso-api” name [21].

ExpressO 9

References

o

10.

11.

12.
13.
14.

15.
16.

17.

18.

19.

20.

21.
22.

23.

OpenAPI Initiative. https://www.openapis.org/, accessed: 2021-06-01

RAML. https://raml.org/, accessed: 2021-06-01

I/O Docs. https://support.mashery.com/docs/read /IO _Docs, accessed: 2021-06-
01

backend-viajes. https://github.com/FIS-Proyecto-Equipol /backend-viajes, ac-
cessed: 2022-07-01

Ajdyna, E.: abstract-syntax-tree, https://www.npmjs.com/package/abstract-
syntax-tree

Baltar, D.: swagger-autogen, https://github.com/davibaltar/swagger-autogen
Beaulieu, N., Dascalu, S.M., Hand, E.: Api-first design: A survey of the state of
academia and industry. In: ITNG 2022 19th International Conference on Informa-
tion Technology-New Generations. pp. 73—79. Springer (2022)

Cao, H., Falleri, J.R., Blanc, X.: Automated generation of rest api specification
from plain html documentation. In: International Conference on Service-Oriented
Computing. pp. 453-461. Springer (2017)

Christensen, E.: Web services description language (wsdl) 1.1
http://www.w3.org/TR /2001 /NOTE-wsdl-20010315 (2001)

Corradini, D., Zampieri, A., Pasqua, M., Ceccato, M.: Restats: A test coverage tool
for restful apis. In: 2021 IEEE International Conference on Software Maintenance
and Evolution (ICSME). pp. 594-598. IEEE (2021)

Di Lauro, F., Serbout, S., Pautasso, C.: Towards Large-Scale Empirical Assessment
of Web APIs Evolution. In: Proc. International Conference on Web Engineering
(ICWE 2021), pp. 124-138 (2021)

Fowler, M.: Domain-specific languages. Pearson Education (2010)
GitHub-Repository: Openapi diff, https://github.com/tufin/oasdiff
GitHub-Repository: Openapi diff by microsoft azure,
https://github.com/Azure/openapi-diff

Hadley, M.J.: Web application description language (wadl). Tech. rep., USA (2006)
Hasselbring, W.: Software architecture: Past, present, future. In: The Essence of
Software Engineering, pp. 169-184. Springer, Cham (2018)

Jongeling, R., Fredriksson, J., Ciccozzi, F., Cicchetti, A., Carlson, J.: Towards
consistency checking between a system model and its implementation. In: Inter-
national Conference on Systems Modelling and Management. pp. 30-39. Springer
(2020)

Karlsson, S., Caugevi¢, A., Sundmark, D.: Quickrest: Property-based test genera-
tion of openapi-described restful apis. In: 2020 IEEE 13th International Conference
on Software Testing, Validation and Verification (ICST). pp. 131-141. IEEE (2020)
Koren, I., Klamma, R.: The Exploitation of OpenAPI Documentation for the Gen-
eration of Web Frontends. In: Companion of the The Web Conference 2018 on The
Web Conference 2018 - WWW ’18. pp. 781-787 (2018)

Robillard, M.P.: What makes apis hard to learn? answers from developers. IEEE
software 26(6), 27-34 (2009)

Romanelli, A.: expresso-api, https://www.npmjs.com/package/expresso-api
Romanelli, A.: ExpressO. Master’s thesis, Faculty of Informatics, University of
Lugano (2022)

Serbout, S., Di Lauro, F., Pautasso, C.: Web apis structures and data models
analysis. In: 2022 IEEE 19th International Conference on Software Architecture
Companion (ICSA-C). pp. 84-91. IEEE (2022)

10

24.
25.

26.

27.

A. Romanelli et al.

Spencer, J.: Express openapi, https://github.com /kogosoftwarellc/open-api
Theunissen, T., van Heesch, U., Avgeriou, P.: A mapping study on documentation
in continuous software development. Information and Software Technology 142,
106733 (2022)

TJ Holowaychuk, S., et al.: Express.js documentation,
https://expressjs.com/en/5x /api.html

Van Heesch, U., Theunissen, T., Zimmermann, O., Zdun, U.: Software specification
and documentation in continuous software development: a focus group report. In:
Proceedings of the 22nd European Conference on Pattern Languages of Programs.
pp. 1-13 (2017)

