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Abstract. Business process models can serve different purposes, from
discussion and analysis among stakeholders, to simulation and execution.
While work has been done on deriving modeling guidelines to improve
understandability, it remains to be determined how different modeling
practices impact the execution of the models. In this paper we observe
how semantically equivalent, but syntactically different, models behave
in order to assess the performance impact of different modeling prac-
tices. To do so, we propose a methodology for systematically deriving
semantically equivalent models by applying a set of model transforma-
tion rules and for precisely measuring their execution performance. We
apply the methodology on three scenarios to systematically explore the
performance variability of 16 different versions of parallel, exclusive, and
inclusive control flows. Our experiments with two open-source business
process management systems measure the execution duration of each
model’s instances. The results reveal statistically different execution per-
formance when applying different modeling practices without total or-
dering of performance ranks.

Keywords: BPMN 2.0 · Execution Performance · Semantic Equivalence

1 Introduction

As customer retention becomes strongly related to service execution time, ve-
locity requirements have gone down from days to hours, minutes and seconds.
This is especially true in fully automated Business Processes (BPs), where any
additional millisecond of performance boost brings companies a competitive ad-
vantage and potential cost savings on the Cloud [2]. Assuming that model’s
execution semantics has already been optimized, could such boost be achieved
by using what La Rosa et al. [25] call the “Alternative Representation Pattern”,
i.e., modeling the same execution semantics with different static structures? For
instance, parallelism in BPMN 2.0 can be modeled explicitly by using a parallel
gateway, or implicitly through multiple outgoing flows from an activity [23]. Al-
though the modeling practices used in two such models are different in terms of
the model’s graph topology (size and used constructs), their execution seman-
tics is the same, i.e., they both depict parallelism. As modelers freely pick which
modeling practice to use, their choice should result in the same execution per-
formance. Does this expectation hold in practice? Does the answer depend on



the Business Process Management Systems (BPMSs)? These are open questions
which have not received the due attention so far.

The first research question (RQ1) we address in this work is: Does the ap-
plication of different modeling practices have significant impact on the duration
of a BP instance execution? Our null hypothesis (HRQ1) is that there is no
statistically significant difference in the execution duration between instances of
models which are semantically equivalent but structurally different. We use trace
equivalence [1] to define semantically equivalent models, i.e., models which pro-
duce the same traces (execution logs), regardless of the differences in their static
structure (the control-flow constructs used). The data flow of the models remains
unaltered. The second research question (RQ2) we address is: If HRQ1 is rejected,
is there a total order between semantically equivalent but structurally different
models, when ranked according to their performance?

By answering RQ1, BPMS vendors can decide whether there is a potential
for performance improvement of their products based on alternative represen-
tations of deployed BPs. For instance, if an implicit parallel gateway executes
significantly faster than an explicit one, the vendor can use the same imple-
mentation for both. The answer to RQ2, on the other hand, indicates potential
generalization opportunities of any identified optimization rules. For instance, it
can show whether the execution of implicit gateways always ranks better than
the execution of explicit gateways, regardless of the gateway type (e.g., paral-
lel, inclusive, exclusive). Answering both questions is required before investing
in further research towards automatic performance optimization by semantics
preserving model transformations.

To this end, we propose a methodology for transforming an initial model into
semantically equivalent models by using a predefined set of transformation rules.
We also propose a statistical procedure to analyze the results of executing the
equivalent models in order to answer the two research questions. To delimit the
exploration space for this paper we have selected three scenarios which follow
some of the modeling guidelines defined by Mendling et al. [21] and deal with the
frequently used parallel and exclusive gateways [22], as well as with the inclusive
gateway which has been found to hinder BP understandability [21]. We run the
initial models as well as the derived semantically equivalent models on two open
source BPMSs, Camunda and Activiti. The contribution of this paper consists of
the methodology, the experimental results, and the analysis, which indicate that
semantically equivalent models with different structure demonstrate statistically
different execution behaviour, thus justifying further research into automated
BP execution performance improvement.

The rest of this paper is organized as follows. In Sect. 2 we propose a method-
ology for defining the experiments needed for assessing the performance differ-
ences. We apply the methodology on three scenarios and discuss the results
in Sect. 3, followed by a short survey of the related work in Sect. 4. We elabo-
rate on the threats to the validity of our work in Sect. 5, while concluding the
paper in Sect. 6.
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Fig. 1. Methodology for systematic exploration of the performance of structurally dif-
ferent but semantically equivalent models

2 Methodology

The methodology (Fig. 1) is divided into two parts: 1) define and perform ex-
periments, which as such can be applied to obtain metrics needed for different
research questions; and 2) statistically analyze the experiment results to test the
HRQ1 hypothesis and rank the performance of the models to answer RQ2.

1. Initial Model. The experiment definition process starts with the design
of an initial model (mi) (Fig. 1.1). Such initial model could follow existing best
practices and conventions, or modeler’s personal preferences.

2. Applicable Rules. In addition to the initial model, a set of transfor-
mation rules R =

{
r1, r2, r3, ..., rn

}
are used as input to the second step of the

methodology (Fig. 1.2). A transformation rule is an operation which adds/deletes
elements (nodes, edges) to/from the BP model, provided that certain precondi-
tions are met. In the context of this work, a transformation rule only affects the
structure of the BP graph, leaving the execution semantics and the graph layout
unchanged. The set of transformation rules can reflect different modeling prac-
tices and guidelines. Given R, all feasible combinations of the transformation
rules should be iteratively applied starting from the initial model to generate
semantically equivalent models until a fixed-point is reached. The output of the
second step is RA(mi) ⊆ R, containing only the rules that are applicable to a
given BP model (mi in the first iteration), to produce a correctly deployable and
executable, semantically-equivalent model.

3. Model Transformation. The model transformation function f(rj ,m) is
executed applying the transformation rule rj to model m. Applying all rules
found in RA(mi) results in TM1 =

{
tj |(∀rj ∈ RA(mi))

[
tj = f(rj ,mi)

]}
, the

set of transformed models which are semantically, but not syntactically, equiv-
alent to the initial model mi and obtained by applying just once all the ap-
plicable transformation rules. The generation process (Fig. 1.2 and Fig. 1.3) is
repeated for all elements of TM1, generating a new set of equivalent models
TM2 =

{
tjk|(∀tj ∈ TM1)(∀rk ∈ RA(tj))

[
tjk = f(rk, tj)

]}
, by transforming all

the models tj ∈ TM1 with the corresponding applicable rules RA(tj). In other
words, starting from the initial model mi, only one rule is applied to generate
the models in TM1, two rules to generate TM2, etc. This iteration stops when



no new models are generated or after a given maximum number z of model

generations. The output of the iterations is EM = {mi} ∪
z∪

i=1

TMi, the set of

semantically equivalent models to be executed in the experiment.
4. Model Execution. Finally each of the models in EM is deployed and

multiple instances are started always using the same load functions and test data.
During the execution of the BP instances, performance data is collected and
different metrics (M) are calculated (Fig. 1.4). Depending on the optimization
goal, metrics may include time (e.g., duration of the BP instance/constructs, or
throughput), or resource utilization (e.g., CPU / RAM).

5. Statistical Significance. Determining statistical significance (Fig. 1.5)
requires statistical tests, the nature of which depends on different factors [19].
The first factor to consider is the number and the nature of the samples. In
our case, one sample is comprised of the instances of a given executed model
emi ∈ EM . Thus, the number of samples to be analyzed depends on the car-
dinality of EM , and is greater than two. The samples are unpaired, i.e., inde-
pendent, since the executed instances of different emi ∈ EM are not related.
The difference between samples can go in any direction (increase or decrease),
thus a two-tailed test is required. Next we need to consider the nature and the
distribution of the collected data, i.e., in our case the metrics M . We are working
with quantitative continuous performance data, which based on our experience
in previous work [9,27,10], is not normally distributed, and thus requires the
use of non-parametric tests where the original data is recorded in ranks. This
type of tests are almost as powerful as parametric tests when the sample is
large enough [19]. The appropriate sample size can be determined with the
statistical power analysis [5], which uses as input the level of significance, the
power and the expected effect size. The level of significance refers to the accepted
level of probability that the observed result is a false positive, i.e., it is due to
chance. It is usually conventionally set to 5% or 1% [4]. The power refers to
the probability of false negative, i.e., accepting the H0 when there is actually a
difference between the results. The most commonly accepted level of power is
80% or above [4]. The expected effect size refers to the expected difference in
the measured variable between the different groups. It can be determined based
on pilot data, previous research if available, or an educated guess. As pilot data,
we use the results of one test trial.

Considering all of the above factors, the appropriate test to run is the Kruskal-
Wallis which is a non-parametric one-way ANOVA [6]. The H0 of this test is
that the distribution of the variable being tested is the same across the samples.
The alternative hypothesis (H1) is that the distribution of the same variable is
different across the samples. Thus, rejecting the H0 and accepting H1, when P −
value < 0.05 = α, means that at least one sample stochastically dominates one
other sample, i.e., in our work it means that there is statistically significant
difference in the execution performance of at least two of the tested semantically
equivalent models.

Given the non-deterministic nature of BPMSs, and software systems in gen-
eral, using just one trial is not sufficient for obtaining reliable results. Having



multiple trials means that each emi is deployed multiple times in isolation,
and each time multiple instances are executed. Running the Kruskal-Wallis test
on multiple trials is sufficient to answer research question RQ1.

6. Model Ranking. If we want to identify the pairs of models between
which performance differences exist (RQ2), an additional post-hoc test, such as
Dunn’s test [6], is necessary (Fig. 1.6). In this test the H0 is that the probability
of observing a randomly selected value from the first sample that is larger than a
randomly selected value from the second sample equals one half, i.e., no sample
dominates the other. Rejecting theH0, implies that the first sample is dominated
by the second sample. Dunn’s test does not account for the number of samples,
thus it needs to be adjusted by the Bonferroni correction [6]. In our methodology,
we use Dunn’s test to rank the models from the best performing one to the
worst performing one in each trial, assigning the same rank to models where
Dunn’s H0 cannot be rejected. To combine the results of the different trials, we
calculate a base-case rank as a sum of the assigned ranks on the emi in each
performed trial using Dunn’s test.

The sufficient number of trials is determined by the stability of the obtained
ranking, which can be assessed using a sensitivity analysis [14], that investigates
how the uncertainty in the output is related to the uncertainty in the input. In
our case, the output is the order of the performance of the executed models as
per the base-case rank. We test the sensitivity of that order on the input, i.e.,
the ranks from the individual trials. We use a deterministic one-at-a-time, also
known as one-side, sensitivity analysis, where we vary the trials to be included
in the calculation of the base-case rank. Namely, we remove one of the trials at
a time in order to observe whether the aggregated order will change.

3 Use Case Scenarios

In this section we specify how we have applied the methodology to three scenar-
ios, each comprised of sixteen semantically equivalent models generated using
four transformation rules, and executed on two different BPMSs.

3.1 Transformation Rules

Based on literature review and analysis of the BPMN standard we have defined
R to include the following transformation rules which preserve the execution
semantics. These rules can be frequently applied on real-world models given
that gateways are among BPMN’s most frequently used constructs [22].

r1 Coalesce Joins - precondition: existence of multiple nested join gateways of
the same type; rule: collapse the multiple join gateways into a single one;

r2 Coalesce Splits - precondition: existence of multiple nested split gateways
of the same type; rule: collapse the multiple split gateways into a single split
gateway, adjusting the predicates when necessary to maintain the execution
semantics of the model. Rules r1, r2 have been proposed as WFT-JC1 rule
in [8];
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Fig. 2. Initial model mi for each use case scenario

r3 Use Inclusive Gateway - precondition: existence of parallel, exclusive gate-
way or a combination of parallel and exclusive gateway; rule: replace the
existing gateway(s) with an inclusive gateway adjusting the predicate logic
accordingly. This rule is motivated by [21];

r4 Use Implicit Gateway - precondition: existence of a parallel split, inclusive
split or an exclusive join; rule: replace a parallel split with multiple outgoing
flows from the preceding activity, an inclusive split with multiple conditional
outgoing flows from the preceding activity and an exclusive join with multiple
incoming flows to the succeeding activity, as per the BPMN standard [17,
pg.36-38], [23].

3.2 Executed Models

The three scenarios are aimed at testing the execution performance of semanti-
cally equivalent control flow structures expressing path parallelism (EX1 PCF),
exclusive (EX2 ECF) and inclusive (EX3 ICF) path selection. The correspond-
ing initial models (Fig. 2) are arbitrary and designed so that all four transforma-
tion rules are applicable. By adding the necessary inverse transformation rules
and without loss of generality, any other of the semantically equivalent models
could be used as an initial model.

If we do consider the process modeling guidelines [G] defined by Mendling et
al. [21], we see that the initial models comply with: minimize the routing paths
per element [G2], use one start and one end event [G3], match every split with a
join of the same type [G4] and avoid OR gateways [G5]. [G4] and [G5] are also
recommended by Koehler and Vanhatalo [18]. These initial models however do
not use as few elements as possible [G1]. Still, some of the transformed models
do follow [G1]. Use verb-object activity labels [G6] and decompose a model with
more than 50 elements [G7] are out of the scope of this paper.

Starting from the three initial models, we have generated all the possible
transformed models (Fig. 1.3) by applying combinations of up to four transfor-
mation rules, i.e., z = 4. The set of executed models EM = {mi, t1, t2, ..., t1234}
contains 16 models, since multiple application of a single rule on a given model
did not result with any structurally different models. By convention, the name
of each model (e.g., t123) contains the index(es) of the transformation rule(s) ap-



plied to generate it (e.g., r1, r2, r3). All the 48 transformed models are visualized
at: http://benchflow.inf.usi.ch/bpm2017.

Given our goal of testing the performance impact of alternative control flow
structures, all models in our experiments are fully automated, using mainly
empty script tasks, and no manual or user tasks or service calls. This way we
ensure that any identified performance bottleneck is due to the execution of
the control flow, and not the tasks per se. Only the scripts that precede a deci-
sion gateway, inclusive or exclusive, contain code to generate random numbers,
ensuring a uniform probability of executing any of the gateway’s outgoing paths.

3.3 Load function

The load start function is comprised of the load time, the ramp-up period, the
number of users and the think time. To avoid BPMS’s saturation, based on our
previous experience with running experiments on Camunda [10], we simulate 500
users who gradually become active within 30 seconds (ramp-up period), sending
BP instantiation requests each second (think time) for a period of 5 min (load
time). With Activiti, we reduced the number of users to 50 and increased the
load time to 15 min to ensure that a sufficiently high number of instances is
started. This choice allows us to obtain performance data with few outliers after
removing the warm up period instances.

We conducted a pilot study for each of the scenarios to determine the effect
size using each model’s mean and standard deviation. The effect size was nec-
essary to calculate the minimal sample size with a level of significance of 5%
(α = 0.05) and power level of 80% (power = 0.80) using GPower 1. We have
verified that the number of executed BP instances (from 22’497 to 53’754 in
Camunda and from 41’912 to 44’677 in Activiti), in each trial, was sufficient
to make statistical inference of the results. We run the experiments (Fig. 1.4)
on two widely-used open-source BPMSs, Camunda v.7.5.0 and Activiti v.5.21.0,
using the BenchFlow framework set up in the testbed environment described
in [10]. We were prevented from including more BPMSs at this point due to
limitations in their Management APIs [11] making the automation of the large
number of experiment runs unfeasible.

3.4 Results

For each scenario (3), trial (3), executed model (16) and BPMS (2) we collected
the duration of each BP instance in milliseconds (ms) and run the corresponding
statistical tests as described in Sect. 2. To ease the comparison of the different
models’ performance, in Table 1 (Camunda) and Table 2 (Activiti) we show
the 95% confidence interval (CI) of the duration of the BP instances of all the
executed models (ms) in each trial for each experiment.

The results from running the experiments on Camunda are presented in Ta-
ble 1. The initial model in the EX1 PCF has an average duration between 2.51

1 http://www.gpower.hhu.de

http://benchflow.inf.usi.ch/bpm2017
http://www.gpower.hhu.de


Table 1. Camunda: 95% confidence intervals of the BP instance duration (ms)

Parallel Exclusive Inclusive
Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3

mi 2.59±0.05 2.55±0.05 2.51±0.05 1.53±0.02 1.54±0.02 1.55±0.02 2.55±0.03 2.76±0.08 2.73±0.06
t1 2.36±0.06 2.44±0.05 2.42±0.04 1.49±0.02 1.46±0.02 1.42±0.02 2.63±0.06 2.43±0.03 2.44±0.03
t2 2.39±0.05 2.45±0.05 2.39±0.04 1.46±0.02 1.49±0.02 1.46±0.02 2.67±0.08 2.53±0.04 2.64±0.07
t3 2.57±0.05 2.51±0.05 2.58±0.05 1.57±0.02 1.53±0.02 1.53±0.02 2.02±0.03 2.03±0.03 2.09±0.04
t4 2.49±0.06 2.45±0.04 2.42±0.04 1.46±0.02 1.49±0.02 1.47±0.02 2.57±0.04 2.66±0.05 2.68±0.08
t12 2.21±0.04 2.24±0.04 2.25±0.04 1.42±0.02 1.41±0.02 1.40±0.02 2.43±0.04 2.51±0.05 2.45±0.07
t13 2.49±0.06 2.44±0.03 2.45±0.04 1.47±0.02 1.48±0.02 1.42±0.02 1.90±0.03 1.98±0.03 2.03±0.05
t14 2.31±0.05 2.28±0.04 2.28±0.03 1.44±0.02 1.41±0.02 1.36±0.02 2.43±0.03 2.50±0.05 2.68±0.08
t23 2.37±0.04 2.48±0.05 2.41±0.05 1.48±0.02 1.47±0.02 1.46±0.02 1.89±0.03 1.97±0.03 2.05±0.04
t24 2.29±0.04 2.35±0.05 2.30±0.04 1.43±0.02 1.39±0.02 1.40±0.02 2.38±0.03 2.57±0.04 2.44±0.03
t34 2.48±0.06 2.49±0.04 2.58±0.06 1.47±0.02 1.43±0.02 1.46±0.02 1.99±0.03 2.05±0.03 2.03±0.03
t123 2.23±0.04 2.29±0.05 2.28±0.05 1.41±0.02 1.41±0.02 1.39±0.02 1.90±0.03 1.87±0.03 1.83±0.02
t124 2.16±0.03 2.21±0.04 2.23±0.04 1.38±0.02 1.33±0.02 1.32±0.02 2.25±0.03 2.34±0.03 2.48±0.06
t134 2.35±0.04 2.38±0.05 2.34±0.05 1.45±0.02 1.40±0.02 1.41±0.02 1.92±0.03 1.90±0.03 1.91±0.03
t234 2.33±0.03 2.39±0.04 2.34±0.04 1.40±0.02 1.43±0.02 1.42±0.02 1.92±0.03 1.90±0.03 1.98±0.04
t1234 2.20±0.03 2.21±0.04 2.28±0.04 1.36±0.02 1.35±0.02 1.37±0.02 1.78±0.02 1.81±0.02 1.87±0.03

and 2.59 ms with CI range of ±0.05. Overlapping CIs with the initial models
are noticed for t3, t4, t13 and t34, while for the rest of the transformed models
the CI goes down to 2.16 ± 0.03 for t124 in trial 1. The average duration of the
initial model in EX2 ECF is between 1.53 and 1.55 ms with CI range of ±0.02.
In this experiment only the model t3 has a significantly overlapping interval with
the initial model, which means that their performance is very similar. The best
performing model with CI of 1.32 ± 0.02 is in trial 3 for t124, as is the case in
EX1 PCF. The average duration of the initial model in EX3 ICF is between
2.55 and 2.76 ms with CI range of ±0.03 to ±0.08. When the inclusive gateway
is not used, i.e., for models not applying r3, the magnitude of the variation in
performance compared to the initial model is similar as in the other two exper-
iments, with the best performing model remaining t124 with CI of 2.25 ± 0.03
ms in trial 1. However, CI values get much lower when r3 is used, with CI of
1.78 ± 0.02 ms in trial 1 for the model that applies all rules (t1234).

The results from running the experiments on Activiti are presented in Ta-
ble 2. The average values of the duration of the initial model in EX1 PCF are
between 25.22 and 26.04 ms with CI range of ±0.21. None of the transformed
models has an overlapping interval with the initial parallel flow model, and the
CI of the duration goes down to 15.83 ± 0.12 ms for t1234 in trial 1. Exclu-
sive control flow executes faster with average duration of the initial model in
EX2 ECF between 2.01 and 2.14 ms with CI range between ±0.06 to ±0.07.
In this experiment, although many of the transformed models have overlapping
intervals with the initial model, still the best performing model t124 in trial 1
has a rather lower duration CI of 1.39 ± 0.02 ms. In EX3 ICF the average
duration of the initial model returns closer to the one in EX1 PCF with values
between 27.93 and 29.87 ms with CI range between ±0.24 and ±0.30. Overlap-
ping intervals are only noticed for t4, and while the CI of the duration for models
without inclusive gateway goes only down to 22.42 ± 0.21 ms in trial 2 for t124,
for model t1234 in trial 2 it goes all the way down to 9.93 ± 0.14 ms .



Table 2. Activiti: 95% confidence intervals of the BP instance duration (ms)

Parallel Exclusive Inclusive
Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3

mi 26.04±0.21 25.33±0.21 25.22±0.21 2.12±0.07 2.01±0.06 2.14±0.07 29.87±0.30 27.93±0.24 29.57±0.27
t1 21.62±0.18 21.47±0.16 20.90±0.17 2.09±0.07 1.93±0.05 1.91±0.06 24.04±0.21 27.14±0.26 24.75±0.22
t2 21.34±0.17 20.38±0.14 20.55±0.15 2.02±0.06 1.98±0.06 1.95±0.05 25.43±0.24 27.29±0.26 26.75±0.26
t3 19.57±0.18 20.02±0.19 20.00±0.19 2.10±0.06 2.06±0.06 2.02±0.06 11.82±0.16 11.66±0.16 11.74±0.17
t4 25.32±0.21 24.55±0.20 24.66±0.20 2.06±0.06 1.92±0.05 1.99±0.06 28.92±0.26 28.24±0.26 29.64±0.27
t12 18.83±0.14 18.38±0.14 18.79±0.15 1.84±0.05 1.91±0.06 1.89±0.06 23.68±0.22 23.00±0.21 24.53±0.23
t13 18.26±0.15 17.39±0.14 17.42±0.15 1.92±0.06 1.93±0.06 2.02±0.06 11.38±0.18 11.19±0.18 11.11±0.15
t14 21.25±0.16 21.39±0.17 20.88±0.18 1.91±0.06 1.85±0.05 1.77±0.05 24.78±0.23 23.07±0.19 23.61±0.20
t23 16.52±0.14 16.37±0.14 15.62±0.12 2.11±0.06 1.93±0.05 2.12±0.07 10.56±0.14 10.90±0.16 11.06±0.16
t24 21.67±0.17 21.80±0.17 21.72±0.18 1.91±0.05 1.86±0.06 1.86±0.05 23.66±0.21 25.08±0.24 23.45±0.21
t34 19.06±0.17 18.06±0.15 19.13±0.17 2.11±0.07 1.89±0.05 1.93±0.05 11.14±0.15 11.02±0.15 11.06±0.15
t123 17.35±0.16 17.39±0.21 16.47±0.13 1.92±0.06 2.01±0.07 2.05±0.07 10.19±0.14 10.27±0.14 10.01±0.15
t124 19.09±0.14 17.86±0.12 18.64±0.14 1.39±0.02 1.45±0.03 1.59±0.04 22.46±0.21 22.42±0.21 23.31±0.24
t134 18.03±0.16 18.61±0.17 18.53±0.16 1.92±0.06 2.03±0.09 1.92±0.05 10.51±0.14 11.46±0.20 10.83±0.15
t234 18.04±0.16 17.36±0.16 17.08±0.15 1.89±0.05 1.98±0.07 2.01±0.07 10.53±0.15 10.51±0.15 10.71±0.16
t1234 15.83±0.12 15.75±0.13 15.86±0.13 1.72±0.04 1.67±0.04 1.62±0.04 10.03±0.13 9.93±0.14 9.99±0.13

On the raw data for the duration of each BP instance of all of the models
belonging to the same experiment, we have run the Kruskal-Wallis Test (Fig. 1.5)
for the significance of the differences between the models using IBM SPSS Statis-
tics Version 24. Summary of the test’s results is provided in Table 3. The Total #
shows the total number of BP instances compared in the test, where larger test
statistic values indicate larger differences between the compared models. The
HRQ1 gets rejected if the values of the Asymptotic Sig. are smaller than 0.05.

The post-hoc Dunn’s test (Fig. 1.6) indicates the pairs of models with statisti-
cally significant differences in the duration of their instances. We used its results
to rank each model, assigning the same rank to models where the performance
differences were not significant (Table 4). The sensitivity analysis confirmed that
running 3 trials in each experiment is sufficient for the desired rank stability.

3.5 Discussion

3.5.1 Statistically Significant Performance Differences (RQ1) The val-
ues of the asymptotic significance very close to 0 in the results of the statistical
tests (Table 3) shows that there are statistically significant differences in the
execution duration between instances of models which are semantically equiva-
lent but structurally different. Thus, we can reject HRQ1. The extent of perfor-
mance differences between the models varies between experiments (EX1 PCF,
EX2 ECF and EX3 ICF), as well as between BPMSs (Camunda and Activiti).

Table 3. Kruskal-Wallis Test Summary Results

EX1 PCF EX2 ECF EX3 ICF

C
a
m
u
n
d
a Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3

Total # 739’845 721’265 775’940 765’393 817’415 850’040 487’213 494’020 544’059
Test Statistic 6’036 5’686 3’989 2’852 3’290 3’695 27’512 29’646 29’530
Asymptotic Sig. 0 0 0 0 0 0 0 0 0

A
ct
iv
it
i Total N 697’492 698’976 699’478 708’138 710’987 710’467 687’930 687’011 687’746
Test Statistic 135’513 141’611 139’567 1’268 1’268 1’882 351’816 354’735 354’047
Asymptotic Sig. 0 0 0 0 0 0 0 0 0



Table 4. Models ranked over their performance in three trials using Dunns’ test

Camunda Activiti

EX1 PCF EX2 ECF EX3 ICF EX1 PCF EX2 ECF EX3 ICF
Model Rank Model Rank Model Rank Model Rank Model Rank Model Rank

t124 1 t124 1 t1234 1 t1234 1 t124 1 t1234 1
t1234 2 t1234 1 t123 2 t23 2 t1234 2 t123 1
t12 3 t12 2 t134 3 t123 3 t24 2 t234 2
t123 3 t123 2 t234 3 t234 4 t12 3 t23 2
t14 4 t24 2 t13 4 t13 5 t14 3 t13 3
t24 5 t234 2 t23 4 t134 6 t123 4 t134 3
t234 6 t14 3 t34 5 t34 7 t134 4 t34 3
t134 6 t134 3 t3 6 t3 8 t234 4 t3 4
t2 7 t1 4 t124 7 t12 9 t1 5 t124 5
t1 7 t13 4 t12 8 t124 9 t2 5 t12 6
t23 8 t2 5 t1 9 t14 10 t4 5 t14 7
t4 8 t23 5 t24 9 t1 11 t13 5 t24 8
t13 9 t34 5 t14 9 t2 12 t23 5 t1 9
t34 10 t4 6 t2 10 t24 12 t34 5 t2 10
mi 11 t3 7 t4 11 t4 13 mi 6 mi 11
t3 12 mi 7 mi 12 mi 14 t3 6 t4 11

3.5.2 Total Order (RQ2) Given the cardinality of the executed models set,
|EM | = 16, the theoretical maximal rank is 16 and would imply significantly
different performance among all models. As can be seen in Table 4, execution of
the models on Camunda results with 12 ranks for the parallel, 6 for the exclusive
and 12 for the inclusive control flow experiment. Execution on Activiti results
with 14 ranks for the parallel, 6 for the exclusive and 11 for the inclusive control
flow experiment. Therefore, it is not possible to induce a total ordering (16 ranks)
between all semantically equivalent models in a given experiment based on their
execution duration. The actual number of ranks depends both on the BPMSs
and on the experiment. In our use case the exclusive control flow models seem to
have the most performance similarities, thus resulting with the smallest number
of ranks (6 ranks in both BPMSs).

3.5.3 Experiments Performance Variability To facilitate the visualiza-
tion ( Fig. 3) of the differences between the duration interval of the initial model
and that of the transformed models, we have decided to use the acceptability in-

dex [26]. The acceptability index is calculated as I(A,B) = m(B)−m(A)
w(B)+w(A) such

that A = [al, ar] and B = [bl, br] are interval values, where al, bl and ar, br
stand for the left and right limits of the interval. m(A) and m(B), in our case,
are the average duration of all the instances of the respective model, w(A) and
w(B) are the half-width of the corresponding confidence interval. In this paper
A always refers to the duration interval of the initial model mi, and B refers
to the duration interval of the transformed model t1, ..., t1234. Thus, negative
values of the index show that on average the initial model’s instances have longer
execution than the instances of the respective transformed model, and vice-versa
with positive index values. Index values between -1 and 1 indicate an overlap
between the compared intervals A and B.
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Fig. 3. Performance differences of transformed models relative to the three initial mod-
els with Activiti and Camunda (ranks and acceptability index of three trials)

As visualized in Fig. 3, the differences between BPMSs are particularly ev-
ident in the parallel (EX1 PCF) and the inclusive (EX3 ICF) control flow ex-
periments. In EX1 PCF all transformed models perform better than the initial
model when executed on Activiti (c.f. Table 2). When EX1 PCF is run on Ca-
munda, the differences are lower in magnitude (c.f. Table 1), but still statistically
significant as shown by Dunns’ test (c.f. Table 4). In Camunda, the only trans-



formed model that performs worse than the initial model is t3 which uses the
inclusive gateway with parallel gateway logic, i.e., with conditional statements
which are always true. In Activiti on the other hand, t3 performs better than
half of the models. As evident from Fig. 3, although applying the combination
of all the transformation rules (t1234) seems to work well for both BPMSs, as
mentioned earlier, in Camunda it is better not to use the inclusive gateway to
implement parallelism since t124 ranks as the most performant one. Table 4
shows that, in Camunda all of the top performant models coalesce the split and
join, i.e., contain the combination of r1 and r2, while in Activiti they coalesce
the split while using the inclusive gateway to implement parallelism, i.e., they
result from the combination of r2 and r3.

In EX2 ECF, both the difference between BPMSs and the difference be-
tween the transformation models (c.f. Fig. 3), is much smaller than in the other
two experiments, with the confidence intervals, when applying just one transfor-
mation rule in Activiti, overlapping with initial model’s confidence interval. The
best performance is obtained by combining all rules, using either exclusive (t124)
or inclusive gateway (t1234). These two models rank the same in Camunda, while
in Activiti t124 ranks first, and t1234 second. The noticed trend in the first ex-
periment for Camunda, to combine r1 and r2 in all top performing models, is
also evident in this experiment.

The performance of the initial model in EX3 ICF, in both BPMSs, is similar
to the one in EX1 PCF, with an even greater magnitude of differences between
the initial and the transformed models in EX3 ICF (c.f. Fig. 3). The top two
models (t1234 and t123) are the same in both BPMSs, with no statistically
significant performance differences between them in Activiti as evident by their
equal rank. The trend mentioned in EX1 PCF, i.e., to combine r2 and r3 in
Activiti in the top performing models, reemerges in this experiment as well. In
general, in EX1 PCF and EX3 ICF, the results indicate greater potential for
performance improvement in Activiti than in Camunda.

3.5.4 Impact of Modeling Practices Dumas et al. [7] show that there is
no absolute truth about the impact of structuredness on understandability and
that it depends on the number of gateways in the model. Minimizing the overall
model size [G1] and minimizing the number of routing paths per element [G2]
cannot be both fulfilled, as acknowledged by [21]. Another controversial guideline
refers to the implicit gateway which according to Koehler and Vanhatalo [18]
simplifies BP model’s visualization, while Recker’s empirial study [23] shows that
explicit gateways improve the interpretational fidelity, i.e., understandability.

Having this in mind, systematically applying the transformation rules (R)
described in this paper generates a variety of models which give priority to
different modeling practices. The graph layout guidelines and practices are not
taken into consideration.

The initial model in EX3 ICF follows the guidance of avoiding inclusive gate-
ways [G5], by using a combination of parallel and exclusive gateways. However,
the results in both BPMSs, show that using r3, i.e., an inclusive gateway, on



EX3 ICF models significantly improves the performance, as all the transforma-
tions applying r3 outrank the ones that do not. As evident from Table 4, the
performance of the model combining all rules together (t1234) is always ranked
as first or second in all experiments and in both BPMSs. When it is ranked sec-
ond, t124 is ranked as first. While t1234 is indeed the smallest executed model
in size [G1], not all the best performing models are among the smallest ones.
For instance, in Activiti in EX1 PCF model t23 is second ranked, but it has
24 elements, as opposed to the smallest models in this experiment (t1234 and
t124) which have 18 elements. Furthermore, both t1234 and t124 do not comply
with other modeling guidelines, since their maximum number of routing paths
per element is 5, as opposed to 3 in the initial models [G2], they do not use
explicit gateways thus they are not structured [G4], and t1234 also uses inclu-
sive gateways [G5]. Thus, in most of the cases when modeling for deployment,
if performance is important, priority should be given to minimizing the overall
model size [G1] with respect to [G2] or [G4].

However, as previously stated, modeling should be a discretional decision of
the modeler and we do not aim at changing modeling practices (or guidelines)
to improve the execution performance. Our goal is to elicit BPMS performance
improvements by enabling different BPMS vendors to test their products by us-
ing the proposed methodology, with the same or different set of transformation
rules and models. If they notice that the acceptability indexes they calculate are
significantly lower than -1, dedicating time to implementing performance opti-
mization can bring them competitive advantage. For instance, although further
work with greater number of initial models and with different BPMSs is required
to make generalization about the effect of the transformation rules included in
this paper, the initial results already provide some useful hints. Clearly, BPMS
vendors can boost the performance of their products by coalescing multiple splits
and joins of the same type. Activiti could also take inspiration of their implemen-
tation of the inclusive gateway, when implementing parallelism as r3 provides a
non-negligible performance improvements.

4 Related Work

Previous studies have analyzed the impact of BP model structure on its under-
standability [24,23] or error-proneness [20]. For example, Mendling et al. [21]
provide seven modeling guidelines towards more comprehensive and syntacti-
cally correct models, synthesized from empirical work linking model’s structural
characteristics with its understandability, error probability and label ambiguity.

We are not aware of any existing work studying the connection between
the BPMN static control flow structure and its execution performance. On the
other hand, there is extensive work on programming language compiler opti-
mization based on transformations that reduce the number of instructions or
maximise parallelism. Bacon et al. [3] provide a comprehensive overview of com-
piler transformations, while Hoste et al. [15] discuss optimization space explo-
ration strategies to provide for inevitable optimization trade-offs. Furthermore,



in Database Management Systems (DBMSs), queries are optimized using trans-
formation rules which preserve their execution semantics. Jarke and Koch [16]
propose a framework for evaluation of query optimization, comprised of four
steps: 1) find an internal query representation, 2) apply logical transformations,
3) define alternative sequences of elementary operations, and 4) find the cheapest
alternative among the ones proposed in step 3 and execute it. Taking inspiration
from this existing work, we focus on transformation optimization strategies in
BPMSs, and our initial goal is to assess whether different representations of the
same BP significantly impact its execution performance. Gournaris [13] already
points to DBs and data-centric flows as automated performance optimization
opportunity in BPMN process models’ execution. BPMN elements are mapped
to annotated directed acyclic graphs used for optimal task ordering and task
assignment based on statistical metadata, such as task duration, gathered from
execution logs. While [13] targets optimal task execution, in this paper we focus
on the control flow.

Work on BP models’ equivalence [1] and modeling best practices [21] is re-
lated to what we do, since we use semantically equivalent models to study the
effect that their structure has on their execution by a given BPMS. Eder et al. [8]
propose a set of basic operations (e.g., moving or confluence of gateways) to
transform a given BP model represented as a structured graph to a semantically
equivalent model. Gert et al. [12] propose a language independent algorithm for
determining semantical equivalence of fragments of structured or unstructured
BP models, motivated by the industry need of BP model change management.
They use a non-exhaustive set of rules for rewriting BPs into a normal form, later
used for fragment comparison. While we use the operations and rules mentioned
in existing work [8,12], we also take into consideration BPMN-specific transfor-
mations, such as replacing explicit gateways with implicit ones. Our approach
also differs in the goal of the use case which requires such transformations.

5 Threats to Validity

Construct Validity - We conduct our experiments on a single version of two
BPMSs in a standalone deployment and only in their default configuration, since
it is the configuration usually utilized by potential users when evaluating sys-
tem’s performance. Although each model is executed in isolation from the other
models, all the instances of the same model are executed together.

Internal Validity - The experiments we perform are inherently subject to
variability in the obtained metrics value, due to the many factors impacting
the runtime of a software system. We mitigate this variability by defining load
functions that do not overload the BPMSs [27], performing multiple trials for
each of the models, and verifying the variance among trials in order to provide
reliable measures validated by significance testing.

External Validity - The results we obtained present limited generalizabil-
ity since: they depend on the behaviour of different BPMSs, or the same BPMS
under a different load function; the size and the number of the initial models are



rather small; and all models are realized by script tasks. We plan further exper-
iments to improve and delimit the generalizability of our results w.r.t. different
BPMS, load functions, initial model sizes and used BPMN 2.0 elements.

6 Conclusion and Future Work

In this work we study and compare the execution performance of semantically
equivalent BP models with different control flow structures. To do so, we pro-
pose a methodology for deriving such models based on an initial model and a set
of semantics-preserving transformation rules. The models are executed on dif-
ferent BPMSs measuring the corresponding process instance duration, which is
statistically analyzed to identify and characterize significant performance differ-
ences. By applying the methodology on three scenarios (parallel, exclusive and
inclusive control flows), we identify significantly different performance among the
models in both BPMSs (RQ1). However, in all experiments, it was not possible
to establish a total order among all 16 semantically equivalent models (RQ2).

The observed performance variability is more evident in Activiti (acceptabil-
ity index up to -38.53) than in Camunda (up to -13.07). We discover that fol-
lowing certain modeling guidelines, e.g., avoiding the use of inclusive gateways
when implementing inclusive control flow execution semantics, has a negative
performance impact on the model’s execution duration. These are only initial
but promising results, measured with load functions designed to avoid system
saturation: 500 users for Camunda and 50 for Activiti. Further experiments are
necessary to investigate the impact of the load function on the observed perfor-
mance differences. However, these results are already sufficient to demonstrate
the existence of statistically significant differences in the execution of semanti-
cally equivalent models designed following different modeling practices.

Our research efforts will further explore the execution performance improve-
ment opportunities by using larger initial models, larger sets of transformation
rules and more BPMSs. We are currently comparing each of the transformation
rules individually to draw conclusions on which of them are good candidates
for optimization rules. These initial results pave the way towards automatic BP
model performance optimization by means of semantics-preserving transforma-
tion rules that can be applied when a BP model is deployed on a specific BPMS.
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