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Abstract. The diverse landscape of Workflow Management Systems
(WfMSs) makes it challenging for users to compare different solutions to
identify the ones most suitable to their requirements. Thus a comparison
framework that would define common grounds in many different aspects,
such as price, reliability, security, robustness and performance is neces-
sary. In this paper we focus on the performance aspect, and we present a
framework for automatic and reliable calculation of performance metrics
for BPMN 2.0 WfMSs. We validate the framework by applying it on two
open-source WfMSs. The goal is to contribute to the improvement of ex-
isting WfMSs by pinpointing performance bottlenecks, and to empower
end users to make informed decisions when selecting a WfMS.
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1 Introduction

With the growth in the variety of Workflow Management Systems (WfMSs) com-
panies face a difficult decision when selecting a suitable system for their Business
Process Management (BPM) projects. The main differences among WfMSs con-
sist of: the supported executable modeling languages (e.g., WS-BPEL, BPMN
2.0), the integration with external systems and tools (e.g., Web service APIs for
monitoring and business intelligence [3]), their performance [12], robustness [6],
operating costs and other non-functional requirements. In this paper, we address
the need to assess alternative WfMSs based on the runtime performance of the
Business Process (BP) execution by their Workflow Engine (WfE). Such assess-
ment would empower BPM adopters to map their requirements to the available
solutions and BPM vendors and developers to improve their technology offer-
ings. Our framework for benchmarking BPMN 2.0 WfMSs ensures the reliability
of the benchmarking process. It does so by structurally defining and controlling
the environment under which the performance experiments are carried out and
their results analyzed, while taking into account the main requirements of a good
benchmark [5]. The decision to focus on BPMN 2.0 (BPMN2 hereinafter) is due
to its growing support by commercial and academic WfMSs. As initial validation
of the framework we use it for a simplistic performance test of two WfMSs.

http://benchflow.inf.usi.ch


2 Related Work

The need for benchmarking WfMSs has been identified many times. In 2000,
Weikum et al. [4] propose a benchmark for comparing the performance of dif-
ferent commercial WfEs by measuring their throughput to study the impact of
the database component. Ten years later, SOABench [1] defines one of the first
performance comparisons for WS-BPEL WfEs. It assumes that the performance
of a WS-BPEL WfE can be reduced to its response time. A recent review by
Röck et al. [12], of the work undertaken so far for benchmarking WS-BPEL
WfEs, highlights: the lack of an extensive evaluation of different WfEs, the un-
clear definition of the workload mix (i.e., the mix of process models executed
by the System Under Test (SUT)) and the load functions (i.e., the functions
describing how the requests to start and interact with the BP instances are
sent to the SUT), as well as the narrowly focused metrics for characterizing sys-
tem’s performance. There exist many commercial and open-source performance
measurement frameworks [11], some dedicated to generic Web Applications (e.g,
Faban (http://faban.org), JMeter (http://jmeter.apache.org)), and others
to middlewares [1], [8]. However, to the best of our knowledge, no ready-to-use
open-source solutions exist for comprehensive benchmarking of BPMN2 WfMSs.
There exist similar tools [1], [7], however they do not implement performance
benchmarking (e.g., Betsy [7]), or they use virtual machines to deploy the SUT
(e.g., SOABench [1]), introducing additional overhead possibly impacting the
performance.

3 The BenchFlow Benchmarking Framework

As opposed to other software systems, benchmarking WfMSs introduces ad-
ditional challenges derived from: 1) the system deployment complexity due to
their distributed nature; 2) the high number of configuration parameters affect-
ing their performance; 3) the absence of a standard interface to interact with the
WfMSs and to access execution data; 4) the asynchronous execution of the pro-
cesses; and 5) the complexity of the execution behaviours that can be expressed
by modern modeling and execution languages such as BPMN2. The system de-
ployment complexity and the high number of configuration options require to
integrate the configuration and the deployment of the SUT, i.e., the WfMS, as
part of the performance test definition. It is the only way to scale out the large
number of tests needed to comprehensively evaluate the WfMSs performance.
The absence of a standard interface makes abstractions necessary for handling
many different WfMSs by the framework. The asynchronous execution of pro-
cesses makes it challenging to collect the measures directly on the SUT side
since the client is only aware of the response time of the requested task’s queu-
ing, whereas it remains unaware of its actual execution status and execution
time. The complexity of the possible behaviours that can be expressed needs to
be tackled by proposing a model-driven approach that, starting from a BPMN
model and a set of WfMS configurations, has to instantiate the infrastructure
necessary to perform the test.

http://faban.org
http://jmeter.apache.org
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Fig. 1: BenchFlow Framework Architecture

The BenchFlow framework builds upon Faban, an established and tested
“performance workload creation and execution framework”, to design the load
drivers and issue the load to the WfMS. The load driver, which is executed
by the harness, provides the infrastructure needed to define the simulated
users and their interaction with the WfE. BenchFlow also exploits Docker
(https://www.docker.com) as a containerization technology, to enable the au-
tomatic deployment and configuration of the WfMS and to ensure that the ex-
perimental results can be reproduced. As shown in Fig.1, a WfMS can be tested
with BenchFlow only if: 1) its API can be used for automation of the test ex-
ecution [13]. The API should feature: deployment of BP models, start of a BP
instance execution, access to the list of pending user and manual tasks and ability
to complete them, and sending events to the running BP instances; 2) its logs or
instance database (DB) include performance data about the BP instances’ execu-
tion. These can be queried to calculate WfMS performance metrics. BenchFlow
aims to minimise the effort of adding a new WfMS to the framework and exe-
cuting performance tests on it. To add a new WfMS, users need to: provide a
containerized version of the WfMS (this should be published in a public registry
if the results are meant to be reproduced), integrate the custom WfE interfaces,
provide the queries that BenchFlow can run to assess the completion of the BP
instances execution and to extract the raw performance data.

3.1 Performance Test Execution

The WfMSs are automatically deployed and undeployed using Docker (Fig. 1.1
and 1.2). Each component involved in the benchmark (the WfE, the instance
DB, the Web services and Faban load drivers) are packaged as Docker images
to be deployed and executed on different servers connected by a dedicated local
network so that interferences are minimized. Docker enables the repeatability
of the benchmark execution, since it freezes the system state so that every test

https://www.docker.com


runs from exactly the same initial conditions. Containerization technologies in-
troduce some overhead in system’s performance that can be detrimental for the
performance tests. However a recent reliable performance analysis of Docker [2]
has shown that, if carefully configured, Docker reaches near-zero overhead.

After the WfMS is deployed, the workload can be applied. The workload is
defined by standard BPMN2 models and BenchFlow provides already defined
workload packages and artifacts. These consist of a mix of BPMN2 models that
have to be deployed in the WfE. They are characterized by their features (e.g.,
which BPMN2 language constructs they use), and the simulated behaviour of
the users instantiating them and interacting with them, as well as the simu-
lated behaviour of the Web Services called by the WfE. Each WfMS uses a
custom mechanism for deployment, instantiation and interaction with tasks. We
abstract common interaction interfaces, and then map them to the actual ones
implemented by each WfMS. Faban drivers issue the load to the WfMS, and we
expose its API by means of a Domain Specific Language (DSL), similarly to what
has been done in other performance frameworks and generic application perfor-
mance testing (e.g., https://github.com/flood-io/ruby-jmeter). The use of
a DSL simplifies the definition of a reusable workload package encapsulating the
simulated behaviour of the interacting users and external services.

3.2 Performance Analyzes

BenchFlow automatically collects all the data needed to compute performance
metrics, and to check the correct execution of the tests (e.g., errors by different
WfMS components). The client-side data (e.g., the response time of BP instance
start requests) are collected by Faban and integrated with the server-side data
collected by BenchFlow. The server-side data is collected from the execution
logs from all the different containers realizing the WfMS, as well as from the in-
stance DB populated by the WfMS during the test execution. In order to avoid
interferences during the test execution, we collect (Fig. 1.4) all the data only
after the WfMS completes the execution of the issued load. This is determined
by first monitoring the CPU utilization of the running Docker container, and
then when the container is idle, by checking if the number of completed BP in-
stances matches the number of BP instances started by the load driver (Fig. 1.3).
We exploit the logs to identify execution errors, and containers’ statistics (ob-
tained through Docker stats API) and the instance DB data to compute the
performance metrics included in BenchFlow (Fig. 1.6). Each WfMS has its own
internal representation and structure for the logs and the instance DB data. In
order to define the metrics computation and the performance analyzes only once
for all WfMSs we map these logs and data to a uniform representation (Fig. 1.5).

4 Evaluation: Preliminary Scalability Experiment

In this section we present the results of using BenchFlow to evaluate the scal-
ability of two open-source WfMSs as the number of users increases. The load
issued to the WfMS and the selected performance metrics are not exhaustive.

https://github.com/flood-io/ruby-jmeter
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4.1 Experiment Description and Set-up

This performance testing experiment is based on the following elements [11]:
1) Workload: the instances of the BP models set executed by the WfE during

the experiment. Given the limited scope of this experiment we use only one
simple BP model presented in Fig. 2. The Script task is an empty script. The
Timer event defines a wait time of 2s before allowing the process to continue.

2) Load Function: the function handling system’s load. In our case the Load
function determines how the BP instances are initiated by a variable number of
simulated users (since we are testing system’s scalability), growing from 5 to 150
concurrent users. Due to experiment’s simplicity the load driver executes the
Load function only once when the test starts. The duration of the load function
is 300s with 30s of ramp-up period. The ramp-up period defines the transition
from none to all simulated users being active. This means that it takes 30s before
all users start issuing requests for BP instance instantiation. For example, in an
experiment with 5 users, a new simulated user is created every 6s during the
ramp-up period. After becoming active each user issues one BP instance start
request per second.

3) Test environment : the characteristics of the hardware used to run the
experiment. We use three servers (Fig. 1): one for the harness executing the load
driver, one for the WfE and one for the Database Management System (DBMS).
We deploy the WfE on the least powerful machine (12 CPU Cores at 800Mhz,
64GB of RAM) to ensure that the machine where we deploy the Load driver (64
CPU Cores at 1400MHz, 128GB of RAM) can issue sufficient load and that the
DBMS (64 CPU Cores at 2300MHz, 128GB of RAM) can handle the requests
from the WfE. After each test we verify the absence of measurement noise by
checking the environment metrics (CPU, RAM and network usage) and the WfE
logs to ensure that all the BP instances are completed.

We run the experiment on two open-source WfMSs supporting native exe-
cution of BPMN2. We test them on top of Apache Tomcat 7.0.59 using Oracle
Java 8 and MySQL Community Server 5.5.42. We use the default configuration
as specified on vendors’ websites.

4.2 Results

The first metric we analyze is the Throughput = #BPInstances(bp)
Time(s) [9, ch. 11].

As per Fig. 3 Engine B does not scale well after 25 and the throughput starts
degrading after 50 users. Engine A can handle a load up to 125, with the through-
put decreasing abruptly with 135-150 users. Thus the Capacity of the WfEs can
be estimated to less than 135 for Engine A and less than 50 users for Engine B.
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Fig. 4: Aggregated Process Instance Duration Comparison

The BP instance duration is the time difference between the start and the
completion of a BP instance. It is presented in the box and whisker plot in
Fig. 4(a) for Engine A and Fig. 4(b) for Engine B. This type of plot displays
the analyzed data into quartiles where the box contains the second and third
quartile, while the median is the line inside the box. The lines outside of the
box, called whiskers, show the minimum and maximum value of the data [10].
The measurements show that Engine A scales better since it starts having an
unexpected behaviour after 125 concurrent users, while the first execution per-
formance problems of Engine B appear at 50 users, as evident from the instance
duration increase of one order of magnitude. In Fig. 5 we report Engine A’s
CPU utilization for each of the tests. It is interesting to notice that while the in-
stance duration increases substantially starting from 135 concurrent users (Fig. 4
(a)), the CPU utilization decreases, indicating that the slowdown of the WfE
is not caused by lack of resources. The same has been verified by checking the
CPU/RAM utilization of the DBMS.

After noticing a bottleneck in performance scaling, we investigate the causes.
Since only two constructs, a Script task and a Timer event, are used in the
experiment BP model, we test the WfE performance in handling each of them
individually. The test processes used consist of a Start event, the tested construct
and an End event. As per the previously gathered information we focus on the
critical number of users (125/135 for Engine A and 25/50 for Engine B). We
use the delay metric which compares the expected to the actual duration of the
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Fig. 6: Script Task ( ) and Timer Event ( ) feature comparison

construct execution. The expected duration of the Timer is 2s, while the empty
Script task should take 0s to complete. The delay measurements (Fig. 6) show
that both WfEs handle the Script task efficiently with an average delay below
10ms. The same does not hold for the Timer. For Engine A, the average delay of
the Timer at 135 users is by three orders of magnitude greater than at 125 users.
For Engine B, the delay increases by two orders of magnitude between 25 and
50 users. The observed system behaviour could be due to an excessive overhead
introduced by concurrently handling many Timers, which could cause growth in
the Timers queue thus postponing their execution and increasing their delay.

5 Conclusion and Future Work

The BenchFlow framework greatly simplifies the performance benchmarking of
BPMN2 WfMSs, by abstracting the heterogeneity of their interfaces and au-
tomating their deployment, the data collection and the metrics and Key Per-
formance Indicators (KPIs) computation. It does so by relying on Faban and
Docker, and by verifying the absence of noise in the performance measurements.
While the complexity of BPMN2 makes it challenging to benchmark the perfor-
mance of the WfMSs implementing it, the benefits of doing so are evident. The
first experimental results obtained with a simple BP model running on two pop-
ular open-source WfMSs have uncovered important scalability issues. We have
discussed the identified performance bottlenecks with the WfMS vendors who
have clarified the probable cause. Namely, in Engine A we have used a different
DBMS configuration in the setup of the system. In Engine B the goal of the



default configuration is a fast setup, not optimisation. The discussion has em-
phasised the need of defining a systematic methodology for obtaining a ready to
use setup of the WfMS from the vendors. Developers can use these results to im-
prove the WfMSs, while end users can decide which WfMS to deploy depending
on how many concurrent users they have, and carefully set their configuration.

As a next step we plan to release the framework to the community to gain
empirical evidence about its benefits and limitations. We will also continue the
experiments to measure the performance of additional real-world WfEs. The ul-
timate goal is to give a fair comparison of commercial BPMN2 WfMSs by means
of a small set of KPIs [13], which we intend to derive by defining and aggregating
a set of raw metrics. We also plan to extend the BenchFlow framework towards
other non-functional quality attributes, e.g., reliability, security and robustness.
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