
FromOpenAPI Fragments to
API Pattern Primitives and Design Smells
Souhaila Serbout

Software Institute, USI

Lugano, Switzerland

souhaila.serbout@usi.ch

Cesare Pautasso

Software Institute, USI

Lugano, Switzerland

c.pautasso@ieee.org

Uwe Zdun

University of Vienna, Faculty of Computer Science,

Software Architecture Research Group

Vienna, Austria

Olaf Zimmermann

University of Applied Sciences of Eastern Switzerland

Rapperswil, Switzerland

ABSTRACT

In the past few years, the OpenAPI Specification (OAS) has emerged

as a standard description language for accurately modeling Web

APIs. Today, thousands of OpenAPI descriptions can be found by

mining open source repositories. In this paper, we attempt to exploit

these artifacts to extract commonly occurring building blocks used

inWeb API structures, in order to assist Web API designers in their

modelling task. Our work is based on a fragmentation mechanism,

that starts from OpenAPI descriptions ofWeb APIs to extract their

structures, then fragment these structures into smaller blocks. This

approach enabled us to extract a large dataset of reoccurring frag-

ments from a collection of 6619 API specifications. Such fragments

have been found multiple times in the same or across different APIs.

We have classified the most reoccurring fragments into four pattern

primitives used to expose in the API access to collections of items.

We distinguish for each primitive variants from design smells. This

classification is based on the specific combinations of operations

associated with the collection items and on an in-depth analysis of

their natural language labels and descriptions. The resulting pattern

primitives are intended to support designers who would like to in-

troduce one or more collections for a specific class of items in their

HTTP-based API.

CCS CONCEPTS

• Software and its engineering→ Patterns;Designing software.

ACMReference Format:

Souhaila Serbout, Cesare Pautasso, Uwe Zdun, and Olaf Zimmermann. 2021.

From OpenAPI Fragments to API Pattern Primitives and Design Smells.

In European Conference on Pattern Languages of Programs (EuroPLoP’21),
July 7–11, 2021, Graz, Austria. ACM, New York, NY, USA, 35 pages. https:

//doi.org/10.1145/3489449.3489998

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

EuroPLoP’21, July 7–11, 2021, Graz, Austria
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8997-6/21/07. . . $15.00

https://doi.org/10.1145/3489449.3489998

1 INTRODUCTION

Application Programming Interfaces (APIs) open up software archi-

tectures so that the resulting software system can be integrated with

external systems, developed at different times by different parties.

In this paper, out of many existing kinds of APIs, we focus onWeb

APIs [3, 14, 17, 18, 21, 24] remotely accessible through the HTTP

protocol and described using the standard OpenAPI specification

language [22]. We do so because of the large number of API descrip-

tions using this language which can be retrieved by crawling open

source repositories (Figure 3). While the original purpose of Ope-

nAPI was to generate human-readable documentation, it can also

be used to generate interactive test clients, as well as client-side and

server-side stubs [1, 2, 11].

In this paper, we statically analyze a large collection of real-world

API descriptions looking for recurring structures that can play the

roles of pattern primitives [25] which can be composed to obtain

API design patterns [28]. In particular, we are interested in the re-

sources exposed by the HTTP API naming and in the relationship

between resource paths and the correspondingHTTPmethods. This

information can be used by clients to invoke the corresponding

operations.

As shown in Figure 1, we started by crawling open-source code

repositories for API description documents that use the OpenAPI

specification. These documents are parsed and fed to a model from

which API structure trees can be extracted. These trees are then

fragmented, and the resulting fragments are matched to detect reoc-

curring ones. Finally, they are clustered to obtain known uses.

Our contributions include:

(1) Amethod to detect similar reoccurring API structures, which

takes into account natural language labels associated with each path

segment. This method can be also used to compare the structure of

differentWeb APIs.

(2) A collection ofwidely usedAPI fragments,with a quantitative

analysis abouthowfrequently theyoccur across the sameordifferent

real-world APIs.

(3) A collection of structural pattern primitives which have been

used as building blocks for HTTP-based APIs. In particular we se-

lected API structures used to provide API clients with access to

resource collections of related items (e.g., user accounts, purchase

orders and their items, computational jobs, blog posts and their

comments, videos or audio tracks).

(4) A classification of some design smells found acrossWeb APIs.

1

https://doi.org/10.1145/3489449.3489998
https://doi.org/10.1145/3489449.3489998
https://doi.org/10.1145/3489449.3489998

EuroPLoP’21, July 7–11, 2021, Graz, Austria

GitHub Public Repositories

Crawler

OpenAPI Parser

API Specification Documents

API Structure Extraction

API Model

API Fragmentation

API Tree

Matching and Clustering

Labeled API Fragments

Selection

API Structure Primitives

API Patterns API Design Smells

Figure 1: API Analytics Pipeline: From API Specifications to

Patterns

(5) Two composition operators for assembling the pattern primi-

tives into larger API structures and a proposal for connecting them

with API design patterns and service contracts.

The remainder of this paper is structured as follows: In Section 2,

we first give an overview about the data set of OpenAPI documents

under study. Then we present our approach that consists of rep-

resenting APIs as trees based on their textual documentation. We

finally detail the fragmentation approach we followed in order to

extract common frequent structures that can be found across sameor

different APIs. Section 3 presents our two-step clustering approach,

which takes into accounts both the structure and the semantic close-

ness between the labels sequences attached to the nodes of a specific
fragment. The collection of structural API pattern primitives is pre-

sented in Section 4. Section 5 provides two examples of how these

pattern primitives can be combined to form larger API structures.

It also demonstrates how the pattern primitives and fragments can

be mapped to architectural patterns and interface description lan-

guages. Section 6 and Section 7 cover related work and present the

threats to validity of our work. Finally in Section 8, we present our

conclusions.

2 FRAGMENTINGAPIS

2.1 API Collection Overview

We analyze technical API descriptions written in OpenAPI, a com-

monly used Interface Description Language (IDL) to specify the

functional characteristics of HTTP-based and RESTful APIs, as well

as selected non-functional ones (for instance, some security policies).

Bymining public repositories shared onGitHub duringDecember

2020 and January 2021,we collected a data set of 6919API description

documents, with an average size of 22.8KB, including specifications

of some well-known APIs such as Twilio, Slack, Flickr APIs, Google

APIs, and Amazon APIs. All the APIs described in the descriptions

under study contain at least one method and one path. Because of

the lack of space, in this paper, we only include one visualization of

one of the largest API in the dataset (Figure 9), and other examples

of smaller APIs (Appendix A) to show how the detected primitives

are used as building blocks to construct the whole API’s structure.

The yearly distribution of the age of the OpenAPI documents in

our dataset is depicted in Figure 3. The horizontal axis refers to the

year of the last commit that updated the document.

2.1.1 OAS versions distribution. The collection studied in this work
contains 6619 OAS descriptions. 28.9% are written in OpenAPI 3.0

and 71.1% are written in Swagger 2.0, coming frommore than 600

different providers.

The two versions are slightly different from each other on the

content level, but they both allow describing API structures with

almost the same level of granularity. In Figure 4, we describe the

maindifferences between the twoversions.Thenumbers (1), (2),.., (9),

show the mappings between the sections of a description written in

OAS 2.0 and their corespondents in a description document written

in OAS 3.0. The first difference is in the servers details section.While

in OAS 2.0 it was possible to include only one endpoint for an API,

in OAS 3.0 it is allowed to include multiple server objects. Other

structural rearrangements have been done in OAS 3.0 in order to

increase the reusability of definitions, such as the inclusion of the

Components section, where securityDefinitions, schema definitions,

parameters, and responses are defined. In addition, in OAS 3.0 a

Component object can also contain callback descriptions, which

makes this version more efficient in describing asynchronous APIs.

Moreover, OAS 3.0 improved the description of the parameters and

supports more security schemes and bearer formats than OAS 2.0.

In our case, these differences between the two versions do not

impact the results of the structural analysis and the APIs fragments

extraction, because our study focused on the paths and methods

provided by APIs, which are described in both versions.

2.1.2 HTTP Methods usage. In Figure 2 we show an overview of

HTTPmethods usage in a subset of the APIs under study. We clas-

sify APIs based on which HTTP methods they use following the

RESTful maturity model [7], which distinguishes L0) APIs that use

only one endpoint and one method from L1) APIs that use multiple

endpoints and still one method associated to each endpoint, and L2)

APIswhich usemultiplemethodswithmultiple endpoints. Given the

lack of support for describing hypermedia in OpenAPI documents,

we are unable to distinguish the highest level of the maturity model

L3, which includes the APIs that make use of the REST principle

Hypermedia as the Engine of Application State (HATEOAS).

2

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

K
o
d
i
n
g
A
P
I

D
o
c
k
s
t
o
r
e
A
P
I

S
p
i
n
n
a
k
e
r
A
P
I

N
e
t
B
o
x
A
P
I

N
o
d
e
u
m
A
P
I

C
o
d
e
f
r
e
s
h
A
P
I

K
u
b
e
r
m
a
t
i
c
A
P
I

S
e
c
u
r
e
S
K
Y
E

P
r
o
b
e
l
y
D
e
v
e
l
o
p
e
r
s

S
l
i
c
e
b
o
x
A
P
I

C
o
m
i
c
s
D
a
t
a
b
a
s
e
A
P
I

P
e
e
r
T
u
b
e

M
a
n
d
r
i
l
l

b
r
o
o
k
l
y
n

D
e
p
l
o
y
e
d
A
P
I
s

S
t
a
c
k
S
t
o
r
m
A
P
I

A
c
c
o
u
n
t
i
n
g

S
l
i
c
e
b
o
x

R
e
f
o
c
u
s
A
P
I

P
i
p
e
l
i
n
e
A
P
I

O
p
e
n
S
t
o
r
a
g
e
S
D
K

A
n
n
o
F
a
b
W
e
b
A
P
I

A
m
a
z
o
n
A
P
I
G
a
t
e
w
a
y

O
p
e
n
B
M
P
R
E
S
T
A
P
I

M
A
D
A
p
p
A
P
I

A
W
S
C
o
n
fi
g

A
W
S
D
e
v
i
c
e
F
a
r
m

G
e
n
e
r
i
c
A
P
I
S
e
r
v
e
r

c
o
r
e
-
m
e
t
a
d
a
t
a

A
W
S
O
p
s
W
o
r
k
s

D
e
m
i
s
t
o
A
P
I

U
l
a
b
o
x
A
P
I
v
2

A
p
a
c
t
a

E
n
s
e
m
b
l
R
e
s
t
A
P
I

K
i
a
l
i

T
w
i
l
i
o

A
m
a
z
o
n
R
e
d
s
h
i
f
t

S
E
S
A
M

N
o
d
e

l
i
f
e
-
s
u
i
t
e
-
s
e
r
v
e
r

A
p
i
g
e
e
A
P
I

B
i
t
r
i
s
e
A
P
I

T
h
e
C
M
N
A
p
i

A
u
t
o
S
c
a
l
i
n
g

L
i
v
e
A
P
I
R
e
f
e
r
e
n
c
e

C
l
o
u
d
i
a
t
o
r
R
E
S
T
A
p
i

F
l
a
t
A
P
I

R
B
K
m
o
n
e
y
W
a
l
l
e
t
A
P
I

A
m
a
z
o
n
L
i
g
h
t
s
a
i
l

A
m
a
z
o
n
G
a
m
e
L
i
f
t

S
w
a
g
g
e
r
H
u
b
R
e
g
i
s
t
r
y

A
n
i
m
a
t
i
o
n
B
o
a
r
d
v
2

F
i
t
b
i
t
P
l
u
s

F
i
t
b
i
t
P
l
u
s
A
P
I

M
P
O
A
P
I

F
l
a
t

M
e
s
s
a
g
e
M
e
d
i
a

A
W
S
S
e
r
v
i
c
e
C
a
t
a
l
o
g

E
d
a
v
o
d
a
A
P
I

T
w
i
n
e

A
W
S
W
A
F
R
e
g
i
o
n
a
l

K
u
b
e
V
i
r
t
A
P
I

V
i
p
p
s
A
P
I

A
W
S
C
l
o
u
d
F
o
r
m
a
t
i
o
n

M
e
t
a
d
a
t
a
C
a
t
a
l
o
g

E
c
h
o
N
e
s
t

A
I
L
a
b
U
I
S
e
r
v
i
c
e

V
i
c
t
o
r
O
p
s

A
W
S
C
o
d
e
D
e
p
l
o
y

D
a
t
a
R
e
p
o
s
i
t
o
r
y
A
P
I

A
W
S
O
r
g
a
n
i
z
a
t
i
o
n
s

A
m
a
z
o
n
E
l
a
s
t
i
C
a
c
h
e

P
A
C
C
o
n
t
r
o
l

B
u
s
i
n
e
s
s
R
e
g
i
s
t
r
i
e
s

A
s
s
i
s
t
e
d
I
n
s
t
a
l
l

G
e
n
o
m
i
c
s

A
W
S
W
A
F

A
W
S
C
o
d
e
P
i
p
e
l
i
n
e

A
W
S
D
i
r
e
c
t
C
o
n
n
e
c
t

K
u
b
e
S
p
h
e
r
e
A
d
v
a
n
c
e
d

s
t
a
s
h
-
s
e
r
v
e
r

P
C
A
9
9
5
6
B
A
P
I

F
u
n
T
r
a
n
s
l
a
t
i
o
n
s

P
a
g
e
r
T
r
e
e
A
P
I
Y
A
M
L

W
h
a
t
s
A
p
p
B
u
s
i
n
e
s
s

A
d
m
i
d
i
o
R
E
S
T
-
A
P
I

F
u
n
T
r
a
n
s
l
a
t
i
o
n
s
A
P
I

A
p
p
V
e
y
o
r

F
l
a
s
h
c
a
r
d
s
A
P
I

W
i
k
i
m
e
d
i
a

A
m
a
z
o
n
R
o
u
t
e
5
3

O
r
c
h
e
s
t
r
a
t
i
o
n

M
Q
A
M
e
t
r
i
c
S
e
r
v
i
c
e

O
p
e
n
P
A
I
R
E
S
T
f
u
l
A
P
I

A
p
p
V
e
y
o
r

A
p
p
V
e
y
o
r
R
E
S
T
A
P
I

A
W
S
I
o
T

C
o
u
r
s
e
P
l
u
s
A
P
I

C
a
r
S
e
r
v
i
c
e
A
P
I

O
a
k
O
S
D
a
s
h
b
o
a
r
d
A
P
I

0

100

200

300

API

N
u
m
b
e
r
o
f
M
e
t
h
o
d
s

GET HEAD POST PUT DELETE PATCH OPTIONS

Figure 2: API Collection Sample (sorted by Number of Paths)

Still, we can clearly see different types of APIs emerging if we

simply count howmany HTTP methods are associated with each

path enumerated in the API description (Figure 5). We have grouped

the APIs into sets according to the HTTPmethod combinations they

use and depicted the results in the bar chart in Figure 5. The most

popular group makes use of the CRUD-like primitives of GET, PUT,

POST, and DELETE. The second most popular group only uses the

read-only GETmethod. This is closely followed in terms of size, by

theAPIswhichuseonly theGETorPOSTmethods.Another groupof

similar size can be observed by combining CRUDAPIs which do not

use the PUTmethod (so they alias update and creation operations

under the same POSTmethod) together with APIs which instead of

using the PUTmethod they replace it with the PATCHmethod. The

next group includes the pure RPC APIs, which only use the POST

method. The last group worth mentioning is the ones that use all

five methods, which includes 442 APIs. The collection also includes

about 500 APIs with different method combinations, but of rather a

small size.

2.1.3 API sizes distribution. Figure 6 presents an overview of the

size of the APIs in the same groups, measured with two different

metrics [8]: a) the number of paths listed in theAPI description and b)

2015 2016 2017 2018 2019 2020

0

0.5

1

·104

53 265
703 919

1,624

3,055

Cumulative

Number of OAS documents

Number of OAS documents

Figure 3: Yearly distribution of the age of the OAS files

crawled fromGitHub

Figure 4: Open API SpecificationMetamodel Versions: 2.0 vs

3.0

the nodes present in the API tree. The boxplots in Figure 6 represent

the distribution of the size measurements for each API. Overall, the

median values for the size of the APIs in the collection reach approx.

50 nodes and 20 paths.

2.2 Domain Concepts

In this work, we focus on analyzing the structures of Web APIs

with the goal of detecting APIs with similar structures. Due to the

granularity ofAPI descriptions inOpenAPImodels,we could a create

tree model representation for each API in the collection, which we

call from now on API Tree. For lifting the level of abstraction of the

tree model, we unlabel all its nodes. We refer to the unlabeled tree

model as API Tree Structure.

In our analysis, we aim to detect repetitive tree fragments in the

API tree models. For that, we define an object called API Fragment,

a subtree of an API tree. As for an API, the fragment also has an

unlabeledversion,whichwecallhenceforthFragmentTreeStructure.

3

EuroPLoP’21, July 7–11, 2021, Graz, Austria

0 500 1,000 1,500

DEL GET POST PUT

GET

GET POST

DEL GET POST

DEL GET PATCH POST

POST

DEL GET PATCH POST PUT

GET POST PUT

DEL GET PUT

GET PATCH POST

GET PUT

GET OPTION POST

PUT

GET PATCH POST PUT

DEL GET HEADOPTION PATCH POST PUT

DEL GET OPTION POST PUT

DEL GET HEAD POST PUT

DEL GET PATCH PUT

DEL POST PUT

POST PUT

GET OPTION

HEAD

1,718
1,106
1,080

510

449

448

442

289

100

85

77

34

30

29

23

22

21

17

16

12

10

10

Number of APIs

M
e
t
h
o
d
s
P
r
e
s
e
n
t
i
n
t
h
e
A
P
I

0 10,000 20,000 30,000

Total Number of Methods

PUT

POST

PATCH

OPTIONS

HEAD

GET

DELETE

Figure 5: APIMethod Combination Overview

After matching and filtering the set of API tree structures extracted

from the whole API collection under study, we obtained a list of

API structure primitives and another for API Structure smells, as

described in the domain concepts summary of Figure 7.

2.3 Representing the API Structure as a Tree

2.3.1 API Tree Model. We transform the textual documentation

related to the resources and the methods supported by the API into

a tree data model, to represent the nesting relationships between the

API endpoint URIs, enumerated as paths in the OpenAPI specifica-

tion. This model has two purposes:

(1) It can be used to visualize the functional characteristics of

the APIs graphically, to provide a quick overview supporting the

understanding of the APIs structure.

(2) The second purpose of this tree data model, described in Fig-

ure 8, is to help to rapidly spot commonly used patterns by analyzing

reoccurring fragments foundwithin a large set ofAPIs. The elements

colored in gray in Figure 8 are the ones being mapped to graphical

notations for being visualized in the API Tree representation.

An example of an API Tree model visualization is in Figure 9.

Each API operation, originally listed in the OpenAPI file, can be

enumerated by following the path from the root until reaching a leaf

of the tree. These later represent the HTTP methods, enumerated in

each path in the Open API description. The nodes within the tree

are labeled with the corresponding URI path segment and labeled

depending on the type of the path segment (Table 1). The types of

nodes are explained in Section 3.1.1.

Due to this graphical representation we can also visually detect a

repetitive usage of an API Fragment in an API. This same fragment

can also reoccur in other APIs, with different labels.

In Table 1, we summarize the notation used in our APIs Tree

visualization.

Table 1: API Tree notation

Name Notation Signification
Root

R

The root of the API Tree.

Method TheHTTPmethods,where each

method has a specific color.

Static path segment Path segmentwithnoparameter

Parametric path seg-

ment

Path segment with single {pa-

rameter}

Complex path seg-

ment

Path segment mixing parame-

ters with static labels

2.3.2 OpenAPI to Tree model transformation. For explaining the
model transformation, responsible of producing the tree visualiza-

tion of the OpenAPI descriptions, we use the description example in

Listing1,which is anexcerpt extracted fromtheOpenAPIdescription

of ApactaWeb API whose API Tree is shown in Figure 9.

The path /cities only contains one path segment {1:cities}
labeled cities. In our transformation, each segment is transformed

to a PathSegment object (Figure 8). We always connect the first path

segment to the Root object
R

, an added graphical element which

helps to visualize the API model as a tree. The {1:cities} path seg-
ment has no in-path parameters, thus it is mapped to the static path

segment notation (Table 1). As a result, the obtained first portion

of the tree is
R

cities

, where we label the path segment node

‘cities‘. Moreover, the PathSegment object contains fields holding

some original information such as the summary, description and

the parameters information, for further usages. In this study, we

only distinguish between paths that are having in-path parameters

4

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

0 20 40 60 80 100

DEL GET POST PUT

GET

GET POST

DEL GET POST

DEL GET PATCH POST

POST

DEL GET PATCH POST PUT

GET POST PUT

DEL GET PUT

GET PATCH POST

GET PUT

GET OPTION POST

PUT

GET PATCH POST PUT

DEL GET HEADOPTION PATCH POST PUT

DEL GET OPTION POST PUT

DEL GET HEAD POST PUT

DEL GET PATCH PUT

DEL POST PUT

POST PUT

GET OPTION

HEAD

API Size (Number of Nodes)

M
e
t
h
o
d
s
P
r
e
s
e
n
t
i
n
t
h
e
A
P
I

0 10 20 30 40

API Size (Number of Paths)

Figure 6: APIMethod Combination Overview vs. API Size

Labels SequenceLabels Sequence

API TreeAPI Tree

API FragmentAPI Fragment

API TSAPI TS

API Fragment TSAPI Fragment TS

Pattern Primitive VariantPattern Primitive Variant
Design SmellDesign Smell

1..*

1

1..*

1..* 1

1..* 11..* 1

Figure 7: Domain Concepts and their relations

and the one that don’t have them. However we plan to extend the

graphical visualization to include also the other type of parameters

and the responses details.

This path provides only one GET operation, which allows to

get a city by its zip code. The HTTP methods are transformed to

the Method object, which also keeps most of the original informa-

tion about the method, such as the summary, description, and the

response details. This Method object is mapped to the graphical

ParameterParameter

InfoInfo

API TreeAPI Tree

ContactContact

ResponseResponse
PathPath

PathSegmentPathSegment
MethodMethod

ParametricPathSegmentParametricPathSegment StaticPathSegmentStaticPathSegment DynamicSegmentDynamicSegment

1..1

0..1

1..*

1..*

1..7

1..*

1..*

Figure 8: Excerpt of the API Tree metamodel, highlighting

the visualized elements

notation: , which contains as a label the name of HTTPmethod

and colored in specific color depending on the method. In this case,

5

EuroPLoP’21, July 7–11, 2021, Graz, Austria

paths:

/cities:

get:

parameters:

- description: Search for a city with specific zip code

in: query

name: zip_code

required: false

type: string

responses:

'200':

description: OK

schema:

...

'404':

description: Not found

schema:

...

summary: Get list of cities supported in Apacta

/cities/{city_id}:

get:

parameters:

- in: path

name: city_id

required: true

type: string

responses:

'200':

description: OK

schema:

properties:

data:

...

success:

default: true

type: boolean

'404':

description: Not found

schema:

...

Listing 1: Excerpt from the OpenAPI description of the

Apacta API shown in Figure 9

the notation should be

GET

. And as a result, the whole path visual

representation is:

R

cities

GET

Once all the methods of a path are all transformed, the algorithm

jumps to the next path and start extracting the path segments, and

put them in a list, respecting their original order. In our example the

second path is /cities/city_id. It contains tow path segments {

1: cities, 2: city_id }. The path segment { 1: cities } has already
been created. Knowing that each next path segment is a child of

the previous one, the path segment {2: city_id} should be then

connected to { 1: cities }, which is already created and added to the
tree. This new node is also mapped to the PathSegment object, and
more specifically to the ParametricPathSegment object, which is

associated to the notation: . As consequence, the tree becomes :

R

cities

GET

{city_id}

Same as for the previous path, this path also provides only one

Get HTTP method. So the API Tree corresponding to the whole

OpenAPI description example is:

R

cities

GET

{city_id}

GET

The corresponding API Tree Structure for this API Tree is simply

obtained by removing all path labels:

R GET

GET

Looking at the tree model visualization in Figure 9, we can notice

this same portion of the tree, constructed from the example in List-

ing 1, appears multiple times with different labels. For computing

exactly howmuch frequently, a specific structure of a tree fragment

appears in the set of APIs in our collection, we proceed to apply the

fragmentation and matching technique presented in Section 2.4.

2.4 API Fragments

An API Fragment is any sub-tree (a connected sub-graph that in-

cludes some of the leaves of the original tree) of anAPI tree structure.

A sub-tree is also a tree, therefore a fragment can be also seen as

an API itself, which can be further decomposed. For instance, the

excerpt in Listing 1, is an example of anAPI fragment extracted from

the Apacta API (Figure 9).

To achieve our goal of detecting recurrent fragments in the API

structures, we present a two-step approach that uses an algorithm

that first extracts significant model fragments from a dataset of APIs

models, and then compares them across multiple APIs to detect

recurring ones.

2.4.1 APIs fragmentation approach. A tree𝑇 is a non-linear data

structure, where each non-leaf node can be seen as a root of one

or many sub-trees. The goal of the fragmentation function𝔉 :𝑇→
𝑙 𝑓1,𝑙 𝑓2,..,𝑙 𝑓𝑛 is to extract all the possible sub-trees 𝑙 𝑓1,𝑙 𝑓2, ..,𝑙 𝑓𝑛 con-

taining a sub-set of the ensemble of leaves of𝑇 . For collecting the

nodes wewalk𝑇 using Depth-First Search (DFS). In this way, we can

extract all the trivial sub-trees, which are the ones having as root the

differentnodesof𝑇 . Thealgorithmextracts alsonon-trivial sub-trees,

which are built by extracting all the branches of a sub-tree having

as root a node 𝑁 , then reconstructing the Tree Structures from all

the possible combinations of the branches. Note that a branch starts

from the root of the tree, and keeps all the methods attached to the

6

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

deepest path segment node of the tree. Doing so, we obtain all the

possible sub-trees having as a root the node 𝑁 . Once a sub-tree is

retrieved, it is serialized as JavaScript Object Notation (JSON) and

stored in a MongoDB database. The same process is repeated over

all the nodes of𝑇 until no node is left.

We analyse each API description in the collection and extract

𝑇1,𝑇2,..,𝑇𝑚 , where𝑚 is equal to the size of our OpenAPI descriptions

collection.Thenweapply𝔉oneach tree toextract all possible labeled

sub-trees, or labeled fragments 𝑙 𝑓 which includea subsetof the leaves

of the tree fromwhere it was extracted𝑇 . While labeled fragments

carry the original path segments labels, unlabeled fragments 𝑓𝑗 only

distinguish whether a path segment is parametric or not, and if it

contains an unusual label. The leaves of both labeled and unlabeled

fragments refer to the HTTPmethods which can be applied to the

corresponding sub-path.

We extract all fragments from all API trees in the collection and

look for reoccurring ones. To speed up the process, we first match

unlabeled fragments based on their topology, then we further com-

pare the semantic similarity of labeled fragments sharing the same

structure. To do so, we project the labeled fragments 𝑙 𝑓𝑗 into Label
Sequences which enumerate the labels found during the traversal

of each node of the API fragment tree. In other words, we apply

the projection function𝔓 : 𝑙 𝑓𝑗 → (𝑇𝑆 𝑗 ,𝐿𝑆 𝑗), to obtain for each la-

beled fragment a Tree Structure𝑇𝑆 𝑗 (also called unlabeled fragment

𝑓𝑗) and a Labels Sequence 𝐿𝑆 𝑗 . All the resulted output objects are

also serialized as JavaScript Object Notation (JSON) and stored in a

MongoDB database.

3 FRAGMENTS CLUSTERING

3.1 API Fragments Clustering and Selection

Having obtained the set of all labeled API fragments, which in our

collection corresponds to 277’094 entities, we proceed to remove

duplicates and cluster them.

For clustering the fragments, we followed a two-step similarity

checking approach, which consists of exact topologiesmatching and

labels closeness similarity scoring:

(1) first by their common structure (i.e., the unlabeled fragment),

(2) then, we compute the average label semantic similarity for

each cluster of fragments sharing the same structure.

The output of structural clustering consists of a set of clusters

where the elements of each cluster share the same API Structure,

using different labels. We give higher priority to the larger clusters

(more than 40 elements), knowing that the size of the cluster reflects

how common is a specific structure. These Known uses are then con-

sidered as candidate structural pattern primitives. The goal behind

semantically comparing the fragment sharing the same structure

is to find out if there is a common use context of a highly recurring

API Structure.

3.1.1 Structuresmatching. In our approach,we see anAPI fragment

as a sequence of labels 𝐿𝑆 placed on the nodes of a Tree Structure

𝑇𝑆 . Where a node of a 𝑇𝑆 can be either a path segment or a leaf

representing an HTTPmethod. During our analysis, we decided to

distinguish between three types of path segment: segments contain-

ing a parameter, noted as single word label between { }, segments

that are not containing a parameter, and segments holding labels

Apacta 0.0.1

GETPOST GET

GET

POST

GET

GET

GET

GETPOST

DEL

GET

PUT

GET

GET

GET

GET

GETPOST

DEL

GET

PUT

GET

GET

GETPOST

DEL

GET

PUT

GETPOST

DEL

GET

PUT

GETPOST DELGETPUT

GETPOST

DEL

GET

GETPOST

DEL

GET

PUT

GET

DEL

GET

PUT

GET

GET

GETPOST

DEL

GET

PUT

GET

GET

GET

GET

GET

GET DELGETPUT GETPOST

DEL

GET

POST

PUT

POST

GET

GET

PUT

GETPOST

DEL

GET

PUT

GETPOST

DEL

GET

PUT

GETPOST

DEL

GET

PUT

GET

GET

POST

GET

GET

GET

GETPOST DELGETPUT GET

GET

GETPOST

DEL

GET

PUT

GETPOST

DEL

GET

PUT

GET

GET

GET

GETPOST

DEL

GET

PUT

GET

GET

GET GET GET

GET

GETPOST

DEL

GET

PUT

POST

GET

GET

wall_posts/ {wall_post_id}/ wall_comments/

wall_comments/ {wall_comment_id}/

vendor_products/ {vendor_product_id}/

users/ {user_id}/

time_entry_value_types/ {time_entry_value_type_id}/

time_entry_unit_types/ {time_entry_unit_type_id}/

time_entry_types/ {time_entry_type_id}/

time_entry_intervals/ {time_entry_interval_id}/

time_entries/ {time_entry_id}/

stock_locations/ {location_id}/

projects/ {project_id}/

users/ {user_id}/

project_files/ {project_file_id}/

files/ {file_id}/

project_statuses/ {project_status_id}/

products/ {product_id}/

ping/

payment_terms/ {payment_term_id}/

payment_term_types/ {payment_term_type_id}/

materials/ {material_id}/ rentals/

{material_rental_id}/

checkout/

mass_messages_users/ {mass_messages_user_id}/

invoices/ {invoice_id}/

invoice_lines/ {invoice_line_id}/

forms/ {form_id}/

form_templates/ {form_template_id}/

form_fields/ {form_field_id}/

form_field_types/ {form_field_type_id}/

expenses/ {expense_id}/ original_files/ {file_id}/

expense_lines/ {expense_line_id}/

expense_files/ {expense_file_id}/

employee_hours/

currencies/ {currency_id}/

contacts/ {contact_id}/

contact_types/ {contact_type_id}/

companies/ {company_id}/ integration_feature_settings/ {integration_feature_setting_id}/

clocking_records/

{clocking_record_id}/

checkout/

cities/ {city_id}/

22 Feb 2021 - commit #28 154

Figure 9: Visual representation of the Apacta API structure

as a tree of resources and HTTP methods. This API tree in-

cludes many reoccurring subtrees, which we extract as API

fragments (Click for OpenAPI source)

7

https://raw.githubusercontent.com/roscopecoltran/krakend-admin/f27bc4ee41d133f35301ef2fabf606cdce51b47b/shared/public/downloads/v2/specs/apacta.com/0.0.1/swagger.yaml
https://raw.githubusercontent.com/roscopecoltran/krakend-admin/f27bc4ee41d133f35301ef2fabf606cdce51b47b/shared/public/downloads/v2/specs/apacta.com/0.0.1/swagger.yaml
https://raw.githubusercontent.com/roscopecoltran/krakend-admin/f27bc4ee41d133f35301ef2fabf606cdce51b47b/shared/public/downloads/v2/specs/apacta.com/0.0.1/swagger.yaml
https://raw.githubusercontent.com/roscopecoltran/krakend-admin/f27bc4ee41d133f35301ef2fabf606cdce51b47b/shared/public/downloads/v2/specs/apacta.com/0.0.1/swagger.yaml
https://raw.githubusercontent.com/roscopecoltran/krakend-admin/f27bc4ee41d133f35301ef2fabf606cdce51b47b/shared/public/downloads/v2/specs/apacta.com/0.0.1/swagger.yaml
https://raw.githubusercontent.com/roscopecoltran/krakend-admin/f27bc4ee41d133f35301ef2fabf606cdce51b47b/shared/public/downloads/v2/specs/apacta.com/0.0.1/swagger.yaml

EuroPLoP’21, July 7–11, 2021, Graz, Austria

with more complex parameter notations, such as the example in

Figure 10, which occurs 222 times. In our comparison approach, we

consider the type of the path segment as part of𝑇𝑆 . Thus, API Frag-

ments in Figure 11 and Figure 10 are detected to be distinct since the

first structural clustering step. In this way, we already distinguish

fragments, which even if they have the same tree topology, have

parameters in different positions along the tree.

Figure 10: Example of a repetitive fragment with complex

parametric path segments labels

Figure 11: Example of a repetitive fragment with non para-

metric path segments labels

Following our fragments𝑇𝑆 comparison approach, we extracted,

from a set of 277’094 labeled fragments, 79’728𝑇𝑆 unlabeled frag-

ments sharing the same tree structures, considering also the type of

path segment node, and the types of the HTTPmethod in the leaves.

3.1.2 Semantic closeness.
Oftentimes, path segment labels carry some semantic meaning

related to the resource handled by the path. For that reason, we con-

sidered taking into account the labels of the fragments nodes. Doing

so, we involve the semantic context and have a better understanding

of the common usage contexts of a specific fragment.

In our two-step similarity checking approach, we first clustered

the fragments by their𝑇𝑆 , then extracted all ordered sequences of

node labels found for each𝑇𝑆 of the labeled fragment (Figure 12).

Doing so, we obtain a collection of labels sequences for each 𝑇𝑆 .

The size of the sequence is equal to the number of nodes of the𝑇𝑆 ,

excluding the leaves.

To compute the similarities between the labels sequences, we

use spaCy
1
, an open-source library for Natural Language Process-

ing (NLP) in Python and Cython. In our case, we use a spaCy’s

trained model for English language [20], using the latest version

of the "en_core_web_md" model package, multi-task CNN trained

on OntoNotes, with GloVe vectors trained on Common Crawl for

spaCy.

We distinguish the following types of labels:

1
spaCy: https://spacy.io/

Figure 12: Fragments semantic clustering pipeline

(1) Single words (i.e., stream, details, etc as in the example frag-

ment in Figure 11),

(2) composed labels,whichconcatenate singlewordsusingcamel-

case, or a "-" or a "_" symbol (Figure 42),

(3) unusually long, complex labels (i.e., #x-amz-target=codedeploy

20141006deleteapplication),

We added a formatter to the spaCy’s processing pipeline in order

to cover the different labels types cases we have. We also added a

filter at the end of the pipeline, which has a goal to exclude the labels

that could not be matched to any semantic concept.

We define the distance between two label sequences 𝑆 = {𝑙1,..,𝑙𝑝 }

and 𝑆 ′ = {𝑙 ′
1
, .., 𝑙 ′𝑝 } as 𝑑𝑖𝑠𝑡 (𝑆, 𝑆 ′) =

𝑝∑
𝑖=1

𝑠𝑖𝑚 (𝑛𝑙𝑝 (𝑙𝑖),𝑛𝑙𝑝 (𝑙 ′𝑖))
𝑝 . Where

𝑠𝑖𝑚(𝐴, 𝐵) =
√∑𝑛

𝑖=1

∑𝑛
𝑗=1 (𝑎𝑖 𝑗 −𝑏𝑖 𝑗)2 is the Euclidian Distance be-

tween the matricesA= (𝑎𝑖 𝑗) and B= (𝑏𝑖 𝑗). And where 𝑛𝑙𝑝 (𝑙𝑖) is the
vectorizer function of a label 𝑙𝑖 in 𝑆 . We normalize these distances to

values between 0 and 10. As much is 𝑑 (𝑆,𝑆 ′) closer to 0, 𝑆 and 𝑆 ′ are
semantically close.

Doing so, within each𝑇𝑆 cluster, we measure the semantic close-

ness of each sequence by calculating a similarity score between the

labels attached to the same nodes of the tree. This score consists of

the distance between the vectors representing the labels sequences

of each fragment. Using Agglomerative Hierarchical Clustering,

we obtain the semantic clusters for each set of structurally similar

fragments, by setting a threshold depending on the similarity score

distribution in each𝑇𝑆 cluster.

3.2 Labels Similarity Results

Whilewedonothave space to include the complete clustering results,

we summarize the results with five metrics (Table 2):

(1) The average distance between each couple of sequences: the

goal of this metric is to depict how much are each two labels se-

quences are alike or similar. A low average means that most of the

labels sequences are composed of semantically close elements.

(2) Themedian of these distances: themedian gives an idea about

the distribution of the distances. A high median means that the

majority of the labels sequences are not semantically close.

8

https://spacy.io/

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

Primitive Variant/Smell

Labels sequences distances

Clusters Threshold

Average Median Max

Enumerable

Collection (P1)

GET (P1.v1) 3.07 5.87 9.97 218 5

GET/PUT (P1.v2) 2.60 5.23 9.01 20 5

PUT/DEL (P1.v3) 2.94 5.51 9.03 13 5

GET/PUT/DEL (P1.v4) 2.89 5.80 9.79 34 5

GET/POST (P1.s1) 3.26 7.53 9.42 14 5

GET/DEL (P1.s2) 2.54 5.56 8.65 8 6

Appendable

Collection (P2)

GET/PUT/DEL (P2.v1) 2.41 2.16 9.87 24 5

GET/DEL (P2.v2) 1.90 0.00 9.86 23 5

GET (P2.v3) 3.06 5.58 9.98 52 5

PUT/DEL (P2.s1) 2.54 4.98 8.77 24 5

DEL (P2.s2) 3.33 6.78 9.48 23 6

Collection (P3)

GET/PUT/DEL/PATCH (P3.v1) 1.93 3.06 9.28 19 5

GET/PUT/DEL (P3.v2) 2.62 5.02 9.81 120 5

GET/DEL/PATCH (P3.v3) 2.74 5.31 9.84 12 5

GET (P3.v4) 2.78 5.17 9.98 36 6

PUT/DEL (P3.v5) 2.54 4.72 9.91 25 5

GET/DEL (P3.v6) 3.07 5.77 9.98 39 6

DEL (P3.v7) 2.59 5.34 8.50 39 5

PUT-Only (P3.s1) 2.58 5.34 8.50 12 5

GET/PUT (P3.s2) 2.32 4.41 9.16 24 5

Mutable

Collection (P4)

GET/PUT/DEL/PATCH (P4.v1) 1.22 0.00 8.08 19 4

DEL (P4.s1) 2.55 5.49 9.70 10 5

GET/DEL (P4.s2) 2.51 0.00 8.93 20 5

Table 2: Overview of distances between all the labels sequences of each primitive and its variants/smells. The smells are color-

coded. Design Smells: CreatewithoutDelete, DeletewithoutCreate, Ambiguous POST, Ambiguous PUT, Write-

only

(3) The maximum distance between a couple of sequences.

(4) The number of clusters that sequences were grouped by.

(5) The threshold defining the maximum distances between all

observations of two sets. This value was defines based on the the

distribution of the values in the distance matrix.

Table 2 shows that label sequences in different collections of frag-

ments are semantically similar. For each primitive, we will provide

detailed examples of labels associated with each variant/smell in the

next Section.

4 STRUCTURALAPI PRIMITIVES

Out of the results obtained from the fragmentation and clustering

process, we selected a set of most occurring fragments and classified

them to four primitives (Figure 14), depending on their functionality

based on their structures.

Figure 14: Overview: API Structure Collection Primitives

The context for all pattern primitives is the same: a designer needs

to use an HTTP-based API to provide access to a collection of items

which are stored on the server.

All theprimitives areused to expose in theAPI collectionsof items,

where each collection if identified by a statically-named container re-

source and its items are dynamically addressed within the container

resource.Wedistinguish eachprimitive based onwhich combination

of HTTPmethods are attached to the container resource.

R

container resource

...

HTTPmethods

{collection item address}

...

HTTPmethods

The Enumerable Collection (P1) primitive is usedwhen clients

can use the API to only discover the content of the collection by

retrieving a list of their items. The Appendable Collection (P2)

primitive makes it possible for clients to only append items into

the collection exposed by the API. The Collection (P3) primitive

combines both features of the Appendable Collection and the

Enumerable Collection, so that clients may use it to both append

new items and list existing items. Since this primitive is the most

commonly found one, we choose to name it with the simplest and

shortest name, while adding qualifiers to the names of the other

9

EuroPLoP’21, July 7–11, 2021, Graz, Austria

Figure 13: Overview: API Structural Primitives and their variants and design smells

primitives. Finally, theMutable Collection (P4) primitive extends

the Collection with the ability to perform batch operations on

the entire collection (e.g., to delete the entire content or replace the

entire content of the collection).

Within each primitive, we have collected many variants and de-

sign smells depending on which combination of HTTPmethods is

attached to the collection item resource.

In Figure 13, we provide a more detailed overview showing for

each primitive the corresponding variants and design smells. Each

variant and design smell of the same primitive are encapsulated in

a gray frame. We also show how each variant can be obtained by

changing another one with the black and gray arrows. The black

arrows trace the paths that allow moving from a structure primitive

to another by adding an operation on the items of the collection. And

the gray ones are showingwhichmethods are added to the container

resource. In the rest of this section we present overviews focused on

each structural primitive.

During our analysis, we have also detected some structural design

smells, which we highlight in Figure 13 with colored frames. We

classified the detected smells into the following categories:

Create without Delete: API structures that allow the clients

to create elements from a collection, but do not provide a possibility

to delete elements from it.

Delete without Create: API structures that allow the clients

to delete elements from a collection, but do not provide a possibility

to append elements to it.

Ambiguous POST: API structures that contain a POST opera-

tion on the items of a collection. Is this POSTmethod used to append

items to the collection?

Ambiguous PUT:API structures that provide a PUToperation

on the collection. Is this PUTmethod really used to update thewhole

collection?

Write-Only:API structures thathavenoreadoperationneither

on the whole collection nor on its items.

10

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

Primitive Variant Occurrence Size nDLS

Most distant labels sequences

Sequence 1 Sequence 2

Enumerable

Collection (P1)

GET (P1.v1) 1588 4 744 {𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠,{𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛}} {𝑐𝑖𝑑𝑎𝑑𝑒𝑠,{𝑛𝑜𝑚𝑒}}
GET/PUT (P1.v2) 99 5 43 𝑎𝑐𝑙𝑠,{𝑢𝑠𝑒𝑟 } 𝑢𝑠𝑒𝑟𝑠,{𝑖𝑑}
PUT/DEL (P1.v3) 40 4 26 {𝑠𝑜𝑛𝑔,{𝑖𝑑}} {𝑜𝑎𝑢𝑡ℎ,{𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 }}
GET/PUT/DEL (P1.v4) 176 6 71 𝑐𝑜𝑢𝑛𝑡𝑟𝑖𝑒𝑠,{𝑐𝑜𝑢𝑛𝑡𝑟𝑦} 𝑛𝑎𝑚𝑒𝑠𝑝𝑎𝑐𝑒𝑠,{𝑛𝑎𝑚𝑒𝑠𝑝𝑎𝑐𝑒}
GET/POST (P1.s1) 77 5 22 𝑚𝑠𝑔𝑠,{𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒} 𝑠𝑒𝑟𝑣𝑒𝑟𝑠,{𝑓 𝑟𝑎𝑚𝑒𝑤𝑜𝑟𝑘}
GET/DEL (P1.s2) 56 5 26 {𝑠𝑒𝑟𝑣𝑒𝑢𝑟𝑠,{𝑖𝑑}} {𝑡𝑎𝑠𝑘𝑠,{𝑡𝑎𝑠𝑘}}

Appendable

Collection (P2)

GET/PUT/DEL (P2.v1) 194 6 64 𝑖𝑡𝑒𝑚,{𝑖𝑡𝑒𝑚𝑖𝑑} 𝑏𝑢𝑐𝑘𝑒𝑡𝑙𝑖𝑠𝑡,{𝑖𝑑}
GET/DEL (P2.v2) 145 5 43 𝑣𝑖𝑚,{𝑣𝑖𝑚_𝑢𝑢𝑖𝑑} 𝑣1,{𝑎𝑙𝑏𝑢𝑚}
GET (P2.v3) 202 4 127 {𝑢𝑠𝑒𝑟2,{𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒}} {𝑑𝑖𝑠𝑒𝑎𝑠𝑒,{𝑑𝑖𝑠𝑒𝑎𝑠𝑒}}
PUT/DEL (P2.s1) 50 5 31 𝑟𝑢𝑙𝑒𝑠𝑒𝑡𝑠,{𝑟𝑢𝑙𝑒𝑠𝑒𝑡𝑁𝑎𝑚𝑒} 𝑝𝑒𝑙𝑖𝑐𝑢𝑙𝑎,{𝑝𝑒𝑙𝑖𝑐𝑢𝑙𝑎𝐼𝑑}
DEL (P2.s2) 69 4 51 {𝑡𝑜𝑘𝑒𝑛,{𝑖𝑎𝑡}} { 𝑗𝑜𝑏𝑠,{𝑖𝑑}}

Collection (P3)

GET/PUT/DEL/PATCH (P3.v1) 328 8 159 𝑙𝑒𝑛𝑠𝑒𝑠,{𝑘𝑒𝑦} 𝑚𝑜𝑣𝑖𝑒𝑠,{𝑚𝑜𝑣𝑖𝑒}
GET/PUT/DEL (P3.v2) 1123 7 574 𝑛𝑜𝑑𝑒𝑠,{𝑖𝑝} 𝑡𝑖𝑐𝑘𝑒𝑡𝑠,{𝑡𝑖𝑑}
GET/DEL/PATCH (P3.v3) 232 5 139 𝑟𝑜𝑜𝑚𝑠,{𝑘𝑒𝑦} 𝑡𝑎𝑥𝑟𝑎𝑡𝑒,{𝑧𝑖𝑝𝑐𝑜𝑑𝑒}
GET (P3.v4) 323 5 168 {𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑠,{𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟 }} {𝑡𝑥𝑠,{𝑡𝑥𝑖𝑑}}
PUT/DEL (P3.v5) 169 6 84 𝑝𝑒𝑑𝑖𝑑𝑜𝑠,{𝑛𝑢𝑚𝑒𝑟𝑜} 𝑐𝑜𝑢𝑛𝑡𝑟𝑖𝑒𝑠,{𝑐𝑜𝑑𝑒}
GET/DEL (P3.v6) 345 6 187 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠,{𝑎𝑝𝑝𝑖𝑑} 𝑐𝑎𝑖𝑥𝑎,{𝑐𝑜𝑑𝑖𝑔𝑜}
DEL (P3.v7) 201 5 87 𝑏𝑦𝑜𝑛,{𝑖𝑑} 𝑐𝑙𝑖𝑒𝑛𝑡,{𝑝𝑢𝑏𝑘𝑒𝑦}
PUT-Only (P3.s1) 78 5 38 {𝐶ℎ𝑒𝑚𝑠,{𝑐ℎ𝑒𝑚𝑖𝑑}} {𝑢𝑠𝑒𝑟𝑠,{𝑢𝑠𝑒𝑟𝑖𝑑}}
GET/PUT (P3.s2) 63 6 47 𝑚𝑎𝑛𝑎𝑔𝑒𝑟,{𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒} 𝑝𝑒𝑠𝑠𝑜𝑎𝑠,{𝑖𝑑𝑃𝑒𝑠𝑠𝑜𝑎}

Mutable

Collection (P4)

GET/PUT/DEL/PATCH (P4.v1) 74 9 52 𝑤𝑜𝑟𝑘 𝑓 𝑙𝑜𝑤𝑠,{𝑛𝑎𝑚𝑒} 𝑏𝑜𝑎𝑟𝑑𝑠,{𝑖𝑑}
DEL (P4.s1) 48 6 18 𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠,{𝑜𝑟𝑑𝑖𝑛𝑎𝑙} 𝑏𝑒𝑣𝑒𝑟𝑎𝑔𝑒𝑠,{𝑏𝑒𝑣𝑒𝑟𝑎𝑔𝑒}
GET/DEL (P4.s2) 102 7 56 𝑐𝑖𝑢𝑑𝑎𝑑,{𝑖𝑑} 𝑡ℎ𝑒𝑚𝑒𝑠,{𝑢𝑢𝑖𝑑}

Table 3: Known Uses of Selected Fragments: Number of Distinct Label Sequences (nDLS) and their Occurrences within APIs.

Design Smells: Create without Delete, Delete without Create, Ambiguous POST, Ambiguous PUT, Write-only

In Table 3, we show an overview of the selected collections of

fragments, by listing their occurrences and the number of unique

labels sequences used by the same structures in the same API or

across different ones. We also give an example of the most distinct

sequences fount among the unique labels sequences, in order to

show the extreme use contexts for each structure.

The rest of this section details each of the selected primitives

where we present for each primitive the different occurring variants.

For eachvariant of eachprimitivewefiltered themost frequent labels

used by all the variants of a primitive, and sort them alphabetically

to ease the readability of the heatmaps (Tables 5, 7, 10, and 12). In

the Figures, we show the occurrences (counting howmany times a

Labels Sequence is used for the same𝑇𝑆) of each cluster of labels in

a specific variant/smell.

We also provide a set of guidance tables, based on known uses.

The listed labels are obtained by clustering the Labels Sequences by

the container resource label, as explained in Appendix D.

The goal is to support designers who would like to introduce a

collection for a specific class of items in their API. They can take

advantage of the observations we have collected as they attempt

to look up the collection label and see if there is a non-ambiguous

mapping to a given primitive variant.

Inorder togivean ideaabout theyearlydistributionof thevariants

ages and popularity, we calculate the number of APIs in which a

specific variant appears (Tables 4, 8, 9, 11).

4.1 Enumerable Collection (P1)

Summary. Expose an enumerable set of items within their own con-

tainer resource.

Problem. How to make the collection items discoverable by clients?

Solution. Provide a unique address for each collection item. Allow

clients to read the content of each items applying the GETmethod

to the address of the item. Group together related items under the

same resource path prefix. And, allow clients to enumerate the items

within the collection by applying the GETmethod to the container

resource.

Figure 15: EnumerableCollection -OverviewofVariants and

Design Smells11

EuroPLoP’21, July 7–11, 2021, Graz, Austria

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

2
0
1
9

2
0
2
0

P1.s2 0 0 6 6 9 34

P1.s1 0 1 3 7 8 24

P1.v4 0 0 12 23 30 61

P3.v3 0 1 5 3 5 20

P2.v2 1 3 4 11 15 35

P1.v1 7 17 80 86 165 374

Table 4: Yearly distribution of the API specifications where

the Enumerable Collection (P1) variants appear

In Table 4, we can clearly see the increasing usage of the Variants

and Smells in the API collection over time. This increase can be both

because of the yearly distribution of the API specifications gathered

in our data set, and to the popularity the structural primitives gained

through the years.

• Enumerable Collection Variants

For the Enumerable Collection primitive we have identified 2

variants and 3 design smells (Figure 15).

GET (P1.v1). The read-only variant is one of the most occurring

structures, which allows clients only to enumerate the content of

the collection and to read the corresponding items. APIs use it to

publish one immutable set of related items. By setting a threshold of

5 obtained 218 Labels Sequences clusters. Which depicts the variety

of usage contexts of this variant.

According to the whole labels sequences set that we extracted,

we noticed that this read-only structure is widely used for differ-

ent domains. In Table 5, we show some of the labels clusters used

by this variant. We can notice that all the most frequent labels

in the Enumerable Collection (P1) are used by this variant, ex-

cept 3 ones: 𝑘𝑒𝑦𝑠 and and 𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 , which are used by the variant

GET/PUT/DEL (P1.v4) which allows also to update and delete the

items of the container resource, and 𝑐𝑙𝑖𝑒𝑛𝑡 , which is only used by

GET/PUT (P1.v2).

An example of API where this structure primitive is present sev-

eral times, in the Apacta API showed in Figure 9. In this API we can

see clearly the high occurrence of GET (P1.v1) with different labels,

combined with variants of other primitives.

Size: 4 — Occurrence: 1588 — Distinct Labels: 744

Figure 16: Enumerable Collection -GETVariant (P1.v1) Visu-

alization

P
1
.v
1

P
1
.v
2

P
1
.v
3

P
1
.v
4

P
1
.s
1

P
1
.s
2

accounts 6 0 0 2 0 0

api-docs 9 0 0 0 0 0

applications 8 0 0 0 0 0

artifacts 12 0 0 0 0 0

clients 0 0 0 0 17 0

concepts 8 0 0 0 0 0

config_schemas 8 0 0 0 0 0

configs 2 8 0 0 0 0

content 16 0 0 0 0 0

currencies 13 0 0 0 0 0

descriptor 10 0 0 0 0 0

devices 8 0 0 8 0 0

documents 13 0 0 0 0 0

email_history 9 0 0 0 0 0

episodes 0 0 0 10 0 0

events 29 0 0 0 0 0

files 7 0 0 6 0 0

groups 9 0 0 0 0 0

health_profile 8 0 0 0 0 0

health_profile_answer 8 0 0 0 0 0

health_question_definition 8 0 0 0 0 0

history 7 0 0 0 0 1

images 9 1 0 0 0 1

instances 1 0 0 0 0 21

items 9 0 0 0 0 0

jobs 2 10 0 0 0 1

keys 0 0 0 11 0 0

locations 24 1 0 0 0 0

manifests 29 0 0 0 0 0

metadata 8 0 0 0 0 1

namespaces 4 3 0 1 0 0

networks 3 0 0 6 0 1

operations 51 0 0 0 5 0

organizations 16 0 0 0 0 0

overview 8 0 0 0 0 0

people 4 0 0 6 0 0

policydefinitions 3 0 0 6 0 0

products 13 1 0 0 0 0

resources 33 0 0 3 0 0

roles 9 0 0 0 0 0

servers 3 0 0 0 17 0

services 16 0 0 0 0 0

shows 5 0 4 6 0 0

tags 8 0 3 0 0 0

tasks 5 0 0 2 0 5

types 26 0 0 0 0 0

users 29 1 4 11 1 1

versions 9 0 0 0 0 1

views 16 0 0 0 0 0

vuln 16 0 0 0 0 0

Table 5: Enumerable Collection (P1) – Labels found in

each variant/smell

GET/PUT (P1.v2). This variant allows clients to use the GET and

PUT methods on the collection items. This makes it possible to

read and update the content of individual collection items. This

API structure also appears in Apacta API (Figure 9). Figure 43, is

a use case example of this API structure. The GET operation in

the resource handled by the path /users/id/topics allows the

client to get all the topics of a specific user. The get operation in

the path /users/{id}/topics/{topic_id} has as goal to verify

if a user is following a specific topic. The response is an object of

boolean type. In this case, the PUT operation is for interpolating the

12

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

FOLLOW / UNFOLLOW relationship between the user {id} and the

topic {topic_id}.

Size: 5 — Occurrence:99 — Distinct Labels: 43

Figure 17: Enumerable Collection -GET/PUTVariant (P1.v2)

PUT/DEL (P1.v3). The particularity of this variant is that it allows
to both update and delete items, however, it does not allow the client

to create new items in the collection by using the container resource.

Instead, it still allows them to do so by invoking the PUT method

directly on the items to be created. In this case, clients themselves

should provide the identifiers for the items to be added to the collec-

tion.

Size: 5 — Occurrence: 40 — Distinct Labels: 26

Figure 18: Enumerable Collection - PUT/DELVariant (P1.v3)

This API structure appears one in the TVmaze user API showed

in Figure 42.Where it is used for reading the collection of shows, and

deleting or updating each. Another API example where this struc-

ture appears in Invotra API (Figure 48). In this case, adding a new

user to the users’ collection is possible due to the POST operation of

the path users. However, it seems that the client is not allowed to

add new user memberships to a specific team.While, according to

the descriptions of the operations, it is possible to remove a user’s

membership of the team or update information about his teammem-

bership. Then, how can a team have newmembers? In this case, the

user object schema is having a teams property of array type. Thus,
adding a newmember to a team is performed by means of the PUT

operation provided in the path: /users/{userId}.

GET/PUT/DEL (P1.v4). The main characteristic of this structure

is that it in addition to the GET and PUTmethods it also exposes a

DELETEmethod on the collection items. This way, clients can not

only read andwrite the associated content but can also remove items

from the collection.

Size: 6 — Occurrence: 176 — Distinct Labels: 71

Figure 19: Enumerable Collection - GET/PUT/DEL Vari-

ant (P1.v4)

While in general, it can be useful to allow clients to remove items

from a collection, it is not clear whether an API should support

this for collections whose content can only be enumerated without

providing themeans for the service to mint identifiers for new items.

Instead, new items can only be added by clients as long as they

provide the new item’s identifier.

While this can lead to crashes when multiple clients attempt

to invoke the PUT operation on the same item, we have observed

different semantics for the PUT and DELETEmethods. For example,

some APIs use the DELETE method for something different: task

cancellation. In this case, we assume that the tasks being performed

within the server can be monitored by clients and when necessary

can be interrupted.

For a better understanding, we have extracted the content of the

description field of the DELETEmethod.

Looking at the descriptions of the delete method extracted from

the OpenAPI documents in Table 16 (Appendix B), it is clearly under-

standable that the DELETE operation is not always meant for clients

to delete an item from the collection.

More in detail, in the description D-40, the DELETE method is

allowing the client to delete a person from the list of followed people,

but no append operation is provided. An example of an API where

this fragment appears is in Figure 42. In this API this example, we

look at the fragmentwith labels sequence 𝑆 =𝑝𝑒𝑜𝑝𝑙𝑒,{𝑝𝑜𝑒𝑝𝑙𝑒_𝑖𝑑}, in
whichwe cannotice that the following operation is done through the

PUTmethod. In this case,when followingaperson, thisnewfollowed

person is not appended to a collection of followedpeople, but instead,

the followed person is updated through the PUT operation with the

information about a new follower.

Path segment Method Description

𝑝𝑒𝑜𝑝𝑙𝑒 GET List the followed people

{𝑝𝑒𝑜𝑝𝑙𝑒_𝑖𝑑}
GET Check if a person is followed

DELETE Unfollow a person

PUT Follow a person

Table 6: Methods description of a fragment of Enumerable

Collection - GET/PUT/DEL Variant (P1.v4), extracted from

the OpenAPI description of TVmaze user API

• Enumerable Collection Design Smells

13

EuroPLoP’21, July 7–11, 2021, Graz, Austria

GET/POST (P1.s1). Ambiguous POST As opposed to updating

the content of individual items of the previous variants, in this vari-

ant, the API makes it possible to fetch the current state of each item

with GET and invoke some arbitrary operation on each of themwith

POST.

Size: 5 — Occurrence:77 — Distinct Labels: 22

Figure 20: Enumerable Collection - GET/POST Design

Smell (P1.s1)

Coming back to the OpenAPI descriptions of the APIs where

this variant of fragments appears, we extracted the content of the

summary and description fields for the POST method, which we list

in Table 15 (Appendix B). Based on the descriptions, we can detect

two main use cases for the POSTmethods on the collection items:

(1) Appending an item to the collection: in this case placing the

POST operation over the collection items can be seen as a common

mistake.

(2) Updating an attribute of an existing item: in this case the POST

is mistakenly used to perform the role of the PUTmethod.

GET/DEL (P1.s2). Delete without Create

This smell provides access to a collectionwhose items can be read

and deleted, without offering clients the possibility to append new

items.

This smell only appears with 26 distinct labels. In Figure 5, we

can see that it appears 21 times out of 56 with labels represented

by the label 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 . This same label appears only once with the

GET (P1.v1)variant.Other labels found inconjunctionwith this smell

(e.g., tasks, jobs) would indicate uses for providing access to server-

side resources which can only bemonitored and eventually removed

by clients, which do not have any control over their lifecycle.

Size: 5 — Occurrence: 56 — Distinct Labels: 26

Figure 21: Enumerable Collection - GET/DEL Design

Smell (P1.s2)

4.2 Appendable Collection (P2)

Summary. Append new items by posting them in the container re-

source

Problem. How to offer clients the ability to add new items into the

collection?

Solution. Allow clients to use the POST method on the container

resource to append new items into the collection. The address of the

newly created itemsmust be returned to the clients, since this pattern

does not feature the ability for clients to enumerate the content of

the collection.

P
2
.v
1

P
2
.v
2

P
2
.v
3

P
2
.s
2

P
2
.s
1

account 1 0 6 0 0

annotations 3 0 0 0 0

annotationsets 3 0 0 0 0

assets 0 0 0 3 0

batch 0 0 2 0 0

bookings 0 1 0 1 0

buy 0 0 2 0 0

campaigns 0 2 0 0 0

cart 0 1 2 0 0

categorias 0 0 0 0 4

category 1 0 0 0 1

client 1 0 1 0 0

cluster 0 2 0 0 0

collections 0 0 3 0 0

comment 0 1 0 1 5

connections 0 0 2 0 0

courses 1 4 0 0 0

datapointers 3 0 0 0 0

deployments 0 1 11 0 0

disease 0 0 5 0 0

distributions 2 0 0 0 0

documents 0 2 0 0 0

employee 0 1 1 0 1

entries 1 0 2 0 0

files 0 1 6 0 0

form_fields 0 0 6 0 0

hub 0 2 0 1 0

images 0 0 11 1 0

individuals 3 0 0 0 0

item 1 1 3 0 0

jobs 0 0 1 2 0

labels 0 0 1 5 0

media 0 4 1 0 0

messages 2 1 9 0 0

objectstores 0 0 0 0 8

order 4 78 1 1 1

policy_keys 0 0 3 0 0

post 0 0 2 1 1

productos 0 0 0 0 4

products 2 0 2 0 0

provider 2 0 0 0 1

read 0 0 5 0 0

register 11 0 0 0 0

student 1 1 1 0 0

subscriptions 1 0 0 2 0

target 0 0 5 0 0

task 1 0 1 0 1

todo 1 12 1 0 0

token 0 0 1 11 0

user 114 5 11 3 7

wall_comments 0 0 6 0 0

Table7:AppendableCollection (P2)–Labelsfoundineach

variant/smell

14

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

Figure 22: Appendable Collection Overview

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

2
0
1
9

2
0
2
0

P2.s1 0 0 0 4 12 25

P2.s2 2 2 3 4 8 38

P2.v3 1 3 13 20 34 104

P2.v2 5 10 14 16 25 68

P2.v1 4 9 19 25 53 63

Table 8: Yearly distribution of the API specifications where

the Appendable Collection (P2) variants and smells ap-

pear

• Appendable Collection Variants

The common point between the variants of this primitive is that

theyall only allow the client to appendonacollection, and toperform

different operations on the items. Starting from the variant that

allows all ofGET/PUT/DELoperations, until the one that only allows

reading the items. For this primitive, we have detected a design smell,

where the client is not allowed toperformany readoperation, neither

of the collection nor on its items.

GET/PUT/DEL (P2.v1). This variant allows clients full control
over the items they have appended to the collection, as they can read,

update and delete them.

Size: 6 — Occurrence: 194 — Distinct Labels: 64

Figure 23: Appendable Collection - GET/PUT/DEL Vari-

ant (P2.v1)

For understanding the reason for the absence of a read operation

on the collection, we extracted natural language descriptions of the

GET operation.Wewant to verify whether the designers mistakenly

considered that the GET operation on the item would serve also for

listing all the content of the collection. In Table 19, we list some of

the summaries and descriptions associated with the GET method.

We can see from the descriptions that the GET operation is indeed

used to retrieve specific elements from the collection.

Figure 45 shows and an example of use of this variant, where it is

combined with theGET/DEL (P2.v2) variant. In this case, the PUT

operation is used to update a sign in record.

GET/DEL (P2.v2). This variant only allows to read or delete indi-
vidual collection items. It occurred 145 times, however with only 43

distinct Labels Sequences.

A concrete usage example of this primitive is in Passman API

(visualized in Figure 46), an open-source developersAPI for Passman

extensions. In the case of this example, theGET/DEL (P2.v2) variant

is used in order to allow uploading and attaching a file to an item

by means of the POST operation in the /file path. The client is

also allowed to delete or get the content of a specific file, using,

respectively the DELETE and GET operations allowed in the path

/file/{file_id}. Another example is in Figure 45, where it is used

beside the GET/PUT/DEL (P2.v1) variant, allowing to to create a

teammember (user) record, to retrieve the information associated

with a user’s account, and finally to delete a team member’s user

record.

Size: 5 — Occurrence: 145 — Distinct Labels: 43

Figure 24: Appendable Collection - GET/DEL Variant (P2.v2)

GET (P2.v3). This variant only allows the client to add elements to

the collection, and then read each one, but it does not provide the

ability to edit or remove items. Collections featuring this primitive

contain resources which are garbage collected on the server-side,

such as jobs, queries, or sessions. Another example is the append-

only shopping cart in which clients can only add items without ever

removing them.

Size: 4 — Occurrence:202 — Distinct Labels: 127

Figure 25: Appendable Collection - GET Variant (P2.v3)

• Appendable Collection Design Smells

15

EuroPLoP’21, July 7–11, 2021, Graz, Austria

PUT/DEL (P2.s1). Write-Only

Instead of a GET operation, this variant introduces a PUT. How-

ever, itdoesnotoccuras frequentlyas thevariantsGET/DEL (P2.v2)and

GET/PUT/DEL (P2.v1).

We have analyzed the 50 occurrences to attempt to determine

how such a write-only API fragment would work since it appears it

is only possible to append new items, update or delete them. Indeed,

no occurrence supports the ability to enumerate the content of the

collection, nor it allows clients to read from its items.

Size: 5 — Occurrence:50 — Distinct Labels: 31

Figure 26: Appendable Collection - PUT/DEL Design

Smell (P2.s1)

DEL (P2.s2). Write-Only

Same as PUT/DEL (P2.s1), this variant does not provide the client

the possibility of performing GET operations. Neither on the con-

tainers nor on the items. It only allows to append new items to the

collection and delete them.

Such unreadable, write-only collection can still be useful, for

example, tomanage asynchronous jobs, or subscriptions ormessages

submitted into the API which can be only canceled from the clients.

Since the collection cannot be enumerated, this works only if the

address of the newly created items is returned to the client who

created it using POST.

Nevertheless, we tag this variant as a smell, because of the strong

limitations imposed by offering a write-only collection.

Size: 4 — Occurrence:69 — Distinct Labels: 51

Figure 27: Appendable Collection - DEL Variant (P2.s2)

4.3 Collection (P3)

Also known as. Enumerable-Appendable Collection

Summary. Use the container resource to enumerate its content and

add new items.

Problem. How to make the collection items discoverable by clients?

How to let clients add items to the collection?

Solution. Group together related items under the same prefix. Allow

clients to enumerate the items within the collection by applying the

GET method to the container resource. Clients can use the POST

method on the same container resource to add new items.

• Collection Variants

We present different variants featuring different method combi-

nations on the collection item, starting from the one having four

methods, all the way to fragments with a single method attached to

the collection item.

In this primitive, we have detected two Design Smells (Figure 28),

both are related to the Create without Delete smell.

Even the simplest variants with only one operation on the item

to delete or update themwould appear to lack the ability to directly

reading individual collection items.While this is the case, as opposed

to the previously discussed Appendable Collection smells, clients

can still fetch the content of the entire collection using the GET

operation provided by the container resource and then extract the

values for individual items from the result.

Figure 28: Collection – Overview of Variants

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

2
0
1
9

2
0
2
0

P3.s2 0 1 1 11 6 30

P3.s1 0 1 6 11 14 17

P3.v7 2 10 7 16 28 84

P3.v6 1 3 33 43 40 134

P3.v5 1 0 12 23 38 76

P3.v4 1 17 33 36 51 112

P3.v3 0 4 10 15 38 75

P3.v2 6 89 53 91 157 287

P3.v1 0 1 8 6 18 101

Table 9: Yearly distribution of the API specifications where

theCollection (P3) variants appear

16

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

P
3
.v
1

P
3
.v
2

P
3
.v
3

P
3
.v
4

P
3
.v
5

P
3
.v
6

P
3
.v
7

P
3
.s
1

P
3
.s
2

accounts 0 6 1 2 1 0 2 0 6

actions 0 8 3 0 0 0 0 0 0

apikeys 0 8 0 0 0 1 2 0 0

applications 2 6 0 0 0 2 0 7 0

articles 0 31 1 0 2 2 0 0 0

audit_trails 61 0 0 0 0 0 0 0 0

authorizedcertificates 0 0 13 0 0 0 0 0 0

bookings 0 3 1 0 2 0 6 0 0

books 0 9 1 0 0 2 0 0 0

categories 1 8 1 0 0 2 0 1 0

change_logs 61 0 0 0 0 0 0 0 0

cities 0 4 0 0 6 0 0 0 0

client 0 16 1 2 1 1 1 0 1

clusters 1 2 12 0 0 3 0 7 0

collaborators 0 0 0 0 0 10 0 0 0

comments 0 8 1 1 1 3 18 0 2

compositetypes 18 0 0 0 0 0 0 0 0

configs 0 2 0 0 0 0 0 0 10

contacts 0 14 0 0 0 0 0 0 1

credentials 0 0 0 0 1 0 16 0 0

domainmappings 0 0 13 0 0 0 0 0 0

events 1 16 1 0 0 1 1 0 6

example_entities 3 11 0 0 0 0 0 0 0

group 0 9 0 1 0 1 0 0 10

images 1 1 0 0 0 14 0 0 2

ingressrules 0 0 13 0 0 0 0 0 0

invoices 2 9 0 0 0 1 0 0 1

item 1 9 2 1 1 1 0 0 0

members 0 5 0 0 0 4 6 0 1

messages 0 2 4 0 0 5 4 0 6

networks 1 0 0 0 0 9 0 0 0

node 0 3 2 0 1 3 0 0 0

note 0 8 2 0 0 0 0 0 0

notifications 0 6 0 1 1 0 0 0 1

order 0 11 1 2 1 4 2 2 8

patient_health_metric 0 0 0 0 0 0 0 0 9

payments 1 5 3 0 0 0 0 0 2

pets 0 1 1 0 0 4 0 0 12

policies 0 24 1 0 0 0 0 0 0

posts 0 12 1 1 0 3 0 0 2

products 3 23 4 0 1 1 0 1 1

projects 0 24 3 1 1 8 7 8 2

reward 0 0 0 0 0 0 0 0 10

reward_earning 0 0 0 0 0 0 0 0 9

roles 1 13 2 2 1 3 0 1 3

rollouts 0 0 0 0 0 0 0 0 10

rules 0 4 1 0 8 8 1 0 8

runs 0 1 2 0 0 0 6 0 0

service-profiles 0 0 0 0 0 6 0 6 0

services 1 10 0 0 0 2 1 0 0

sessions 0 0 4 0 0 7 0 0 2

subscriptions 0 9 1 0 0 8 0 0 1

tags 1 4 3 0 26 0 12 2 1

tasks 2 3 4 1 1 2 0 0 5

tracks 0 8 0 0 1 0 1 0 1

types 8 1 1 0 1 1 0 1 1

users 4 108 10 11 31 19 7 3 30

volumes 0 0 0 0 8 7 0 0 0

Table 10: Collection (P3) – Labels found in each variant/s-

mell

GET/PUT/DEL/PATCH(P3.v1). Thefirstvariant in this collection
is the one providing all of the GET, PATCH, PUT, and DELETE

operations.

Although this variant includes most HTTP verbs and thus is the

most expressive in terms of which operations clients can perform

on collection items, it is far from being the most frequently used

in practice. An example of use of this variant is in ID Vault API (

Figure 47), where it appears 6 times.

Size: 8 — Occurrence: 328 — Distinct Labels: 159

Figure29:Collection-GET/PUT/DEL/PATCHVariant (P3.v1)

GET/PUT/DEL (P3.v2). Fragments of this variant combine both

the POST andGET operations on the collection.Withmore than one

thousand occurrences, this variant (Figure 30) is the most occurring

we have mined, not only within the variants of this collection but

also among all the fragments having more than 3 distinct methods

in their leaves. Several instances of this primitive can be found with

different labels in the Apacta API (Figure 9).

Size: 7 — Occurrence: 1123 — Distinct Labels: 574

Figure 30: Collection - GET/PUT/DEL Variant (P3.v2)

GET/DEL/PATCH (P3.v3). This variant uses a PATCH operation

insteadof thePUTas invariantGET/PUT/DEL.PassmanAPI(Figure46)

is an example of API where this variant appears.

Size: 7 — Occurrence: 233 — Distinct Labels: 139

Figure 31: Collection - GET/DEL/PATCHVariant (P3.v3)

17

EuroPLoP’21, July 7–11, 2021, Graz, Austria

GET (P3.v4). This is the simplest variant of this collection. The

client cannot perform any operation on the collection items, except

to read their content.Wehave found examples of account collections,

whose content cannot be modified by clients. Likewise, this is a com-

mon structure for long-running operations [15], which are started

with a POST request used to transfer the input of the computation,

while the status of the ongoing job and its result can be retrieved

from the corresponding item.

Size: 5 — Occurrence: 323 — Distinct Labels: 168

Figure 32: Collection - GET Variant (P3.v4)

PUT/DEL (P3.v5). This variant makes the client unable to individ-

ually read each item of the collection. However, it is possible to list

them all, insert new items, delete or update them. Examples of such

collectionswith unreadable itemswould contain simple itemswhose

address indicating their identity and existence is sufficient to control

their lifecycle (e.g., using the PUT operation to control the video

or audio track playback). Likewise, to set the quantity of individual

order line items or remove them from the order altogether one does

not need to be able to retrieve any information about them. Also

because such information can be fetched when enumerating the

content of the entire collection.

Size: 6 — Occurrence: 169 — Distinct Labels: 84

Figure 33: Collection - PUT/DEL Variant (P3.v5)

GET/DEL (P3.v6). This variant only allows to read or delete indi-
vidual collection items. This is one of the most frequently found

variants, with a collection storing a wide variety of items. For ex-

ample, once blog posts, comments, or questions are published, they

cannot be updated but just removed. Likewise, it appears there is no

need to update the ingredients of a recipe.

Size: 5 — Occurrence: 345 — Distinct Labels: 187

Figure 34: Collection - GET/DEL Variant (P3.v6)

DEL (P3.v7). This is a simpler variant, where it is possible to the

client to list the elements of the collection and insert elements into

it. Once the items have been added, it is only possible to remove

them. In addition to bookings, this variant has been frequently used

for collections of blog post comments, product reviews, or favorite

bookmarks, whose content can be shownwhen retrieving the entire

collection, but for moderation purposes, it may be necessary to be

able to remove individual items.

Size: 5 — Occurrence: 201 — Distinct Labels: 87

Figure 35: Collection - DEL Variant (P3.v7)

• Collection Smells

PUT-Only (P3.s1). Create without Delete

This smell provides only one operation to update individual items

of the collection, but lacks the affordance for deleting individual

items. This is used with collections of items whose state should be

controlled by clients, for example to configure or simply switch on

or off devices, gateways or services through a management API.

Size: 5 — Occurrence: 78 — Distinct Labels: 48

Figure 36: Collection - PUT-Only Design Smell (P3.s1)

18

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

GET/PUT (P3.s2). Create without Delete

Also, this smell does not allow clients to delete an item from the

collection, however it allows them to insert items, read them and

update them.

It has been used to design APIs which provide access to collec-

tions of users, user accounts, customers, employees, or withdrawals.

These are resources which once they are created may need to be pre-

served forever for legal reasons, due to data preservation or retention

regulations.

Size: 6 — Occurrence: 63 — Distinct Labels: 47

Figure 37: Collection - GET/PUTDesign Smell (P3.s2)

4.4 Mutable Collection (P4)

Summary. Replace the content of the collection (PUT) or clear the
entire content of the collection (DELETE)

Problem. How to let clients bring thewhole content of the collection

to a known state?

Solution. Add DELETE or PUTmethod to the container resource.

Figure 38:Mutable Collection (P4) Overview

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

2
0
1
9

2
0
2
0

P4.s2 0 2 5 8 17 29

P4.s1 0 1 0 4 2 17

P4.v1 0 1 2 1 5 29

Table 11: Yearly distribution of the API specifications where

theMutable Collection (P4) variants and smells appear

• Mutable Collection Variants

The twovariantswithPUTdonot really seem tobeused to replace

the content of the entire collection (only a few exceptions). Instead,

the PUTmethod is used to edit or update individual items, addressed

by a query parameter that identifies the item to be replaced. (Query

parameters are not shown in the figure).

P
2
.v
1

P
2
.v
2

P
2
.v
3

P
2
.s
2

P
2
.s
1

account 1 0 6 0 0

annotations 3 0 0 0 0

annotationsets 3 0 0 0 0

assets 0 0 0 3 0

bookings 0 1 0 1 0

buy 0 0 2 0 0

cart 0 1 2 0 0

categorias 0 0 0 0 4

category 1 0 0 0 1

collections 0 0 3 0 0

comment 0 1 0 1 5

courses 1 4 0 0 0

datapointers 3 0 0 0 0

deployments 0 1 11 0 0

disease 0 0 5 0 0

employee 0 1 1 0 1

entries 1 0 2 0 0

experiments 0 0 2 0 0

files 0 1 6 0 0

form_fields 0 0 6 0 0

governance 0 0 2 0 0

hub 0 2 0 1 0

images 0 0 11 1 0

individuals 3 0 0 0 0

inventory 0 0 2 0 0

item 1 1 3 0 0

jobs 0 0 1 2 0

labels 0 0 1 5 0

media 0 4 1 0 0

messages 2 1 9 0 0

objectstores 0 0 0 0 8

order 4 78 1 1 1

policy_keys 0 0 3 0 0

post 0 0 2 1 1

productos 0 0 0 0 4

products 2 0 2 0 0

provider 2 0 0 0 1

read 0 0 5 0 0

register 11 0 0 0 0

student 1 1 1 0 0

subscriptions 1 0 0 2 0

target 0 0 5 0 0

task 1 0 1 0 1

todo 1 12 1 0 0

token 0 0 1 11 0

traces 0 0 4 0 0

update-requests 0 3 0 0 0

user 114 5 11 3 7

wall_comments 0 0 6 0 0

Table 12:Mutable Collection (P4) – Labels found in each

variant/smell

GET/PUT/DEL/PATCH(P4.v1). Thisvariantprovidesonlyadelete
operation on the collection. This variant occurs 74 times. It provides

besides the DELETE and GET operations on the collection items,

also PUT and PATCH operations. The second label for all the labels

sequences is {𝑛𝑎𝑚𝑒} except one sequence 𝑆 = {𝑏𝑜𝑎𝑟𝑑𝑠 , {𝑖𝑑}}
19

EuroPLoP’21, July 7–11, 2021, Graz, Austria

For verifying the purpose of use of the DELETEmethod over the

collection, we have extracted the descriptions associated with that

method in theOpenAPI specificationof theAPIswhere that fragment

occurs (Table 17). Indeed, in this case, the DELETE operation is used

to delete to the whole collection. This "DELETE all" variant could be

promoted to a separate primitive named ”Erasable Collection”.

Size: 9 — Occurrence: 74 — Distinct Labels: 52

Figure 39: Mutable Collection - GET/PUT/DEL/PATCH Vari-

ant (P4.v1)

• Mutable Collection Design Smells

DEL (P4.s1). Ambiguous PUT

This structure provides both read and append operations over the

collection, in addition to a PUT operation. While the only operation

that the client can perform over the collection items is a delete. For

verifying the real purpose behind having a PUT operation over

the collection resource we extracted in Table 20 the descriptions

associated with this method in the OpenAPI documents. The text

shows that, in reality, in almost all cases, the PUT is used to update

an item of the collection. The address of the item is provided as a

request parameter, as opposed to using the resource path as with

most other primitives. Only in a few cases, it is actually used as one

would expect, for updating the whole collection with a single batch

operation to replace its content (Example D-13).

Size: 6 — Occurrence: 48 — Distinct Labels: 18

Figure 40: Mutable Collection - DEL Design Smell (P4.s1)

GET/DEL (P4.s2). Ambiguous PUT

The fragments of this variant combine all of GET, PUT and POST

operations on the collection. An example of the most occurring

fragment in this variant is in Figure 41. This fragment occurs 102

times with 56 distinct Label Sequences.

Also, in this variant the PUTmethod on the container resource

is used mostly to update the content of individual items (Table 18),

thus leading to some ambiguity as it should have been associated

with the collection item resource.

Figure 44 show an example of APIwhere this variant is used twice.

Size: 7 — Occurrence: 102 — Distinct Labels: 56

Figure41:MutableCollection-GET/DELDesignSmell (P4.s2)

5 FROMPRIMITIVES TO LARGER

STRUCTURES ANDAPI RESPONSIBILITY

PATTERNS

This section gives two examples of how the mined primitives pre-

sented in theprevious sectionscanbeusedduringAPIdesignandAPI

reviews. First,wediscuss primitive composition.Next,webrieflyout-

line how the structural primitives from this paper relate to previous

work on API design patterns and interface description languages.

5.1 Composing Primitives

The basic collection primitives can be composed to form larger API

structures in two ways:

(1) Unrelated collections can be added to the API by adding the

corresponding container resource on the same level as shown in the

fragments of Table 13;

(2) Relatedcollectionscanbenested insideoneanother, byadding

a sub-container resource within each item of the main collection, as

shown in the fragment of Table 14.

In general, we found that both side-by-side composition and nest-

ing can be used together in the same API. The Invostra API shown

in Figure 48 is an example of an API entirely composed of two primi-

tives.

5.2 Relation to Architectural Patterns and

Interface Description Languages (IDLs)

In the patterns community, technology- and platform-neutral inter-

face representation and service design patterns have beenmined and

published. The Microservice API Patterns (MAP) language [29], for

instance, focuses on the design of remote APIs — including but not

limited to service-oriented architectures. MAP has two categories

that complement the API primitives and fragments carved out in

this paper, structure [30] (of request and response message represen-

tations, not HTTP resource tree structures as covered in this paper)

and architectural responsibility [26].
The HTTPmethods found in the resource trees in Sections 2, 3,

and 4 map to the MAP language as this:

• HTTP GETmethods are "Retrieval Operations"[26].

• HTTP POSTs can be "State Creation Operations" but also

"State Transition Operations" (partial update variant) [26].

• HTTP PUTs are "State Transition Operations" (full replace-

ment variant).

• PATCHes correspond to "StateTransitionOperations" (partial

update variant).

• DELETEmethods are represented as variants of State Transi-

tion Operations.

20

https://microservice-api-patterns.org/patterns/responsibility/operationResponsibilities/RetrievalOperation
https://microservice-api-patterns.org/patterns/responsibility/operationResponsibilities/StateCreationOperation
https://microservice-api-patterns.org/patterns/responsibility/operationResponsibilities/StateTransitionOperation

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

Table 13: API Fragments Composing the Read-only Collection and the Collection primitives side by side

2015 2016 2017 2018 2019 2020

0

5

10

0 0

3

2

1

8

A
P
I
s
w
i
t
h
f
r
a
g
m
e
n
t

Size: 12 — Occurrence: 33 — Distinct Labels: 12

Label clusters of sample known uses:

(O: Occurrence, C:Cohesion)

Cluster 𝐿𝑎𝑏𝑒𝑙1 𝐿𝑎𝑏𝑒𝑙2 𝐿𝑎𝑏𝑒𝑙3 𝐿𝑎𝑏𝑒𝑙4 O C

C1 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑛𝑡𝑠 {𝑖𝑑} 𝑒𝑣𝑒𝑛𝑡𝑠 {𝑖𝑑} 2 8.33

𝑢𝑠𝑒𝑟𝑠 {𝑖𝑑} 𝑡𝑒𝑎𝑚𝑠 {𝑖𝑑} 1 8.16

𝑢𝑠𝑒𝑟𝑠 {𝑖𝑑} 𝑡𝑎𝑠𝑘𝑠 {𝑖𝑑} 1 8.33

𝑔𝑠𝑡 {𝑔𝑠𝑡_𝑖𝑑} 𝑏𝑎𝑠𝑒_𝑠𝑙𝑖𝑐𝑒_𝑑𝑒𝑠 {𝑖𝑑} 1 2.47

𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛−𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠 {𝑖𝑑} 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 {𝑖𝑑} 1 4.08

C2 𝑐𝑜𝑛𝑡𝑎𝑐𝑡_𝑡𝑦𝑝𝑒𝑠 {𝑐𝑜𝑛𝑡𝑎𝑐𝑡_𝑡𝑦𝑝𝑒_𝑖𝑑} 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠 {𝑐𝑜𝑛𝑡𝑎𝑐𝑡_𝑖𝑑} 6 8.04

𝑓 𝑜𝑟𝑚_𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠 {𝑓 𝑜𝑟𝑚_𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒_𝑖𝑑} 𝑓 𝑜𝑟𝑚𝑠 {𝑓 𝑜𝑟𝑚_𝑖𝑑} 6 8.16

𝑡𝑖𝑚𝑒_𝑒𝑛𝑡𝑟𝑦_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 {𝑡𝑖𝑚𝑒_𝑒𝑛𝑡𝑟𝑦_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑖𝑑} 𝑡𝑖𝑚𝑒_𝑒𝑛𝑡𝑟𝑦_𝑡𝑦𝑝𝑒𝑠 {𝑡𝑖𝑚𝑒_𝑒𝑛𝑡𝑟𝑦_𝑡𝑦𝑝𝑒_𝑖𝑑} 6 8.04

𝑡𝑖𝑚𝑒_𝑒𝑛𝑡𝑟𝑦_𝑣𝑎𝑙𝑢𝑒_𝑡𝑦𝑝𝑒𝑠 {𝑡𝑖𝑚𝑒_𝑒𝑛𝑡𝑟𝑦_𝑣𝑎𝑙𝑢𝑒_𝑡𝑦𝑝𝑒_𝑖𝑑} 𝑢𝑠𝑒𝑟𝑠 {𝑢𝑠𝑒𝑟_𝑖𝑑} 6 8.04

C3 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 {𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛} 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 {𝑓 𝑢𝑛𝑐_𝑖𝑑} 1 2.66

C4 𝑐𝑜𝑜𝑘𝑖𝑛𝑔𝑠 {𝑢𝑢𝑖𝑑} 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑠 {𝑢𝑢𝑖𝑑} 1 8.04

Table 14: API Fragments Composing the Read-only Collection primitives with nesting

2015 2016 2017 2018 2019 2020

0

20

40

60

80

0 0 0 2 3

25

A
P
I
s
w
i
t
h
f
r
a
g
m
e
n
t

Size: 8 — Occurrence: 32 — Distinct Labels: 13

Label clusters of sample known uses:

(O: Occurrence, C:Cohesion)

Cluster 𝐿𝑎𝑏𝑒𝑙1 𝐿𝑎𝑏𝑒𝑙2 𝐿𝑎𝑏𝑒𝑙3 𝐿𝑎𝑏𝑒𝑙4 O C

C1 𝑐𝑜𝑚𝑝𝑎𝑛𝑖𝑒𝑠 {𝑐𝑜𝑚𝑝𝑎𝑛𝑦_𝑖𝑑} 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠 {𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑠𝑒𝑡𝑡𝑖𝑛𝑔_𝑖𝑑} 5 6.66

𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦−𝑐𝑙𝑎𝑠𝑠𝑒𝑠 {𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦𝐶𝑙𝑎𝑠𝑠𝐼𝐷} 𝑙𝑒𝑣𝑒𝑙𝑠 {𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦𝐿𝑒𝑣𝑒𝑙𝐼𝐷} 1 7.44

C2 𝐵𝑅𝐾_𝑤𝑎𝑎𝑟𝑑𝑒𝑙𝑖 𝑗𝑠𝑡𝑒𝑛 {𝑤𝑎𝑎𝑟𝑑𝑒𝑙𝑖 𝑗𝑠𝑡𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑒} 𝑤𝑎𝑎𝑟𝑑𝑒𝑛 {𝑐𝑜𝑑𝑒} 2 4.98

𝑡𝑎𝑏𝑒𝑙𝑙𝑒𝑛 {𝑡𝑎𝑏𝑒𝑙𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑒} 𝑤𝑎𝑎𝑟𝑑𝑒𝑛 {𝑐𝑜𝑑𝑒} 2 5.57

C3 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 {𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡} 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒−𝑚𝑎𝑛𝑎𝑔𝑒𝑟𝑠 {𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒−𝑚𝑎𝑛𝑎𝑔𝑒𝑟 } 2 6.05

C4 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠 {𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝐼𝑑} ℎ𝑖𝑠𝑡𝑜𝑟𝑦 {𝑐𝑜𝑙𝑢𝑚𝑛𝑁𝑎𝑚𝑒} 1 5.65

C5 𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 {𝑒𝑛𝑡𝑖𝑡𝑦𝑁𝑎𝑚𝑒} 𝑣𝑖𝑒𝑤𝑠 {𝑣𝑖𝑒𝑤𝑁𝑎𝑚𝑒} 3 7.64

C6 𝑐𝑜𝑢𝑛𝑡𝑟𝑖𝑒𝑠 {𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝐶𝑜𝑑𝑒} 𝑠𝑢𝑏𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 {𝑠𝑢𝑏𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝐶𝑜𝑑𝑒} 1 8.05

21

EuroPLoP’21, July 7–11, 2021, Graz, Austria

The remaining operation pattern fromMAP, "Computation Func-

tion", can be mapped to HTTP GET (if its request parameters are

simple) or POST (if request parameters are complex).

The collection primitives that we derived from URI structures

in Section 4 correspond to the MAP endpoint pattern "Information

Holder" and its specializations[27]:

• "Master Data Holders" expose many GET retrievals and only

a few bulky create POSTs and update PUTs. They usually are

enumerable, and also appendable (at least for certain clients).

• "Operational Data Holders" typically are Enumerable and

Appendable Collections, often also Mutable Collections.

• "Reference Data Holders" are read-only and therefore Enu-

merable Collections.

• "Data Transfer Resources" are Mutable Collections decou-

pling multiple application clients.

• A set of related "Link Lookup Resources" forms a Collection

as well; each item in such collection is mutable and so is the

entire collection.

Microservice Domain-Specific Language (MDSL)[10] is an emerg-

ing abstract service contract language that exposes theMicroservice

API (MAP) patterns used above as decorators. As an example, let us

model the example from Section 2 in MDSL (including the data con-

tracts specifying request parameters and response representations,

as well as error reports):

API description ApactaAPI version "v1"
overview "See previous paper sections and APIs.guru"

data type CityCollection {
"data":City*,
"pagination":PaginationDetails,
"success":Metadata<bool>}

data type City {
"created":Metadata<string>,
"deleted":Metadata<string>,
"id":ID<string>,
"modified":Metadata<string>,
"name":Data<string>,
"zipCode":Data<int>}

data type PaginationDetails {
"count":Metadata<int>,
"current_page":ID<string>,
"has_next_page":Metadata<bool>,
"has_prev_page":Metadata<bool>,
"limit": Metadata<int>,
"page_count":Metadata<int>}

data type ErrorNotFound {
"data": {
"code":Data<int>,
"message":Data<string>,
"url":Link},

"success":Metadata<bool>}

endpoint type CityEndpoint

serves as REFERENCE_DATA_HOLDER and COLLECTION_RESOURCE
exposes
operation getListOfCities
with responsibility RETRIEVAL_OPERATION
expecting payload "zipCode":Data<string>?
delivering payload CityCollection
reporting error searchFailed "404": ErrorNotFound

operation getCityDetails
with responsibility RETRIEVAL_OPERATION
expecting payload "cityId":ID<string>
delivering payload City
reporting error noSuchCity "404": ErrorNotFound

In MDSL, such abstract service contract, possibly discovered via

the the stepwise fragments and primitives mining approach estab-

lished in previous sections, can be translated to not only to HTTP

but also gRPC, GraphQL schemas, and other IDLs. The translation

to an HTTP resource API is not straightforward and therefore ben-

efits from an explicit binding (defaults exist, but usually are not

sufficient a) to establish resource trees that contain parametric path

segments and b) tomap endpoints that containmore operations than

the unified verb interface of HTTP can bear):

API provider CityEndpointProvider
offers CityEndpoint
at endpoint location "http://tbc.tbc.tbc:8080"
via protocol HTTP binding
resource CityCollection at "/cities"
operation getListOfCities to GET
element "zipCode" realized as QUERY parameter

report searchFailed realized as 404 with "Not found"
resource CityDetails at "/cities/{cityId}"
operation getCityDetails to GET
element "cityId" realized as PATH parameter

report noSuchCity realized as 404 with "Not found"

The above specification snippets merely demonstrate that it is

feasible to model HTTP resource APIs in MDSL and to leverage the

primitive names from previous sections as well as MAP decorators

while doing so. A thorough introduction to MDSL can be found in

[10], and the language reference is available at https://microservice-

api-patterns.github.io/MDSL-Specification.

6 RELATEDWORK

6.1 Model Clustering

In our work, we analyze and mine a large data set of real-world

OpenAPI specifications. We extracted selected building blocks from

these specifications, focusing on the resource URI tree structures

andHTTPmethod verbs in particular.We cluster thesemodel blocks

both structurally and semantically. Hence we have the same goals as

the authors of [4], but in a different context. This paper presented an

approach for clusteringmodelsusingn-grams inorder to incorporate

the structural context of the models in this task, and also to see the

impact of using n-grams on the resulted clusters. They applied the

approach on a dataset of Ecoremetamodels collected fromAtlanMod

Metamodel Zoo using different sizes of n-grams, where they found

that the clustering accuracy does not increase monotonically along

with increasing the size of the n-grams. In our case, we involve all

22

https://microservice-api-patterns.org/patterns/responsibility/operationResponsibilities/ComputationFunction
https://microservice-api-patterns.org/patterns/responsibility/operationResponsibilities/ComputationFunction
https://microservice-api-patterns.github.io/MDSL-Specification
https://microservice-api-patterns.github.io/MDSL-Specification

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

the label sequences extracted from fragmentsmodels in the semantic

clustering task, except the names of themethod, aswe consider them

part of the structure rather than being part of the semantic context.

6.2 Structural Analysis ofWeb APIs

Many works tried to statically extract structural characteristics and

functional properties of APIs from their textual descriptions (both

informal or formal documentation). Similar to our approach, in [8],

the authors performed a structural analysis over 286 real-world

publicly available API specifications (retrieved from apis.guru). The

authors defined a set of quantitative metrics related to the resources

and the HTTP methods supported by the API and identified the

challenge of extracting recurring API fragments.

An earlier study [12] manually collected and analysed a set of 222

nonmachine-readable publicly-availableAPIs descriptions gathered

from programmableweb.com by selecting randomly APIs from each

category, hence covering 18% of the APIs listed on the website at

that time.

From it, Maleshkova. M et al. [12] extracted some metrics such

as type of Web API, input parameters, output formats, invocation

details and if the API has complementary documentation. While [8],

and [12] focused more on metrics extraction and providing static

results about the sample under study, the authors of [13] performed

an in-depth analysis in order to detect five REST design patterns and

eightanti-patterns.Todoso, theydefinedand implementeddetection

heuristics. Likewise, the authors of [19] also focused on verifying

the compliance of REST APIs with REST constraints. However, the

analysis presented in [19] was performed over a large data set of

78GB of HTTP requests corresponding to one full day of Mobile

Internet traffic, collected by Italy’s biggest Mobile Internet provider.

This work reached the conclusion that only a few of the analyzed

APIs comply with the best practices and constraints of the REST

architectural style.

[16] is another work questioning the design quality of web APIs,

focusing mainly on REST APIs for cloud computing. They defined a

catalog of 73 best practices in the design of REST APIs, in terms of

understandability and reusability, starting from a literature review.

And they applied it over a set of well-known APIs in the Cloud

Computing area, where they found that Google Cloud follows 66%

(48/73), OpenStack follows 62% (45/73), and OCCI 1.2 follows 56%

(41/73) of their best practices.

While these works focus on evaluating the quality of the design

of different Web APIs collections, our approach is one of the first

systematic and quantitative studies to recover common structural

design decisions adopted byWeb APIs creators.

More patterns for various styles of distribution have been mined

previously, includingMessagingPatterns [9],RemotingPatterns [23],

Patters of Enterprise Application Architecture [6], and Service De-

sign Patterns [5]. Many of these works discuss APIs, interface rep-

resentation, and service design in the particular field of distributed

system technologies and architectures they focus on.

7 THREATS TOVALIDITY

Basing empirical studies on resources collected for public reposi-

tories shared publicly on version control system is prone to error,

because of the fact that not all what is shared is accurate. During

our analysis, we encountered 2534 (38,28%) invalid OAS documents,

which contain errors related to the conformity to the OpenAPImeta-

model. In this work, we transformed the exact content of the OAS

models into our API tree model, which also reflects the errors that

may be encountered in the OAS document. Such errors may have

reduced the number of occurrences of some structures, as the ones

containing mistakes can’t be matched to other error-free structures.

The study performed in this work is based on a data set of OAS

documentsmined fromGitHub. To avoid having a biased data set full

of duplicates, we only inserted in the OAS DB distinct documents.

However, there can be forks that did not introduce changes to the

structure of the API, which could have inflated the values of the

occurrence and the popularity metrics of some fragments.

While not all OAS documents we found on GitHub describeWeb

APIs offered in production, including partially developed artifacts

in our analysis can still provide evidence of reuse of common API

fragments.

8 CONCLUSION

In this paper, we presented a data-centric pattern mining approach.

We applied it to find recurring primitive structures withinWeb API

descriptions.

To do so, we extracted recurring fragments from a large collection

of OpenAPI specifications gathered from open source repositories.

Reflecting the hierarchical nature of HTTP-based APIs, these frag-

ments are represented as trees. These trees are built out of resource

identifiers; they canbe traversed toobtain all paths that arepresent in

the original OpenAPI specification. The leaves of the API trees refer

to the HTTPmethods that invoke the corresponding operations.

From a population of thousands of fragments, we selected those

that a) frequently occur, b) have a relatively small size, and c) are

centered around the notion of resource collection. As shown in

Figure 14, we distinguish the following cases a) collections only offer

operations on their items or on the collection level as well, b) their

content can be enumerated, new items can be created, and/or both

enumeration and creation are supported, and c) batch removal and

update are provided.

For every primitive, we presented a selection of variants together

with the corresponding label clusters and, in somecases, descriptions

associated with the operations. A few variants can be also seen as

design smells, for instance, if they use the HTTPmethod semantics

incorrectly or inconsistently.

Our results are a collection of pattern primitives, which can be

(andhavebeen) composed tobuild largerAPI structures. For instance,

this becomes evident when connecting the syntactical patterns that

we mined here automatically with semantic architectural patterns

previously mined manually by knowledge engineers[26, 27]. We

merely gave the first examples of primitive composition in this paper,

and only outlined these connections; in our future work, we plan to

investigate these topics more thoroughly.

ACKNOWLEDGEMENTS

We are grateful for the shepherding by Stefan Sobernig and for the

constructive suggestions for improvement by the writers workshop

participants.

23

EuroPLoP’21, July 7–11, 2021, Graz, Austria

This work is partially funded by the SNSF, with the API-ACE

project nr. 184692.

APPENDICES

We attach to this paper four appendices with additional information

regarding:

• Tree visualizations of some real-world known uses of the

pattern primitives variants in Appendix A, using the notation

described in Table 1.

• API Fragments overview in Appendix C, we plot the differ-

ent correlations: Fragment size vs. Occurrences, Number of

unique label combinations vs. Occurrences and Fragment size

vs. Number of unique label combinations.

• Textual descriptions of some HTTPmethods in selected vari-

ants in Appendix B, extracted from the original specification

of the APIs where a specific variant or smell appears.

• Most frequent labels, for each primitive variants and smells

in Appendix D.

A API TREE VISUALIZATIONS

Thisappendixcontainsvisualizationof somerealworldAPIs selected

as examples for this study. They are the APIs where some variants

and smells of the primitives we have described in Section 4 can be

found with high occurrences.

A.1 TvMaze user API

In the TvMaze API
2
we can find six occurrences of Enumerable

Collection - GET/PUT/DEL Variant (P1.v4), combined with one read

operation in the path /vote/shows.

Figure 42: Tree visualisation for the TVmaze user API

(click for OpenAPI source)

2
https://static.tvmaze.com/apidoc/

A.2 Columba API

The Columba API
3
uses tree instances of the GET (P1.v1) variant

and one of theGET/PUT (P1.v2) variant.

Figure 43: Tree Visualization of Columba API

A.3 AnyPay API

AnyPay service targets parents with children doing payments. It is

an example of usage of theGET/DEL (P4.s2) variant.

Figure 44: Tree visualization of AnyPay API

3
https://github.com/columbasms/columbasms.github.io

24

http://api-ace.inf.usi.ch/openapi-to-tree/europlop-examples?api=tvmaze.json
http://api-ace.inf.usi.ch/openapi-to-tree/europlop-examples?api=tvmaze.json
http://api-ace.inf.usi.ch/openapi-to-tree/europlop-examples?api=tvmaze.json
http://api-ace.inf.usi.ch/openapi-to-tree/europlop-examples?api=columba.yaml
http://api-ace.inf.usi.ch/openapi-to-tree/europlop-examples?api=columba.yaml
http://api-ace.inf.usi.ch/openapi-to-tree/europlop-examples?api=anypay.yaml
http://api-ace.inf.usi.ch/openapi-to-tree/europlop-examples?api=anypay.yaml

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

A.4 API for the COVID-19 Tracking QRCode

Signin Server

This is an API for the COVID-19 Contact Tracing QRCode Signin

Server. It combines theGET/DEL (P2.v2) andGET/PUT/DEL (P2.v1)

variants of theAppendable Collection (P2) primitive with a set of

paths with a unique method (POST or GET).

Figure 45: Tree visualization of an API for the COVID-19

Tracking QRCode Signin Server

A.5 PassmanAPI

The Passman API
4
combines all of the GET/DEL/PATCH (P3.v3)

andGET/DEL (P2.v2).

Figure 46: Tree Visualization of PassmanDevelopers API

4
https://github.com/nextcloud/passman#api

A.6 ID Vault API

This is an API example where the Collection - GET/PUT/DEL/-

PATCHVariant (P3.v1) in appearing several times, combined with

one use of GET/PUT/DEL (P3.v2) variant.

Figure 47: Tree Visualization of ID Vault API

A.7 Invotra API

TheInvotraAPI
5
canbesimplyseeandacombinationof GET/PUT (P3.s2)

(occurs twice) and PUT/DEL (P1.v3). It is an example in which we

can see both ways of primitives composition described in Section 5.1

5
https://github.com/invotra/api

25

http://api-ace.inf.usi.ch/openapi-to-tree/europlop-examples?api=passman.yaml
http://api-ace.inf.usi.ch/openapi-to-tree/europlop-examples?api=passman.yaml

EuroPLoP’21, July 7–11, 2021, Graz, Austria

Figure 48: Invotra API Tree Visualization

B EXTRACTEDDESCRIPTIONS OFHTTP

METHODS

This appendix contains tables for some selectedmethods description,

used to verify the Design Smells discovered in our study. We detect

a design smell when the natural language descriptions associated

with the API feature are not consistent with the standard semantics

of the chosen HTTPmethod.

B.1 Enumerable Collection

Table 15: Extracted description of the POSTmethod for Enu-

merable Collection - GET/POSTDesign Smell (P1.s1)

D - 1 Generates customized software development kit (SDK) and

or tool packages used to integrate mobile web or mobile app

clients with backend AWS resources

D - 2 "Write a range of table elements"

D - 3 Alert about something

D - 4 Builds templated versions of the challenge- Uses the flag for-

mat and seed to template out a new version of the challenge

This may take a signficant amount of time-

D - 5 Create a deployment request

D - 6 Create a new user in system

D - 7 Generate token for valid user

D - 8 Perform pruning on input resource name

D - 9 Post message by username- Creates a message with the user-

name as author

D - 10 Save a new revision of a page given in HTML format

D - 11 Set automation state- Set automation state for the given

automation type

D - 12 Sets the value of a float variable

D - 13 Sets the value of a string variable

D - 14 Sets the value of an integer32 variable

D - 15 This endpoint returns the result of executing this operation

D - 16 This endpoint returns the result of executing this test

D - 17 Upload an Attachment- Upload an Attachment-

Table 16: Content of the description field of the DELETE

method of the variantGET/PUT/DEL (P1.v4)

D - 1 Close an existing position

D - 2 Delete Link-Will not delete the target object

D - 3 Delete a contact device for a user Delete a contact device for a

user

D - 4 Deletes the given device, and invalidates any access token

assoicated with it

D - 5 Delete a directory tenant under a resource group

D - 6 Delete a node- Remove the node identified by id A node can

only be deleted if it is currently offline

D - 7 Delete a node- Remove the node identified by id A node can

only be deleted if it is currently offline and does not host any

master deployments

D - 8 Delete file- Delete file uploaded to a project fromwall post or

form

D - 9 Delete maintenance configuration

D - 10 Delete mock definition

D - 11 Delete snapshot repository- Deletes a snapshot repository

configuration by name

D - 12 Delete the scheduled override assignment- Delete the sched-

uled override assignment

D - 13 Deletes a policy definition at management group level

D - 14 Deletes a policy definition

D - 15 Deletes a product package

D - 16 Deletes a server communication link

D - 17 Deletes a user from the list of registered users

D - 18 Deletes an acquired plan

D - 19 Deletes an existing server Active Directory Administrator

D - 20 Deletes single user

D - 21 Deletes specified file container- Delete an existing file

container-

D - 22 Deletes specified quota- Delete an existing quota

D - 23 Deletes the MariaDB Server key with the given name

D - 24 Deletes the MySQL Server key with the given name

D - 25 Deletes the PostgreSQL Server key with the given name

D - 26 Deletes the log profile-

D - 27 Deletes the specified Azure key vault-

D - 28 Deletes the specified application security group

D - 29 Deletes the specified public IP address-

D - 30 Remove a CIDRMap

D - 31 Remove a Geographic Map

D - 32 Remove a Property

D - 33 Remove a Resource

D - 34 Remove a single task

D - 35 Remove an episode vote

D - 36 The operation to delete a container service

D - 37 Unfollow a network

D - 38 Unfollow a person

D - 39 Unfollow a show

D - 40 Unfollow a webchannel

D - 41 Unmark an episode

D - 42 delete anAd- youmust own theAd and be logged in to delete

an AdDeleting an Adwill also erase al pictures uploded to the

API linked to it

26

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

B.2 Mutable Collection (P4)

Table 17: Example of extracted description for the DELETE

method of the variantGET/PUT/DEL/PATCH (P4.v1)

D - 1 Delete a collection of CDI objects

D - 2 Delete a collection of CDIConfig objects

D - 3 Delete a collection of DataVolume objects

D - 4 Delete a collection of VirtualMachine objects

D - 5 Delete a collection of VirtualMachineInstance objects

D - 6 Delete a collection of VirtualMachineInstanceMigration ob-

jects

D - 7 Delete a collection of VirtualMachineInstancePreset objects

D - 8 Delete a collection of VirtualMachineInstanceReplicaSet ob-

jects

D - 9 Delete all

D - 10 delete collection of AerospikeCluster

D - 11 delete collection of AerospikeNamespaceBackup

D - 12 delete collection of AerospikeNamespaceRestore

D - 13 delete collection of Alb

D - 14 delete collection of AppBinding

D - 15 delete collection of AuditRegistration

D - 16 delete collection of Branch

D - 17 delete collection of Bundle

D - 18 delete collection of Certificate

D - 19 delete collection of Cluster

D - 20 delete collection of ClusterAuthInfoTemplate

D - 21 delete collection of ClusterInfo

D - 22 delete collection of ClusterUserAuth

D - 23 delete collection of ConfigMap

D - 24 delete collection of Credential

D - 25 delete collection of Dashboard

D - 26 delete collection of Event

D - 27 delete collection of Ingress

D - 28 delete collection of KubeDBOperator

D - 29 delete collection of Message

D - 30 delete collection of MessagingService

D - 31 delete collection of Pipeline

D - 32 delete collection of PullRequest

D - 33 delete collection of Repository

D - 34 delete collection of S2iBuilder

D - 35 delete collection of S2iBuilderTemplate

D - 36 delete collection of S2iRun

D - 37 delete collection of Secret

D - 38 delete collection of Snapshot

D - 39 delete collection of StashElasticsearch

D - 40 delete collection of StashMariaDB

D - 41 delete collection of StashMongoDB

D - 42 delete collection of StashMySQL

D - 43 delete collection of StashPerconaXtraDB

D - 44 delete collection of StashPostgres

D - 45 delete collection of StashRedis

D - 46 delete collection of TFJob

D - 47 delete collection of Tag

D - 48 delete collection ofWorkflow

Table 18: Descriptions for the PUT method of variant

GET/DEL (P4.s2)

D - 1 Actualiza un evento

D - 2 Actualiza un libro

D - 3 Actualizar inmueble - Actualizar un inmueble de la API

D - 4 Edit a floor

D - 5 Edit a stack

D - 6 Return the updated user

D - 7 Update Book details - Update Book details

D - 8 Update CampaignRecipient

D - 9 Update CampaignSettings

D - 10 Update ListCampaignDefaults

D - 11 Update ListContact

D - 12 Update a existing FX order not matched yet, on the market

place

D - 13 Update an existing FX order

D - 14 Update a list - Update a List

D - 15 Update a song - Update a song

D - 16 Update an event - Update an event

D - 17 Update an existing account

D - 18 Update an existing blog - API Endpoint to update a blog

D - 19 Update an existing building MAP in database

D - 20 Update an existing conversation

D - 21 Update an existing deluge

D - 22 Update an existing payment-instruction not settled yet

D - 23 Update an existing payment-instruction

D - 24 Update an existing rule

D - 25 Update an existing scenario

D - 26 Update an existing skill

D - 27 Update client information

D - 28 Update collaborator

D - 29 Update role

D - 30 Update the microapp - Update the microapps

D - 31 Update theme - Update theme

D - 32 Update user

D - 33 Updates a given field for an attack with a certain ID

D - 34 Updates and existing agent class to agent manifest mapping

configuration

D - 35 replaceGroups - Replaces user’s roles with the submitted

ones

D - 36 sending a draft mail to a user

D - 37 update Category - Update Category

D - 38 updateCustomer

D - 39 updateProduct

D - 40 updates a track from the system - Updates a track from the

system

27

EuroPLoP’21, July 7–11, 2021, Graz, Austria

B.3 Appendable Collection (P2)

Table 19: Description and summary of the GET method in

GET/PUT/DEL (P2.v1)

D - 1 Find Tracks by ID- Returns a single Tracks

D - 2 Find ad by ID- Returns a single Ad

D - 3 Find ad_html_meta by ID- Returns a single AdHtmlMeta-

D - 4 Find client by ID- Returns a single client

D - 5 Find course by ID- Returns a single course

D - 6 Find item by ID- Returns a single Item

D - 7 Find order by ID- Returns a single order

D - 8 Find pet by ID- Returns a single pet

D - 9 Find product by ID- Search one product by id

D - 10 Find provider by ID- Returns a single provider

D - 11 Find user- Returns a user

D - 12 Finds News by Id- Returns a single news

D - 13 Get Address by ID

D - 14 Get Student By Name- Get Student Details by name

D - 15 Get Usage by id

D - 16 Get a Client Registration for a given Client ID

D - 17 Get a Distribution- Get a Distribution

D - 18 Get a client by way of Client ID

D - 19 Get a project by project_id

D - 20 Get a single message

D - 21 Get a specific city

D - 22 Get a user by ID

D - 23 Get a user- Return a json object of the user

D - 24 Get an Assessment object

D - 25 Get bucketlist with given ID for loggedIn User

D - 26 Get details of an Order

D - 27 Get infos about a specific exam- Returns the exam id

D - 28 Get match-

D - 29 Get one Product with specified ID

D - 30 Get provider by user code

D - 31 Get region by id

D - 32 Get scotch by id

D - 33 Get table

D - 34 Get team

D - 35 Get user by id- Get the user information by its id

D - 36 Get user by user id

D - 37 Get user by user name

D - 38 Gets Business Partner Object

D - 39 Gets an annotation Caller must have READ permission for

the associated annotation set

D - 40 Gets an annotation set Caller must have READ permission

for the associated dataset

D - 41 Gets the details for an order

D - 42 Look up a user by their user id

D - 43 Obter ummomento

D - 44 Retrieve the information associated with a signin record

Retrieve the information associated with a signin record

D - 45 Return a Question by ID- Returns a single Question object

D - 46 Returns a nomination based on a single ID- Returns the nom-

ination identified by ‘nominationId‘

D - 47 returns a single entry

B.4 Collection (P3)

Table 20: Extracted descriptionof thePUTmethodof variant

DEL (P3.v7)

D - 1 Adds the secrets specified in the payload The payload must

be a JSON object where the keys are the secret names and

the values are the secret values If a secret already exists, it is

overwritten

D - 2 Edit a library

D - 3 Edit product This method allows you to edit existing product

D - 4 Modifica un usuario- Modifica un usuario por su identificador

D - 5 Overwrites the secrets for the specified system The payload

must be a JSON object where the keys are the secret names

and the values are the secret values

D - 6 Persist plugin metadata information

D - 7 Update a given beverage Requires ADMIN role- The beverage

mustbealreadyexistentReturnvalue is theupdatedandstored

data

D - 8 Update a snapshot schedule

D - 9 Update an existing role

D - 10 Update existing cloud backup schedule

D - 11 Update item in calories list for user

D - 12 Update user with give ID

D - 13 Updates an existing attribute- Updates an existing attribute

D - 14 Updates specified storage policy

D - 15 setProjectAgentPools

D - 16 update a tenant- Update a tenant

C API FRAGMENTS OVERVIEW

Togiveanoverviewof theAPIFragments,wemeasure their size, their

numberofoccurrences, and thenumberofunique label combinations

they have.

Figure 49 shows that the larger the fragment, the less likely it is

to reoccur multiple times. The largest fragments occur only once.

Our constraints in the search of API fragments that can be used as

pattern candidates is to both avoid unpopular fragments while also

ensuring to find ”interesting”, large-enough fragments.

While it is difficult to see in the chart, each dot represents not

only a fragment of the given size and occurrences, but since there

can be multiple fragments in the same coordinates we also color

each dot by the number of fragments found in that position. Most

of the fragments crowd into the origin area and have few repeated

occurrences. While the chart shows there is a lot of variability in the

structure of APIs, it also shows that – this is an extreme case – there

are four small fragments that reoccur more than 3000 times.

More in detail, we are interested to observe the actual labels on the

API fragment since they give an indication of the API semantics by

givingnames to its features. LabeledAPI fragments providepotential

known uses for the candidate patterns. ot include fragments with a

single occurrence, thus the X-axis range is also reduced accordingly.

28

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

50 100 150 200 250 300 350 400 450 500 550

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200

2,400

2,600

2,800

3,000

3,200

3,400

3,600

Fragment Size (Number of Nodes)

F
r
a
g
m
e
n
t
O
c
c
u
r
r
e
n
c
e
s

500 1,000 1,500 2,000 2,500

Number of Fragments

0 20 40 60 80 100 120 140 160 180 200

0

20

40

60

80

100

120

140

160

180

200

Figure 49: API Fragments Overview (Fragment Size vs. Occurrences)

29

EuroPLoP’21, July 7–11, 2021, Graz, Austria

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200

2,400

2,600

2,800

3,000

3,200

3,400

3,600

Number of Unique Label Combinations

F
r
a
g
m
e
n
t
O
c
c
u
r
r
e
n
c
e
s

Figure 50: This plot shows the relationship between howmany times API fragments occur and howmany unique label combi-

nations they have. Some fragments occur across thousands of APIs with thousands of unique label combinations. The vertical

distance of a dot representing a fragment from the Y=X line indicates howmany times the fragment reoccurs with exactly the

same label combination. Thismay be due to redundancy present in the API collection (someAPI descriptions have been cloned

or forked) or also because a fragment happens to be frequently used with the same labels

30

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

20 40 60 80 100 120 140 160

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200

2,400

Fragment Size (Number of Nodes)

N
u
m
b
e
r
o
f
U
n
i
q
u
e
L
a
b
e
l
C
o
m
b
i
n
a
t
i
o
n
s

100 200 300 400

Number of Fragments

Figure 51: This plot compares the size of the fragmentwith thenumber of unique label combinations it appearswith.Compared

to the raw number of occurrences, the Y-axis shrinks from 3600 down to 2400. The figure does not include fragments with a

single occurrence, thus the X-axis range is also reduced accordingly.

31

EuroPLoP’21, July 7–11, 2021, Graz, Austria

D LABELS USAGE

Thegoal thisAppendix is toprovideanadditional overviewabout the

labels usage through a set of guidance heat maps to help in plotting

the most used labels for each structural primitive.

We calculated the occurrences of each label in each structural

primitive. The labels are sorted first by their total number of occur-

rences, then alphabetically so that it is easy to find at the top of the

table which are the most used labels in each primitive. The most

used label for a specific variant is found by looking at the rowwhich

has the darkest color in the variant’s column.

To know in which variant a specific labels sequences is used the

most, it is enough to horizontally scan the row for the label looking

for the highest value, ignoring the last column in which the total

number of occurrences across all variants is reported. The heatmaps

only include the representative labels that we obtain using our labels

merging approach described in Section 3.1.2.

We merged labels sequences with common container labels such

as the ones in Figure 52. These labels are used in different variants of

Figure52:Label sequenceswithcontainer label "users" inCol-

lection primitive

theCollection (P3)primitiveandtheyshare thesamemeaning, thus

wedecidedmerging them in order to have concise guidance tables. In

our labelsprocessingapproach,we ignore thecaseof thecontainer re-

source label (e.g :𝑑𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡𝑒𝑟 is equivalent to𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡𝑒𝑟).We also

remove all the special characters and the spaces (e.g: 𝑑𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡𝑒𝑟𝑠 ,

𝑑𝑎𝑡𝑎−𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑠 ,𝑑𝑎𝑡𝑎_𝑝𝑜𝑖𝑛𝑡𝑒𝑟 are considered equivalent). Moreover,

ignore the singularity and plurality of the labels (e.g:𝑑𝑎𝑡𝑎_𝑝𝑜𝑖𝑛𝑡𝑒𝑟 is

equivalent to 𝑑𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡𝑒𝑟𝑠). In the example of Figure 52 the label

𝑢𝑠𝑒𝑟𝑠 originally appears in different formats (e.g:𝑢𝑠𝑒𝑟 ,𝑈𝑠𝑒𝑟𝑠 ,𝑈𝑠𝑒𝑟),

our merging algorithms pick the most occurring form as a represen-

tative label of all the forms. The reason behind this clustering is to

give more insight about the labels usages and merge the ones that

represent similar concepts in order to avoid redundancy.

D.1 Enumerable Collection (P1)

In this primitive, the GET (P1.v1) is the one that appears with the

highest number of distinct labels. We notice that most of the labels

are only used by this variant, while other few ones are used also by

the other variants (occurs 202 times).

P
1
.v
1

P
1
.v
2

P
1
.v
3

P
1
.v
4

P
1
.s
1

P
1
.s
2

O
C
C

operations 51 0 0 0 5 0 56

users 29 1 4 11 1 1 47

resources 33 0 0 3 0 0 36

events 29 0 0 0 0 0 29

manifests 29 0 0 0 0 0 29

types 26 0 0 0 0 0 26

locations 24 1 0 0 0 0 25

instances 1 0 0 0 0 21 22

servers 3 0 0 0 17 0 20

clients 0 0 0 0 17 0 17

content 16 0 0 0 0 0 16

devices 8 0 0 8 0 0 16

organizations 16 0 0 0 0 0 16

services 16 0 0 0 0 0 16

views 16 0 0 0 0 0 16

vuln 16 0 0 0 0 0 16

shows 5 0 4 6 0 0 15

products 13 1 0 0 0 0 14

currencies 13 0 0 0 0 0 13

documents 13 0 0 0 0 0 13

files 7 0 0 6 0 0 13

jobs 2 10 0 0 0 1 13

artifacts 12 0 0 0 0 0 12

tasks 5 0 0 2 0 5 12

tags 8 0 3 0 0 0 11

images 9 1 0 0 0 1 11

keys 0 0 0 11 0 0 11

configs 2 8 0 0 0 0 10

descriptor 10 0 0 0 0 0 10

episodes 0 0 0 10 0 0 10

networks 3 0 0 6 0 1 10

people 4 0 0 6 0 0 10

versions 9 0 0 0 0 1 10

api-docs 9 0 0 0 0 0 9

email_history 9 0 0 0 0 0 9

groups 9 0 0 0 0 0 9

items 9 0 0 0 0 0 9

metadata 8 0 0 0 0 1 9

policydefinitions 3 0 0 6 0 0 9

roles 9 0 0 0 0 0 9

accounts 6 0 0 2 0 0 8

applications 8 0 0 0 0 0 8

concepts 8 0 0 0 0 0 8

config_schemas 8 0 0 0 0 0 8

Table 21: Enumerable Collection –Most occurring labels

32

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

D.2 Appendable Collection (P2)

𝑢𝑠𝑒𝑟 and𝑜𝑟𝑑𝑒𝑟 are themost used labels in this primitive.While most

of therestof the labelsappear less than10 times.GET/PUT/DEL (P2.v1)

and GET/DEL (P2.v2) are very recurrent variants (occurrences re-

spectively 194 and 145), however we notice that they are not used

with a high number of distinct labels such asGET (P2.v3), which is

the most occurring variant in this primitive.
P
2
.v
1

P
2
.v
2

P
2
.v
3

P
2
.s
2

P
2
.s
1

O
C
C

user 114 5 11 3 7 140

order 4 78 1 1 1 85

todo 1 12 1 0 0 14

messages 2 1 9 0 0 12

deployments 0 1 11 0 0 12

images 0 0 11 1 0 12

token 0 0 1 11 0 12

register 11 0 0 0 0 11

objectstores 0 0 0 0 8 8

account 1 0 6 0 0 7

comment 0 1 0 1 5 7

files 0 1 6 0 0 7

form_fields 0 0 6 0 0 6

labels 0 0 1 5 0 6

wall_comments 0 0 6 0 0 6

courses 1 4 0 0 0 5

disease 0 0 5 0 0 5

item 1 1 3 0 0 5

media 0 4 1 0 0 5

read 0 0 5 0 0 5

target 0 0 5 0 0 5

categorias 0 0 0 0 4 4

productos 0 0 0 0 4 4

post 0 0 2 1 1 4

products 2 0 2 0 0 4

traces 0 0 4 0 0 4

annotations 3 0 0 0 0 3

annotationsets 3 0 0 0 0 3

assets 0 0 0 3 0 3

cart 0 1 2 0 0 3

cluster 0 2 0 0 0 2

collections 0 0 3 0 0 3

datapointers 3 0 0 0 0 3

employee 0 1 1 0 1 3

entries 1 0 2 0 0 3

hub 0 2 0 1 0 3

individuals 3 0 0 0 0 3

jobs 0 0 1 2 0 3

policy_keys 0 0 3 0 0 3

provider 2 0 0 0 1 3

student 1 1 1 0 0 3

subscriptions 1 0 0 2 0 3

task 1 0 1 0 1 3

update-requests 0 3 0 0 0 3

wallet 0 0 2 0 1 3

category 1 0 0 0 1 2

balance 0 0 2 0 0 2

batch 0 0 2 0 0 2

book 0 0 1 0 0 1

bookings 0 1 0 1 0 2

buy 0 0 2 0 0 2

campaigns 0 2 0 0 0 2

client 1 0 1 0 0 2

connections 0 0 2 0 0 2

distributions 2 0 0 0 0 2

documents 0 2 0 0 0 2

experiments 0 0 2 0 0 2

Table 22: Appendable Collection –Most occurring labels

D.3 Collection (P3)

In thisprimitive, there is adominant labelwhich is𝑢𝑠𝑒𝑟𝑠 . It occurs223

while the secondmost occurring labels,𝑎𝑢𝑑𝑖𝑡𝑡𝑟𝑎𝑖𝑙𝑠 and 𝑐ℎ𝑎𝑛𝑔𝑒_𝑙𝑜𝑔𝑠

are only used 61 time.

P
3
.v
1

P
3
.v
2

P
3
.v
3

P
3
.v
4

P
3
.v
5

P
3
.v
6

P
3
.v
7

P
3
.s
1

P
3
.s
2

O
C
C

users 4 108 10 11 31 19 7 3 30 223

audit_trails 61 0 0 0 0 0 0 0 0 61

change_logs 61 0 0 0 0 0 0 0 0 61

projects 0 24 3 1 1 8 7 8 2 54

tags 1 4 3 0 26 0 12 2 1 49

articles 0 31 1 0 2 2 0 0 0 36

comments 0 8 1 1 1 3 18 0 2 34

products 3 23 4 0 1 1 0 1 1 34

order 0 11 1 2 1 4 2 2 8 31

rules 0 4 1 0 8 8 1 0 8 30

events 1 16 1 0 0 1 1 0 6 26

roles 1 13 2 2 1 3 0 1 3 26

clusters 1 2 12 0 0 3 0 7 0 25

policies 0 24 1 0 0 0 0 0 0 25

client 0 16 1 2 1 1 1 0 1 23

group 0 9 0 1 0 1 0 0 10 21

messages 0 2 4 0 0 5 4 0 6 21

posts 0 12 1 1 0 3 0 0 2 19

subscriptions 0 9 1 0 0 8 0 0 1 19

accounts 0 6 1 2 1 0 2 0 6 18

compositetypes 18 0 0 0 0 0 0 0 0 18

images 1 1 0 0 0 14 0 0 2 18

pets 0 1 1 0 0 4 0 0 12 18

tasks 2 3 4 1 1 2 0 0 5 18

applications 2 6 0 0 0 2 0 7 0 17

credentials 0 0 0 0 1 0 16 0 0 17

members 0 5 0 0 0 4 6 0 1 16

contacts 0 14 0 0 0 0 0 0 1 15

item 1 9 2 1 1 1 0 0 0 15

volumes 0 0 0 0 8 7 0 0 0 15

example_entities 3 11 0 0 0 0 0 0 0 14

services 1 10 0 0 0 2 1 0 0 14

types 8 1 1 0 1 1 0 1 1 14

authorizedcertificates 0 0 13 0 0 0 0 0 0 13

categories 1 8 1 0 0 2 0 1 0 13

domainmappings 0 0 13 0 0 0 0 0 0 13

ingressrules 0 0 13 0 0 0 0 0 0 13

invoices 2 9 0 0 0 1 0 0 1 13

sessions 0 0 4 0 0 7 0 0 2 13

bookings 0 3 1 0 2 0 6 0 0 12

books 0 9 1 0 0 2 0 0 0 12

configs 0 2 0 0 0 0 0 0 10 12

service-profiles 0 0 0 0 0 6 0 6 0 12

actions 0 8 3 0 0 0 0 0 0 11

apikeys 0 8 0 0 0 1 2 0 0 11

payments 1 5 3 0 0 0 0 0 2 11

tracks 0 8 0 0 1 0 1 0 1 11

cities 0 4 0 0 6 0 0 0 0 10

collaborators 0 0 0 0 0 10 0 0 0 10

networks 1 0 0 0 0 9 0 0 0 10

note 0 8 2 0 0 0 0 0 0 10

reward 0 0 0 0 0 0 0 0 10 10

rollouts 0 0 0 0 0 0 0 0 10 10

node 0 3 2 0 1 3 0 0 0 9

notifications 0 6 0 1 1 0 0 0 1 9

patient_health_metric 0 0 0 0 0 0 0 0 9 9

reward_earning 0 0 0 0 0 0 0 0 9 9

reward_earning_fulfillment 0 0 0 0 0 0 0 0 9 9

reward_program_activation 0 0 0 0 0 0 0 0 9 9

runs 0 1 2 0 0 0 6 0 0 9

webresource 9 0 0 0 0 0 0 0 0 9

actionalias 0 8 0 0 0 0 0 0 0 8

addresses 0 5 0 1 1 1 0 0 0 8

authors 0 7 1 0 0 0 0 0 0 8

calendar_event 0 0 8 0 0 0 0 0 0 8

clusterpairs 0 0 0 0 0 0 8 0 0 8

customers 0 5 0 0 1 0 0 0 2 8

device-profiles 0 0 0 0 0 4 0 4 0 8

environment 1 3 1 0 0 1 0 2 0 8

games 0 7 0 0 0 0 0 0 1 8

invitations 0 0 0 0 0 0 8 0 0 8

operations 0 0 0 4 0 0 1 0 3 8

profile 1 1 0 1 0 2 0 0 3 8

Table 23: Collection –Most occurring labels

33

EuroPLoP’21, July 7–11, 2021, Graz, Austria

D.4 Mutable Collection (P4)

This primitive is less frequently used. The intersection between the

labels usedwith the ”RemoveAll” variant and the two smells is rather

small, resulting in the two labels: secrets and tags.

P
4
.v
1

P
4
.s
1

P
4
.s
2

O
C
C

roles 0 8 14 22

users 0 3 16 19

collaborators 0 0 13 13

schedulepolicies 0 8 0 8

storagepolicies 0 8 0 8

events 4 0 3 7

schedules 0 7 0 7

secrets 4 2 0 6

certificates 4 0 0 4

ingresses 4 0 0 4

fxorders 0 0 3 3

info 0 3 0 3

payments 0 0 3 3

workspaces 3 0 0 3

post 0 0 2 2

skill 0 0 2 2

appbindings 2 0 0 2

catalog 0 0 2 2

configmaps 2 0 0 2

employees 0 0 2 2

groups 0 0 2 2

kubedboperators 2 0 0 2

lists 0 0 2 2

messages 1 0 1 2

product 0 1 1 2

tags 1 1 0 2

virtualmachineinstancemigrations 2 0 0 2

virtualmachineinstancepresets 2 0 0 2

virtualmachineinstancereplicasets 2 0 0 2

virtualmachineinstances 2 0 0 2

virtualmachines 2 0 0 2

campaignrecipient 0 0 1 1

campaignsettings 0 0 1 1

cursus 0 0 1 1

listcampaigndefaults 0 0 1 1

listcontact 0 0 1 1

member 0 0 1 1

template 0 0 1 1

topic 0 0 1 1

word 0 0 1 1

accounts 0 0 1 1

aerospikeclusters 1 0 0 1

aerospikenamespacebackups 1 0 0 1

aerospikenamespacerestores 1 0 0 1

agent-class-manifest-config 0 0 1 1

agentpools 0 1 0 1

albs 1 0 0 1

apps 0 0 1 1

attacks 0 0 1 1

attributes 0 1 0 1

auditregistrations 1 0 0 1

beverages 0 1 0 1

blogs 0 0 1 1

boards 1 0 0 1

books 0 0 1 1

branches 1 0 0 1

bundles 1 0 0 1

calories 0 1 0 1

categories 0 0 1 1

cdiconfigs 1 0 0 1

Table 24: Mutable Collection –Most occurring labels

34

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

REFERENCES

[1] [n.d.]. OpenAPIGenerator. https://github.com/OpenAPITools/openapi-generator.

https://github.com/OpenAPITools/openapi-generator

[2] [n.d.]. Swagger Codegen. https://swagger.io/tools/swagger-codegen/. https:

//swagger.io/tools/swagger-codegen/

[3] Subbu Allamaraju. 2010. RESTful Web Services Cookbook: Solutions for Improving
Scalability and Simplicity. " O’Reilly Media, Inc.".

[4] Önder Babur and Loek Cleophas. 2017. Using n-grams for the Automated Cluster-

ing of Structural Models. In International Conference on Current Trends in Theory
and Practice of Informatics. Springer, 510–524.

[5] Robert Daigneau. 2011. Service Design Patterns: Fundamental Design Solutions for
SOAP/WSDL and RESTful Web Services. Addison-Wesley Professional, New York,

NY, USA.

[6] Martin Fowler. 2002. Patterns of Enterprise Application Architecture. Addison-
Wesley, USA.

[7] Martin Fowler. 2010. Richardson Maturity Model: steps toward the glory of REST.

https://www.martinfowler.com/articles/richardsonMaturityModel.html

[8] Florian Haupt, Frank Leymann, and Karolina Vukojevic-Haupt. 2018. API Gover-

nance Support through the Structural Analysis of REST APIs. Comput. Sci. 33, 3–4
(Aug. 2018), 291–303.

[9] Gregor Hohpe and BobbyWoolf. 2003. Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Addison-Wesley.

[10] Stefan Kapferer and Olaf Zimmermann. 2020. Domain-Driven Service Design.

In Service-Oriented Computing, SchahramDustdar (Ed.). Springer International

Publishing, Cham, 189–208.

[11] István Koren and Ralf Klamma. 2018. The exploitation of openapi documentation

for the generation of web frontends. In Companion Proceedings of the The Web
Conference 2018. 781–787.

[12] M. Maleshkova, C. Pedrinaci, and J. Domingue. 2010. InvestigatingWeb APIs on

theWorld WideWeb. In 2010 Eighth IEEE European Conference on Web Services.
107–114. https://doi.org/10.1109/ECOWS.2010.9

[13] Francis Palma, Johann Dubois, Naouel Moha, and Yann-Gaël Guéhéneuc. 2014.

Detection of REST Patterns and Antipatterns: A Heuristics-Based Approach. In

Proc. of ICSOC. Springer, 230–244.
[14] Sanjay Patni. 2017. Pro RESTful APIs. Springer.
[15] Cesare Pautasso, Ana Ivanchikj, and Silvia Schreier. 2016. A Pattern Language for

RESTful Conversations. In Proceedings of the 21st European Conference on Pattern
Languages of Programs (EuroPLoP). Irsee, Germany.

[16] Fabio Petrillo, PhilippeMerle, Naouel Moha, and Yann-Gaël Guéhéneuc. 2016. Are

REST APIs for Cloud ComputingWell-Designed? An Exploratory Study. In Proc.
ICSOC. Springer, 157–170.

[17] Leonard Richardson, Mike Amundsen, and Sam Ruby. 2013. RESTful Web APIs.
O’Reilly.

[18] Leonard Richardson and Sam Ruby. 2007. RESTful Web Services. O’Reilly.
[19] Carlos Rodríguez,Marcos Baez, FlorianDaniel, Fabio Casati, JuanCarlos Trabucco,

Luigi Canali, and Gianraffaele Percannella. 2016. REST APIs: A Large-Scale Anal-

ysis of Compliance with Principles and Best Practices. In Proc. ICWE. Springer,
Lugano, Switzerland, 21–39.

[20] Spacy. [n.d.]. Models Documentation. https://spacy.io/models/en

[21] Phil Sturgeon. 2016. Build APIs you won’t hate. LeanPub. https://leanpub.com/

build-apis-you-wont-hate

[22] The Open API Initiative. [n.d.]. OAI. https://openapis.org. https://openapis.org/

[23] Markus Voelter, Michael Kircher, and Uwe Zdun. 2004. Remoting Patterns - Foun-
dations of Enterprise, Internet, and Realtime Distributed Object Middleware. J. Wiley

& Sons, Hoboken, NJ, USA.

[24] JimWebber, Savas Parastatidis, and Ian Robinson. 2010. REST in Practice: Hyper-
media and Systems Architecture (1st ed.). O’Reilly Media, Inc.

[25] Uwe Zdun and Paris Avgeriou. 2008. A catalog of architectural primitives for

modeling architectural patterns. Information and Software Technology 50, 9 (2008),

1003–1034. https://doi.org/10.1016/j.infsof.2007.09.003

[26] Olaf Zimmermann, Daniel Lübke, Uwe Zdun, Cesare Pautasso, and Mirko Stocker.

2020. Interface Responsibility Patterns: Processing Resources and Operation Re-

sponsibilities. In Proc. of the European Conference on Pattern Languages of Programs
(Online) (EuroPLoP ’20).

[27] Olaf Zimmermann, Daniel Pautasso, Cesare Lübke, UweZdun, , andMirko Stocker.

2019. Data-Oriented Interface Responsibility Patterns: Types of Information

Holder Resources. In Proc. of the European Conference on Pattern Languages of
Programs (Online) (EuroPLoP ’19).

[28] Olaf Zimmermann, Mirko Stocker, Daniel Lübke, Cesare Pautasso, and Uwe Zdun.

2020. Introduction to Microservice API Patterns (MAP). In Joint Post-proceedings
of the First and Second International Conference on Microservices (Microservices
2017/2019) (OpenAccess Series in Informatics (OASIcs)), Luís Cruz-Filipe, Save-
rio Giallorenzo, Fabrizio Montesi, Marco Peressotti, Florian Rademacher, and

SabineSachweh (Eds.),Vol. 78. SchlossDagstuhl–Leibniz-Zentrumfuer Informatik,

Dagstuhl, Germany, 4:1–4:17. https://doi.org/10.4230/OASIcs.Microservices.2017-

2019.4

[29] Olaf Zimmermann, Mirko Stocker, Daniel Lübke, Cesare Pautasso, and Uwe Zdun.

2021. Microservice API Patterns. https://microservice-api-patterns.org/.

[30] Olaf Zimmermann, Mirko Stocker, Daniel Lübke, and Uwe Zdun. 2017. Interface

Representation Patterns: Crafting and ConsumingMessage-Based Remote APIs.

In Proc. of the 22nd European Conference on Pattern Languages of Programs (Irsee,
Germany) (EuroPLoP ’17). ACM, Article 27, 36 pages. https://doi.org/10.1145/

3147704.3147734

35

https://github.com/OpenAPITools/openapi-generator
https://github.com/OpenAPITools/openapi-generator
https://swagger.io/tools/swagger-codegen/
https://swagger.io/tools/swagger-codegen/
https://swagger.io/tools/swagger-codegen/
https://www.martinfowler.com/articles/richardsonMaturityModel.html
https://doi.org/10.1109/ECOWS.2010.9
https://spacy.io/models/en
https://leanpub.com/build-apis-you-wont-hate
https://leanpub.com/build-apis-you-wont-hate
https://openapis.org/
https://doi.org/10.1016/j.infsof.2007.09.003
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.4
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.4
https://microservice-api-patterns.org/
https://doi.org/10.1145/3147704.3147734
https://doi.org/10.1145/3147704.3147734

	Abstract
	1 Introduction
	2 Fragmenting APIs
	2.1 API Collection Overview
	2.2 Domain Concepts
	2.3 Representing the API Structure as a Tree
	2.4 API Fragments

	3 Fragments Clustering
	3.1 API Fragments Clustering and Selection
	3.2 Labels Similarity Results

	4 Structural API Primitives
	4.1 Enumerable Collection (P1)
	4.2 Appendable Collection (P2)
	4.3 Collection (P3)
	4.4 Mutable Collection (P4)

	5 From Primitives to Larger Structures and API Responsibility Patterns
	5.1 Composing Primitives
	5.2 Relation to Architectural Patterns and Interface Description Languages (IDLs)

	6 Related Work
	6.1 Model Clustering
	6.2 Structural Analysis of Web APIs

	7 Threats to Validity
	8 Conclusion
	A API Tree Visualizations
	A.1 TvMaze user API
	A.2 Columba API
	A.3 AnyPay API
	A.4 API for the COVID-19 Tracking QR Code Signin Server
	A.5 Passman API
	A.6 ID Vault API
	A.7 Invotra API

	B Extracted Descriptions of HTTP Methods
	B.1 Enumerable Collection
	B.2 Mutable Collection (P4)
	B.3 Appendable Collection (P2)
	B.4 Collection (P3)

	C API Fragments Overview
	D Labels Usage
	D.1 Enumerable Collection (P1)
	D.2 Appendable Collection (P2)
	D.3 Collection (P3)
	D.4 Mutable Collection (P4)

	References

