
COVER FEATURE TECHNOLOGY PREDICTIONS

C O M P U T E R 0 0 1 8 - 9 1 6 2 / 2 1 © 2 0 2 1 I E E E P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y J U LY 2 0 2 1 69

Isomorphic Internet of
Things Architectures
With Web Technologies

Tommi Mikkonen, University of Helsinki

Cesare Pautasso, Università della Svizzera italiana

Antero Taivalsaari, Nokia Bell Labs

Internet of Things development needs isomorphic software

architectures, in which every kind of device can be programmed

with a consistent set of implementation technologies, allowing

applications and their components to be statically deployed or

dynamically migrated without having to change their shape.

Recent years have witnessed an avalanche of
digitalization technologies. Processing capa-
bilities have grown dramatically, cloud com-
puting has become a commodity, data science

has blossomed due to increasing amounts of data, and
artificial intelligence (AI) and machine learning (ML)
have emerged as everyday technologies even in devices
with limited capabilities, such as mobile phones. These

changes are leading us to a “programmable world,”17
where everyday things around us will become connected
and programmable.

A hallmark of the trend toward the programmable
world is the Internet of Things (IoT) development. A
typical IoT architecture comprises a number of compo-
nents, including

 › sensors and actuators that are at the edge of the
network

 › gateways that connect them to the Internet
Digital Object Identifier 10.1109/MC.2021.3074258
Date of current version: 1 July 2021

TECHNOLOGY PREDICTIONS

70 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

 › cloud services that offer large
amounts of storage

 › end-user applications that
enable access to data, sensors,
and actuators

 › scalable analytics facilities that
are deployed in the cloud.14

A typical IoT system end-to-end archi-
tecture is illustrated in Figure 1. Today,
a wide variety of implementation
technologies are used for developing
different parts of the end-to-end IoT
system (see Figure 2). This results in
diverging development and deploy-
ment practices as well as higher inte-
gration costs.

In this article, we argue that a
unifying software layer is needed to
manage the complexity of IoT devel-
opment and liberate developers from
the highly fragmented IoT architec-
tures of today. The work presented in
this article is a continuation of a series
of vision articles that describe liquid,
multidevice software architectures15
and the programmable world con-
cept.13 In the present article, we push
the envelope toward isomorphic IoT
systems, following the same line of
thought and motivation.

ON ISOMORPHIC SOFTWARE
Isomorphic means “with the same
shape.” The word isomor phism is
derived from the ancient Greek: is
kvqg, or isos, which signifies “equal,”
and nq_zh, or morphe, which rep-
resents “form” or “shape.” Isomor-
phism is a popular, well-established
concept in mathematics. However, in
the context of software development,
the idea emerged relatively recently.
For instance, for web applications,
isomor phism refers to t he abi l it y
to run the same code on both the
back end (cloud) and front end (web

FIGURE 1. A typical IoT system end-to-end architecture.

Cloud

Edge
Gateway

Mobile
Device

IoT
Device

– Sensors
– Actuators

Sensor and
Actuation

Data

Aggregated
Sensor and

Actuation
Data

App Data and
Event Push
Notifications

– Web Applications
– Mobile Apps

– Device Management
 and Control
– Data Acquisition
 and Storage
– Device Actuation Support
– Data Analytics
– Domain-Specific
 Functionality

FIGURE 2. An example of the current platform diversity in the context of IoT
systems.

Cloud

Edge
Gateway

Mobile
Device

Hardware
Component

Virtualization

Virtual
Machine
Container

JavaScript
Python

...

IoT
Device

Operating
System

Zephyr OS
FreeRTOS

QNX
VxWorks

Android
iOS

Linux

Linux
Android

Virtual
Machine
Container

JavaScript
Java

...

App
Sandbox

None

Programming
Language

Swift
Kotlin

C
C++

 J U LY 2 0 2 1 71

browser). More broadly, isomorphic
software architectures feature soft-
ware components that do not have to
be modified (“change their shape”)
when running across the different
hardware or software components
of the system; some examples of iso-
morphism in the context of software
systems are listed in Table 1.

In principle, writing software for
isomorphic architectures is fund a-
mentally simpler since the same code
can r un ever y where. Because t he
underlying technologies are handled
uniformly, developers do not have to
master different development tech-
nologies, and, thus, complexity is
tamed considerably.

Several different levels of isomor-
phism can be identified. At the first

level, isomorphism refers to the con-
sistent use of the same development
technologies across the dif ferent
computational elements in the entire
system. In contrast with such static
development-level isomorphism, in
dynamic isomor phism, a common
r untime engine or vir tualization
solution is used so that the same code
can run in different computational
elements without recompilation. In
an even more advanced system, the
dynamic migration of code from one
computational element to another
is enabled.

In the case of IoT applications, the
same (that is, isomorphic) software
can ideally be deployed throughout
the end-to-end system to run on edge
devices, gateways, mobile clients, and

cloud services. However, as we discuss,
current IoT systems are a far cry from
this ambition. Today, IoT application
developers must be aware about the
deployment context for their code, and
they must be familiar with many dif-
ferent programming languages as well
as virtual runtime environments and
communication protocols (Figure 2).
This platform diversity can make it
impossible, for example, to redeploy
components from the edge to the cloud
without a complete rewrite.

While isomorphic architectures
will make it easier, faster, and poten-
tially cheaper to develop IoT appli-
cations and systems, we predict that
they will also enable new kinds of
dynamic applications that take advan-
tage of the possibility to dynamically

TABLE 1. Examples of isomorphic software.

Technology Description of isomorphic features

Java (1995) The “Write once, run everywhere” slogan popularized by the Java platform1 captures the essence of static isomorphism
in software. In Java, the concept meant that it is possible to run the same software on different computer architectures
and operating systems using a virtual machine.

Squeak Smalltalk (1996) Virtual machines for the Squeak Smalltalk system are available for many operating systems and hardware platforms,
making it possible to run bit-identical images across all.4

Unity (2005) The Unity 3D development platform was born within the gaming domain, but it has recently branched out to the
cinematics, automotive, and architecture domains. Applications written for Unity can run across 25 different platforms,
including gaming consoles, but also mobile devices, virtual reality headsets, and smart TVs.

Lively Kernel (2007) Lively Kernel is a web framework where applications are composed with JavaScript, and the code can be run on either
the client or server side.5

Isomorphic web apps
(2013)

The term isomorphic web app was introduced in the context of web applications in mid-2010s, referring to the ability to
allocate a part of a web application’s functionality either on the server or client.12 While the term was new, the same idea
has been used in the context of the web previously, for example, in the Lively Kernel mentioned earlier.

Universal Windows
Platform (2015)

Within the Microsoft ecosystem, this platform enables developers to write and run the same software on computers and
tablets running Windows 10, Xbox One gaming machines, and HoloLens devices.

Liquid web apps (2015) Liquid web applications11 allow the migration of their user interface (UI) components on the fly, allowing users to flexibly
use applications on different devices and screens. The main focus in this work is on user experience: how to seamlessly
move, clone, and adapt UI components and entire user experiences from one device to another.

TECHNOLOGY PREDICTIONS

72 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

redeploy and migrate application com -
ponents from the edge to the cloud
(and vice versa).

CHALLENGES IN IoT
DEVELOPMENT

Diversity of programming
models
Nowadays, the vast majority of soft-
ware developers have been trained to
do either mobile development or web
development.18 Many of these develop-
ers tend to assume that their skills are
directly applicable to IoT development.
However, IoT systems have many char-
acteristics that do not apply to mobile
or web applications. IoT developers
must consider several factors that are
unfamiliar to most application devel-
opers. Such factors include

 › multidevice programming
 › the heterogeneity and diversity
of devices

 › intermittent, potentially unreli-
able connectivity

 › the distributed, always-on
nature of the overall system

 › the general need to write soft-
ware in a highly fault-tolerant
and defensive manner.

Moreover, a typical IoT applica-
tion is continuous and reactive. On
the basis of observed sensor read-
ings, computations get triggered (and
retriggered) and, eventually, result
in various actionable events. The sys-
tems are essentially asynchronous,
parallel, and distributed. These qual-
ities alone make IoT applications very
different from traditional PC, mobile,
or web applications, in which software
is typically written for a single client
that may communicate with a single
back-end server.

In general, IoT devices are bringing
back the need for embedded software
development skills and education.
Software development for IoT devices
is very similar to “classic” embed-
ded systems development, as they
both require small-memory and ener-
gy-aware software development skills.
This is an especially relevant note
from an education viewpoint since,
in the past 10–15 years, many univer-
sities—at least in Northern Europe—
have scaled back their courses on
embedded systems and control the-
ory, focusing on presumably more
modern and desirable areas, such as
web and mobile software develop-
ment, i n s tead. Recent Developer
Economics survey reports strongly
confirm the focus on higher-level pro-
gramming skills.18

While IoT device development is
bringing back the need for embed-
ded software, at the other end of the
spectrum of IoT end-to-end systems,
cloud development relies heavily on
multiple layers of virtualization. In a
modern microservice-based software
architecture, the built-in assumption
is that all of the microservices must be
turned into Docker containers.

Furthermore, those Docker con-
tainers are then assumed to be run in a
Kubernetes cluster. This has to be done
in spite of the fact that the underlying
components are commonly written
in Python or JavaScript/Node.js (thus
requiring a virtual machine language
runtime), and they typically run in a
virtual machine rented from third-
party cloud service providers, such as
Amazon or Microsoft.

D o c k e r i z a t ion a n d t h e u s e of
Kubernetes effectively means that
modern software systems commonly
use a minimum of four virtualiza-
tion layers, even for the simplest of

cloud components. The additional
virtualization layers often offer little
additional value, add overhead to the
development process, slow down appli-
cation execution, and make debugging
of the system more difficult. Never-
theless, the use of virtualized software
environments is rapidly spreading to
IoT edge systems as well, including
gateway development.

Virtualization layers add com-
plexity to just about every step of the
development process. Dealing with
this complexity necessitates a lot of
boilerplate software that presumably
helps but often distracts developers
from focusing on the essentials of the
applications. Despite the extensive use
of virtualization, IoT systems still suf-
fer from a rigid and fragmented archi-
tecture in which tasks cannot be real-
located easily from one computational
element to another.

INDUSTRIAL EXAMPLE
Let us present a brief industrial IoT
system example to illustrate the cur-
rent diversity. In this system, a com-
pany has developed an industrial mea-
surement and tracking solution that
consists of a large number of devices
custom built for different measure-
ment and tracking tasks.

Examples include devices for track-
ing air quality (temperature, humid-
ity, air pressure, and indoor air pol-
lution) and movement (based on
both inertial measurement units and
indoor localization technologies) as
well as those for measuring ambient
noise and luminosity (including infra-
red light level). Devices are connected
to the network either via short-area
radio, such as Wi-Fi, or low-power
wide-area network solutions, such
as narrowband-IoT (NB-IoT) or LTE-M.
Dat a upload i ng a nd ac t uat ion a re

 J U LY 2 0 2 1 73

performed using the Message Queuing
Telemetry Transport (MQTT) protocol
(https://mqtt.org/).

In this case study system, sampling
and data-upload rates are relatively
moderate. On average, data uploading
is performed only every few minutes.
This simplifies the implementation of
the cloud back end quite considerably

since there is no requirement for con-
tinuous data streaming or extremely
low latencies. Figure 3 provides an
overview of our case study system.

The measurement devices are built
on top of available off-the-shelf hard-
ware. For Wi-Fi-based devices, the popu-
lar ESP32 (https://www.espressif.com/
en/products/socs/esp32) platform was

used. For NB-IoT/LTE-M-based devices,
Nordic Semiconductor’s nRF91 (https://
w w w.nor d ic s e m i.com/ P r o duc t s/
L ow-power-cel lu la r-IoT/n R F9160)
was chosen. The development lan-
guage for both of these device plat-
forms is C, but application program-
ming interfaces (APIs), libraries, and
tools vary considerably since a different

FIGURE 3. An overview of our case study system, including its key subsystems and related applications.

Device
Management

Identity and Access
Management

Domain-Specific
Microservices

Data
Acquisition

Deployment and
Runtime Support

Logging and
Monitoring

Support

Analytics
Support

Data
Storage

Data
Access and
Notifications

Administrative
Monitoring Tools

Web and Mobile
Apps

Device
Configuration
Tools

TECHNOLOGY PREDICTIONS

74 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

real-time operating system is used in
each device platform.

Since data uploading is performed
over Wi-Fi or cellular, this use case does
not require any custom-built gateway
devices running dedicated protocol trans-
lation stacks. However, for device con-
figuration purposes, an Android mobile
app—written in Java utilizing the Android
libraries—was developed as well.

A lot of focus in the development
effort was placed on developing the
cloud back end. The logical components
of the back end are depicted in Figure 3,
and the majority were implemented
using open source components.

For security perimeter/reverse proxy
implementation, NGINX (https://nginx
.org/) was chosen. For data acquisi-
tion (collection of sensing data from
devices), both Apache Kafka (https://
kaf ka.apache.org/) and RabbitMQ
(https://www.rabbitmq.com/) are used.
For logging and system monitoring,
Grafana (https://grafana.com/), Graph-
ite (ht t ps://graphiteapp.org/), and
Icinga (https://www.icinga.com/) were
picked. Data analytics capabilities
were originally implemented using
Apache Storm (http://storm.apache
.org/), but these were later replaced with
Apache Spark (https://spark.apache
.org/). Domain-specific microservices
were all implemented in Node.js.

The entire back end is Docker-
ized; for instance, each of the micro-
services runs in its own Docker con-
tainer. Ansible (https://www.ansible
.com/) and OpenStack (https://www
.openstack.org/) were utilized in the
original deployment, but, later, the
entire system was migrated to run in
a Kubernetes cluster (https://kuberne
tes.io/).

In addition to the devices and cloud
back end, some additional web and
mobile applications were developed

for data visualization purposes as well
as system administration and mon-
itoring. In web application develop-
ment, an earlier version of Angular.
js (https://angularjs.org/) was used,
whereas mobile apps were written in
Java/Android Studio.

As can be determined from this dis-
cussion, the development of the entire
end-to-end system required a very
broad palette of technologies rang-
ing from embedded, mobile, and web
application technologies to a spec-
trum of popular cloud back-end im -
plementation components. Given the
breadth of the technologies, it would
be almost impossible for an individual
developer or a small startup company
to master all of the necessary tech-
nologies to develop the entire system.
Furthermore, because of the selected
technologies, each of the components
is rather tightly coupled with a specific
computational element in the end-to-
end system.

ADDITIONAL CATALYSTS
FOR CHANGE

Intelligence at the edge
In “classic” IoT systems, such as our
case study system, the majority of
computation and analytics are per-
formed in the cloud in a centralized
fashion. However, in recent years,
there has been a noticeable trend in
IoT system development to move intel-
ligence closer to the edge.

Historically, the computing capac-
ity, memory, and storage of edge
dev ices were l i m ited. D ue to t he
increasing computational capabilities
of edge devices and requirements for
lower latencies, though, intelligence
in a modern end-to-end computing
system is gradually moving toward
the edge, first to gateways and then

to devices. This includes both generic
software functions, and—more im -
portantly—time-critical AI/ML fea-
tures for processing data available in
the edge with minimal latency. The
requirement to run advanced AI/ML
and analytics algorithms in the edge
increases the demand for consistent
programming technologies across the
end-to-end system.

The increasingly dynamic
nature of IoT systems
In IoT systems that consist of a mas-
sive number of devices overall, device
topologies can be expected to be highly
dynamic and ephemeral. This dyna-
mism calls for technologies that can
cope with dynamically changing
“swarms” of devices and their evolv-
ing responsibilities. The increasingly
dynamic nature is not only related
to software features but also to AI/
ML capabilities, where reinforcement
learning can introduce unexpected
situations—something that worked
yesterday might not work today, and
vice versa. Furthermore, since such
features are wrapped in software com-
ponents, it is often expected that they
can be relocated to the best-suited con-
text for execution.

To simplify development, deploy-
ment, and long-term use, we expect that
future IoT systems will need to support
a very flexible allocation of responsi-
bilities so that the roles of devices can
evolve over time. This calls for a plat-
form in which different computational
entities can run the same code.

PREDICTING THE RISE OF
ISOMORPHIC IoT SYSTEMS
With the ever-increasing complexity,
dynamism, and sheer amount of soft-
ware, we are on a dangerous trajec-
tory at the moment. The rigid system

 J U LY 2 0 2 1 75

architectures, broad spectrum of tech-
nologies, abundant use of cargo-cult
reuse (picking certain implementa-
tion technologies and methods simply
because others have done so), inconsid-
erate use of virtualization, and highly
virtualized deployment and package
management approaches are leading
us to IoT systems that become increas-
ingly difficult to manage. It is time
for a change.

Going forward, we need technol-
ogies that liberate us from rigid task
allocation and support the use of
consistent implementation technol-
ogies. Dynamic component deploy-
ment should be supported, but in a
fashion that emerges from application
needs—especially in relation to per-
formance and reliability—and not due
to constraints imposed by the domi-
nant development platforms and tools.
Moreover, various features (especially
AI/ML capabilities) may require the
flexible migration of code and models
from the cloud to the edge (and vice
versa), depending on the data avail-
ability and required response times.

Our prediction is that these dem-
ands will eventually lead us to iso-
morphic IoT system architectures, in
the spirit of isomorphic web applica-
tions.12 Isomorphic web applications
commonly refers to the ability to use
the same development technologies
and code between the front and back
ends. Just as we are currently wit-
nessing in the IoT area, isomorphic
web applications emerged from an
initially fragmented technological
landscape in which the development
technologies for the web browser and
server were entirely different.

Many web developers surely still
remember the era when back-end
functionality was written in PHP
or Perl, resulting in a deep divide

between the programming languages
used on the client and server sides.
Once the use of JavaScript spread to
the back end,16 it became gradually
possible to run the same code on both
sides as long as the code would rely
on compatible library dependencies
and comply with different sandbox-
ing restrictions.

In an isomorphic IoT system, dev-
ices, gateways, and cloud back-end fea-
tures and front-end applications will
be written using the same technologies
and, ideally, be able to run the same
software components, allowing the
flexible migration of code among com-
ponents in the overall system. Instead
of having to learn many incompatible
software development platforms, in
an isomorphic architecture, one base
technology will suffice and be able to
cover all aspects of end-to-end develop-
ment; the same tools can then be used
to compose the software across all of
the computing units (Figure 4).

The two key technical elements
that are needed for implementing
such systems are a uniform API for

accessing features of different subsys-
tems and a common runtime that is
fast but small enough for embedded
devices yet powerful enough to imple-
ment lightweight containers to deploy
applications everywhere. In addition,
an orchestrator function (such as those
described by Kurzyniec et al.7 and
Mäkitalo et al.8) is needed that will
guide the deployment and potential
migration of the different subsystems.

More broadly, the “holy grail” in
the IoT area is a common program-
mable world API that would cover
device discovery, data acquisition,
data access, device actuation, device
management, code updates, debug-
ging, and other relevant topics in a
un iversa l fash ion—t hus work i ng
universally across devices from dif-
ferent domains, manufacturers, and
the necessary security mechanisms.
While it is debatable whether there
will ever be a single API to cover
IoT devices from entirely different
domains, it is safe to bet that, in five
to 10 years, IoT devices and their APIs
will have converged significantly. It

FIGURE 4. The (a) classic versus (b) isomorphic IoT architectures.

Edge
Gateway

IoT
Device

IoT
Device

Edge
Gateway

Cloud Cloud

Mobile
Device

Mobile
Device

Isomorphic
IoT

Application

(a) (b)

TECHNOLOGY PREDICTIONS

76 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

is also very likely that the necessary
infrastructure will grow around the
already existing IP networking and
web infrastructure.

ISOMORPHIC IoT WITH
WEB TECHNOLOGIES
In seeking concrete technology candi-
dates for implementing isomorphism,
we have turned to web standards since
they have played a unifying role in
many other contexts. For uniform APIs
in the isomorphic IoT system context,
the most prominent candidate today
is the Web of Things (WoT), a set of
standards for solving the interoper-
ability issues of different IoT plat-
forms and application domains.20 In
essence, the WoT makes each “thing”
part of the Web by giving it a uniform
resource identifier that can be used for

communicating with it. The commu-
nication with each thing is supported
by a common data model and uniform
API that is recognized by every thing.

For the isomorphic IoT runtime,
the web provides t wo prominent
options: JavaScript/ECMAScript3 and
WebAssembly (WASM).19 The for-
mer is the de facto language for web
applications both for the web browser
and cloud back end (Node.js); it is
currently the most viable option for
implementing static isomorphism,
that is, to allow the use of the same
programming language throughout
the end-to-end system.

The latter is a binary instruction
format to be executed on a stack-based
virtual machine that can leverage con-
temporary hardware2,6; we see WASM
as the best option for providing support

for dynamic isomorphism, that is, the
ability to use a common runtime that
is powerful but small enough to also
fit in low-end IoT devices (Figure 5).
Note that these options are not mutu-
ally exclusive; that is, it would be pos-
sible to implement an architecture in
which WASM is used as the unifying
runtime, but JavaScript is used as the
programming language throughout
the end-to-end system.

Both options have their pros and
cons in the context of isomorphic IoT
applications. JavaScript offers mas-
sive library support [more than a mil-
lion Node Package Manager (NPM)
modules], a large number of develop-
ers familiar with the language, and
high-performance virtual machines.
However, for isomorphic applications,
the dynamic nature of JavaScript may

FIGURE 5. Using web technologies to implement (a) static and (b) dynamic isomorphism—the potential options. Notice that the options
are not mutually exclusive.

Hardware
Component

Hardware
Component

Cloud Cloud

Edge
Gateway

Edge
Gateway

Mobile
Device

Mobile
Device

IoT
Device

IoT
Device

Runtime
Virtualization

Runtime
Virtualization

Virtual
Machine
Container

Virtual
Machine
Container

WASM
Container

WASM
Container

WASM
Container

WASM
Container

Web
Browser

None JavaScript

JavaScript

JavaScript

JavaScript
JavaScript

Python
...

JavaScript
Java

...

Swift
Kotlin

C
C++

Programming
Language

Programming
Language

(a) (b)

 J U LY 2 0 2 1 77

require additional support for packag-
ing the applications into containers.

In contrast, WASM programs are
organized into modules, which are the
unit of deployment, loading, and com-
pilation; thus, they seem like natural
candidates for building lightweight
containers.9 WASM programs can
be written in a variety of program-
ming languages and then compiled
to WASM for execution. However, the
technology is still relatively immature
outside the realm of web browsers.
Both technologies can be used to real-
ize a model in which new applications
are initialized in the locations where
they are needed as well as the vision of
migratory, liquid applications.15

Ultimately, the definition of a com-
mon, isomorphic IoT platform is about
standardization. While researchers can

make relevant contributions and propos-
als, this area requires collaboration from
major industry players to get together and
agree on common principles and prac-
tices. Alternatively—or in addition—de
facto standards will surely be established
by those companies that manage to cre-
ate highly successful businesses around
their IoT solutions.

Finally, while predicting the rise of
isomorphic software, it is important to
note that not all software needs to be
isomorphic. For instance, low-cost IoT
devices, such as ambient temperature
or air quality sensors, are often imple-
mented with “bare metal” solutions
without including any kind of an oper-
ating system in the device. Although
hardware capabilities are increasing
very rapidly (just 15 years ago, who
would have thought microcontrollers

would be based on 32-bit architectures
or have megabytes of storage mem-
ory?), we do not foresee such devices
including support for containers or
advanced virtualization capabilities in
the next several years. In the same vein,
visualization and cloud components
that have been developed for monitor-
ing the overall system state usually do
not need to be transferable to run in
edge devices. Even though advances in
hardware development will probably
eventually enable the use of virtual-
ization literally in all types of devices,
ultimately, these choices will still have
to be based on rationally justified use
cases rather than blindly trying to
make code executable everywhere.

According to a popular saying—
often attributed to Alan Kay—
in software systems develop-

ment, “Simple things should be simple,
and complex things should be possi-
ble.” Unfortunately, in modern soft-
ware development, simplicity seems
to be a lost virtue.10 Instead, modern
software systems are characterized by
the plentiful use of virtualization, the
abundant use of third-party software
components from unknown sources,
and a cornucopia of overlapping imple-
mentation technologies for different
parts of the end-to-end system.

When targeting IoT systems, there
is currently very little coherence in
the development or deployment prac-
tices at the level of end-to-end systems.
Furthermore, deployment in the large
introduces new challenges, especially
when one should routinely manage up
to millions of devices in a consistent
fashion. At the moment, we are still far
away from Wasik’s prediction: “In the
programmable world, all our objects
will act as one.”17 We really should not

ABOUT THE AUTHORS

TOMMI MIKKONEN is a professor of software engineering at the University
of Helsinki, Helsinki, 00014, Finland. His research interests include web engi-
neering, the Internet of Things, and software architectures. Mikkonen received
a Ph.D. in computer science from Tampere University of Technology, Finland.
Contact him at tommi.mikkonen@helsinki.fi.

CESARE PAUTASSO is a professor at the Software Institute at the Univer-
sità della Svizzera italiana, Lugano, 6900, Switzerland. His research interests
include Web engineering, liquid software architectures, and application pro-
gramming interface analytics. Pautasso received a Ph.D. in computer science
from ETH Zurich, Switzerland. He is a Senior Member of IEEE. Contact him at
c.pautasso@ieee.org.

ANTERO TAIVALSAARI is a Bell Labs fellow at Nokia Bell Labs, Tampere,
33100, Finland. His current research interests include the Programmable
World, streaming data Internet of Things systems, and the foundations of soft-
ware and web engineering. Taivalsaari received a Ph.D. in information sciences
from the University of Jyväskylä, Finland. Contact him at antero.taivalsaari@
nokia-bell-labs.com.

TECHNOLOGY PREDICTIONS

78 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

continue programming, installing, and
maintaining large-scale IoT systems
with the medley of technologies that is
in use today.

Our prediction is that IoT devel-
opment needs isomorphic software
architectures, in which subsystems
and computational entities can be pro-
grammed with a consistent set of tech-
nologies, allowing applications and
their components to be statically or
dynamically allocated, orchestrated,
and migrated to different entities
flexibly. Although fully isomorphic
IoT systems are still some years away,
their arrival may ultimately dilute or
even dissolve the boundaries between
the cloud and its edge, allowing com-
putations to be transferred dynami-
cally and performed in those elements
that provide the optimal tradeoff
among performance, storage, network
speed, latency, and energy efficiency.
As most the prominent candidates for
realizing isomorphism in the context
of the IoT, we foresee the WoT for APIs
and JavaScript or WASM for compos-
ing flexibly deployable and transfer-
rable application logic.

REFERENCES
1. K. Arnold, J. Gosling, and D. Holmes,

Java Programming Language, 4th
ed. Reading, MA: Addison-Wesley,
2005. doi: https://dl.acm.org/doi/
book/10.5555/1051069.

2. D. Bryant, “WebAssembly outside
the browser: A new foundation for
pervasive computing,” in Proc. Key-
note at ICWE’20, Helsinki, Finland,
June 9–12, 2020.

3. ECMAScript 2020 Language Speci-
fication, Standard ECMA-262, June
2020. https://www.ecma-interna
tional.org/publications/standards/
Ecma-262.htm (accessed Mar. 5,
2021).

4. D. Ingalls, T. Kaehler, J. Maloney,
S. Wallace, and A. Kay. “Back to
the future: The story of squeak, a
practical smalltalk written in itself,”
in Proc. 12th ACM SIGPLAN Conf.
Object-Oriented Programming, Syst.,
Languages, Appl., 1997, pp. 318–326.

5. D. Ingalls et al., “A world of active
objects for work and play: The first
ten years of lively,” in Proc. ACM Int.
Symp. New Ideas, New Paradigms, and
Reflections Programming and Softw.,
2016, pp. 238–249.

6. M. Jacobsson and J. Willén, “Virtual
machine execution for wearables based
on WebAssembly,” in Proc. EAI Int. Conf.
Body Area Netw., 2018, pp. 381–389.

7. D. Kurzyniec, T. Wrzosek, D. Drze-
wiecki, and V. Sunderam, “Towards
self-organizing distributed comput-
ing frameworks: The H2O approach,”
Parallel Process. Lett., vol. 13, no.
2, pp. 273–290, 2003. doi: 10.1142/
S0129626403001276.

8. N. Mäkitalo et al., “Action-oriented
programming model: Collective exe-
cutions and interactions in the fog,”
J. Syst. Softw., vol. 157, p. 110391, Nov.
2019. doi: 10.1016/j.jss.2019.110391.

9. N. Mäkitalo et al., “WebAssembly
modules as lightweight containers
for liquid IoT applications,” in Proc.
Int. Conf. Web Eng., 2021, pp. 328–336.

10. T. Margaria and M. Hinchey, “Sim-
plicity in IT: The power of less,” Com-
puter, vol. 46, no. 11, pp. 23–25, 2013.
doi: 10.1109/MC.2013.397.

11. T. Mikkonen, K. Systä, and C. Pau-
tasso, “Towards liquid web applica-
tions,” in Proc. Int. Conf. Web Eng.,
2015, pp. 134–143.

12. J. Strimpel and M. Najim, Building Iso-
morphic JavaScript Apps: From Concept to
Implementation to Real-World Solutions.
Sebastopol, CA: O’Reilly Media, 2016.

13. A. Taivalsaari and T. Mikkonen,
“A roadmap to the programmable

world: Software challenges in the IoT
era,” IEEE Softw., vol. 34, no. 1, pp.
72–80, 2017. doi: 10.1109/MS.2017.26.

14. A. Taivalsaari and T. Mikkonen, “On
the development of IoT systems,” in
Proc. 3rd Int. Conf. Fog Mobile Edge
Comput. (FMEC), 2018, pp. 13–19. doi:
10.1109/FMEC.2018.8364039.

15. A. Taivalsaari, T. Mikkonen, and K.
Systä, “Liquid software manifesto:
The era of multiple device ownership
and its implications for software
architecture,” in Proc. IEEE 38th
Annu. Comput. Softw. Appl. Conf.,
2014, pp. 338–343.

16. S. Tilkov and S. Vinoski, “Node.js:
Using JavaScript to build high-
performance network programs,”
IEEE Internet Comput., vol. 14, no. 6,
pp. 80–83, 2010. doi: 10.1109/
MIC.2010.145.

17. B. Wasik, “In the programma-
ble world, all our objects will act
as one,” Wired, 2013. Accessed:
Oct. 13, 2020. [Online]. Available:
http://www.wired. com/2013/05/
internet-of-things-2/

18. M. Wilcox, S. Schuermans, and C.
Voskoglou, “Developer economics:
State of the developer nation,” London,
U.K.: VisionMobile Ltd., Tech. Rep.,
2016. [Online]. Available: https://
www.developereconomics.com/
resources/reports/state-ofthe-develope
r-nation-q1-2016

19. A. Rossberg, Ed., “WebAssembly
Core Specification,” Version 1.1, Web
Assembly Community Group, San
Francisco, May 13, 2021. https://
web assembly.github.io/spec/
core/_download/WebAssembly.pdf
(accessed Mar. 5, 2021).

20. “Web of Things (WoT) architecture,”
World Wide Web Consortium, 2020.
https://www.w3.org/TR/wot
-architecture/Overview.html
(accessed Mar. 5, 2021).

