
OAS2Tree: Visual API-First Design

Souhaila Serbout ID and Cesare Pautasso ID

Software Institute (USI), Lugano, Switzerland
first-name.last-name@usi.ch

Abstract. OAS2tree is a tool designed to transform OpenAPI Specifi-
cation (OAS) documents into tree-like visualizations, aiding in the under-
standing and navigation of the structure of REST APIs. By converting
the detailed, verbose, and often complex OAS files into a visual tree struc-
ture, OAS2tree simplifies the comprehension of a Web API, highlighting
the hierarchical relationships between endpoints, operations, and param-
eters. This visual representation is particularly useful for developers and
stakeholders who need a quick overview of an API without delving into
the intricate details of its technical specifications. OAS2tree can be in-
tegrated into the IDE through a Visual Studio code extension or used
as a standalone web application. The tool currently has about 400 users
and has been used on teaching, research, and development projects. In
this paper, we present the design and implementation of OAS2tree, high-
lighting its features and use cases. We also highlight the limitations of
the current version and discuss future improvements and potential ex-
tensions.
Demo Video Link: https://youtu.be/E48c9Rwntz8

1 Introduction

Web APIs are essential for enabling seamless communication between software
systems [10]. However, their sheer size and complexity [7] can make them chal-
lenging to understand [4]. While visualizing the overall architecture can signif-
icantly aid in understanding the interactions between a system’s components,
focused visualizations of crucial elements within a complex system, such as web
APIs, can clarify the structure, help ensure the correct flow of data, and deter-
mine which operations should be exposed.

OAS2Tree dynamically generates visual representations of APIs described
using the OpenAPI Specification (OAS) [5]. The tree-like visualization repre-
sents the API endpoints, request/response elements, and parameters. By offer-
ing developers a visual representation instantaneously synchronized from the
OpenAPI description text, the tool facilitates obtaining valuable insights and a
deeper understanding of the API structure. Furthermore, our tool goes beyond
basic visualization capabilities by proactively identifying and highlighting de-
sign smells—common issues or inefficiencies in API design. These design smells
have been extensively discussed in our previous research study on API structural
patterns and design flaws [9].

https://orcid.org/0000-0002-8144-2606
https://orcid.org/0000-0002-2748-9665
http://api-ace.inf.usi.ch/openapi-to-tree/
https://youtu.be/E48c9Rwntz8

2 Serbout and Pautasso

In this paper, we outline the main features of OAS2tree. By offering devel-
opers the ability to interact with visual representations and detect design smells
early on, the tool empowers developers to ensure they create the wanted API
and consumers to inspect and select their chosen API. By providing real-time
visual representations of API endpoint and operation structures, the tool facil-
itates validating the consistent and regular design of API endpoints as a tree
of URL paths with color-coded HTTP methods as tree leaves. Additionally, its
integration of design smell detection capabilities assists developers in identifying
potential issues and refining their APIs. Ultimately, our visualization tool aims
to enhance the collaboration and efficiency of incremental API design and review
processes, resulting in the creation of well-designed APIs.

The tool is available as both a standalone web app [1] and as a Visual Studio
Code (VSCode) extension [2], catering to the diverse needs of developers. The
web app version is designed for those who want a quick and convenient way
to visualize an API without the need for local tool installation and setup. On
the other hand, the VSCode extension version is intended for developers who
prefer to have the visualization tool seamlessly integrated into their development
environment.

2 From OpenAPI to API Tree

To visualize the OpenAPI specification as a tree structure, we transform the
flat list of paths extracted from an API description into a hierarchical structure
by breaking down the paths into segments. When a segment is shared between
different paths, we check if these segments share the same sequence of parent
segments. If they do, the segments are merged into a single node, as they refer to
the same container resource. Once the path segments tree structure is complete
we attach to each node the set of HTTP methods of the corresponding endpoint.

OpenAPI also includes details related to the responses of each endpoint and
the parameters that can be passed to the endpoint. We attach these details to
the corresponding HTTP method node. In the current version of OAS2Tree, we
only visualize the response status codes but do not further drill down to show
the data models of the request or response schemas.

Considering the example in Listing 1.1 of API paths defined in an OpenAPI
document:

Listing 1.1: Example of API paths description ins an OpenAPI document

paths:

/users:

get:

summary: "Retrieve the list of all registered users."

responses:

"200":

description: "A list of users."

/users/{id}/ details:

get:

OAS2Tree: Visual API-First Design 3

summary: "Retrieve details of a user by their ID."

responses:

"200":

description: "The user information."

"404":

description: "User not found."

/posts:

get:

summary: "List all posts"

responses:

"200":

description: "A list of all available posts."

parameters:

- name: limit

in: query

description: "The number of posts to return."

type: integer

- name: offset

in: query

description: "The number of posts to skip."

type: integer

post:

summary: "Create a new post."

responses:

"201":

description: "The created post."

The paths /users and /users/{id}/details share the segment /users, and
the paths /users/{id}/details and /posts share the segment /users/{id}.
Since these segments share the same sequence of parent segments, they are
merged into one node in the tree structure. The resulting tree structure can
be visualized as in Figure 1.

While the YAML or JSON syntax adopted by OpenAPI can make it hard
to locate the operations that are applicable over the same resources but with

/

users

{id}

details

GET

Req.
Params

Resp.
Status

GET

Req.
Params

Resp.
Status

posts

GET

Req.
Params

Resp.
Status

POST

Req.
Body

Resp.
Status

Fig. 1: Extracted API tree structure

4 Serbout and Pautasso

Fig. 2: OAS2Tree visualization of API in Listing 1.1

different HTTP methods, in case of large APIs with many paths, the tree struc-
ture makes it easy to see that – for example – the /users/{id}/details path
has only a GET operation and the /posts path has both a GET and a POST
operation. This hierarchical representation clearly shows the shared segments
and their relationships within the API structure.

3 OAS2Tree Elements Graphical Notation

We defined the following set of notations to represent the different elements of
the API tree structure (Figure 2).

HTTP Methods: They are visualized in a circular shape. We attribute a
specific color to each HTTP method to make it easier to identify them in the
visual representation. The colors we adopted are closely similar to the color
coding used in Postman [6]. The colors are as follows:

GET POST PUT HEAD DEL PATCH OPT TRACE

Path segments: we distinguish the position of fixed URL segments (repre-
sented with a white tree node) from the position of in-path parameters (repre-
sented with a black tree node). We also use a different notation () to distin-
guish unusual path segments. For example in /api/v1/users/{userId}:posts
the last suffix of the path “:posts” is prefixed by a colon character as opposed
to the usual forward slash.

Query parameters: we represent query parameters as a subtree of the opera-
tion node. The subtree is collapsed by default, to highlight the presence of query
parameters, and the user can expand it to see which parameters are expected
by the operation. The root of the subtree is represented by a question mark

icon ? . Then each parameter is represented by a node with the parameter
name (Figure 3).

Responses: we represent the responses of an operation as a subtree of the
operation node. The sub-tree is collapsed by default indicating the presence of

OAS2Tree: Visual API-First Design 5

Fig. 3: Navigation between the diagram and the OAS code

responses. The user can expand it to see the details of the responses (Figure 3).

The root of the subtree is represented by a greater than icon > . Each response
is represented by a node with the response status code. The response code is
colored in green if it is a success code (2xx), in orange if it is a client-side error
(4xx), and in red if it is a server-side error (5xx).

4 OAS2Tree Features

4.1 API Spec validation Design Smells Detection

OAS2Tree can be used to detect smells in the API design described in the spec-
ification. The tool currently supports the detection design smells we empirically
identified in our previous research study on API collection resource patterns [9].
The goal is to alert developers to potential design issues. The design smells
detected by OAS2Tree include:

– Ambiguous PUT and POST endpoints: When an API contains both
PUT and POST operations with similar paths, it can lead to confusion.

– Create without delete: When an API allows the creation of resources
without providing a corresponding delete operation, it can result in data
inconsistencies.

– Delete without create: When an API allows the deletion of resources
without providing a corresponding create operation, it can lead to data loss.

– Write-only endpoints: When an API contains endpoints that only allow
write operations without providing read capabilities, it can limit the usability
of the API.

6 Serbout and Pautasso

In addition, OAS2Tree validates the API specification against the OpenAPI
Specification schema to ensure that it adheres to the standard, and highlights any
errors or inconsistencies in the document and in the problems view as depicted
in Figure 3. For both smells and validation errors, the user can navigate to the
problematic element in the OAS document by clicking on the error message.

4.2 Navigation of API description through the tree visualization

The tree structure visualization allows users to navigate through the API de-
scription easily. By expanding and collapsing nodes, users can explore the API
structure and view the details of each endpoint, operation, and parameter. This
interactive feature provides a comprehensive overview of the API architecture,
enabling users to quickly locate specific endpoints and understand their func-
tionalities. On mouse over, the editor highlights the corresponding element in the
OpenAPI document in yellow. The description of the element is displayed in the
tooltip. It is also possible to navigate from the problems view to the problematic
element in the OpenAPI document by clicking on the error message.

4.3 Web version of OAS2Tree

OAS2Tree is also available as a standalone web application, allowing users to
visualize API structures without the need for a development environment. The
web app version provides the same features as the VSCode extension, including
the ability to save the current specification being visualized and share it through
a unique URL with other users. The web app version is particularly useful for
users who want to quickly visualize or sketch an API design from their Web
browser (Figure 4). An additional feature that the web version offers is the ability
to navigate a collection of API specification examples, and visualize them in the
tree structure format. This feature can be useful for users who want to explore
different API designs and understand the common patterns and structures used
in API development, and how some features are documented in OpenAPI by
other API designers1.

1 http://api-ace.inf.usi.ch/openapi-to-tree/navigate-apis?limit=50&page=

13

Fig. 4: Save as URL functionality in OAS2Tree Web App

http://api-ace.inf.usi.ch/openapi-to-tree/navigate-apis?limit=50&page=13
http://api-ace.inf.usi.ch/openapi-to-tree/navigate-apis?limit=50&page=13

OAS2Tree: Visual API-First Design 7

5 Usage scenarios

OAS2Tree can be used by both API providers and API consumers in various
use-case scenarios across the API development lifecycle.
As an API Designer & Developer:

– API Design and Documentation: During the initial stages of API design,
OAS2Tree can be employed to visualize and refine the API structure. Since the
visualization can also be generated from not fully complete OAS, it can serve as
a tool for sketching partial API structures, and have an early overview of it.

– API Review and Design Validation: Designers can use OAS2Tree not only
to ensure conformance to the OpenAPI standard, but also to ensure consistency
in endpoint naming, parameter usage, and selection of HTTP methods.

– API Evolution: The tool can help find the adequate place of an extension.
As an API Consumer:

– Functionalities exploration: Client developers can use OAS2Tree to explore
the endpoint structure and assess whether the API meets their requirements.

– Documentation navigation: OAS2Tree can be used to navigate the API
documentation and quickly locate specific endpoints and operations, by hovering
over the tree nodes, the corresponding element in the OpenAPI document is
highlighted.

– Visual comparison: OAS2Tree can be used to visually compare the struc-
ture of different versions of an API, or the structures of different APIs.

6 Related Work

Most of the currently widely used API lifecycle management tools in the mar-
ket234, including paid ones, offer a Postman-like interface in their ‘API Design
environment’, where the user can interact with the API, and test it. However,
none of them offers a tree-like visualization of the API structure, that can be
used to understand the overall API structure and navigate the documentation.

OAIE Sketcher5 offers another way to visualize the endpoints by emphasizing
the relationships between the schemas used in the request and response bodies.
However, it lacks the hierarchical structure of the API paths and the HTTP
methods, and the visualization is not kept synchronized as the corresponding
textual specification changes.

The tool OpenAPItoUML [3] generates UML models from OpenAPI defi-
nitions, providing a means to visualize both API endpoint structures and API
data models using class diagrams. However, it does not provide a tree-like visu-
alization of the API paths and operations, and it does not support the detection
of any design smells in the API specification or data schema issues.

OAS2Tree differentiates itself from existing tools [8] by focusing specifically
on rendering OpenAPI descriptions as tree-like visualizations.

2 https://xapihub.io/features/designAndDev
3 https://stoplight.io/drive-api-results
4 https://apigit.com/why-apigit/api-design
5 https://raw.githack.com/OAIE/oaie-sketch/master/sketch.html

8 Serbout and Pautasso

7 Conclusion and Future Work

OAS2Tree is a REST API visualization tool, available as a Visual Studio Code
extension and a web application, that transforms OpenAPI Specifications into a
simple visual tree representation. It supports OAS v2.0, v3.0, and v3.1. It pro-
vides a side panel in the VS Code editor to display the API structure as a tree.
The tool can be employed by API designers to visualize and refine the API struc-
ture during the initial design phase, ensuring consistency in endpoint naming,
parameter usage, and HTTP method selection. It can also be used to validate
the API design and detect potential design smells early on. API consumers can
use OAS2Tree to explore the functionalities of an API and understand whether
it meets their requirements. In addition, it contains a navigation feature that
can help to quickly locate the textual description of specific endpoints and op-
erations.

In future work, we plan to extend the tool to support detecting additional
design smells and enhance the representation of the detected issues on the tree
visualization to ease their location in the overall API structure. We are also ex-
perimenting with embedding the visualization as part of the API documentation
generated from the OpenAPI description.

References

1. OAS2Tree, http://api-ace.inf.usi.ch/openapi-to-tree/
2. OAS2Tree, https://marketplace.visualstudio.com/items?itemName=

oas2tree.oas2tree
3. Ed-Douibi, H., Cánovas Izquierdo, J.L., Cabot, J.: OpenAPItoUML: a tool to

generate UML models from OpenAPIdefinitions. In: International Conference on
Web Engineering. pp. 487–491. Springer (2018)

4. Grent, H., Akimov, A., Aniche, M.: Automatically identifying parameter con-
straints in complex web APIs: a case study at adyen. In: 2021 IEEE/ACM 43rd
International Conference on Software Engineering: Software Engineering in Prac-
tice (ICSE-SEIP). pp. 71–80. IEEE (2021)

5. OpenAPI Initiative: OpenAPI specification (2021), https://spec.openapis.org/
oas/v3.1.0

6. Postman: Postman (2021), https://www.postman.com/
7. Serbout, S., Di Lauro, F., Pautasso, C.: Web apis structures and data models

analysis. In: 2022 IEEE 19th International Conference on Software Architecture
Companion (ICSA-C). pp. 84–91. IEEE (2022)

8. Serbout, S., Hurtado, D.C.M., Pautasso, C.: Interactively exploring api changes
and versioning consistency. In: 11th IEEE Working Conference on Software Visu-
alization (VISSOFT 2023). pp. 28–39. IEEE, IEEE, Bogota, Colombia (October
2023)

9. Serbout, S., Pautasso, C., Zdun, U., Zimmermann, O.: From OpenAPI fragments to
api pattern primitives and design smells. In: 26th European Conference on Pattern
Languages of Programs (EuroPLoP). pp. 1–35 (2021)

10. Zimmermann, O., Stocker, M., Lübke, D., Zdun, U., Pautasso, C.: Patterns for
API Design: Simplifying Integration with Loosely Coupled Message Exchanges.
Addison-Wesley Signature Series (Vernon), Pearson Education (2023)

http://api-ace.inf.usi.ch/openapi-to-tree/
https://marketplace.visualstudio.com/items?itemName=oas2tree.oas2tree
https://marketplace.visualstudio.com/items?itemName=oas2tree.oas2tree
https://spec.openapis.org/oas/v3.1.0
https://spec.openapis.org/oas/v3.1.0
https://www.postman.com/

	OAS2Tree: Visual API-First Design

