
A Large-scale Empirical Assessment of
Web API Size Evolution

Fabio di Lauro, Souhaila Serbout and Cesare Pautasso

Software Institute (USI), Lugano, Switzerland
fabio.di.lauro@usi.ch

souhaila.serbout@usi.ch

c.pautasso@ieee.org

Abstract

Like any other type of software, also Web Application Programming Inter-
faces (APIs) evolve over time. In the case of widely used API, introducing
changes is never a trivial task, because of the risk of breaking thousands
of clients relying on the API. In this paper we conduct an empirical study
over a large collection of OpenAPI descriptions obtained by mining open
source repositories. We measure the speed at which Web APIs change and
how changes affect their size, simply defined as the number of operations.

The dataset of API descriptions was collected over a period of one year
and includes APIs with histories spanning across up to 7 years of commits.
The main finding is that APIs tend to grow, although some do reduce their
size, as shown in the case study examples included in the appendix.

Keywords: Web API, API Evolution, Software Evolution, OpenAPI.

1 Introduction

Web Application Programming Interfaces (APIs) are fundamental building
blocks used to build different kinds of applications and services. They are able
to accelerate the development of complex systems taking advantage of the
HTTP protocol [33] and the REST architectural style [14]. Furthermore, APIs
could be implemented using different programming languages [5] achieving

River Journal, 1–48.
© 2022 River Publishers. All rights reserved.

2 F. Di Lauro, S. Serbout, C. Pautasso

a high level of reusability. The evolution of Web APIs can be caused by differ-
ent factors such as the changing of their underlying infrastructure or services
used by the API [24, 25, 37]. The changes needed by APIs, in order to delay
their obsolescence, might impact in clients in different ways [30]. Providers
usually tend to announce breaking changes to clients and use different pat-
terns [31] to avoid functionality disruptions and abnormal behaviors. While
extending APIs by adding new operations is a strategy that ensures backward
compatibility, deprecating and then removing no longer supported operations
can break old clients [41].

In this paper we analyzed Web APIs, described with different versions of
the OpenAPI [1] standard (previously known as Swagger), retrieving their de-
scriptions from public software repositories, stored on GitHub. This approach
permits us to retrieve also the documentation history and APIs life cycle
details from the versioning system. In this paper, we extend our previous
feasibility study [26] with the analysis of a larger dataset of 395,219 commits
of 163,953 APIs collected from December 1st, 2020 to October 27th, 2021.
Our goal is to assess if the conclusions drawn in our previous analysis [26]
could be confirmed using a much larger set of artifacts.

The goal of the previous work [26] was to assess the feasibility of per-
forming an empirical study by mining open source repositories to investigate
Web API evolution by gathering the commit histories of 4, 682 APIs. In
Table 1, we show a detailed comparison of the datasets used in each of
the studies. In this paper, we include additional analysis results and data
visualizations.

In particular, in this paper we pose the following research questions:

Q1: How stable are API artifacts over time?

Q2: Do APIs tend to grow or shrink over time?

Q3: Does the frequency of change of an API depend on its age?

Q4: Is the API commit history length proportional to the API age?

Q5: What is the distribution of the API size metric?

Q6: How often do APIs update the version of the specification language used
to describe them?

Web API descriptions [1] enumerates the resource paths exposed by the
API, the HTTP verbs available for each path, and many other details such

A Large-scale Empirical Assessment of Web API Size Evolution 3

as which request parameters are expected by those paths, which HTTP status
codes are found in the responses, and which schemas are used to construct the
request and response message payloads. Over time, they can grow to become
complex documents, reflecting how the changing requirements of multiple
clients have been satisfied with by API service providers [25].

To reduce the complexity of analyzing all the components involved in
changes while keeping the chance to detect changes, in this paper we chose
to abstract the APIs description contents using a basic size metric. This met-
ric is measured by counting the number of operations, detected in artifacts
present in APIs histories. While many components of an API description
could change, we focus on this metric because we want to study the evolution
of APIs from the structural perspective while keeping the possibility to extend
this work in the future, considering other metrics [35].

Another challenge regards how to deal with a relatively large amount of
API description artifacts, which change over time. In this paper, we exper-
iment with data visualizations that are intended to give an overview of the
temporal aspects and the observable dynamics of the API evolution.

The main finding is that while we found only one commit for most of the
API descriptions we discovered, there is a significant number (5,176 APIs)
for which more than 10 commits are present. This confirms the feasibility of
mining open source repositories to observe the evolution of API descriptions.

We also found an exponential distribution of the API size, with one outlier
having up to 668 operations. Within the APIs with multiple commits, the ma-
jority (55.8%) does not change their size (when measuring it as the number of
operations). Among the APIs which do, 10,798 APIs grow larger, while 1,448
become smaller when observing the difference between the initial commit
and the last one present in their history. This confirms the previous result,
that Web APIs tend to grow over time and also paves the way towards more
detailed metrics which can detect changes to other elements of the OpenAPI
metamodel.

Regarding the API stability, for the APIs with multiple commits, we ob-
served a fast-slow dynamic where bursts of frequent commits are interspersed
with large periods of inactivity. In particular, while some APIs do not seem
to stop changing as they get older, the number of commits present in the API
history is not proportional to the API age.

Additionally, we observed the increasing growth of the API description
artifacts making use of the OpenAPI/Swagger specification languages, which
so far tend to double every year. Still, very few APIs change the chosen
description language as they evolve.

4 F. Di Lauro, S. Serbout, C. Pautasso

Metric ICWE2021 JWE

API collection size (valid APIs) 4,682 163,953
API collection size (more than 10 commits) 280 5,176
Total number of commits 34,638 395,219
Max number of commits/API 299 736
Max number of versions/API 97 143
Max API age (days) 1826 2422
Max API age (years) 5 6.63

Max API size (operations) 357 668
Delta(API Size) (Min) -192 -667
Delta(API Size) (Max) +122 +332
Total API Size Variation (Min) -55 -654
Total API Size Variation (Max) +140 +174

Table 1: Comparison between the ICWE [26] dataset and the one analyzed in
this paper

The rest of this paper is structured as follows. Section 2 presents an
overview of collected API artifacts. Section 3 outlines the results that we
obtained and shows selected Web API evolution cases. We discuss the results
in Section 4. Section 5 summarizes the related work before we conclude and
outline further research challenges in Section 6.

We attached to the end of the paper an Appendix which includes 12 case
studies, including updated evaluation visualizations of the case studies pre-
sented in the work of ICWE2021. The goal is to show how these APIs evolved
during the past last year.

2 Dataset

2.1 Dataset collection

We built a software repository mining tool to retrieve the OpenAPI speci-
fications from GitHub, hereinafter called ”crawler”, that is able to discover
new projects containing OpenAPI specification files using the GitHub API.
We developed our pipeline using Python language and a MySQL database to
store metadata and some extracted metrics about APIs and their commits. We
designed the crawler architecture composed of the following components:

1. Path Finder: This component discovers new potential OAS files and
stores their URL in a table as ”to be evaluated”. Since the OAS format is

A Large-scale Empirical Assessment of Web API Size Evolution 5

not recognized by GitHub, the discovery is based on queries, submitted
to the GitHub search API, to retrieve YAML/JSON files that contain
the terms: ”openapi” or ”swagger”, ”paths”, ”info”, ”title”. These are
different from the ones used to generate the dataset of the previous study,
which relied on file naming conventions (i.e., retrieving all YAML/JSON
files named ”openapi”). Changing the GitHub search query has resulted
in a larger number of artifacts being discovered.

2. Curiosity: This component downloads discovered OAS files and stores
their content on the filesystem and related meta-information in the
database. To keep track of the provenance of the files, we use the GitHub
API to retrieve the project name, the owner, the URL, and the commit
identifier of the file, as well as the date of the last commit and the date
of the repository’s creation.

Curiosity is also responsible for fetching and downloading the history
of each discovered OpenAPI file so that in addition to the latest version
of the artifacts, all previous commits in the main repository branch and
their metadata are retrieved and stored for further analysis.

3. Updater: Because of the continuous evolution of repositories on
GitHub, our tool includes the Updater component which is responsible
for keeping the filesystem and database contents constantly updated. If
an OpenAPI file and its history haven’t been updated for more than 5
days, Updater will use the metadata stored in the database to attempt
to download the latest versions of the file and update its history in the
database. After each update, Validator is invoked.

4. Validator: As Path Finder and Curiosity accomplish their task
based on a heuristic to detect and download potential OpenAPI files,
Validator is the component responsible for verifying if the previously
downloaded files are really OpenAPI files, by parsing them and validat-
ing them against the OpenAPI Specification, using the tool Prance [2]
configured with the validatoropen-api-spec-validator [3].

Moreover, an OpenAPI description can be split into several files. This
component makes sure that all the referenced files are downloaded from
GitHub before validating the description.

5. Parser: This component is invoked by Validator to parse the OpenAPI
models and extract some metrics related to the API structure: number
of paths, number of operations with their parameters and responses,

6 F. Di Lauro, S. Serbout, C. Pautasso

Figure 1: API Collection Crawler Architecture (showing only the Path Finder
and Curiosity components)

number of HTTP methods. These metrics are stored in the database for
further analysis.

Figure 1 shows the partial architecture of the API crawler and the process
used to discover, fetch, bundle, validate and parse the OAS files and their
commit histories obtained from GitHub.

2.2 Dataset overview

To assess how an API evolves, we mined multiple versions of its OAS file
and stored their associated metadata, such as commit timestamp, the version
identifier, OAS version, and API title. In order to ensure we can compare the
larger API collection with our previous results [26], we used the same size
metric represented by the total count of operations available for each path,
defined in each OAS artifact. While such information can be extracted from
many API description languages [40], we chose to focus on the OpenAPI
standard because of its wide adoption in the industry for Web API modeling.

Crawling GitHub from December 1st, 2020 to October 27th, 2021 per-
mitted us to discover 747,629 potential OAS and Swagger artifacts belonging
to 265,362 different GitHub projects. Later, we filtered them using the
Validator component obtaining a set of 395,019 artifacts considered com-

A Large-scale Empirical Assessment of Web API Size Evolution 7

−500 0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500

0

365

730

1,095

1,460

1,825

API

D
ay

of
C

om
m

it

100 200 300 400 500 600 700

Number of Commits

129227 Commits

Figure 2: Dataset Overview: Commit History of APIs with more than 10
commits, sorted by number of commits

pliant with OpenAPI 3.x or Swagger 2.0 specifications - hereinafter we refer
to these artifacts as the valid ones - belonging to 163,953 different API
projects. These validated artifacts constitute the dataset considered in this
study. The oldest artifact is from Sept 8th, 2014, while the most recent artifact
was committed on October 26th, 2021.

Furthermore, we observed that more than 28% of the APIs have more
than 1 commit. To analyze significant histories we select some case studies,

8 F. Di Lauro, S. Serbout, C. Pautasso

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000

0

365

730

1,095

1,460

1,825

2,190

API

D
ay

of
C

om
m

it

50 100 150 200 250 300

API Size (Operations)

125423 Commits

Figure 3: Dataset Overview: Commit History of APIs with more than 10
commits, sorted by age and colored by the size of each commit.

described in Sec. 7, filtering again our initial dataset to only APIs with more
than 10 commits and in which more than 3 distinct versions are detected.

In table 2 we can see how these artifacts are distributed across the different
language versions. We found that 98.2% of the total API projects used only
1 OpenAPI/Swagger version, 0.6% used 2 versions while only 52 of them
upgraded their artifacts through more than 2 versions.

A Large-scale Empirical Assessment of Web API Size Evolution 9

−500 0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500

0

365

730

1,095

1,460

1,825

API

D
ay

of
C

om
m

it

100 200 300 400 500 600 700

Number of Commits

129227 Commits

Figure 4: Dataset Overview: Commit History of APIs with more than 10
commits, sorted by number of commits and age

Artifact specification language version # Artifacts # APIs

Swagger 2.0 240,351 60.8% 100,795 61.5%
OpenAPI 3.0.* 148,587 37.6% 62,354 38.0%

OpenAPI 3.0.0 87,147 22.1% 39,860 24.3%
OpenAPI 3.0.1 36,800 9.3% 13,121 8.0%
OpenAPI 3.0.2 14,958 3.8% 6,382 3.9%
OpenAPI 3.0.3 9,530 2.4% 2,898 1.8%
OpenAPI 3.0.4 37 0.0% 14 0.0%
OpenAPI 3.0.5 13 0.0% 7 0.0%
OpenAPI 3.0.6 3 0.0% 3 0.0%
OpenAPI 3.0.7 11 0.0% 4 0.0%
OpenAPI 3.0.9 4 0.0% 4 0.0%
OpenAPI 3.1.0 84 0.0% 61 0.0%

Not specified 6,070 1.5% 2024 1.2%
Not existent or malformed OAS version 25 0.0% 12 0.0%

APIs with 1 valid OAS version 160,970 98.2%
APIs with 2 valid OAS version 1,010 0.6%
APIs with more than 2 valid OAS versions 51 0.0%

Total 395,031 163,953

Table 2: Which OpenAPI Versions are used by the API artifacts? How many
APIs changed the OpenAPI language version during their evolution?

10 F. Di Lauro, S. Serbout, C. Pautasso

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000

0

365

730

1,095

1,460

1,825

2,190

API

D
ay

of
C

om
m

it

2015 2016 2017 2018 2019 2020 2021
Commit Timestamp

125423 Commits

Figure 5: Dataset Overview: Commit History of APIs with more than 10 com-
mits, sorted by initial commit timestamp and colored by the commit absolute
timestamp.

The visualization of the entire dataset, filtered to include only APIs that
present more than 10 commits in their histories, is shown in Fig. 2. In the
plot, each dot represents a commit. On the horizontal axis are distributed the
APIs sorted by how many commits are present in their history, while values
on the vertical axis represent when each commit occurred, relative to the time
of the initial commit for the corresponding API. The color of the dot shows
how many commits have been found in each API history.

A Large-scale Empirical Assessment of Web API Size Evolution 11

1 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

73
6

100

102

104

Number of Commits

N
um

be
r

of
A

PI
s

101

102

103

104

105

C
um

ul
at

iv
e

N
um

be
r

of
A

PI
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 14
3

100

102

104

Number of Versions

N
um

be
r

of
A

PI
s

102

103

104

105

C
um

ul
at

iv
e

N
um

be
r

of
A

PI
s

Figure 6: How many commits and versions are there for each API? (Log
Scale)

While most API histories have less than 100 commits, how are those com-
mits distributed over time? Fig. 3 shows the same dataset, which is however
sorted on the horizontal axis using the APIs age. APIs which have a very
short lifespan are shown on the left, APIs which age up to more than 5 years
are found on the right. Here we can see that approx. half of the APIs do
not reach 1 year of age. Still, there are about 1000 APIs with more than 10
commits that grow beyond 2 years of age. In this visualization, the color of
the dot indicates the API size of the corresponding commit. As most APIs in
the dataset are small, the dark blue color is prevalent. A few vertical streaks
of lighter colors highlight the presence of larger APIs, or of APIs whose size
changes over time.

12 F. Di Lauro, S. Serbout, C. Pautasso

0 100 200 300 400 500 600 700 800

0

20

40

60

80

100

120

140

Number of Commits

N
um

be
r

of
Ve

rs
io

ns

0 2,000 4,000 6,000

Number of APIs

Figure 7: Commits and Versions (APIs with more than 2 commits)

The visual representations in Figs. 2–4 highlight the relationship between
the age of the API, how many changes are found in its history, and the fre-
quency of those changes. The waves visible in Fig. 4 are due to clusters of
APIs with exactly the same number of commits, which have been sorted by
their age (the oldest appear on the right side of each cluster). Also in this case
we can see that the distribution of the commits is not uniform over time.

Fig 5 presents the temporal aspect of the same dataset. Here the APIs
are sorted by the absolute timestamp of their initial commit. The oldest APIs
are on the left side, while the most recent ones are on the right. The color
is used to distinguish the absolute timestamp of the corresponding commit.

A Large-scale Empirical Assessment of Web API Size Evolution 13

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

Number of Commits

N
um

be
r

of
Ve

rs
io

ns

0 2,000 4,000 6,000

Number of APIs

Figure 8: Commits and Versions (APIs with more than 2 commits and less
than 100 commits)

We can see that the number of commits grows each year as more and more
API descriptions that use the OpenAPI language are added to GitHub. The
vertical axis is the same as in the previous visualizations. The horizontal bars
highlight sets of APIs which have a similar age and often push changes at the
same time.

14 F. Di Lauro, S. Serbout, C. Pautasso

3 Results

3.1 Change Granularity: Commits and Versions

Fig. 6 and Table 3 describe the APIs evolution analyzing commits number and
versions, mined from artifacts found in those commits, for each API project.
All APIs present less than 740 commits and 71.3% of the APIs covered by
this study exhibit only 1 commit in their histories. The relationship between
commits and versions detected in their artifacts is shown on Fig. 7 while in
Fig. 8 we can observe a detailed view of the first 100 commits. The number of
versions is bound by the number of commits because each version identifier
change requires at least one commit to be stored in the API history.

3.2 API Age

We define the age of APIs as the time interval between the last and the first
commit of their histories.

AGE(api) = max(CT (api))−min(CT (api)) (1)

where CT (api) = {commiti(api).timestamp} is the set of the com-
mit timestamps for the api as retrieved from the GitHub API metadata. We
measure the API age in days.

In Fig. 9 (top) we show the API age histogram. In Tab. 3 we count how
many APIs reach one or more years of age. 71.3% of the APIs have only 1

API lifespan # Commits # APIs
min median avg stdev max

[0 day] 1 1 1.0 0.0 1 116,945 71.3%
(0, 1 day] 2 2 2.4 1.1 21 5,503 3.4%

(1 day, 1 year] 2 3 5.2 7.9 403 29,637 18.1%
(1 year, 2 years] 2 5 9.5 20.5 454 6,388 3.9%
(2 years, 3 years] 2 5 11.2 27.6 736 1,871 1.1%
(3 years, 4 years] 2 8 16.3 29.4 396 897 0.5%
(4 years, 6.6 years] 2 16 26.2 50.6 582 263 0.2%

Total 163,953

Table 3: How many APIs reach a certain age? See Fig. 9 for the API age
histogram with bins of 100 days and Fig. 10 for the API age vs. # Commits
scatterplot.

A Large-scale Empirical Assessment of Web API Size Evolution 15

0 1 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

10
50

11
00

11
50

12
00

12
50

13
00

13
50

14
00

14
50

15
00

15
50

16
00

16
50

17
00

17
50

18
00

18
50

19
00

19
50

20
00

20
50

21
00

21
50

22
00

22
50

23
00

23
50

24
22

100

102

104

API Age (days)

N
um

be
r

of
C

om
m

its

100

102

104

106

C
um

ul
at

iv
e

N
um

be
r

of
C

om
m

its

0 1 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

10
50

11
00

11
50

22
26

101

102

103

104

105

Change Interval (Days)

N
um

be
r

of
C

om
m

its

102

103

104

105

C
um

ul
at

iv
e

N
um

be
r

of
C

om
m

its

Figure 9: API Age and Change Interval (Log Scale): How old are the APIs
and how often do they change?

commit (their age is 0). The lifespan of the ones with more than 1 commit
reaches more than 5 years, making them potentially interesting subjects for
further studies. Tab. 3 also shows for each segment of APIs some statistics on
the corresponding number of commits found in their history. We can see that
the median and the average both tend to increase, although the exceptionally
high (726) the maximum number of commits is found in the API shown in
Fig. 31 (appendix) which is 2 years and 9 months old. This is confirmed by
the linear regression model shown in Fig. 10, indicating that although some
of the younger APIs definitely have more commits in their history than the
older ones, older APIs tend to have slightly more commits in their history.

16 F. Di Lauro, S. Serbout, C. Pautasso

0 365 730 1,095 1,460 1,825 2,190 2,555

0

100

200

300

400

500

600

700

Ŷ = 0.01084X + 3.8232, R2 = 0.06085 r = 0.275247582

API Age (Days)

N
um

be
r

of
C

om
m

its

100 200 300

Number of APIs

Figure 10: API Age vs. Number of Commits: Do older APIs have more com-
mits in their history?

We show the detailed history of more long-lived APIs in the case studies of
the Appendix.

3.3 Change Interval

We measure change interval CI , defined as the duration of the time inter-
val between two consecutive commits, in order to study how often the API
descriptions change.

A Large-scale Empirical Assessment of Web API Size Evolution 17

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

ŷ = 0.11x+ 2.98, r2 = 0.15

Day of Commit

D
ay

s
sin

ce
pr

ev
io

us
C

om
m

it

200 400 600 800

Number of Commits

r = 0.384956917

Figure 11: Likelihood of change: Do APIs change less often as they age?

CI(api)c = CT (api)c+1 − CT (api)c (2)

whereas before CT (api)c represents the timestamp of committing c of
the history of the given api.

Fig. 9 (bottom) shows, as expected, that many APIs tend to change their
descriptions in the first part of their lives, even a lot of them in the same day
(CI < 1). While one could expect that for stable APIs, their API specifica-
tion will be left untouched after releasing it, there are some APIs for which
commits occur after a long period of inactivity, e.g., after leaving the API

18 F. Di Lauro, S. Serbout, C. Pautasso

0 1 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

66
8

101

102

103

104

105

API Size (Operations)

N
um

be
r

of
C

om
m

its

102

103

104

105

C
um

ul
at

iv
e

N
um

be
r

of
C

om
m

its

Figure 12: What is the distribution of the API Size metric? Histogram over
the API Size of all commits (Log Scale)

specification untouched for more than 3 years. This phenomenon is visible
also in the gaps of the API age vs. Commit time plot (Fig. 3).

Fig. 11 describes how the age of the APIs could impact their likelihood
to change their descriptions. We can observe that as APIs get older, they still
tend to change rather often.

3.4 API Size Evolution: Do APIs tend to grow?

It’s interesting to observe when commits were pushed in APIs histories in
order to understand how they tend to evolve in their lifetime and which devel-
opment lifecycles could be involved in these evolutions. While it is straight-
forward to analyze the commits time dimension, detecting and observing the
changes they contain is more challenging but also more informative.

Fig. 12 shows for all commits, the exponential distribution of the API
size. We can see that tens of thousands of commits do not contain any oper-
ations. As discussed in more detail in [35], these apparently empty artifacts
are sometimes used to represent data models with the OpenAPI variant of the
JSON Schema language.

In order to study how the size of API changes, we report the variance of
the number of operations compared with the commit history of every API in
Fig. 13 (bottom). We can note that 9.8% of APIs have a size variance of 0
over their commit history and the distribution ends with a tail of hundreds of
APIs which have a considerable size variance.

A Large-scale Empirical Assessment of Web API Size Evolution 19

-6
67 -5

0

-4
5

-4
0

-3
5

-3
0

-2
5

-2
0

-1
5

-1
0 -5 0 5 10 15 20 25 30 35 40 45 33
2

100

102

104

106

Delta(API Size (Operations))

N
um

be
r

of
C

om
m

its

102

103

104

105

C
um

ul
at

iv
e

N
um

be
r

of
C

om
m

its

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

29
76

8

101

102

103

104

105

Variance(API Size (Operations))

N
um

be
r

of
A

PI
s

102

103

104

C
um

ul
at

iv
e

N
um

be
r

of
A

PI
s

Figure 13: Do changing APIs always grow larger? API Size variation of every
commit and Size variance of every API (Log Scale)

The visualization of Fig. 17 shows how the API size changes over time
for all APIs with more than 10 commits. While we provided detailed vi-
sualizations of individual APIs in the case studies found in the Appendix,
here we present an intentionally crowded visualization of the entire dataset
comprised of thousands of APIs. In particular, it is possible to track over a
period of 6 years how the size of individual APIs changes with every commit.
The bottom left area shows that for the first 2 years, the API histories found
in the dataset completely cover the possible evolution paths leading to size
up to 50 operations. Above that level and beyond that time it is possible to
distinguish the trajectories of specific APIs. The visualization also includes

20 F. Di Lauro, S. Serbout, C. Pautasso

0 1 2 3 4 5 6 7

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

360

380

400

Age (Years)

A
PI

Si
ze

(O
pe

ra
tio

ns
)

Figure 14: API Size Evolution Overview. This visualization shows how the
size of each API changes over time for all APIs having more than 10 commits.

many horizontal lines, representing APIs that grow old but whose commits
do not change their size. The vertical lines instead indicate the presence of
commits with a high variation of the API size.

3.4.1 Size Variation
We compute the variation Delta(APISize(Operations)) - or
∆(APISize) - for each commit, as shown in Fig. 12 (middle), defined as:

∆(APISize)c = sizec+1 − sizec (3)

A Large-scale Empirical Assessment of Web API Size Evolution 21

where sizec+1 and sizec represent the API size in term of the number of
operations found in the artifact of two consecutive commits c+ 1, c.

In Fig. 13 (top) we compared all the computed variations against the num-
ber of commits. This distribution highlights that the vast majority of commits
do not change the size. We use ∆(APISize) to measure how much APIs
grow (∆(APISize) > 0) or shrink after each commit c.

In Fig. 15 we can observe the absolute API size variations |∆(APISize)|
related to the time difference in days (CI(api)c) between the correspond-
ing commits. In Fig. 16 we show a detailed view of the changes happening
more often (up to 2 years delay). The two scatter plots show that the largest
changes (both additions or removal of hundreds of operations) tend to happen
in commits pushed in a relatively short timeframe.

3.4.2 API Growth Speed
The instantaneous API growth speed

Speedc =
∆(APIsize)c
CI(api)c

(4)

represents the speed in terms of variation of operations per unit of time
(i.e., operations/day): a negative speed value indicates how rapidly an API
has been shrinking (some operations were removed) and conversely, a posi-
tive speed value indicates how quickly the number of the API operations is
growing.

APIs may change according to different patterns: some of them remain
unchanged for months until multiple commits introduce or delete operations
in a small amount of time, for example in the same day, and the other way
around. These rapid changes cause huge variations of the average Speedc
computed on the entire history of every API. The high values are shown
in the tails of the distribution of Fig. 18 are the direct consequences of the
introduction of changes in the APIs, where the values have been amplified
by a short amount of time (e.g., minutes) between the commits in which they
were introduced.

We measured the speed Speedc at every commit (Fig. 18) as well as ag-
gregated it over the history of each API by measuring the total size variation
defined below (Fig. 19).

3.4.3 Total Size Variation
We also computed the total size variation of each API, measured by compar-
ing the size of the last commit and the first commit of its history:

22 F. Di Lauro, S. Serbout, C. Pautasso

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

0

50

100

150

200

250

300

350

400

ŷ = 0.11x+ 2.98, r2 = 0.15

Change Interval (Days)

|∆
(A

PI
Si

ze
)|

500 1,000 1,500

Number of Commits

r = 0.003428409

Figure 15: Speed of change: How much time does it take to grow or shrink
the API?

∆(APIsize)api = sizeC − size0 (5)

where C is the last commit of the history of the given api.
The histogram shown in Fig. 19 shows a skewed distribution with more

APIs having a positive total size variation up to +174 operations than the
ones having a negative one. In the collection, we found a very large API with
654 operations in its first commit, which will lose most of its operations as it
evolves.

A Large-scale Empirical Assessment of Web API Size Evolution 23

0 50 100 150 200 250 300 350 400 450 500 550

0

20

40

60

80

100

120

Change Interval (Days)

|∆
(A

PI
Si

ze
)|

500 1,000 1,500

Number of Commits

Figure 16: Speed of change: How much time does it take to grow or shrink
the API? (like Fig. 15, but zoomed to show frequent changes)

If we further classify APIs in terms of whether they grow, shrink, or
simply do not change, we obtain the groups shown in Table 4. The first table
(a) counts how many APIs have grown larger or smaller over their entire
histories. Here we see that 5% of the APIs shrink, while 37.6% grow. If we
also consider changes occurring at every commit (b), we see that 55.8% of the
APIs keep a constant size in all the commits of their history, 31.1% of them
have a growing behavior, and 3.4% reduce their size constantly. Moreover,
9.7% of the APIs have a history with some commits increasing their size, and
others reducing their size.

24 F. Di Lauro, S. Serbout, C. Pautasso

0 1 2 3 4 5 6 7
−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

20

40

60

80

100

120

140

160

180

200

Age (Years)

R
el

at
iv

e
A

PI
Si

ze
(O

pe
ra

tio
ns

)

Figure 17: API Size Evolution Overview. For all APIs with more than 10
commits, we plot their relative size over time. Positive values indicate that
the API grows larger w.r.t. its initial commit. Each trajectory representing
the history of a different API is interpolated holding the size of the previous
commits until the next one. The colored dots on the horizontal axis highlight
the many APIs whose size remains the same as the initial commit.

The visualization of Fig. 17 shows how the API size, relative to the API
initial size, changes over time for all APIs with more than 10 commits. All
APIs begin their evolution at the origin (0,0) of the plot. Some will remain
on the horizontal axis, these are the 16,019 ones that never change their size.
The trajectory of the APIs which grow larger ends up above the X-axis, this

A Large-scale Empirical Assessment of Web API Size Evolution 25

-1
00

0
-1

00
0

-9
50

-9
00

-8
50

-8
00

-7
50

-7
00

-6
50

-6
00

-5
50

-5
00

-4
50

-4
00

-3
50

-3
00

-2
50

-2
00

-1
50

-1
00 -5

0 0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

23
04

00

101

102

103

104

105

Speed (DO/DT)

N
um

be
r

of
C

om
m

its

102

103

104

105

C
um

ul
at

iv
e

N
um

be
r

of
C

om
m

its

Figure 18: Speed of change distribution: operations/day (Log Scale)

part of the visualization is rather crowded as most APIs tend to grow. The
evolution of the APIs which reduce (permanently or temporarily) their sizes
are visualized below the X-axis.

4 Discussion

Q1: How stable are API artifacts over time?

Among the 163, 953 APIs considered in this study, there are
45, 907(28%) APIs that have more than one commit in their change
history, with a maximum number of commits that reaches 736. We also
found that 23.8% of APIs are more than one year old. Even more, 263

Size Change # APIs
None 16,466 57.3%
Larger 10,798 37.6%
Smaller 1,448 5.0%

Total 28,712

(a) Total API Change (Fig. 19)

Size Change # APIs
None 16019 55.8%
Growing 8929 31.1%
Shrinking 987 3.4%
Growing and Shrinking 2,777 9.7%
Total 28,712

(b) Commit ∆(API Size) (Fig. 12 middle)

Table 4: How many APIs, with more than two commits, grow or shrink their
size?

26 F. Di Lauro, S. Serbout, C. Pautasso

-6
54

-1
00 -9

5
-9

0
-8

5
-8

0
-7

5
-7

0
-6

5
-6

0
-5

5
-5

0
-4

5
-4

0
-3

5
-3

0
-2

5
-2

0
-1

5
-1

0 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 17
4

100

102

104

Final API Size - Initial API Size (Operations)

N
um

be
r

of
A

PI
s

101

102

103

104

105

C
um

ul
at

iv
e

N
um

be
r

of
A

PI
s

Figure 19: Total API Size Change (Log Scale)

of them have a history spanning over more than four years. In 17 we
can see that there is a case where the age exceeds six years of evolution.
We can also see examples of APIs with very particular size evaluations.
Some only grow or only shrink, and others grow and shrink. While there
is a big number of cases, which can be seen in the horizontal axis, where
the size remains stable, despite having a high number of commits.

Q2: Do APIs tend to grow or shrink over time?

In this work, we measure how the size of the APIs changes over time.
By comparing the size of the APIs at the moment of their birth and at the
last commit, we found that in the case of 57.3% of the subset of APIs
having more than two commits in their change history, the size does not
change. While 37.6% of them grow, and 5% become smaller.

More in detail, during their lifetime, the type of evolution of the APIs
changes from a commit to another. We found that 9.7% of them grow in
some commits and shrink in others, 31.1% grow in all the commits and
3.4% becomes smaller after each commit. However, we found that the
size of 55.8% of the APIs remains stable in all the commits.

This indicates a limitation of using the API structure size – simply de-
fined as the number of operations – to summarize the changes occurring
to the API. More metrics are needed to detect and assess the impact of
changes on other components of the API description.

A Large-scale Empirical Assessment of Web API Size Evolution 27

Q3: Does the frequency of change of an API depend on its age? By looking at
the APIs ages in the function of the number of commits, we can clearly
see in Figs. 3 and 10 that the density of commits reduces significantly as
the APIs age. This can be also seen from Fig. 17, which shows how the
evolution trajectory of many of the APIs gets flattered as the API ages.

By computing the period of time until a new commit occurs and plot-
ting it in Fig. 11 against the time of the current commit, we also see
that the change interval has a slight tendency to grow with the API age
(correlation 0.38).

Q4: Is the API commit history length proportional to the API age?

Among the studied APIs we found that the API having the longest
change history (up to 2605.28 days) has less than 10 commits. While
the one having the highest number of commits is 1031.34 days old.

We can see from Tab. 3 that APIs having the maximum number of com-
mits in the segments of APIs that are more than three years old is less
than the maximum number of commits of an API in the group of APIs
that are less than 3 years old. However, overall, the medians and averages
of the number of commits of all the APIs show that in the majority of
the cases, the number of commits increases as the API ages. This is also
confirmed by the correlation value of 0.27 and the linear model shown
in Fig. 10.

Q5: What is the distribution of the API size metric?

The range of sizes of the APIs in their different evolution phases goes
from 0 in the case of some commits of some APIs, up to 668 operations.
The histogram of Fig. 12 (top) shows an exponential distribution, with
various peaks (e.g., 90 operations, but also 200 operations).

We also tracked the size change from the first commit to the last one for
each API. We found cases, where the API ends up with 174 operations,
added, while others shrink losing more than 600 operations at the time
of the last commit (Fig. 19).

As a limitation of our work, we measured the size of each description
in a specific commit independently as we currently did not study the
commits according to the specific API history they belong to.

Q6: How often APIs update the version of the specification language used to
describe them?

28 F. Di Lauro, S. Serbout, C. Pautasso

Given the large number of years over which the artifacts have been
pushed to GitHub, we also verify how often do APIs change the version
of the modeling language used to describe them. We found that in the
high majority of the cases (98.2%) the OpenAPI versions remain stable
during the entire lifetime of the API. Only in some very few cases (1, 061
APIs) do the developers update the OAS version

4.1 Threats to validity

4.1.1 Selection Bias
This empirical study is based on APIs descriptions written in the OpenAPI
interface description language rather than the software itself. Which makes
the results bound by how realistic are the models we are involved in this
study. Moreover, we include in our dataset models which may not always
be representing APIs currently in use by some clients. They might be just
prototypes or examples, or descriptions used for other purposes, such as code
generation. Further classification and filtering heuristics are needed to extract
the subset of real-world APIs which are used in production.

4.1.2 Sampling Bias
Our dataset might be including descriptions retrieved from repositories forked
several times. This means that we might be considering some changes histo-
ries as linear and independent ones, while in reality, they belong to the same
API.

5 Related Work

5.1 Software Evolution

Recent works [22, 32] tried to evaluate and find solutions for the challenges
of software evolution [29], and its impact on software ecosystems, such as
dynamic software product lines [34].

Other studies of software evolution evaluate the maintainability of dif-
ferent systems. In this direction, [9] used a number of metrics to quantify
dominance in calls relations starting from the assumption that when more
complex relations are present within a source code module so it will be harder
for an application to be maintained. Their results seem to indicate that dom-
inance relations do reflect some principles of code maintainability [9]. [15]
defined a framework to understand the conceptual changes in an evolving
system and measuring them they were able to relate their observations to

A Large-scale Empirical Assessment of Web API Size Evolution 29

the types of maintenance performed [15]. Considering change effects, impact
analysis approaches [7, 10, 27] attempt to determine all possible points in the
code that are dependent to a given ”seed” point, involved in a modification
task, in order to predict what software parts affect each other. [42] applied
data mining to version histories in order to point out to programmers how
some changes are related to each other [42].

5.2 API Evolution

API Evolution has also been empirically studied in software engineer-
ing [21, 24]. For example, [20] presented a large-scale study of change
propagation within the Pharo ecosystem. In the same direction, the authors
of [19] designed APIEvolutionMiner: a tool to extract rules by monitoring
APIs changes during their evolution. This tool mines changes using deltas
from revisions contained in histories and produces rules to indicate how
method calls should be replaced. In our empirical study, we observe Web API
changes based on comparing different versions of their textual documentation
written in OpenAPI Specification.

In [23] the authors identify and classify the most frequent changes
that happen to APIs and how these changes could be reflected in the
documentation, release notes, issue tracker, and API usage logs.

There is exist also more focused work that targets a specific type of
software, such as Android applications. In [6] the authors conducted a study
on 5,848 free Android application selected from the Google Play Market.
Following our same approach for data collection, the authors built a Crawler
downloading free Android apps. The crawler was run for one week and re-
sulted in a collection of 25,869 apps, out of which they filtered only apps
having at least 10 votes to prune out unreliable ratings, and also apps having
their Android PacKage (APK) the file that is convertible into a JAR. The goal
of this study is to analyze how the ratings that an app had received correlated
with the fault- and change-proneness of the APIs such app relied upon. The
study included also the result of a survey that involved 45 professional An-
droid developers and showed that according to most of them, there is a direct
relationship between problems experienced with the adopted APIs and the
users’ ratings that their apps received.

Several quantitative analyses show that software artifacts evolve over time
and that the evolution of their content is not necessarily linear [28, 29]. This
means their size and complexity do not necessarily increase with time.

30 F. Di Lauro, S. Serbout, C. Pautasso

5.3 Web API Evolution

At the ICWE2021 conference, we presented a feasibility study [26] where we
consider the size of an API as a metric to detect changes in the API. In this
work, we increased the size of our study dataset by collecting more up-to-date
commit histories of more APIs descriptions from open-source repositories
(See Tab. 1) and providing additional visualizations (Figs. 4, 3).

Several research studies are trying to predict how the Web API systems
could potentially evolve in time [11,13,19,30,38]. In [13], the authors studied
the impact of the evolution of Web APIs through interviews with six de-
velopers involved in this process. They also investigated how major service
providers organize the evolution of their APIs and how changes can impact
clients’ applications. While [13] focused on the impact of Web APIs evolution
on the clients, the authors of [38] focus on the difficulties developers face
to upgrade their client applications as a consequence of the API evolution
of their dependencies. The authors also investigated how RESTful Web API
evolve analyzing subsequent changes in different software versions. A tax-
onomy of breaking and non-breaking Web API changes has been presented
by [25], which we plan to use as the next step to check how often each type
of change occurs in practice.

Other works aimed at proposing solutions for handling the problems that
both clients and developers can face because of their Web APIs evolution. For
that purpose, the authors of [11] proposed to use refactoring tools to mitigate
the impact of some types of API changes. In [4] the authors propose a data-
driven approach to enhance processes of APIs creation and evolution. They
have analyzed how to use data gathered from APIs usage and developers in
order to build indicators, usable as references, to plan the development of the
next releases. Also in [12] the authors addressed challenges related to the co-
evolution of APIs and their clients. They analyzed already-built artifacts in
order to obtain API access points and relate their usage to clients’ behavior.

5.4 Empirical Studies in Web API Analytics

One large empirical study is [39], which studied GraphQL [8, 16] APIs by
analyzing 16 commercial GraphQL schemas and 8,399 GraphQL schemas
mined from GitHub projects. One of the data points selection criteria adopted
by the authors is to have an API description written in the Schema Description
Language (SDL). This empirical study doesn’t take into account the time
dimension and analysis all the APIs in their latest at the time of the paper’s
writing. Same as [36] where the authors perform a specification-based empir-

A Large-scale Empirical Assessment of Web API Size Evolution 31

ical study on 6619 API collected from Github. The analysis was performed on
the OpenAPI description, and resulted in the extraction of four structural pat-
tern primitives with different variants, in addition to a set of detected smells
related to each pattern primitive.

[17, 18] is a work that focuses on the structure of Web APIs. Their anal-
ysis starts also from API descriptions written in OpenAPI. Such as ours, the
analysis performed in [17, 18] is based on metrics related to the API struc-
ture, such as the size (number of resources), number of read-only resources
number of POST, DELETE operations, number of root resources, number of
links, and the number of components and their size. We plan to analyze how
all such metrics evolve over time using our historical API collection as future
work.

While the authors of [17, 18] perform a structural analysis of a small but
curated Web API collection, in [35] the authors define additional API size
metrics to measure some characteristics of Web API data models such as the
number of schemas composing the data model, their usage and reuse across
the same data model. They detected a medium correlation between the data
model size and the size of the API structure. This opens up the question of
whether the co-evolution between API operations and its data model can be
observed in the dataset presented in this paper.

6 Conclusions

Web APIs are a pillar of distributed software architectures: they are the in-
terface that makes it possible to use the Web to communicate between a
system’s backend and frontend components. Managing their evolution can be
very challenging because of the critical role they play and the long periods of
time during which they need to be maintained. This task should be carefully
planned and executed to avoid the breakage of a large number of clients, and
avoid or limit the damage that can be caused by the API change. To build
empirical knowledge about how real-world Web APIs actually evolve, we
collected a very large dataset of API specifications from public repositories
available on GitHub and fetched all their revision history. Where we found
that the APIs do not necessarily grow from a commit to another. We even
found some APIs are now smaller than how they were at their birth time. Us-
ing this dataset, in this paper we analyzed the evolution of Web API structures
over time.

This study is an extension of a previous feasibility study, presented at
the ICWE conference [26] in May 2021, where we apply the same approach

32 F. Di Lauro, S. Serbout, C. Pautasso

on a larger input dataset with a total of 395,219 commits (see Tab. 1 for
a comparison of the two datasets and the main results of each study). To
make the results comparable, we kept the same definition of the size metric,
which consists of the total number of operations found in each OAS artifact.
We measured different change granularities, from fine-grained commits to
coarse-grained version identifier changes. While more than 71% of the APIs
present only one commit in their histories, we selected, analyzed, and visual-
ized the history of a collection of 5,176 APIs with more than 10 commits. We
analyzed also the time dimension of commit histories and tried to correlate
the age of APIs with their change frequency. We were able to confirm the
same observation done in our previous work: if APIs change size, they mostly
tend to do so by growing over time (Tab. 4). We observed also how the APIs
and their histories distribute themselves in time (Tab. 3) and whether different
OpenAPI/Swagger versions are scattered over those histories (Tab. 2).

7 Future Work

As future work, we plan to dig deeper into the change granularity by intro-
ducing more metrics to detect changes related to the complexity, the HTTP
methods, and the data model (JSON Schema) of the APIs over time. Based
on these metrics we will define refined heuristics to classify the reoccurring
change types. The goal is to be able to empirically identify the most common
Web API evolution patterns that are more likely to happen during the life-
time of any APIs. Additionally, we will also mine anti-patterns by detecting
changes that developers mistakenly introduce and then correct in their APIs
before they lead to clients’ breakage.

Acknowledgements

This work is funded by the SNSF, with the API-ACE project nr. 184692.

References

[1] OpenAPI Initiative. https://www.openapis.org/. Accessed: 2020-12-30.
[2] Prance. https://pypi.org/project/prance/. Accessed: 2020-12-28.
[3] open-api-spec-validator. https://github.com/p1c2u/openapi-spec-validator. Accessed:

2020-12-29.
[4] Alberto Abelló, Claudia P. Ayala, Carles Farré, Cristina Gómez, Marc Oriol, and Oscar

Romero. A data-driven approach to improve the process of data-intensive API creation

https://www.openapis.org/
https://pypi.org/project/prance/
https://github.com/p1c2u/openapi-spec-validator

A Large-scale Empirical Assessment of Web API Size Evolution 33

and evolution. In Proc. of the Forum and Doctoral Consortium Papers Presented at
CAiSE, volume 1848, pages 1–8. CEUR-WS.org, 2017.

[5] Gámez-Dı́az Antonio, Fernandez Pablo, and Antonio Ruiz-Cortés. An analysis of restful
apis offerings in the industry. In Proc. International Conference on Service-Oriented
Computing (ICSOC), pages 589–604, 2017.

[6] Gabriele Bavota, Mario Linares-Vasquez, Carlos Eduardo Bernal-Cardenas, Massimil-
iano Di Penta, Rocco Oliveto, and Denys Poshyvanyk. The impact of api change-and
fault-proneness on the user ratings of android apps. IEEE Transactions on Software
Engineering, 41(4):384–407, 2014.

[7] Shawn A. Bohner and Robert S. Arnold. Software Change Impact Analysis, chapter An
Introduction to Software Change Impact Analysis, pages 1–26. 1996.

[8] Gleison Brito and Marco Tulio Valente. REST vs GraphQL: A Controlled Experiment.
In 2020 IEEE International Conference on Software Architecture (ICSA), pages 81–91.
IEEE, mar 2020.

[9] E. Burd and M. Munro. An initial approach towards measuring and characteris-
ing software evolution. In Sixth Working Conference on Reverse Engineering (Cat.
No.PR00303), pages 168–174, 1999.

[10] A. Cimitile, A.R. Fasolino, and G. Visaggio. A software model for impact analysis:
a validation experiment. In Sixth Working Conference on Reverse Engineering (Cat.
No.PR00303), pages 212–222, 1999.

[11] Danny Dig and Ralph Johnson. How do apis evolve? a story of refactoring. Journal of
software maintenance and evolution: Research and Practice, 18(2):83–107, 2006.

[12] Anna Maria Eilertsen and Anya Helene Bagge. Exploring api/client co-evolution. In 2nd
IEEE/ACM International Workshop on API Usage and Evolution (WAPI@ICSE), pages
10–13, 2018.

[13] Tiago Espinha, Andy Zaidman, and Hans-Gerhard Gross. Web api growing pains:
Stories from client developers and their code. In Proc. IEEE Conference on Software
Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE). IEEE, 2014.

[14] Roy Thomas Fielding. REST: Architectural Styles and the Design of Network-based
Software Architectures. Doctoral dissertation, University of California, Irvine, 2000.

[15] Nicolas Gold and Andrew Mohan. A framework for understanding conceptual changes
in evolving source code. In Proceedings of the International Conference on Software
Maintenance, ICSM ’03, page 431, USA, 2003. IEEE Computer Society.

[16] Olaf Hartig and Jorge Pérez. Semantics and complexity of GraphQL. In Proc. World
Wide Web Conference, pages 1155–1164, 2018.

[17] Florian Haupt, Frank Leymann, Anton Scherer, and Karolina Vukojevic-Haupt. A frame-
work for the structural analysis of rest apis. In 2017 IEEE International Conference on
Software Architecture (ICSA), pages 55–58. IEEE, 2017.

[18] Florian Haupt, Frank Leymann, and Karolina Vukojevic-Haupt. Api governance sup-
port through the structural analysis of rest apis. Computer Science-Research and
Development, 33(3):291–303, 2018.

[19] A. Hora, A. Etien, N. Anquetil, S. Ducasse, and M. T. Valente. APIEvolutionMiner:
Keeping api evolution under control. In Proc. IEEE Conference on Software Main-
tenance, Reengineering, and Reverse Engineering (CSMR-WCRE), pages 420–424,
2014.

34 F. Di Lauro, S. Serbout, C. Pautasso

[20] André Hora, Romain Robbes, Marco Tulio Valente, Nicolas Anquetil, Anne Etien, and
Stéphane Ducasse. How do developers react to api evolution? a large-scale empirical
study. Software Quality Journal, 26(1):161–191, 2018.

[21] Daqing Hou and Xiaojia Yao. Exploring the intent behind api evolution: A case study.
In 2011 18th Working Conference on Reverse Engineering, pages 131–140. IEEE, 2011.

[22] Holger Knoche and Wilhelm Hasselbring. Continuous api evolution in heterogenous
enterprise software systems. In 2021 IEEE 18th International Conference on Software
Architecture (ICSA), pages 58–68, 2021.

[23] R. Koçi, X. Franch, P. Jovanovic, and A. Abelló. Classification of changes in api evolu-
tion. In Proc. 23rd International Enterprise Distributed Object Computing Conference
(EDOC), pages 243–249, 2019.

[24] Maxime Lamothe, Yann-Gaël Guéhéneuc, and Weiyi Shang. A systematic review of api
evolution literature. ACM Computing Surveys (CSUR), 54(8):1–36, 2021.

[25] Arnaud Lauret. The Design of Web APIs. Manning, 2019.
[26] Fabio Di Lauro, Souhaila Serbout, and Cesare Pautasso. Towards large-scale empirical

assessment of web apis evolution. In 21st International Conference on Web Engineering
(ICWE2021), Biarritz, France, May 2021. Springer, Springer.

[27] J. Law and G. Rothermel. Whole program path-based dynamic impact analysis. In 25th
International Conference on Software Engineering, 2003. Proceedings., pages 308–318,
2003.

[28] M.M. Lehman, D.E. Perry, and J.F. Ramil. Implications of evolution metrics on software
maintenance. In Proceedings. International Conference on Software Maintenance (Cat.
No. 98CB36272), pages 208–217, 1998.

[29] M.M. Lehman, J.F. Ramil, P.D. Wernick, D.E. Perry, and W.M. Turski. Metrics and laws
of software evolution-the nineties view. In International Software Metrics Symposium,
pages 20–32, Albuquerque, NM, November 1997.

[30] Jun Li, Yingfei Xiong, Xuanzhe Liu, and Lu Zhang. How does web service API evolution
affect clients? In Proc. 20th International Conference on Web Services (ICWS), 2013.

[31] Daniel Lübke, Olaf Zimmermann, Cesare Pautasso, Uwe Zdun, and Mirko Stocker.
Interface evolution patterns — balancing compatibility and flexibility across microser-
vices lifecycles. In Proc. 24th European Conference on Pattern Languages of Programs
(EuroPLoP 2019). ACM, 2019.

[32] Tarek Mahmud, Mujahid Khan, Jihan Rouijel, Meiru Che, and Guowei Yang. Api change
impact analysis for android apps. In 2021 IEEE 45th Annual Computers, Software, and
Applications Conference (COMPSAC), pages 894–903. IEEE, 2021.

[33] Cesare Pautasso and Olaf Zimmermann. The Web as a software connector: Integration
resting on linked resources. IEEE Software, 35:93–98, January/February 2018.

[34] Clément Quinton, Michael Vierhauser, Rick Rabiser, Luciano Baresi, Paul Grünbacher,
and Christian Schuhmayer. Evolution in dynamic software product lines. Journal of
Software: Evolution and Process, 33(2):e2293, 2021.

[35] Souhaila Serbout, Fabio Di Lauro, and Cesare Pautasso. Web apis structures and data
models analysis. In Proc. International Conference on Software Architecture (ICSA).
IEEE, 2022. to appear.

[36] Souhaila Serbout, Cesare Pautasso, Uwe Zdun, and Olaf Zimmermann. From OpenAPI
fragments to api pattern primitives and design smells. In Proc. European Conference on
Pattern Languages of Programs (EuroPLoP), 2021.

A Large-scale Empirical Assessment of Web API Size Evolution 35

[37] S. M. Sohan, Craig Anslow, and Frank Maurer. A case study of Web API evolution. In
Proc. IEEE World Congress on Services, pages 245–252, 2015.

[38] Shaohua Wang, Iman Keivanloo, and Ying Zoua. How do developers react to RESTful
API evolution? In Proc. International Conference on Service-Oriented Computing, page
245–259. Springer, 2014.

[39] Erik Wittern, Alan Cha, James C Davis, Guillaume Baudart, and Louis Mandel. An
empirical study of graphql schemas. In International Conference on Service-Oriented
Computing, pages 3–19. Springer, 2019.

[40] J. Yang, E. Wittern, A. T. T. Ying, J. Dolby, and L. Tan. Towards extracting web api
specifications from documentation. In 2018 IEEE/ACM 15th International Conference
on Mining Software Repositories (MSR), pages 454–464, 2018.

[41] Jerin Yasmin, Yuan Tian, and Jinqiu Yang. A first look at the deprecation of restful apis:
An empirical study. In 2020 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pages 151–161. IEEE, 2020.

[42] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl. Mining version histories to
guide software changes. IEEE Transactions on Software Engineering, 31(6):429–445,
2005.

36 F. Di Lauro, S. Serbout, C. Pautasso

Appendix: Web API Evolution case studies

We selected some particular cases from the dataset considered for this study,
showing different evolution histories in terms of the API size, and visualize
them from Fig 20 to 31.

In the Voyager case study, shown in Fig. 20, we detected 41 commits and
16 unique versions. Despite the commits and progressive versions found in
its artifacts (6 major and 8 minor version upgrades), this API doesn’t change
size during its lifetime, pointing out the need to use different metrics in order
to detect its changes. The same behavior is shown by Jina Service (Fig. 21)
where 33 versions are introduced across 403 commits.

The OpenStorage SDK case 23 has a growing behavior where additions
are introduced almost at every commit for a total of 103 versions added across
195 commits. A similar growth, which steadily grows all the time, is shown
in Fig. 27, where 70 versions are distributed across 126 commits in less than
2 years and in Fig. 22 with only one version - defined at the beginning of the
project’s life - kept until the last commit available.

Also, BMInventory AssistedInstall (Fig. 26) presents a growing behavior
with only one version introduced at the beginning and kept for less than two
years, across 418 different commits. This case study is one of the few which
allows following the growth of a relatively large API (with more than 120
operations) since its inception two years before (one operation on the first
commit).

Nightscout API, shown in Fig. 30, instead shows a considerable variation
at age 0, later followed by a zero-variance period and again, between days
1,000 and 1,200, another rapid growth, later followed with no variations in
size but with an increased density of versions addition until the end of its life.

Dockstore API (Fig. 24) both grows and shrinks over its history of 172
commits over more than 2 years. The final size is relatively small while size
variations shown in its history are characterized by rapid changes in deletion
(almost 200 operations) and later in addition (more than 100 operations).

In Fig. 25 we can observe the Docker Remote Engine API which shows
17 versions, introduced in more than 3 years, across 396 commits. There we
can note a relatively high growth in almost the first 300 days, while from that
point to the end the evolution is characterized by few additions.

A mixed growth-and-flat behavior is detected in Traccar API (Fig. 29 in
which the first part of its life is characterized by high-speed growth (more
than 40 operations added), with some quick deletions, while in the next part

A Large-scale Empirical Assessment of Web API Size Evolution 37

0 200 400 600 800 1,000
20

22

24

26

28

30

32

v
7.

1.
1

v
7.

2.
0

v
7.

3.
0

v
7.

4.
0

v
8.

0.
0

v
8.

0.
1

v
9.

0.
0

v
10

.0
.0

v
11

.0
.0

v
11

.0
.1

v
12

.0
.0

-r
c.

0
v

12
.0

.0
-r

c.
1

v
12

.0
.0

-r
c.

2
v

12
.0

.0
v

13
.0

.0
-b

et
a.

0
v

13
.0

.0
-b

et
a.

1

Day of Commit

A
PI

Si
ze

(O
pe

ra
tio

ns
)

Voyager

41 commits, 16 versions 0.00 paths/day

Figure 20: API Evolution Histories Example: Voyager

of its evolution it changed its behavior as a flat one (with the presence of
version variations), similarly to Fig. 20.

The last case is shown Fig. 31. This is the API with the most commits
in the entire collection. After the initial jump, the size remains constant over
almost 3 years of changes. Also, in this case, the version remains fixed at 1.0.

38 F. Di Lauro, S. Serbout, C. Pautasso

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

2.
0.

0r
c7

2.
0.

0r
c8

2.
0.

0r
c9

2.
0.

0r
c1

0
2.

0.
0r

c1
1

2.
0.

1
2.

0.
2

2.
0.

3
2.

0.
4

2.
0.

8
2.

0.
9

2.
0.

10
2.

0.
11

2.
0.

12
2.

0.
14

2.
0.

15
2.

0.
16

2.
0.

17

2.
0.

18
2.

0.
19

2.
0.

20
2.

0.
21

2.
0.

22
2.

0.
23

2.
0.

24

2.
0.

25
2.

1.
1

2.
1.

2
2.

1.
3

2.
1.

4
2.

1.
5

2.
1.

6

2.
1.

7

Day of Commit

A
PI

Si
ze

(O
pe

ra
tio

ns
)

Jina My Jina Service

403 commits, 33 versions 0.00 paths/day

Figure 21: API Evolution Histories Example: My Jina Service

A Large-scale Empirical Assessment of Web API Size Evolution 39

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

v
2

Day of Commit

A
PI

Si
ze

(O
pe

ra
tio

ns
)

CircleCI API

402 commits, 1 versions 0.58 paths/day

Figure 22: API Evolution Histories Example: Circle CI API

40 F. Di Lauro, S. Serbout, C. Pautasso

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

120

ve
rs

io
n

n
ot

se
t

0.
5.

0
ve

rs
io

n
n

ot
se

t
0.

6.
0

0.
7.

0
0.

9.
0

0.
8.

0
0.

9.
0

0.
10

.0
0.

11
.0

0.
12

.0
0.

13
.0

0.
14

.0
0.

15
.0

0.
16

.0
0.

17
.0

0.
18

.0
0.

19
.0

0.
20

.0
0.

21
.0

0.
20

.0
0.

21
.0

0.
23

.0
0.

24
.0

0.
27

.0
0.

24
.0

0.
25

.0
0.

26
.0

0.
28

.0
0.

29
.0

0.
30

.0
0.

31
.0

0.
32

.0
0.

33
.0 0.
35

.0
0.

34
.0

0.
36

.0
0.

37
.0

0.
38

.0
0.

33
.2

0.
39

.0
0.

33
.2 0.
41

.0
0.

40
.0

0.
42

.0
0.

43
.0

0.
44

.0
0.

43
.0

0.
44

.0
0.

45
.0

0.
46

.0
0.

47
.0

0.
51

.0
0.

49
.0

0.
50

.0
0.

51
.0

0.
52

.0
0.

53
.0

0.
54

.0
0.

55
.0

0.
58

.0
0.

55
.0

0.
57

.0
0.

59
.0

0.
60

.0

0.
62

.0
0.

63
.0

0.
64

.0
0.

65
.0

0.
66

.0
0.

67
.0 0.

69
.0

0.
70

.0
0.

71
.0

0.
72

.0
0.

73
.0

0.
74

.0
0.

75
.0

0.
76

.0
0.

77
.0

0.
79

.0
0.

80
.0

0.
81

.0
0.

83
.0

0.
82

.0
0.

84
.0

0.
85

.0
0.

86
.0

0.
87

.0
0.

91
.0

0.
88

.0
0.

89
.0

0.
90

.0
0.

92
.0

0.
93

.0
0.

96
.0

0.
94

.0
0.

95
.0

0.
97

.0
0.

98
.0

0.
99

.0
0.

10
0.

0
0.

99
.0 0.

10
0.

0
0.

10
1.

0
0.

10
2.

0
0.

10
3.

0
0.

10
4.

0
0.

10
5.

0

0.
12

1.
0

0.
12

2.
0

0.
12

3.
0

0.
12

4.
0

0.
12

6.
0

0.
12

5.
0

Day of Commit

A
PI

Si
ze

(O
pe

ra
tio

ns
)

apiapiproto OpenStorage SDK

195 commits, 103 versions 0.29 paths/day

Figure 23: API Evolution Histories Example: apiapiproto OpenStorage SDK

A Large-scale Empirical Assessment of Web API Size Evolution 41

0 100 200 300 400 500 600 700 800
0

50

100

150

200

250

300

350

1.
6.

0

1.
9.

0-
al

p
h

a.
1-

S
N

A
P

S
H

O
T

1.
6.

0
1.

9.
0-

al
p

h
a.

1-
S

N
A

P
S

H
O

T
1.

6.
0 1.
9.

0-
al

p
h

a.
1-

S
N

A
P

S
H

O
T

1.
9.

0-
al

p
h

a.
3

1.
9.

0-
al

p
h

a.
4-

S
N

A
P

S
H

O
T

1.
9.

0-
al

p
h

a.
5-

S
N

A
P

S
H

O
T

1.
9.

0-
al

p
h

a.
6-

S
N

A
P

S
H

O
T

1.
9.

0-
al

p
h

a.
6

1.
9.

0-
al

p
h

a.
7

1.
9.

0-
al

p
h

a.
9-

S
N

A
P

S
H

O
T

1.
9.

0-
al

p
h

a.
9

1.
9.

0-
b

et
a.

1-
S

N
A

P
S

H
O

T
1.

10
.0

-a
lp

h
a.

0-
S

N
A

P
S

H
O

T

1.
10

.0
-a

lp
h

a.
1-

S
N

A
P

S
H

O
T

1.
10

.0
-a

lp
h

a.
2-

S
N

A
P

S
H

O
T

1.
10

.0
-a

lp
h

a.
3-

S
N

A
P

S
H

O
T

1.
11

.0
-a

lp
h

a.
0-

S
N

A
P

S
H

O
T

1.
11

.0
-a

lp
h

a.
1-

S
N

A
P

S
H

O
T

1.
11

.0
-a

lp
h

a.
2-

S
N

A
P

S
H

O
T

1.
11

.0
-a

lp
h

a.
3-

S
N

A
P

S
H

O
T

1.
12

.0
-a

lp
h

a.
0-

S
N

A
P

S
H

O
T

Day of Commit

A
PI

Si
ze

(O
pe

ra
tio

ns
)

Dockstore Dockstore API

172 commits, 20 versions 0.93 paths/day

Figure 24: API Evolution Histories Example: Dockstore Dockstore API

42 F. Di Lauro, S. Serbout, C. Pautasso

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

120

1.
26

1.
25

1.
26

1.
25

1.
26

1.
29

1.
26 1.

29
1.

26 1.
27

1.
26 1.

29
1.

27
1.

26
1.

27
1.

26 1.
30

1.
26

1.
27

1.
26

1.
27 1.

31
1.

27
1.

29
1.

28
1.

27
1.

29
1.

27
1.

29
1.

27
1.

29
1.

27
1.

28
1.

27
1.

28
1.

29 1.
30

1.
29

1.
30

1.
29

1.
40

1.
29

1.
30

1.
34

1.
30 1.

31
1.

30 1
.3

1
1.

30 1.
31

1.
30 1.

31
1.

36
1.

31
1.

32
1.

31
1.

32
1.

31
1.

32
1.

31
1.

32
1.

34
1.

32
1.

34
1.

32
1.

36
1.

32
1.

34
1.

33
1.

41
1.

34
1.

37
1.

34
1.

35
1.

37
1.

35
1.

36

1.
37

1.
36

1.
37

1.
38

1.
37

1.
38

1.
37

1.
40

1.
37

1.
38

1.
39

1.
40

1.
39

1.
40

1.
41

1.
40

1.
41

1.
40

1.
41

Day of Commit

A
PI

Si
ze

(O
pe

ra
tio

ns
)

Docker Remote API Docker Engine API (243717)

396 commits, 17 versions 5.01 paths/day

Figure 25: API Evolution Histories Example: Docker Remote API, Docker
Engine API

A Large-scale Empirical Assessment of Web API Size Evolution 43

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

1.
0.

0

Day of Commit

A
PI

Si
ze

(O
pe

ra
tio

ns
)

BMInventory AssistedInstall

418 commits, 1 versions 274.05 paths/day

Figure 26: API Evolution Histories Example: BMInventory AssistedInstall

44 F. Di Lauro, S. Serbout, C. Pautasso

0 100 200 300 400 500 600
0

5

10

15

20

25

30

35

0.
1 0

.2
0.

3 0
.3

.1
0.

3 0
.3

.1
0.

6 0
.8 0.
8.

1
0.

9
0.

10
0.

13
.1

0.
9 0

.1
2

0.
12

.1
0.

13 0
.1

2.
2

0.
13

0.
13

.1
0.

13
0.

13
.1

0.
14 0

.1
4.

1
0.

14
.2

0.
14

.3

0.
14

.6
0.

14
.7

0.
14

.8
0.

14
.1

4
0.

15
.0

0.
15

.1
0.

15
.2 0

.1
6.

0
0.

17
.0

0.
17

.3
0.

17
.4

0.
17

.5
0.

17
.6

0.
17

.7
0.

17
.8

1.
0.

0
1.

0.
2

1.
0.

3

1.
0.

4
1.

0.
5

1.
0.

6 1.
0.

7
1.

0.
9

1.
0.

10
1.

0.
11 1.

0.
12

1.
0.

13
1.

0.
14

1.
0.

15
1.

0.
16

1.
0.

17
1.

0.
18

1.
0.

19
1.

0.
20

1.
0.

21
1.

0.
22

1.
0.

23
1.

0.
24 1.

0.
25

1.
0.

26
1.

0.
25

1.
0.

26
1.

0.
27

1.
0.

28
1.

0.
29

1.
0.

30

1.
0.

31
1.

0.
32

1.
0.

33
1.

0.
34

1.
0.

35
1.

0.
36

1.
0.

38
2.

0.
0

Day of Commit

A
PI

Si
ze

(O
pe

ra
tio

ns
)

Dokumente API

126 commits, 70 versions -0.65 paths/day

Figure 27: API Evolution Histories Example: Dokumente API

A Large-scale Empirical Assessment of Web API Size Evolution 45

0 100 200 300 400 500 600 700 800 900
20

25

30

35

40

45

ve
rs

io
n

n
ot

se
t

0.
1.

20 0.
1.

23
0.

1.
20

0.
1.

38

0.
5.

1
1.

0.
0-

d
ev

.1
1.

0.
0-

d
ev

.2

1.
0.

0

1.
0.

1 1.
1.

0-
al

p
h

a.
1

1.
1.

1.
b

et
a.

1
1.

1.
0-

al
p

h
a.

1
1.

1.
1-

b
et

a.
1

1.
1.

0-
al

p
h

a.
1

1.
1.

1-
b

et
a.

1
1.

1.
2-

rc
.1

1.
1.

2
1.

2.
0

1.
3.

0
1.

4.
0-

rc
.1

1.
4.

0
1.

4.
1

1.
5.

0-
rc

.0
1.

5.
0-

rc
.1

1.
5.

0-
rc

.2
1.

5.
0-

rc
.3

1.
5.

0
1.

6.
0-

rc
.0

1.
6.

0

1.
7.

0-
al

p
h

a.
1

1.
7.

0-
al

p
h

a.
2

v
1.

7.
0-

al
p

h
a.

3
1.

7.
0-

rc
.0

1.
7.

0-
rc

.1
1.

7.
0-

rc
.2

1.
7.

0-
rc

.3
1.

7.
0-

rc
.4

1.
7.

0

Day of Commit

A
PI

Si
ze

(O
pe

ra
tio

ns
)

KF Pipelines API Kubeflow Pipelines API

61 commits, 35 versions 0.01 paths/day

Figure 28: API Evolution Histories Example: KF Pipelines API Kubeflow
Pipelines API

46 F. Di Lauro, S. Serbout, C. Pautasso

−200 0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200
0

10

20

30

40

50

60

70

3.
3-

S
N

A
P

S
H

O
T

3.
3

3.
5

3.
7

3.
8

3.
9

3.
10

3.
13

3.
14

3.
15

3.
16

3.
17

4.
0

4.
1

4.
2

4.
3

4.
4

4.
5

4.
6

4.
7

4.
8

4.
9

4.
10

4.
11

4.
12

4.
13

4.
14

Day of Commit

A
PI

Si
ze

(O
pe

ra
tio

ns
)

traccar Traccar

79 commits, 27 versions 5.48 paths/day

Figure 29: API Evolution Histories Example: traccar Traccar

A Large-scale Empirical Assessment of Web API Size Evolution 47

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
0

5

10

15

20

25

30

0.
8.

0

0.
10

.3
-d

ev
-2

01
71

20
5

0.
11

.0
-d

ev
-2

01
80

80
5

0.
11

.0
-d

ev
-2

01
81

02
2

0.
11

.0
-r

c1
-2

01
90

20
5

0.
11

.0
+

re
le

as
e+

20
19

02
07

0.
11

.1
+

d
ev

+
20

19
02

07
0.

11
.1

0.
11

.2
-d

ev
-2

01
90

30
1

0.
11

.2
-r

c1
-2

01
90

32
0

0.
11

.2
-r

c2
-2

01
90

32
3

0.
11

.2
-r

c3
-2

01
90

71
7

0.
12

.0
0.

12
.1

0.
12

.2
0.

12
.3

-d
ev

0.
12

.3
0.

12
.4

-d
ev

0.
12

.4
0.

12
.5

-d
ev

0.
12

.5
0.

12
.6

-d
ev

13
.0

.0
-d

ev
13

.0
.0

13
.0

.1
13

.0
.2

-d
ev

13
.1

.0

14
.0

.0
14

.0
.1

14
.0

.2
14

.0
.3

14
.0

.4
14

.0
.5

14
.0

.6
14

.0
.7

14
.0

.8

Day of Commit

A
PI

Si
ze

(O
pe

ra
tio

ns
)

Nightscout API

51 commits, 36 versions 0.11 paths/day

Figure 30: API Evolution Histories Example: Nightscout API

48 F. Di Lauro, S. Serbout, C. Pautasso

0 200 400 600 800 1,000
0

1

2

3

4

5

6

1.
0

Day of Commit

A
PI

Si
ze

(O
pe

ra
tio

ns
)

Api Documentation

736 commits, 1 versions 0.00 paths/day

Figure 31: API Evolution Histories Example: Api Documentation. This
anonymouos API has the highest number of commits in the dataset.

	Introduction
	Dataset
	Dataset collection
	Dataset overview

	Results
	Change Granularity: Commits and Versions
	API Age
	Change Interval
	API Size Evolution: Do APIs tend to grow?

	Discussion
	Threats to validity

	Related Work
	Software Evolution
	API Evolution
	Web API Evolution
	Empirical Studies in Web API Analytics

	Conclusions
	Future Work

