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Internet of Things development needs isomorphic software 

architectures, in which every kind of device can be programmed 

with a consistent set of implementation technologies, allowing 

applications and their components to be statically deployed or 

dynamically migrated without having to change their shape.

Recent years have witnessed an avalanche of 
digitalization technologies. Processing capa-
bilities have grown dramatically, cloud com-
puting has become a commodity, data science 

has blossomed due to increasing amounts of data, and 
artificial intelligence (AI) and machine learning (ML) 
have emerged as everyday technologies even in devices 
with limited capabilities, such as mobile phones. These 

changes are leading us to a “programmable world,”17 
where everyday things around us will become connected 
and programmable.

A hallmark of the trend toward the programmable 
world is the Internet of Things (IoT) development. A 
typical IoT architecture comprises a number of compo-
nents, including 

 › sensors and actuators that are at the edge of the 
network 

 › gateways that connect them to the Internet 
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 › cloud services that offer large 
amounts of storage 

 › end-user applications that 
enable access to data, sensors, 
and actuators 

 › scalable analytics facilities that 
are deployed in the cloud.14 

A typical IoT system end-to-end archi-
tecture is illustrated in Figure 1. Today, 
a wide variety of implementation 
technologies are used for developing 
different parts of the end-to-end IoT 
system (see Figure 2). This results in 
diverging development and deploy-
ment practices as well as higher inte-
gration costs.

In this article, we argue that a 
unifying software layer is needed to 
manage the complexity of IoT devel-
opment and liberate developers from 
the highly fragmented IoT architec-
tures of today. The work presented in 
this article is a continuation of a series 
of vision articles that describe liquid, 
multidevice software architectures15 
and the programmable world con-
cept.13 In the present article, we push 
the envelope toward isomorphic IoT 
systems, following the same line of 
thought and motivation.

ON ISOMORPHIC SOFTWARE
Isomorphic means “with the same 
shape.” The word isomor phism  is 
derived from the ancient Greek: is  
kvqg, or isos, which signifies “equal,” 
and nq_zh, or morphe, which rep-
resents “form” or “shape.” Isomor-
phism is a popular, well-established 
concept in mathematics. However, in 
the context of software development, 
the idea emerged relatively recently. 
For instance, for web applications, 
isomor phism refers to t he  abi l it y 
to run the same code on both the 
back end (cloud) and front end (web 

FIGURE 1. A typical IoT system end-to-end architecture.
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browser). More broadly, isomorphic 
software architectures feature soft-
ware components that do not have to 
be modified (“change their shape”) 
when running across the different 
hardware or software components 
of the system; some examples of iso-
morphism in the context of software 
systems are listed in Table 1.

In principle, writing software for 
isomorphic architectures is fund a-
mentally simpler since the same code 
can r un ever y where. Because t he 
underlying technologies are handled 
uniformly, developers do not have to 
master different development tech-
nologies, and, thus, complexity is 
tamed considerably. 

Several different levels of isomor-
phism can be identified. At the first 

level, isomorphism refers to the con-
sistent use of the same development 
technologies across the dif ferent 
computational elements in the entire 
system. In contrast with such static 
development-level isomorphism, in 
dynamic isomor phism, a common 
r untime engine or vir tualization 
solution is used so that the same code 
can run in different computational 
elements without recompilation. In 
an even more advanced system, the 
dynamic migration of code from one 
computational element to another 
is enabled.

In the case of IoT applications, the 
same (that is, isomorphic) software 
can ideally be deployed throughout 
the end-to-end system to run on edge 
devices, gateways, mobile clients, and 

cloud services. However, as we discuss, 
current IoT systems are a far cry from 
this ambition. Today, IoT application 
developers must be aware about the 
deployment context for their code, and 
they must be familiar with many dif-
ferent programming languages as well 
as virtual runtime environments and 
communication protocols (Figure 2).  
This platform diversity can make it 
impossible, for example, to redeploy 
components from the edge to the cloud 
without a complete rewrite.

While isomorphic architectures 
will make it easier, faster, and poten-
tially cheaper to develop IoT appli-
cations and systems, we predict that 
they will also enable new kinds of 
dynamic applications that take advan-
tage of the possibility to dynamically 

TABLE 1. Examples of isomorphic software.

Technology Description of isomorphic features 

Java (1995) The “Write once, run everywhere” slogan popularized by the Java platform1 captures the essence of static isomorphism 
in software. In Java, the concept meant that it is possible to run the same software on different computer architectures 
and operating systems using a virtual machine. 

Squeak Smalltalk (1996) Virtual machines for the Squeak Smalltalk system are available for many operating systems and hardware platforms, 
making it possible to run bit-identical images across all.4 

Unity (2005) The Unity 3D development platform was born within the gaming domain, but it has recently branched out to the 
cinematics, automotive, and architecture domains. Applications written for Unity can run across 25 different platforms, 
including gaming consoles, but also mobile devices, virtual reality headsets, and smart TVs. 

Lively Kernel (2007) Lively Kernel is a web framework where applications are composed with JavaScript, and the code can be run on either 
the client or server side.5

Isomorphic web apps 
(2013) 

The term isomorphic web app was introduced in the context of web applications in mid-2010s, referring to the ability to 
allocate a part of a web application’s functionality either on the server or client.12 While the term was new, the same idea 
has been used in the context of the web previously, for example, in the Lively Kernel mentioned earlier. 

Universal Windows 
Platform (2015)

Within the Microsoft ecosystem, this platform enables developers to write and run the same software on computers and 
tablets running Windows 10, Xbox One gaming machines, and HoloLens devices. 

Liquid web apps (2015) Liquid web applications11 allow the migration of their user interface (UI) components on the fly, allowing users to flexibly 
use applications on different devices and screens. The main focus in this work is on user experience: how to seamlessly 
move, clone, and adapt UI components and entire user experiences from one device to another. 
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redeploy and migrate application com - 
ponents from the edge to the cloud  
(and vice versa).

CHALLENGES IN IoT 
DEVELOPMENT 

Diversity of programming  
models
Nowadays, the vast majority of soft-
ware developers have been trained to 
do either mobile development or web 
development.18 Many of these develop-
ers tend to assume that their skills are 
directly applicable to IoT development. 
However, IoT systems have many char-
acteristics that do not apply to mobile 
or web applications. IoT developers 
must consider several factors that are 
unfamiliar to most application devel-
opers. Such factors include

 › multidevice programming
 › the heterogeneity and diversity 
of devices

 › intermittent, potentially unreli-
able connectivity

 › the distributed, always-on 
nature of the overall system

 › the general need to write soft-
ware in a highly fault-tolerant 
and defensive manner.

Moreover, a typical IoT applica-
tion is continuous and reactive. On  
the basis of observed sensor read-
ings, computations get triggered (and 
retriggered) and, eventually, result 
in various actionable events. The sys-
tems are essentially asynchronous, 
parallel, and distributed. These qual-
ities alone make IoT applications very 
different from traditional PC, mobile, 
or web applications, in which software 
is typically written for a single client 
that may communicate with a single 
back-end server.

In general, IoT devices are bringing 
back the need for embedded software 
development skills and education. 
Software development for IoT devices 
is very similar to “classic” embed-
ded systems development, as they 
both require small-memory and ener-
gy-aware software development skills. 
This is an especially relevant note 
from an education viewpoint since, 
in the past 10–15 years, many univer-
sities—at least in Northern Europe—
have scaled back their courses on 
embedded systems and control the-
ory, focusing on presumably more 
modern and desirable areas, such as 
web and mobile software develop-
ment, i n s tead. Recent Developer 
Economics survey reports strongly 
confirm the focus on higher-level pro-
gramming skills.18

While IoT device development is 
bringing back the need for embed-
ded software, at the other end of the 
spectrum of IoT end-to-end systems, 
cloud development relies heavily on 
multiple layers of virtualization. In a 
modern microservice-based software 
architecture, the built-in assumption 
is that all of the microservices must be 
turned into Docker containers.

Furthermore, those Docker con-
tainers are then assumed to be run in a 
Kubernetes cluster. This has to be done 
in spite of the fact that the underlying 
components are commonly written 
in Python or JavaScript/Node.js (thus 
requiring a virtual machine language 
runtime), and they typically run in a 
virtual machine rented from third-
party cloud service providers, such as 
Amazon or Microsoft.

D o c k e r i z a t ion a n d t h e u s e of 
Kubernetes effectively means that 
modern software systems commonly 
use a minimum of four virtualiza-
tion layers, even for the simplest of 

cloud components. The additional 
virtualization layers often offer little 
additional value, add overhead to the 
development process, slow down appli-
cation execution, and make debugging 
of the system more difficult. Never-
theless, the use of virtualized software 
environments is rapidly spreading to 
IoT edge systems as well, including 
gateway development. 

Virtualization layers add com-
plexity to just about every step of the 
development process. Dealing with 
this complexity necessitates a lot of 
boilerplate software that presumably 
helps but often distracts developers 
from focusing on the essentials of the 
applications. Despite the extensive use 
of virtualization, IoT systems still suf-
fer from a rigid and fragmented archi-
tecture in which tasks cannot be real-
located easily from one computational 
element to another.

INDUSTRIAL EXAMPLE
Let us present a brief industrial IoT 
system example to illustrate the cur-
rent diversity. In this system, a com-
pany has developed an industrial mea-
surement and tracking solution that 
consists of a large number of devices 
custom built for different measure-
ment and tracking tasks. 

Examples include devices for track-
ing air quality (temperature, humid-
ity, air pressure, and indoor air pol-
lution) and movement (based on 
both inertial measurement units and 
indoor localization technologies) as 
well as those for measuring ambient 
noise and luminosity (including infra-
red light level). Devices are connected 
to the network either via short-area 
radio, such as Wi-Fi, or low-power 
wide-area network solutions, such 
as narrowband-IoT (NB-IoT) or LTE-M.  
Dat a upload i ng a nd ac t uat ion a re 
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performed using the Message Queuing 
Telemetry Transport (MQTT) protocol 
(https://mqtt.org/).

In this case study system, sampling 
and data-upload rates are relatively 
moderate. On average, data uploading 
is performed only every few minutes. 
This simplifies the implementation of 
the cloud back end quite considerably 

since there is no requirement for con-
tinuous data streaming or extremely 
low latencies. Figure 3 provides an 
overview of our case study system.

The measurement devices are built 
on top of available off-the-shelf hard-
ware. For Wi-Fi-based devices, the popu-
lar ESP32 (https://www.espressif.com/ 
en/products/socs/esp32) platform was 

used. For NB-IoT/LTE-M-based devices, 
Nordic Semiconductor’s nRF91  (https://
w w w.nor d ic s e m i.com/ P r o duc t s/
L ow-power-cel lu la r-IoT/n R F9160) 
was chosen. The development lan-
guage for both of these device plat-
forms is C, but application program-
ming interfaces (APIs), libraries, and 
tools vary considerably since a different  

FIGURE 3. An overview of our case study system, including its key subsystems and related applications. 
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real-time operating system is used in 
each device platform.

Since data uploading is performed 
over Wi-Fi or cellular, this use case does 
not require any custom-built gateway 
devices running dedicated protocol trans-
lation stacks. However, for device con-
figuration purposes, an Android mobile 
app—written in Java utilizing the Android 
libraries—was developed as well.

A lot of focus in the development 
effort was placed on developing the 
cloud back end. The logical components 
of the back end are depicted in Figure 3, 
and the majority were implemented 
using open source components.  

For security perimeter/reverse proxy  
implementation, NGINX (https://nginx 
.org/) was chosen. For data acquisi-
tion (collection of sensing data from 
devices), both Apache Kafka (https://
kaf ka.apache.org/) and RabbitMQ 
(https://www.rabbitmq.com/) are used. 
For logging and system monitoring, 
Grafana (https://grafana.com/), Graph-
ite (ht t ps://graphiteapp.org/), and  
Icinga (https://www.icinga.com/) were 
picked. Data analytics capabilities 
were originally implemented using 
Apache Storm (http://storm.apache 
.org/), but these were later replaced with 
Apache Spark (https://spark.apache 
.org/). Domain-specific microservices 
were all implemented in Node.js.

The entire back end is Docker-
ized; for instance, each of the micro-
services runs in its own Docker con-
tainer. Ansible (https://www.ansible 
.com/) and OpenStack (https://www 
.openstack.org/) were utilized in the 
original deployment, but, later, the 
entire system was migrated to run in 
a Kubernetes cluster (https://kuberne 
tes.io/). 

In addition to the devices and cloud 
back end, some additional web and 
mobile applications were developed 

for data visualization purposes as well 
as system administration and mon-
itoring. In web application develop-
ment, an earlier version of Angular.
js (https://angularjs.org/) was used, 
whereas mobile apps were written in 
Java/Android Studio.

As can be determined from this dis-
cussion, the development of the entire 
end-to-end system required a very 
broad palette of technologies rang-
ing from embedded, mobile, and web 
application technologies to a spec-
trum of popular cloud back-end im -
plementation components. Given the 
breadth of the technologies, it would 
be almost impossible for an individual 
developer or a small startup company 
to master all of the necessary tech-
nologies to develop the entire system. 
Furthermore, because of the selected 
technologies, each of the components 
is rather tightly coupled with a specific 
computational element in the end-to- 
end system.

ADDITIONAL CATALYSTS  
FOR CHANGE

Intelligence at the edge
In “classic” IoT systems, such as our 
case study system, the majority of 
computation and analytics are per-
formed in the cloud in a centralized 
fashion. However, in recent years, 
there has been a noticeable trend in 
IoT system development to move intel-
ligence closer to the edge.

Historically, the computing capac-
ity, memory, and storage of edge 
dev ices were l i m ited. D ue to t he 
increasing computational capabilities 
of edge devices and requirements for 
lower latencies, though, intelligence 
in a modern end-to-end computing 
system is gradually moving toward 
the edge, first to gateways and then 

to devices. This includes both generic 
software functions, and—more im -
portantly—time-critical AI/ML fea-
tures for processing data available in 
the edge with minimal latency. The 
requirement to run advanced AI/ML 
and analytics algorithms in the edge 
increases the demand for consistent 
programming technologies across the 
end-to-end system.

The increasingly dynamic 
nature of IoT systems
In IoT systems that consist of a mas-
sive number of devices overall, device 
topologies can be expected to be highly 
dynamic and ephemeral. This dyna-
mism calls for technologies that can 
cope with dynamically changing 
“swarms” of devices and their evolv-
ing responsibilities. The increasingly 
dynamic nature is not only related 
to software features but also to AI/
ML capabilities, where reinforcement 
learning can introduce unexpected 
situations—something that worked 
yesterday might not work today, and 
vice versa. Furthermore, since such 
features are wrapped in software com-
ponents, it is often expected that they 
can be relocated to the best-suited con-
text for execution.

To simplify development, deploy-
ment, and long-term use, we expect that 
future IoT systems will need to support 
a very flexible allocation of responsi-
bilities so that the roles of devices can 
evolve over time. This calls for a plat-
form in which different computational 
entities can run the same code.

PREDICTING THE RISE OF 
ISOMORPHIC IoT SYSTEMS
With the ever-increasing complexity, 
dynamism, and sheer amount of soft-
ware, we are on a dangerous trajec-
tory at the moment. The rigid system 
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architectures, broad spectrum of tech-
nologies, abundant use of cargo-cult 
reuse (picking certain implementa-
tion technologies and methods simply 
because others have done so), inconsid-
erate use of virtualization, and highly 
virtualized deployment and package 
management approaches are leading 
us to IoT systems that become increas-
ingly difficult to manage. It is time 
for a change.

Going forward, we need technol-
ogies that liberate us from rigid task 
allocation and support the use of 
consistent implementation technol-
ogies. Dynamic component deploy-
ment should be supported, but in a 
fashion that emerges from application 
needs—especially in relation to per-
formance and reliability—and not due 
to constraints imposed by the domi-
nant development platforms and tools. 
Moreover, various features (especially 
AI/ML capabilities) may require the 
flexible migration of code and models 
from the cloud to the edge (and vice 
versa), depending on the data avail-
ability and required response times.

Our prediction is that these dem-
ands will eventually lead us to iso-
morphic IoT system architectures, in 
the spirit of isomorphic web applica-
tions.12 Isomorphic web applications 
commonly refers to the ability to use 
the same development technologies 
and code between the front and back 
ends. Just as we are currently wit-
nessing in the IoT area, isomorphic 
web applications emerged from an 
initially fragmented technological 
landscape in which the development 
technologies for the web browser and 
server were entirely different. 

Many web developers surely still 
remember the era when back-end 
functionality was written in PHP 
or Perl, resulting in a deep divide 

between the programming languages 
used on the client and server sides. 
Once the use of JavaScript spread to 
the back end,16 it became gradually 
possible to run the same code on both 
sides as long as the code would rely 
on compatible library dependencies 
and comply with different sandbox-
ing restrictions.

In an isomorphic IoT system, dev-
ices, gateways, and cloud back-end fea-
tures and front-end applications will 
be written using the same technologies 
and, ideally, be able to run the same 
software components, allowing the 
flexible migration of code among com-
ponents in the overall system. Instead 
of having to learn many incompatible 
software development platforms, in 
an isomorphic architecture, one base 
technology will suffice and be able to 
cover all aspects of end-to-end develop-
ment; the same tools can then be used 
to compose the software across all of 
the computing units (Figure 4).

The two key technical elements 
that are needed for implementing 
such systems are a uniform API for 

accessing features of different subsys-
tems and a common runtime that is 
fast but small enough for embedded 
devices yet powerful enough to imple-
ment lightweight containers to deploy 
applications everywhere. In addition, 
an orchestrator function (such as those 
described by Kurzyniec et al.7 and 
Mäkitalo et al.8) is needed that will 
guide the deployment and potential 
migration of the different subsystems.

More broadly, the “holy grail” in 
the IoT area is a common program-
mable world API that would cover 
device discovery, data acquisition, 
data access, device actuation, device 
management, code updates, debug-
ging, and other relevant topics in a 
un iversa l fash ion—t hus  work i ng 
universally across devices from dif-
ferent domains, manufacturers, and 
the necessary security mechanisms. 
While it is debatable whether there 
will ever be a single API to cover 
IoT devices from entirely different 
domains, it is safe to bet that, in five 
to 10 years, IoT devices and their APIs 
will have converged significantly. It 

FIGURE 4. The (a) classic versus (b) isomorphic IoT architectures.
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is also very likely that the necessary 
infrastructure will grow around the 
already existing IP networking and 
web infrastructure.

ISOMORPHIC IoT WITH  
WEB TECHNOLOGIES
In seeking concrete technology candi-
dates for implementing isomorphism, 
we have turned to web standards since 
they have played a unifying role in 
many other contexts. For uniform APIs 
in the isomorphic IoT system context, 
the most prominent candidate today 
is the Web of Things (WoT), a set of 
standards for solving the interoper-
ability issues of different IoT plat-
forms and application domains.20 In 
essence, the WoT makes each “thing” 
part of the Web by giving it a uniform 
resource identifier that can be used for 

communicating with it. The commu-
nication with each thing is supported 
by a common data model and uniform 
API that is recognized by every thing.

For the isomorphic IoT runtime, 
the web provides t wo prominent 
options: JavaScript/ECMAScript3 and 
WebAssembly (WASM).19 The for-
mer is the de facto language for web 
applications both for the web browser 
and cloud back end (Node.js); it is 
currently the most viable option for 
implementing static isomorphism, 
that is, to allow the use of the same 
programming language throughout 
the end-to-end system. 

The latter is a binary instruction 
format to be executed on a stack-based 
virtual machine that can leverage con-
temporary hardware2,6; we see WASM 
as the best option for providing support 

for dynamic isomorphism, that is, the 
ability to use a common runtime that 
is powerful but small enough to also 
fit in low-end IoT devices (Figure 5). 
Note that these options are not mutu-
ally exclusive; that is, it would be pos-
sible to implement an architecture in 
which WASM is used as the unifying 
runtime, but JavaScript is used as the 
programming language throughout 
the end-to-end system.

Both options have their pros and 
cons in the context of isomorphic IoT 
applications. JavaScript offers mas-
sive library support [more than a mil-
lion Node Package Manager (NPM) 
modules], a large number of develop-
ers familiar with the language, and 
high-performance virtual machines. 
However, for isomorphic applications, 
the dynamic nature of JavaScript may 

FIGURE 5. Using web technologies to implement (a) static and (b) dynamic isomorphism—the potential options. Notice that the options 
are not mutually exclusive. 
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require additional support for packag-
ing the applications into containers. 

In contrast, WASM programs are 
organized into modules, which are the 
unit of deployment, loading, and com-
pilation; thus, they seem like natural 
candidates for building lightweight 
containers.9 WASM programs can 
be written in a variety of program-
ming languages and then compiled 
to WASM for execution. However, the 
technology is still relatively immature 
outside the realm of web browsers. 
Both technologies can be used to real-
ize a model in which new applications 
are initialized in the locations where 
they are needed as well as the vision of 
migratory, liquid applications.15

Ultimately, the definition of a com-
mon, isomorphic IoT platform is about 
standardization. While researchers can 

make relevant contributions and propos-
als, this area requires collaboration from 
major industry players to get together and 
agree on common principles and prac-
tices. Alternatively—or in addition—de 
facto standards will surely be established 
by those companies that manage to cre-
ate highly successful businesses around 
their IoT solutions.

Finally, while predicting the rise of 
isomorphic software, it is important to 
note that not all software needs to be 
isomorphic. For instance, low-cost IoT 
devices, such as ambient temperature 
or air quality sensors, are often imple-
mented with “bare metal” solutions 
without including any kind of an oper-
ating system in the device. Although 
hardware capabilities are increasing 
very rapidly (just 15 years ago, who 
would have thought microcontrollers 

would be based on 32-bit architectures 
or have megabytes of storage mem-
ory?), we do not foresee such devices 
including support for containers or 
advanced virtualization capabilities in 
the next several years. In the same vein, 
visualization and cloud components 
that have been developed for monitor-
ing the overall system state usually do 
not need to be transferable to run in 
edge devices. Even though advances in 
hardware development will probably 
eventually enable the use of virtual-
ization literally in all types of devices, 
ultimately, these choices will still have 
to be based on rationally justified use 
cases rather than blindly trying to 
make code executable everywhere.

According to a popular saying—
often attributed to Alan Kay—
in software systems develop-

ment, “Simple things should be simple, 
and complex things should be possi-
ble.” Unfortunately, in modern soft-
ware development, simplicity seems 
to be a lost virtue.10 Instead, modern 
software systems are characterized by 
the plentiful use of virtualization, the 
abundant use of third-party software 
components from unknown sources, 
and a cornucopia of overlapping imple-
mentation technologies for different 
parts of the end-to-end system.

When targeting IoT systems, there 
is currently very little coherence in 
the development or deployment prac-
tices at the level of end-to-end systems. 
Furthermore, deployment in the large 
introduces new challenges, especially 
when one should routinely manage up 
to millions of devices in a consistent 
fashion. At the moment, we are still far 
away from Wasik’s prediction: “In the 
programmable world, all our objects 
will act as one.”17 We really should not 
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continue programming, installing, and 
maintaining large-scale IoT systems 
with the medley of technologies that is 
in use today.

Our prediction is that IoT devel-
opment needs isomorphic software 
architectures, in which subsystems 
and computational entities can be pro-
grammed with a consistent set of tech-
nologies, allowing applications and 
their components to be statically or 
dynamically allocated, orchestrated, 
and migrated to different entities 
flexibly. Although fully isomorphic 
IoT systems are still some years away, 
their arrival may ultimately dilute or 
even dissolve the boundaries between 
the cloud and its edge, allowing com-
putations to be transferred dynami-
cally and performed in those elements 
that provide the optimal tradeoff 
among performance, storage, network 
speed, latency, and energy efficiency. 
As most the prominent candidates for 
realizing isomorphism in the context 
of the IoT, we foresee the WoT for APIs 
and JavaScript or WASM for compos-
ing flexibly deployable and transfer-
rable application logic. 
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