
The Parallel Event Loop Model and Runtime

A parallel programming model and runtime system for safe event-based
parallel programming

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Daniele Bonetta

under the supervision of

Prof. Dr. Cesare Pautasso

September 2014

Dissertation Committee

Prof. Dr. Walter Binder Università della Svizzera Italiana, Switzerland
Prof. Dr. Mehdi Jazayeri Università della Svizzera Italiana, Switzerland
Prof. Dr. Nate Nystrom Università della Svizzera Italiana, Switzerland

Prof. Dr. Pascal Felber Université de Neuchâtel, Switzerland
Dr. Nicholas D. Matsakis Mozilla Research, USA

Dissertation accepted on 10 September 2014

Prof. Dr. Cesare Pautasso
Research Advisor

Università della Svizzera Italiana, Switzerland

Prof. Dr. Igor Pivkin, Prof. Dr. Stefan Wolf
PhD Program Directors

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been submitted
previously, in whole or in part, to qualify for any other academic award; and the
content of the thesis is the result of work which has been carried out since the official
commencement date of the approved research program.

Daniele Bonetta
Lugano, 10 September 2014

ii

Nihil difficile volenti

Fam. Rusca

iii

iv

Abstract

Recent trends in programming models for server-side development have shown an
increasing popularity of event-based single-threaded programming models based on
the combination of dynamic languages such as JavaScript and event-based runtime
systems for asynchronous I/O management such as Node.JS. Reasons for the success
of such models are the simplicity of the single-threaded event-based programming
model as well as the growing popularity of the Cloud as a deployment platform for
Web applications.

Unfortunately, the popularity of single-threaded models comes at the price of per-
formance and scalability, as single-threaded event-based models present limitations
when parallel processing is needed, and traditional approaches to concurrency such as
threads and locks don’t play well with event-based systems.

This Dissertation proposes a programming model and a runtime system to over-
come such limitations by enabling single-threaded event-based applications with sup-
port for speculative parallel execution. The model, called Parallel event loop, has the
goal of bringing parallel execution to the domain of single-threaded event-based pro-
gramming without relaxing the main characteristics of the single-threaded model, and
therefore providing developers with the impression of a safe, single-threaded, runtime.
Rather than supporting only pure single-threaded programming, however, the parallel
event loop can also be used to derive safe, high-level, parallel programming models
characterized by a strong compatibility with single-threaded runtimes.

We describe three distinct implementations of speculative runtimes enabling the
parallel execution of event-based applications. The first implementation we describe is
a pessimistic runtime system based on locks to implement speculative parallelization.
The second and the third implementations are based on two distinct optimistic run-
times using software transactional memory. Each of the implementations supports the
parallelization of applications written using an asynchronous single-threaded program-
ming style, and each of them enables applications to benefit from parallel execution.

v

vi

Acknowledgements

It’s hard to tell how far from our expectations life can be, when no direction home is
set, and nothing but you can drive to the nächster halt. I was lucky, though, I was not
alone during my journey.

First, I would like to thank Cesare for having spent a good part of his good time
teaching me how good research can be done in a good way. Redundancy of good words
is not unintentional, as working with him was good, a good honor, and so will be in
the future. This Dissertation would not exist without his good advice.

Good, indeed, was also to work at USI, where I had the pleasure to meet many
brilliant people. Walter is one of them, and I am very thankful I had the pleasure
to work and learn from him. Besides USI, I am also honored I had the pleasure and
the privilege to meet amongst the smartest guys on earth during my time at Mozilla
Research and Oracle Labs. Both internships have been amongst the most formative
events of my life, and I am honored I had such a great opportunity.

I am honored I had in my committee Mehdi, Pascal, Niko, and Nate. I an very
thankful for their strong feedback and support, and for having helped me connecting
the dots from Pisa to Lugano, across Switzerland and the US, via California.

I am lucky I also had the pleasure and the fun of working with many smart and
happy PhD students and researchers at USI. Names I should mention are Achille,
Danilo, Domenico, Saeed, Aibek, Philippe, Stephen, and many many more.

Last but not least, a big thank you goes to my family and my old friends. Good
they have been there to remind that life is not only about parallelism and concurrency.
There still is no answer to my questions. It was good, however, to search.

D

vii

viii

Contents

Contents ix

List of Figures xiii

List of Tables xv

I Prologue 1

1 Introduction 3
1.1 Event-based programming, parallelism, and the Web 4
1.2 JavaScript as a programming language for parallel programming 5
1.3 Initial overview of the Parallel event loop 7
1.4 Thesis statement . 8
1.5 Contributions . 9
1.6 Summary and outline . 9

2 Background: single-threaded event loop 11
2.1 Event-based concurrency . 11
2.2 Event-based server architectures . 13
2.3 Event-based Frameworks and Web Programming 14
2.4 Event-based programming models . 15

2.4.1 Explicit event emission . 16
2.4.2 Implicit loop manipulation and Node.JS 17

2.5 Limitations of single-threaded event loop systems 19

II Programming Model 23

3 The parallel event loop model 25
3.1 The design of the parallel event loop . 25
3.2 Implicit parallelism and event ordering . 29
3.3 Core parallel event emission API . 31

ix

x Contents

3.3.1 Shared memory and atomicity . 33
3.4 Strictly ordered events . 33
3.5 Relaxed ordering of events . 36

3.5.1 Chained execution . 36
3.5.2 Unordered execution . 36
3.5.3 Globally unordered events . 38

3.6 Utility functions . 39
3.7 Programming model overview . 42

3.7.1 Happened-before relation . 44

4 Case studies 47
4.1 Event-based parallel programming . 47
4.2 Implicit parallelism in Node.JS . 49
4.3 WebWorkers with safe shared state . 52
4.4 Asynchronous tasks and events . 54

4.4.1 Asynchronous safe futures . 55
4.4.2 Task-based parallelism . 56

4.5 Parallel functional reactive programming 57
4.5.1 Software pipelining . 61

III Speculative Runtime 65

5 The parallel event loop runtime 67
5.1 Runtime system overview . 67
5.2 Speculation engines . 70

5.2.1 Event emission . 72
5.2.2 Hashed event emission for chained events 72
5.2.3 Event emission and I/O . 73
5.2.4 Bailout and worst-case scenario . 74
5.2.5 Common data structures . 74

5.3 Pessimistic PEV runtime . 75
5.3.1 Scheduling and speculation algorithm 77

5.4 Optimistic runtime . 79
5.4.1 STM-based speculation . 79
5.4.2 Runtime barriers . 81
5.4.3 Events scheduling . 82
5.4.4 Ordered events speculation . 85

5.5 Hybrid runtime . 89
5.5.1 STM-based speculation . 90
5.5.2 Scheduling . 90
5.5.3 Runtime barriers . 92

xi Contents

5.6 Summary . 92
5.6.1 Overview and Limitations . 93
5.6.2 Implementations overview . 93

6 Node.Scala 95
6.1 Programming model for service development 95
6.2 System architecture . 97

6.2.1 Implementation . 98
6.3 Performance evaluation . 99

6.3.1 Stateless services . 100
6.3.2 Stateful services . 101

7 TigerQuoll 103
7.1 Runtime system architecture . 103

7.1.1 VM level modifications . 104
7.1.2 Global runtime switch . 105

7.2 Transactional support . 105
7.2.1 Eventual fields in transactions (eventual transactions) 106

7.3 Performance evaluation . 110
7.3.1 Share-nothing Scalability . 111
7.3.2 Shared Memory Scalability . 111

8 Truffle.PEV 115
8.1 Truffle and Graal . 115
8.2 Runtime Overview . 116

8.2.1 TM Metadata speculative management 117
8.3 Performance Evaluation . 120

8.3.1 Event emission . 122
8.3.2 CPU-intensive workloads . 123
8.3.3 Read-intensive and data-intensive workloads 126
8.3.4 Runtime overhead . 128
8.3.5 Chained and ordered events . 130
8.3.6 Summary . 134

IV Epilogue 135

9 Related Work 137
9.1 Server runtime systems . 137

9.1.1 Asynchronous programming and event-based services 138
9.1.2 Event-based frameworks . 139
9.1.3 Event emission and Asynchronous task-based programming . . . 140
9.1.4 Explicit parallelism models . 141

xii Contents

9.1.5 Actors . 141
9.2 Speculative runtime systems . 142

9.2.1 Commit-time reordering . 143
9.2.2 Single-threaded overhead reduction 144

9.3 Parallel programming for the Web . 144
9.3.1 Scheduler-based approaches and the S scripting language 145

10 Concluding remarks 147
10.1 Future research directions . 148

Bibliography 149

Figures

1.1 Event-based application in JavaScript . 8

2.1 Events in a single-threaded event loop . 12
2.2 Event-based execution and shared memory 13
2.3 Implementation of emit . 17
2.4 Ordered event emission using emit. 18
2.5 Implementation of an event-based HTTP server 19
2.6 Array sorting microbenchmark in Node.JS. 20

3.1 Parallel event loop API and runtime overview. 27
3.2 Parallel event processing and ordering. 31
3.3 PEV core event emission API . 32
3.4 Execution of multiple event handlers in the PEV 34
3.5 Ordered event processing with the PEV . 35
3.6 Chained event emission . 37
3.7 Event emission using emitNow . 38
3.8 Event emission combining emitNow and emitChained 39
3.9 Parallel event processing using emitUnordered 40

4.1 Implicitly parallel Node.JS using the PEV event emission API. 52
4.2 Safe WebWorkers implemented using the PEV. 53
4.3 Implementation of an asynchronous MapReduce API using the PEV. . . . 57
4.4 A parallel tree traversal API expressed in the PEV. 58
4.5 A software pipeline with three stages. 60
4.6 A software pipeline with three stages using a task farm. 62

5.1 Parallel Event Loop general execution scheme. 68
5.2 Parallel Event Loop runtime high-level architecture. 69
5.3 Buffered event emission in a single-threaded event loop. 71
5.4 Pessimistic routing scheme. 77
5.5 Example of STM-based speculative execution. 80
5.6 Optimistic routing scheme. 83

xiii

xiv Figures

5.7 Event handlers execution loop using an STM-based runtime. 85
5.8 Out-of-order execution of ordered events. 86
5.9 Parallel event processing with an Optimistic and a Pessimistic PEV 87
5.10 Hybrid runtime routing scheme. 89

6.1 Stateful Web Service in Node.Scala. 96
6.2 Overview of Node.Scala. 98
6.3 Stateless Node.Scala performance . 100
6.4 Stateful Node.Scala performance . 101

7.1 Parallel word count in TigerQuoll . 106
7.2 Overview of the commit phase of the TigerQuoll runtime. 108
7.3 Eventual transactions commit-phase pseudocode. 109
7.4 Share-nothing scalability for TigerQuoll . 111
7.5 Shared Memory Scalability in TigerQuoll 112
7.6 Shared Memory Scalability: word counter in TigerQuoll 113

8.1 Read barrier for JavaScript object properties implemented as a Truffle
AST node. 118

8.2 Truffle.PEV microbenchmarks . 122
8.3 Primes benchmark . 124
8.4 CPU-bound workloads . 125
8.5 IntSet benchmark with the Optimistic PEV. 126
8.6 IntSet benchmark with the Hybrid PEV . 127
8.7 Bank benchmark . 128
8.8 Truffle.PEV WordCount . 129
8.9 Truffle.PEV Pagerank . 129
8.10 Array microbenchmark . 131
8.11 CPU-intensive microbenchmark . 131
8.12 Truffle.PEV Mixed workloads with an Optimistic PEV 132
8.13 Truffle.PEV Mixed workloads with a Pessimistic PEV 133

Tables

3.1 API compatibility of the PEV. 29
3.2 Event classes supported by the PEV. 30
3.3 PEV event emission API summary. 43
3.4 PEV happened-before relation for different event emissions 44

5.1 Pessimistic runtime summary. 78
5.2 Optimistic speculation summary. 84
5.3 Hybrid PEV speculation summary. 91

8.1 PEV runtime overhead (% slowdown factor). 130

xv

xvi Tables

Part I

Prologue

1

Chapter 1

Introduction

The Web is rapidly becoming a mature application-hosting platform. Technologies
such as WebRTC [28] and WebSockets [25] promise to further sustain this trend by
allowing Web clients to produce, consume, and elaborate data. As a consequence,
computing-intensive applications are required to run both on the client and on the
server, increasing the need for parallel processing in Web applications and services.
The trend is further confirmed (and influenced) by the abundance of multicore ma-
chines in all the tiers of the Web stack, from clients, to servers, through middlewares.
Examples of services and Web applications for which the need for parallelism is be-
coming urgent and challenging are RESTful Web services [78], and in general all ser-
vices nowadays populating the Web (including HTTP-based streaming services [77]
and WebSocket services [25] for real-time Web applications [136]). Other examples
that promise to become relevant in the near future are all applications connected to an
abundant production and consumptions of data, e.g., pervasive Web applications [27],
and so-called Big Data [142] applications. As a consequence of this need, new parallel
programming models for Web-based applications start to emerge. Notable examples
can be found in particular in the domain of client-side programming, where technolo-
gies such as RiverTrail [94, 93] promise to reduce the gap between client-side develop-
ers and parallel execution via a clean data-parallel programming model. Beyond data
parallelism, however, current solutions for parallel programming for Web applications
lack support for structured parallelism [126], and developers willing to implement ef-
ficient high-performance applications must instead rely on their own experience, and
implement ad-hoc solutions based on share-nothing actor-based [31] models.

In this dissertation we describe how some of the current limitations can be solved
by increasing the level of abstraction of parallel programming models for the Web by
relying on simple asynchronous event-based programming and a parallel execution
engine.

3

4 1.1 Event-based programming, parallelism, and the Web

1.1 Event-based programming, parallelism, and the Web

Since the introduction of the first parallel machines, parallel programming has always
been considered a complex field in which only expert programmers could play. Only
recently [96] the abundance of parallel hardware infrastructures in the form of multi-
core machines has revealed the urgent need for novel abstractions and models to deal
with parallel programming [113]. In the same historical period, another phenomenon
has influenced the development of programming models and frameworks: the Web.
As a matter of fact, the impressive growth of Web technologies has revealed some
limitations of existing programming models, feeding the demand for novel tools and
abstractions to develop dynamic, rich, and high-performance Web applications.

In this context, the need for novel ways to develop high-performance software
to be quickly exposed on the Web has been particularly clear in the context of Web
applications, where significant efforts have been spent on the research and develop-
ment of novel solutions (examples are Google’s Dart [22], and ASM.JS [2], to cite a
few). Parallelism, of course, is another way to achieve high-performance (orthogonal
to single-threaded performance optimization). The need for novel ways to develop
high-performance Web applications is particularly noticeable on the server side, where
parallel execution would be beneficial in two distinct but very related aspects, namely,
to increase the service throughput (1), and to optimize service latency (2). For what
concerns throughput optimization, server-side applications have to face the natural
parallelism deriving from the presence of multiple clients performing requests concur-
rently. In this context, the presence of many concurrent clients can be exploited to
process multiple independent requests in parallel. Concerning latency optimization,
parallel processing can be exploited to reduce the execution time of a single client re-
quest, for instance by parallelizing some CPU-bound operations that are required in
order to produce the client response. In this Dissertation we will address both classes
of parallelism, focusing on server-side systems relying on event-based concurrency and
the event loop [33].

Event-based concurrency is a concurrency control model in which concurrent inter-
actions are modeled as asynchronous events processed by a single thread of execution.
Events are usually generated by external entities (e.g., an I/O runtime system) which
usually provide a callback associated with the event (to be executed once the event has
been processed). The single-threaded nature makes of event-based concurrency a very
attractive model, as developers do not have to deal with data races and synchroniza-
tion, and can make strong assumptions about shared state consistency. However, the
simplicity of the model comes at the price of scalability for workloads that do require
CPU-intensive operations, given the single-threaded nature of the runtime.

Of particular success in the domain of server side development is Node.JS [15,
146], a JavaScript networking framework for the development of event-based Web ser-
vices. Node.JS is a combination of a very efficient HTTP server and a high-performance

5 1.2 JavaScript as a programming language for parallel programming

JavaScript execution engine (Google’s V8 [6]), relying on an event-based concurrency
model. The tight integration of the V8 engine with the HTTP server makes of Node.JS
a very convenient solution for Web services development, as -among other benefits- it
enables Web developers with a single language for both the client and the server. More-
over, Node.JS (as JavaScript) is single-threaded, and service developers can implement
services without having to worry about concurrency management, as the JavaScript
code is guaranteed to be executed always by one thread, while the HTTP server is re-
sponsible for handling multiple requests in parallel. So as long as the JavaScript code
implementing the service business logic is not a bottleneck, the Node.JS runtime can
handle concurrent requests with very high throughput. Conversely, when the service
is in charge of performing some CPU-bound computation, the single-threaded event
loop of Node.JS represents a limitation, preventing the service from scaling or ensur-
ing acceptable latency. Indeed, event-based concurrency also presents some drawbacks
(with respect to multi-threading). In particular, the single-threaded nature of the event
loop system makes it hard to scale event based systems on multicore machines without
relaxing one of the core properties of such systems (i.e., data-races-free shared state,
and scalability).

In this dissertation we discuss how existing single-threaded event-based systems
such as Node.JS can be extended and modified to enable safe parallel programming.

1.2 JavaScript as a programming language for parallel program-
ming

JavaScript is the most popular programming language featuring a single-threaded
event-based programming model both on its client-side implementation (where the
browser runs the event loop) and on its server-side counterpart (where the I/O sub-
strate is the event loop). This dissertation is therefore mostly focused on JavaScript,
and on JavaScript-based event loop frameworks.

JavaScript is single-threaded, not designed for parallel execution, and so are exist-
ing JavaScript execution engines. The evolution of the language has highly influenced
the design of such engines, pushing implementers towards single-threaded implemen-
tations that are more suitable to optimize due to the lack of concurrency and therefore
the lack of synchronization. From an historical perspective, the language has become
popular as a scripting language for the generation of dynamic Web content, and early
JavaScript execution engines were designed as simple bytecode interpreters, imple-
mented without having any performance goal. The diffusion of technologies such as
HTML5 [29], and the subsequent wide adoption of Web applications such as GMail and
Facebook, has changed the nature of the language, making of JavaScript the most pop-
ular language for the development of client-side applications. One of the most evident
consequences of such evolution has been the considerable research efforts [84] target-
ing JavaScript engines in the recent years. Such efforts have lead to a notable perfor-

6 1.2 JavaScript as a programming language for parallel programming

mance improvement, and existing execution engines such as Google V8 and Mozilla
SpiderMonkey all feature high-performance runtime techniques such as polymorphic
inline caches [99] and Just-in-time compilation [32].

Notwithstanding the performance improvements already obtained, very little re-
search has been done in the field of parallelism for JavaScript. Consequently, existing
state-of-the-art JavaScript engines are all single-threaded. Only recently, technologies
such as WebWorkers [8] and RiverTrail [93] have been proposed to enable JavaScript
applications with some support for parallel programming. However, both approaches
are somehow influenced by the single-threaded architecture of existing engines, and
both approaches present limitations in the context of event-based concurrency.

WebWorkers, for instance, is a share-nothing message-based programming model
for JavaScript which relies on the mere replication of multiple instances of the
JavaScript execution engine. The programming model requires the developer to ex-
plicitly start an arbitrary number of parallel entities, and to explicitly and manually
coordinate them using message passing. Despite being well suited for many parallel
algorithms and applications, actor-like programming cannot be considered a general
solution for JavaScript, as it may result complex to adopt for JavaScript developers,
and introduces portability issues (for instance, it is impossible for the developer to pre-
dict the exact number of parallel entities to start, as clients can be very heterogeneous).
Moreover, the mere replication of the JavaScript engine execution context has nega-
tive effects in terms of resource utilization (e.g., memory footprint), and contradicts
one of the key advantages of event-based concurrency, e.g., shared state. To over-
come the limitations of the WebWorkers model, Mozilla and Intel have recently started
researching on an experimental data-parallel programming model based on the River-
Trail model [93]1 in the Firefox browser. As opposite to WebWorkers, RiverTrail sup-
ports an elegant notion of temporary immutable state, which can be shared in parallel
to implement data-parallel operations (mostly array-based). The model also supports
non-read-only state, at the cost of parallel execution: with the goal of not relaxing the
shared state nature of JavaScript, the RiverTrail runtime speculatively tries to execute
tasks in parallel2, and pragmatically performs the actual computation in parallel only
if the tasks can be safely parallelized, i.e., they are side-effects-free. When a task is
not suitable for parallel processing, its execution is not aborted, and is anyway carried
out by a single thread. The model represents a significant step towards safe structured
parallelism for JavaScript, but it is not suitable for event-based programming, due
to its blocking nature: whenever a parallel computation is attempted, the execution
flow of the application blocks until the parallel execution has completed. This would
correspond to a severe degradation of the throughput of the event-based service, in
particular in the context of long-running computations. Moreover, the parallel API of

1And its successive evolution into the Strawman ECMA specification draft [21]
2In this Dissertation we adopt the expression "speculative parallelization" commonly used in the do-

main of self-parallelizing runtime systems [137, 34].

7 1.3 Initial overview of the Parallel event loop

RiverTrail is at the moment limited at data-parallel applications.

In this dissertation we argue in favor of a different, more generic, event-based
model in which JavaScript event handler functions are the core unit of parallelization,
and developers are free to execute any valid function (including those with side effects)
potentially in parallel, accessing (and potentially updating) any JavaScript object.

1.3 Initial overview of the Parallel event loop

This Dissertation introduces the Parallel Event Loop model and runtime (PEV). At a
very high level, the Parallel Event Loop is a combination of a parallel runtime for the
safe execution of event handlers in parallel, and an event-based programming model
supporting the scheduling of event handlers with multiple orderings (differently from a
single-threaded event loop in which events are always processed with FIFO ordering).
Consider the example of a JavaScript server-side application written using an event-
based programming style depicted in Figure 1.1. The example presents a simplified
Web crawler scanning a potentially infinite set of Web pages3, looking for some string
patterns4. Each time a page is downloaded, it is parsed by the crawler to look for new
URLs to follow, and the number of occurrences for each pattern is counted using a
global shared object (i.e., patternsFound).

The application is a valid Node.JS service. On a common JavaScript engine, par-
allelism would be limited at I/O operations, and the crawler would run on a single
thread (that is, on a single-threaded event loop), parsing pages as they arrive, updat-
ing the shared objects as soon as any of the required patterns is found. In a PEV system,
the same unmodified source code would potentially consume multiple web pages fully
in parallel, without any noticeable difference, except from the speedup deriving from
parallel execution. At the end of its execution, the crawler run using the PEV will
produce the same result as the one produced by the single-threaded execution.

This is made possible by the PEV thanks to its execution runtime, which attempts to
process events in parallel, speculatively. As not all the crawled web pages will contain
the pattern, multiple web pages can safely be crawled in parallel. In ideal conditions
(i.e., when events can be efficiently parallelized), the speculation scheme implemented
by the PEV leads to an automatic parallelization of the application.

In addition to the advantages coming from parallel speculative execution, another
benefit of the PEV runtime is to be found in its unmodified programming model, as
it allows developers to write applications as if they were developing for a standard
non-parallel event-based runtime such as Node.JS.

3Additional code to limit the depth of the Crawler has been omitted for simplicity.
4In the example, USI, INF, and Lugano

8 1.4 Thesis statement

1 var http = require('http');
2

3 // start page
4 var startURL = 'http://www.usi.ch/';
5

6 // Global object to store the final values
7 var patterns = { 'USI':0, 'INF':0, 'Lugano':0 };
8

9 // Utility function to crawl a Web page
10 function crawl(URL) {
11 http.get(URL, function(res) {
12 // Get the HTML body of the document
13 var htmlBody = res.body;
14

15 // Get all the URLs in the page
16 var URLs = parseURLs(htmlBody);
17

18 // Count all the occurrences of the patterns
19 var occurrences = countOccurrences(patterns, htmlBody);
20

21 // Update global counters
22 for (var pattern in occurrences) {
23 if(occurrences[pattern] > 0) {
24 patterns[pattern] += occurrences[pattern];
25 }
26 }
27

28 // Recursive crawl URLs
29 for(var url in URLs) {
30 crawl(URLs[url]);
31 }
32 });
33 }
34

35 // Start crawling from the first page
36 crawl(startURL);

Figure 1.1. Simple event-based application in JavaScript

1.4 Thesis statement

The goal of our research is to provide Web developers with novel instruments to ease
the development of high-performance services and applications, overcoming the lim-
itations of current event-based frameworks. We conduct our research in two related
research areas (i.e., programming models and runtime systems) with the aim of pro-
viding a synergistic approach for the advancement of the current state-of-the-art. We
can identify the following two general claims the Dissertation will argue:

(1) Single-threaded event-based runtime systems can be safely extended to support
multi-threaded shared-memory parallelism. There is no need to introduce explicit
parallel entities such as threads or processes where event-based programming is
supported, and there is no need to change the programming model.

9 1.5 Contributions

(2) By enabling the safe parallelization of the event-based runtime, event-based pro-
gramming can be conveniently adopted to derive safe structured parallel program-
ming models and abstractions, still being compatible with single-threaded systems.
When the application offers opportunities for parallel execution, the parallel event
loop can effectively exploit multiple cores running event handlers in parallel.

1.5 Contributions

This Dissertation contributes to advancing the state of the art in the field of event-based
programming in the following aspects:

• Event-based speculative parallel programming. The Dissertation introduces the
PEV model, a programming model and runtime system allowing event-based
programming to be exploited also in the domain of parallel programming. The
resulting model is not a model for explicit parallel programming, but rather a
model that a speculative runtime can attempt to efficiently parallelize.

• The PEV API brings out-of-order parallel execution to the JavaScript event-based
applicative domain, enabling a new class of server-side applications such as CPU-
intensive services.

• The PEV Runtime can be implemented in different ways, relying on any form
of speculative parallelization that can optimistically or pessimistically execute
multiple event handlers in parallel. In this Dissertation we demonstrate how
three existing speculative runtimes (a runtime based on locks and two runtimes
based on Software Transactional Memory) can be extended and embedded in a
language execution runtime to implement the model.

• The PEV runtime implementations presented in this dissertation also contribute
advancing the state of the art in the VM research area, as we describe the archi-
tecture of speculation runtimes for event-based JavaScript.

1.6 Summary and outline

The Dissertation is structured as follows:

• Chapter 2 presents background information about event-based programming
and JavaScript. In particular, the chapter introduces core concepts such as the
event loop model of concurrency as well as one of its most popular implementa-
tions, that is, Node.JS.

10 1.6 Summary and outline

• Chapter 3 introduces the Parallel Event Loop model and its event emission API.
The model extends the single-threaded event loop with an additional event emis-
sion API allowing events to be executed with multiple orderings. The relaxed ex-
ecution of events coupled with a safe programming model are used to derive
higher-level programming models for parallel computing in event-based run-
times.

• Chapter 4 shows how the event-based API of the PEV can be used to build high-
level parallel programming models that can benefit from the parallel execution
of event handlers. The programming models described in the chapter are both
safe and potentially parallelizable by a speculative runtime system.

• Chapter 5 describes the requirements for a speculative runtime implementing
the PEV API, presenting three possible implementations called Optimistic, Pes-
simistic, and Hybrid PEV. Such implementations implement partially or com-
pletely the programming model introduced in Chapter 3, and are implemented
using both pessimistic and optimistic speculative runtimes. Pessimistic runtimes
are based on mutual exclusion using locks, while optimistic ones rely on Soft-
ware Transactional Memory.

• Chapter 6 introduces Node.Scala, an HTTP server based on a Pessimistic PEV
runtime. Node.Scala targets the Scala language and runs on the JVM platform.
The chapter presents the system implementation and performance.

• Chapter 7 introduces TigerQuoll, an optimistic PEV runtime. TigerQuoll targets
the JavaScript language and is based on the SpiderMonkey JavaScript execution
engine. A Software Transactional Memory runtime is embedded in the language
runtime to enable speculative parallelization. The chapter presents the system
implementation and performance.

• Chapter 8 introduces Truffle.PEV, two implementations of a PEV runtime based
on an Optimistic and on a Hybrid runtime. The two runtimes are implemented
targeting the JVM runtime using the Truffle framework. The chapter presents
the system implementation and performance.

• This Dissertation covers research topics from multiple fields. Related work can
be found from programming languages to runtime systems research, through
Web services and service-oriented systems, up to software transactional memory
runtimes and spec- ulative runtimes in general. Chapter 9 discusses relevant
related work.

• Chapter 10 concludes this Dissertation and identifies future research directions.

Chapter 2

Background: single-threaded event loop

The event loop is a popular software design pattern for the development of so-
called reactive applications, that is, applications that respond to external events. Ex-
amples of such applications are graphical user interfaces, and any class of services,
including OS-level services and Web services. In this chapter we give an overview of
event-based systems, with a particular focus on event-based server systems and their
corresponding programming models in JavaScript.

2.1 Event-based concurrency

Event-based concurrency is a concurrency control model based on event emis-
sion and consumption. Historically opposed to the most common multi-threaded
paradigm [53], event-based systems have gained notable attention in the context of
service-oriented computing because of their simple but scalable design. In an event-
based system, every concurrent interaction is modeled as an event, which is processed
by a single thread of execution, called the event loop. The event loop has an associated
event queue, which is used to schedule the execution of multiple pending events. Every
event has an associated event handler function. Every event handler can access and
modify a global memory space, which is shared with other event handlers. Being the
event loop a single thread of execution, the event-based concurrency model presents
the following properties:

• Safe shared state. Every event handler comes along with an associated state,
which can be shared between multiple handlers. Since all the events are pro-
cessed by the same thread of execution, the shared state is always guaranteed to
be consistent, and data races are not possible (that is, concurrent modifications
on the state from other threads never happen).

11

12 2.1 Event-based concurrency

Event
emission

Event queue

Event handler(s)

Single-threaded
Event loop

Shared state

Figure 2.1. Event generation and execution in a single-threaded event loop.

• Nonblocking processing. Since all the events are processed by the same single
thread of execution, each event handler must avoid long-running computations.
A time-consuming event handler (e.g., a long CPU-intensive operation) would
prevent other events from being processed, thus blocking the system. As a con-
sequence of this design, blocking operations (for instance, I/O) are not supported
by the runtime, and every operation must be asynchronous and nonblocking.

• Ordered execution. Events are added to the event queue with FIFO policy. This
ensures that events produced with a given ordering are consumed (that is, exe-
cuted) with the same ordering. Event ordering can be leveraged to chain succes-
sive events in order to split long-running computations, as well as to implement
other forms of nonblocking computations1.

The high-level architecture of an event-based system is depicted in Figure 2.1.
Events are usually produced by external sources such as I/O operations (emitted by
the operating system) or by the application interacting with the event loop (e.g., a
GUI application controlling mouse movements). Every event handler is executed se-
quentially, and handlers have full control over the heap space of the process. Event
handlers can invoke functions synchronously (by using the stack) or asynchronously,
by emitting new events. This is depicted in Figure 2.2.

Event loop concurrency has some desirable characteristics for concurrent program-
ming. Among others, the most important property of event-based systems is that data
races are avoided by design allowing developers to make stronger assumptions on how
each instruction is interleaved when concurrent requests are in the system. More for-
mally, each event handler is guaranteed to run atomically with respect to other event
handlers, and atomicity is naturally enforced by the single-threaded event loop.

Event-based concurrency also presents some drawbacks (with respect to multi-
threading). First, the single-threaded nature of the event loop system makes it hard to

1For instance, in GUI programming, the mouseDown event handler (generated when the user clicks on
an icon) can be assumed to always run before the mouseUp event (generated when the button is released).

13 2.2 Event-based server architectures

Event queue

C
al

l s
ta

ck

VM
heap space

Figure 2.2. Event-based execution and shared memory in Node.JS and in the
Browser.

scale event based systems on multicore machines without relaxing one of the proper-
ties above. In particular, the simplest way of scaling event-based systems on multicore
machines is by replicating the event loop on multiple independent share-nothing pro-
cesses. This has the drawback of splitting the memory space of event handlers between
multiple processes, thus preventing event handlers from sharing a common memory
space2.

2.2 Event-based server architectures

Static HTTP servers are among the most common applications relying on single-
threaded event-based concurrency. Services published on the Web need to guarantee
high throughput and acceptable communication latency while facing fluctuating client
workloads. To handle high peaks of concurrent client connections, several engineer-
ing and research efforts have focused on Web server design [49]. Of the proposed
solutions, event-driven servers [61, 135] have proven to be very scalable, and their
popularity has spread among different languages and platforms, thanks to the sim-
ple and efficient runtime architecture of the event loop [118, 115]. Servers of this
class are based on the ability offered by modern operating systems to interact asyn-
chronously (through mechanisms such as Linux’s epoll [65]), and on the possibility
to treat client requests as collections of events. Following the approach proper of event-
based systems, in event-driven servers each I/O operation is considered an event with
an associated handler. Successive events are enqueued for sequential processing in an
I/O event queue, and processed by the infinite event loop. The event loop allows the
server to process concurrent connections (often nondeterministically) by automatically
partitioning the time slots assigned to the processing of each request, thus augment-

2Moreover, approaches based on process-level replication have other drawbacks with respect to mem-
ory footprint and service latency, as the communication between multiple processes can represent a source
of performance degradation due to the need for exchanging -via memory copy- data structures (e.g., ses-
sion data) between multiple processes.

14 2.3 Event-based Frameworks and Web Programming

ing the number of concurrent requests handled by the server through time-sharing.
In this way, sequential request processing is overlapped with parallel I/O-bound op-
erations, maximizing throughput and guaranteeing fairness between clients. Thanks
to the event loop model, servers can process thousands of concurrent requests using
a very limited number of processes (usually, one process per core on multicore ma-
chines). Being the server static, the lack of any integration with any dynamic language
runtime makes the parallelization of such services trivial [135].

2.3 Event-based Frameworks and Web Programming

Of particular success in the domain of Web development are the so-called event-based
frameworks, i.e., frameworks based on an event-based runtime systems for request
handling and response processing. Such frameworks allow the developer to specify
the service’s semantics as a set of asynchronous callbacks to be executed upon specific
events; a model which results particularly convenient when embedded in managed
runtimes for languages such as JavaScript, Python, or Scala (popular examples of such
frameworks are Node.JS [15], Akka [1], and Python Twisted [106]). Unlike other
thread-based solutions, event-based frameworks have the advantage of not requiring
the developer to deal with synchronization primitives such as locks or barriers, as a sin-
gle thread (the event loop thread) is capable of handling a high number of concurrent
connections. Furthermore, the asynchronous event-based programming style of such
frameworks has influenced the programming model of client-side Web applications, as
every Web application nowadays is using asynchronous event-based programming in
JavaScript and HTML5 (i.e., AJAX [79]).

Event-based frameworks have recently become very popular, and several compa-
nies have started offering cloud-based PaaS hosting for event-based service develop-
ment platforms (examples are Microsoft Azure [14] and Heroku [7]). However, de-
spite their success, event-based frameworks still present limitations which could pre-
vent them from becoming a mature solution for developing high-performance Web
applications. In particular, the lack of structured parallelism forces the developer to
implement complex ad-hoc solutions by hand. Such unstructured approaches often
result in cumbersome solutions which are hard to maintain [126]. Some of the limita-
tions of current programming models can be described as follows:

1. event loop replication: the event-based execution model offers only partial so-
lutions to exploit parallel machines, since it relies on a single-threaded infinite loop.
Such centralized architecture limits parallelism, since it is possible to exploit parallel
machines only by replicating multiple processes using some Inter-Process Communi-
cation (IPC) mechanism for coordination. This approach prevents event-based appli-
cations from exploiting the shared memory present in multicore machines. Moreover,
callbacks could have interdependencies, and cannot therefore be executed on multiple
cores (indeed, the sole possibility to exploit multiple cores is by replicating the entire

15 2.4 Event-based programming models

event loop process). The common solution is to bind each specific connection to a spe-
cific core, preventing connections from exploiting per-request parallelism (i.e., to start
multiple parallel processes to handle a single client request, using for instance more
complex patterns such as, e.g., MapReduce [64] for generating the response).

2. Shared state: In single-threaded event loop concurrency event handlers can ex-
ploit a common shared memory space (that is, some data shared between multiple
concurrent client requests). However, this becomes impossible when running multiple
parallel event loop processes. The common solution to this issue is to use an external
service to manage the state (e.g., Memcached [12]). However, such solution presents
other limitations when the shared state is immediately needed by the application’s
logic. For instance, it is not always efficient to use an in-memory database to handle
the temporary result of a parallel computation before serving the computation’s result
to the client.

Another consideration more specific to server-side event-based systems can be
made considering the nature of server-side architectures. In particular, one of the
main peculiarities of server-side parallelism over “traditional” parallel programming
relies on the actual source of parallelism. In fact, in server-side development there
is a natural source of parallelism represented by the abundant presence of multiple
concurrent client requests which should be handled in parallel. Client requests could
have interdependencies (for instance in stateful services), but in the great majority
of cases each client request does not require the service business logic to use explicit
parallelism (for instance using threads). This implicitly means that the logic of each
request handler could be written using a plain sequential style, or an event-based style,
but no explicit parallel programming abstractions need to be used for generating the
client response while ensuring scalability.

We can call this peculiar characteristic of server-side development natural paral-
lelism of Web services. Current existing frameworks do not fully exploit this source of
parallelism, and instead require the developer to either manually manage parallelism
(for instance by replicating processes or starting threads) or to rely on existing limited
solutions usually offered by the cloud provider (for instance, several cloud providers
allow users to specify the number of parallel replicas of a service that should be started
automatically, at the cost of limiting the class of applications that can be potentially
hosted in the cloud [109]).

2.4 Event-based programming models

The peculiarities of event-driven systems have promoted several programming models
relying on event loop concurrency. Of particular interest in the scope of this Disserta-
tion are all frameworks and libraries which allow Web services to be scripted and/or
embedded within other language runtimes. Examples of programming models based or
relying on the event loop include libraries and frameworks (e.g., Vert.X [26], Python

16 2.4 Event-based programming models

Twisted [106] or Java NIO [35]), as well as VM-level integrations such as Node.JS.
Existing approaches can be divided into two main categories, namely programming
models that explicitly require the developer to produce and consume events, and mod-
els that abstract the event loop by means of other higher-level concepts. In this section
we give a brief overview of the two approaches, and we argue in favor of high-level
ones.

2.4.1 Explicit event emission

Explicit loop manipulation programming requires the developer to explicitly produce
and consume events in the form of callback functions. This can be done by explicitly
adding a function to the global event queue, using a primitive called async3:

// Main event emission primitive for the single-threaded loop

async(Function to be added to the event queue , Optional arguments);

The primitive is nonblocking, and returns immediately after having added a func-
tion to the event queue. The queue is thread-safe, as other functions may be concur-
rently added by the underlying operating system. The primitive is the main mechanism
used by event-based systems to introduce asynchronous execution, but does not pro-
vide any mechanism for relating functions with events. This is usually achieved with
two higher-level core primitives, namely on and emit:

// Core event emission primitive

emit(Event label , Event arguments);

// Core callback registration primitive

on(Event label , Callback);

The on primitive can be used to specify one or more event functions (i.e., callbacks)
to be associated with a specific event. In this Dissertation we adopt the convention
that events are named using strings (called event labels), but other ways of specifying
event identifiers also exist. We also adopt the convention that event emission and
handling can be bound with existing object instances, and therefore expressions like
obj.emit/obj.on mean that an event is being emitted and consumed only if the given
object instance has registered a callback for the given event label. This is conceptually
equivalent to having a callback table private to each object instance, but other design
decisions can also be adopted (for instance, a globally shared callback table).

The emit primitive is used to notify the runtime that an event has happened, and
its callback can be added to the event queue. The primitive is internally implemented
using async, as depicted in Figure 2.3.

Events can also be associated with arguments. This is also presented in Figure 2.3,
where at line 10 an event emitter is used to produce and consume events. The exam-
ple corresponds to how incoming connections are handled by an event-based socket

3In other runtimes the async primitive can be called differently, e.g., nextTick in Node.JS

17 2.4 Event-based programming models

1 Object.prototype.emit = function(label, args) {
2 for(var callback in this.callbacks[label]) {
3 async(this.callbacks[label][callback], args);
4 }
5 }
6 Object.prototype.on = function(label, callback) {
7 this.callbacks[label].push(callback);
8 }
9

10 var obj = {};
11

12 obj.on('connection', function(fd) {
13 // open the file descriptor 33 and handle the request
14 });
15

16 // somewhere in the connection handling code.
17 obj.emit('connection', 33);

Figure 2.3. Usage and implementation of the emit primitive.

server like Node.JS. An object responsible for accepting the incoming request (obj) is
registered to listen for an incoming connection using on. When the runtime receives
a new connection on a listening socket the ’connection’ event is emitted, and the
socket file descriptor on which the connection has been accepted is passed to the event
handler. The callback associated with the ’connection’ event is then invoked with
the actual value of the fd variable as argument (i.e., 33 in the example). Multiple calls
to emit will result in multiple invocations of the callback function handling the event.

Event ordering ensures that multiple events emitted in a specific order will be ex-
ecuted in the same order they are produced. As a consequence, the following code
depicted in Figure 2.4 will always result in the same console output.

The event emission primitives are low-level basic building blocks that can be used
to build higher-level abstractions. Other primitives to wait for a specific event to hap-
pen, to deregister event handlers, as well as to trigger multiple events upon certain
conditions (for instance using a pub/sub pattern [38]) exist. In the next Section we
will discuss how such low-level primitives can be used as simple blocks for building
other more convenient high-level abstractions.

2.4.2 Implicit loop manipulation and Node.JS

Although many libraries for explicit loop manipulation exist, explicit loop program-
ming is usually considered a complex programming model, specific for low-level sys-
tem development4. To overcome the complexity of the explicit interaction with the
event loop, other high-level models have been proposed.

4The name of one of the most popular event-based frameworks, i.e., Python Twisted [106] is a perfect
indicator for the complexity that certain event-based applications tend to have.

18 2.4 Event-based programming models

1 obj.on('data', function(data) {
2 console.log('the data is: ' + data);
3 });
4 obj.emit('data', 1);
5 obj.emit('data', 2);
6 obj.emit('data', 3);
7

8 // expected console output:
9 // the data is: 1

10 // the data is: 2
11 // the data is: 3

Figure 2.4. Ordered event emission using emit.

One of the most popular of such frameworks is Node.JS. Node.JS is a programming
framework for the development of Web services in which the event loop is hidden
behind a simpler programming abstraction, which allows the developer to treat event-
driven programming as a set of callback function invocations, taking advantage of
JavaScript’s anonymous functions. Since the event loop is run by a single thread,
while all I/O-bound operations are carried out by the OS, the developer only writes the
sequential code to be executed for each event within each callback, without worrying
about concurrency issues. Consider the following hello world web service written in
Node.JS JavaScript:

var http = require('http');
http.createServer(function (req, res) {

res.writeHead(200, {'Content-Type': 'text/plain'});
res.end('Hello World\n');

}).listen(1337, '127.0.0.1');
console.log('Server running at http://127.0.0.1:1337/');

The example corresponds to the source code of a very minimal yet scalable web
service. No explicit loop manipulation is done by the user, who just has to provide
a callback (in the form of an anonymous function, at line 2) to be executed for each
incoming request. The Node.JS runtime is internally relying on explicit loop manipu-
lation, as presented in Figure 2.5. The code in the example corresponds to the source
code for the HTTP server of Node.JS, which is written in JavaScript itself. The code
in this example registers multiple event handlers to handle the multiple phases of an
incoming request handling. Since incoming requests may be sliced by the OS runtime
into multiple data chunks (line 9), an event handler is registered to accumulate multi-
ple chunks. Once the incoming data has been fully received, an explicit event emission
is used (i.e., newRequest) to eventually invoke the user-provided callback.

Event-based programming coupled with the high performance of the V8 Engine
makes of Node.JS one of the Web frameworks with the highest scalability in terms
of concurrent connections handling [111]. Its programming model based on asyn-
chronous callbacks fits well with the event loop as every I/O-event corresponds to a

19 2.5 Limitations of single-threaded event loop systems

1 http.prototype.createServer = function(callback) {
2 // Create a new server instance
3 var server = new runtime.HttpServer();
4 // Event handler for any incoming connection
5 server.on('connection', function(socket) {
6 // create a buffer to store incoming data
7 var buffer = runtime.createInputBuffer();
8 // register an handler to accumulate incoming data
9 socket.on('data', function(data) {

10 if(data != '\n\r') {
11 // accumulate data chunks
12 buffer.push(data);
13 } else {
14 // once the data has been received, notify
15 server.emit('newRequest', buffer);
16 }
17 });
18 });
19 // register an event handler to invoke the callback
20 server.on('newRequest', function(data) {
21 var request = runtime.createRequestObject(data);
22 var response = runtime.createRssponseObject(data);
23 // call the user-provided callback
24 callback(request, response);
25 });
26 }

Figure 2.5. Implementation of an event-based HTTP server

function callback invocation. As with event-driven systems, concurrent client requests
are processed in parallel, overlapping I/O-bound operations with the execution of call-
backs in the event loop. The event loop is implemented in a single process, while all
the I/O-bound operations are carried out by the OS, thus, the developer has only to
specify the sequential code to be executed for each event within each callback. Despite
of the power of the event loop and the simplified concurrency management of the pro-
gramming model, frameworks like Node.JS still present some limitations preventing
them to exploit modern multicore machines.

2.5 Limitations of single-threaded event loop systems

When it comes to parallel execution, event-driven frameworks like Node.JS may be
limited by their runtime system in at least two distinct aspects, namely (1) the impos-
sibility of sharing a common memory space among processes, and (2) the difficulty of
building high throughput services that need to use blocking function calls.

Concerning the first limitation, common event-based programming frameworks are
not designed to express thread-level parallelism, thus the only way of exploiting mul-
tiple cores is by replicating the service process. This approach forces the developer
to adopt parallelization strategies based on master-worker patterns (e.g., WebWork-

20 2.5 Limitations of single-threaded event loop systems

1 var SIZE = 100000;
2 // Size of the subset to be returned
3 var SUBSET = 10000;
4 // Init the shared read-only array
5 var A = new Array();
6 for(var i=0; i<SIZE; i++) {
7 A.push(Math.floor(Math.random()*10000));
8 }
9 // Create the service and start it

10 var http = require('http');
11 http.createServer(function (req, res) {
12 // Get a subset of the array
13 var x = new Array();
14 for(var i=0;i<SUBSET;i++) {
15 var id = Math.floor(Math.random()*SIZE);
16 x.push(A[id]);
17 }
18 // Sort it
19 x.sort();
20 // Return the sorted array
21 res.end('sorted:' + x);
22 }).listen(1337, '127.0.0.1');

SUBSET Throughput (msg/s) Latency (ms)

102 2865.4 3.4
103 1799.3 6.9
104 253.8 40.3
105 23.3 421.2

Service performance for different values of SUBSET

Figure 2.6. Array sorting microbenchmark in Node.JS.

ers [8]), which however require a share-nothing architecture to preserve the semantics
of the event loop. Whenever multiple processes need to share state (e.g., to implement
a stateful Web service), the data needs to be stored into a database or in an external
in-memory repository providing the necessary concurrency control.

Concerning the second limitation, event-based programming requires the devel-
oper to deeply understand the event loop runtime architecture and to write services
with non-blocking mechanisms so as to break down long-running operations into mul-
tiple processing steps.

As an example, consider the Web service in Figure 2.6. The code in the example
corresponds to a simple stateful service holding an in-memory data structure (the array
A, at line 5) which is "shared" between multiple concurrent clients. Each time a new
client request arrives the service simply extracts a subset of the array and copies it to
a new per-request object (the array x, at line 13). Once the subset array has been
copied, the new array is sorted by using the sort JavaScript builtin function, and the
resulting sorted array is sent back to the client. The service corresponds to a simple yet
significant microbenchmark showing how the two limitations introduced above may
affect the Node.JS model:

• Long-running computations: sorting the array corresponds to a small yet signifi-
cant operation that can significantly affect the performance of the service. This is
shown in the table presenting the performance of the service for different values
of the SUBSET variable (which corresponds to the size of the subset of the array to
be copied)5. As the table clearly shows, an even small size of the array is enough

5The microbenchmark is executed on two distinct machines using a recent version of Node.JS

21 2.5 Limitations of single-threaded event loop systems

to affect the performance of the service in a very relevant way. In particular, the
throughput drops and many client requests fail because of a timeout. Requests
that do not timeout are affected as well, as the average latency of the service also
grows.

• Shared state: to reduce the slowdown introduced by the sorting operation, the
only solution for current event-based systems would be to offload the sorting
operation to another event loop running in another process. Not having the
ability to safely share state among processes, however, the state would need
to be either replicated (that is, cloned into multiple processes), or to be sent to
other processes as needed (e.g., by using an external database). Both approaches
may result in a waste of space (that is, increased memory footprint) and might
affect the service’s latency. Moreover, from a programming model point of view
the event-based system will lose part of its appeal because of the introduction of
message passing and explicit coordination between processes.

In the next sections of the Dissertation we will discuss how the PEV model can
be used to solve or attenuate the two issues without changing the single-threaded
programming model.

(v0.10.28) with the ab HTTP client using with the following configuration: ab -r -n 10000 -c 10
http://127.0.0.1:1337/.

22 2.5 Limitations of single-threaded event loop systems

Part II

Programming Model

23

Chapter 3

The parallel event loop model

In this Dissertation we argue that the single-threaded event loop model can be
safely extended to exploit the inner parallelism of shared-memory multicore machines.
To this end, a new programming model and runtime system, called the parallel event
loop, is introduced. A novel API allows developers to interact with the event loop to
schedule and synchronize event execution. The API can be used to expose to higher
levels of abstraction several parallel programming models. The parallel event loop
does not modify the original semantics of the single-threaded loop, but enriches it with
support for out-of-order execution. As a direct consequence, programs developed for a
traditional single-threaded event loop can still safely be run in the parallel event loop,
without modifications. At the same time, programs explicitly developed for the parallel
event loop can still run on single-threaded loops (without any semantical difference).
This chapter presents the main characteristics of the parallel event loop model, and
presents examples of how it can be used in the domain of server-side programming.

3.1 The design of the parallel event loop

The Parallel event loop (PEV) is a programming model and a runtime system sup-
porting the execution of event handlers concurrently and potentially in parallel. Unlike
with the single-threaded event loop (SEL), event processing is not limited to sequential
First In First Out (FIFO) processing (i.e., one by one, as events are added to the event
queue), and the system also provides safe mechanisms for scheduling and consuming
events with other orderings.

The intuitive motivation for the PEV model is that from a programming model
point of view event handlers are often independent (e.g., they process different client
requests), and thus might offer chances for parallelization. The target developer for
the PEV is any developer already using a single-threaded event loop for the devel-

25

26 3.1 The design of the parallel event loop

opment of Web applications. The model is not designed to introduce support for
high-performance computing in the single-threaded event loop domain: parallel pro-
gramming is often complex and scaling applications up to thousand of cores requires
developers to master advanced programming techniques [95] aimed at dealing with
complex issues such as locality, cache coherency, etc. Rather, the goal is to nicely
and transparently introduce opportunities for parallel processing in the single-threaded
model, with the goal of keeping the model simple and safe.

At high level, the PEV is a model for speculative parallel processing with the follow-
ing characteristics:

• Implicit speculative execution. The model does not expose any explicit parallel
entity such as actors, processes, or threads, nor any explicit blocking synchro-
nization primitive such as locks, barriers, countdown latches, etc. Given the lack
of any explicit construct for parallel execution, the developer does not have any
explicit way of scheduling a computation for parallel execution. The developer
can only specify the application’s logic, and the runtime will speculatively try to
execute portions of it in parallel. The developer is however aware of the fact
that the runtime will try to speculate on the potential for parallelization of the
application.

• Stateful computation. Speculative parallelization implies that the developer is
allowed to develop applications as if he was using a single-threaded event loop
system. This includes supporting side effects and shared state between call-
backs. Emerging stateless programming models for event-based frameworks
such as functional reactive programming [128] are nicely parallelizable by the
PEV, while other workloads with globally shared state might still offer opportu-
nities for parallel execution.

• Simple sequential semantics. The main programming model advantage of single-
threaded event-based systems is that the parallel processing of I/O is hidden be-
hind the convenient single-threaded processing of callbacks. This has the advan-
tage of saving scalability for I/O-based workloads still preserving the simplicity
of a single-threaded race-free programming model. The PEV extends this model
to CPU-bound applications by enforcing the impression of a single-threaded run-
time.

At its core, the parallel event loop can be seen as the combination of an event-based
API and a runtime system supporting the parallel execution of event handlers:

• Parallel emission API. The PEV extends the core API of the single-threaded event
loop with an additional event emission API. The additional API can be used to
schedule events for execution with policies other than FIFO. Combined with the
core (single-threaded) event emission API, the PEV offers an API that can be

27 3.1 The design of the parallel event loop

Parallel loop API

Parallel execution engine

Single-threaded loop API
Strictly sequential

Chained, unordered
Language-level

(e.g., JavaScript)

VM level
(e.g., C++, Java)

Application

Figure 3.1. Parallel event loop API and runtime overview.

used to schedule events for ordered and unordered execution. In the PEV model
the developer does not have the power to specify which task (i.e., which event
handler) has to be executed in parallel, but only the order in which they shall be
processed.

By combining ordered and unordered events, the system can support several
parallel (implicit and explicit) programming models. The original event-based
API of the single-threaded event loop can be considered as an (ordered) subset
of the PEV API, and is fully supported by the PEV runtime in order to provide
backward compatibility.

• Parallel runtime. The PEV runtime system supports the concurrent execution of
multiple event handlers, in parallel, when possible. The runtime ensures the safe
execution of event handlers, and enforces the correct execution order of events,
as indicated by the event emission PEV API.

Beyond the benefits deriving from parallel execution, the PEV is also designed to
have strict interoperability with single-threaded event loops. In particular, when using
only the core single-threaded event emission API, the PEV is equivalent to a single-
threaded loop runtime, offering the following compatibility properties:

• Event ordering. The PEV executes events ensuring semantical equivalence with
the single-threaded loop, when the core sequential API is used. As a conse-
quence, there is no noticeable difference (in terms of execution semantics) be-
tween an application running on a PEV system and one executed by a SEL.

• Memory model compatibility. Every event executed by the PEV can access and
modify any memory location, including the ones potentially shared with other
concurrent events1. This is the default model for a SEL, where only a single event
is running at a time, and data races are not possible.

1According to the memory model and scoping of the target language, e.g., JavaScript.

28 3.1 The design of the parallel event loop

By enabling the parallel execution of event handlers, the above requirements also
correspond to design constraints, which the PEV runtime enforces in the following
way:

• Asynchronous execution. All the callbacks shall be processed asynchronously, that
is, no blocking callback scheduling is supported. In a single-threaded event loop,
the application must never stop waiting for some interaction with external re-
sources such as the OS or the user interface. The reason is that suspending
the single main thread on some external interactions would prevent other event
handlers from being executed, thus harming performance. As a consequence,
event handlers are usually small, and any interaction with external resources is
nonblocking and asynchronous. In the context of a parallel event loop runtime,
the system would still be able to progress while some handlers are waiting for
some computations to complete. However, keeping a thread busy waiting for
interactions with external resources would nevertheless result in an inefficient
use of the system’s resources, as new threads would have to be executed when
all the existing threads would block. Consequently, the PEV must embrace the
same asynchronous nonblocking abstraction as in the single-threaded loop. This
design is also motivated by the need of being fully compatible with a single-
threaded model.

• Execution order. Events emitted using FIFO ordering have to appear as if they
were executed by a single event loop. To improve performance, events can po-
tentially be executed by the PEV runtime speculatively out-of-order (i.e., as soon
as possible). When speculative execution of ordered events is supported, how-
ever, events are automatically reordered by the runtime.

• Memory protection. To enforce the same memory model of the single-threaded
loop, parallel events that might generate side effects (potentially visible to other
events) must be executed in isolation, not exposing any observable side effects
to other events until they complete their execution. Moreover, the execution of
event handlers must be atomic, ensuring that all the modifications to the shared
state will be visible to other concurrent handlers only at the point in time when
the event has completed.

By enforcing these constraints, the PEV runtime guarantees that applications de-
veloped using only the core sequential API will have the exact same semantics as if
they where running on a single-threaded runtime, but might potentially benefit from
parallel execution. Conversely, applications developed using the extended (parallel)
API could potentially benefit from parallel execution, without relaxing the properties
of event-based programming. The API compatibility scheme for the PEV model is sum-
marized in Figure 3.1.

29 3.2 Implicit parallelism and event ordering

Application developed using the

single-threaded loop API.

Application developed using the

parallel loop API.

Running on a single-

threaded runtime

Native support. The single-threaded runtime will

execute all the event handlers,

with no noticeable speedup.

Running on the parallel

event loop runtime

The PEV runtime might still try

to execute handlers in parallel, al-

ways enforcing the correct seman-

tics.

The PEV runtime will schedule

events in parallel as much possi-

ble.

Table 3.1. API compatibility of the PEV.

3.2 Implicit parallelism and event ordering

In the PEV model, programs developed targeting a SEL system might potentially be
executed in parallel by the runtime system, eventually enforcing the same semantics
of the equivalent sequential execution. In the parallel programming literature such
systems are usually called implicitly parallel systems [80], meaning that they provide
developers with the impression of a single-threaded runtime system in which paral-
lelization is done automatically. According to this definition, the PEV can be classified
as an implicitly parallel runtime system. However, the compatibility requirement on
FIFO-ordered events (needed to enforce the single-threaded loop compatibility) is not
a strict requirement for every event handler. Indeed, certain events of specific classes
can be processed with ordering others than FIFO.

In addition to FIFO event ordering, the PEV introduces two other classes of event
handlers. The following three distinct classes of events are supported:

• Globally strictly ordered events (FIFO). Events that have to be executed respecting
the same order they were added to the queue. Events of this class are the sole
events supported by SEL runtimes.

• Chained ordering. Events that have to be processed only after a specific event has
been processed, but not necessarily after all the other events in the queue. Events
of this class have a logic dependence with other events, but can be executed out-
of-order with respect to unrelated events.

• No ordering (unordered). Events that do not need to be processed with any or-
dering, as they do not depend on any other event. Events of this class can be
processed as soon as possible.

The three classes of events are defined in Figure 3.2. The PEV runtime system can
speculatively attempt to parallelize the execution of all of the three classes of events,

30 3.2 Implicit parallelism and event ordering

Event class Semantics
Strictly ordered Every event that is selected for execution at in-

stant Ti and needs to wait for an event already
scheduled at instant Ti−1 to complete before being
executed. All side effects produced by the event at
Ti−1 are visible to the event Ti .

Chained An event that is selected for execution at instant
Ti and has to wait for some events at instant Ti−n,
for an arbitrary n with n< i.

Unordered An event that is selected for execution at instant
Ti , and does not have to wait for any other event
before being safely scheduled.

Table 3.2. Event classes supported by the PEV.

meaning that also strictly ordered events might potentially be executed by multiple
threads. This is depicted in Figure 3.2. The Figure presents the typical scenario for
an event-based server-side framework like Node.JS. The service has received two in-
coming concurrent connections, and is ready for processing them by having in its event
queue all the events that have been triggered by the underlying operating system event
emission substrate. A single-threaded event loop will process the events in the queue
one by one, thus respecting the ordering in which events were emitted (a). When
running in the PEV, however, events can be consumed by the runtime in different or-
ders. When events are added to the queue with strict ordering, events are executed
(potentially by more than one thread) enforcing the same ordering of single-threaded
execution (b). Assuming the two connections can be processed in parallel, indepen-
dently (this is often the case with stateless Web services), events can be consumed
in parallel, just by assigning each thread a specific connection. This is equivalent to
identifying a relation between events, which imposes that events belonging to distinct
connections must be processed after events belonging to the same connection. This
can be obtained by using chained events (c). Note that this approach to request han-
dling is conceptually different from having two independent processes processing the
two requests, as all the event handlers share the same memory space; indeed, this is
equivalent to having a single process accepting two requests concurrently, in parallel.
Finally, events respecting unordered processing (d) will respect an execution schema
in which all events are executed as soon as possible2.

In a SEL system, the single-threaded nature of the runtime (and its centralized

2For this example, this might correspond to a potential violation of the semantics of the original
Web service; still, unordered processing might be perfectly legal in other domains, for example when
consuming unordered streams of elements coming from multiple distinct data sources.

31 3.3 Core parallel event emission API

Event queue

 1 connect

 2 data

 3 connect

 4 data

 5 data

 6 data

 7 data

 8 end

 9 end

 1 c

 3 c

 2 d

 4 d

 5 d

 6 d

 7 d

 8 e

 9 e
time

(a)
Single-threaded loop

thread #1

 1 c

 2 d

 5 d

 8 e

(b)
Strictly ordered

thread #1

 3 c

 4 d

 6 d

 7 d

 9 e

thread #2

time

 1 c

 2 d

 5 d

 8 e

(c)
Chained

thread #1

 3 c

 4 d

 6 d

 7 d

 9 e

thread #2

time

 1 c 2 d

 5 d

 8 e

(d)
Unordered

thread #1

 3 c 4 d

 6 d

 7 d

 9 e

thread #2

time

Figure 3.2. Parallel event processing and ordering.

event queue) naturally enforce strict event processing. The two other classes are also
supported by the single-threaded loop by means of flattening, as not having to respect
a specific order also means that any ordering is a valid execution order, including the
strictly sequential one (that is, the same order events are scheduled).

Event scheduling different than FIFO do not result particularly useful in the context
of a single-threaded event loop; however, assuming that distinct event classes can be
safely executed concurrently, events scheduled with different policies might potentially
benefit from parallelization, resulting in an increased overall throughput. Following
this intuition, the PEV system treats chained and unordered events as two distinct
classes, which can directly benefit from parallel execution.

This also implies a form of forward compatibility, as programs explicitly developed
for the PEV will also run on a single-threaded runtime, loosing any potential per-
formance improvement deriving from parallel execution, but without any noticeable
difference in terms of application semantics.

In the following section we describe the core event emission API of the PEV model,
and we discuss how the API can be used to build higher-level parallel programming
models.

3.3 Core parallel event emission API

The core interface for asynchronous execution in the single-threaded event loop as in-
troduced in the previous chapter is represented by the async primitive. The primitive
can be used to schedule the asynchronous execution of a callback function together
with an arbitrary number of arguments, as depicted in Figure 3.3. The PEV extends
the event emission API with two additional primitives, namely asyncChained and async-

32 3.3 Core parallel event emission API

1 // Execute the given callback asynchronously
2 async(Callback , Arguments);
3

4 // Execute the given callback as soon as possible for the given target
5 asyncNow(Event target , Callback , Arguments);
6

7 // Execute the given callback using chained ordering for the given target
8 asyncChained(Event target , Callback , Arguments);

Figure 3.3. PEV core event emission API

Now, also depicted in the Figure.
The two primitives can be used to schedule an event callback for execution with

different execution order. The primitives accept a parameter, called event target, which
can be used to bind events to a specific object instance. Event targets can be considered
as logical event queues, and can be used to make event handlers to run concurrently.
The two primitives differ in the way they interact with the event target, as well as in
the way they schedule callbacks execution:

• Callbacks scheduled using the asyncChained primitive will respect strictly se-
quential ordering with respect to other events emitted using the same event tar-
get, and will have to wait for all the other events scheduled on the same target.
As an example, events with target A scheduled at time instant Ti will be executed
only once all the other events with the same event target (scheduled at time Tn

with n < i) will have completed. Events with targets different than A do not
need to wait for such events before being executed.

• Callbacks scheduled using the asyncNow primitive will be executed as soon as
possible with respect to other event classes (including unordered events of the
same targets). Such events, however, might have to synchronize with chained
events with the same event target (if any). In this case, events will be executed
as soon as all the chained events with the same target have completed.

Event targets can be specified using any object instance. Using a global object
instance, global ordering can be obtained. As a convention, we use the "global"

string literal as the global event target. Callbacks scheduled using the "global" target
will have global execution ordering, and all the events emitted using this target will be
forced to respect it. By using the global target, the async primitive of the SEL can be
considered equivalent to the following primitive:

// SEL Async defined using the PEV asyncChained primitive

async = function(callback, args) {

asyncChained('global', callback, args);

}

33 3.4 Strictly ordered events

The API can be used to directly schedule callbacks with different execution orders.
Consider the code samples presented in Figure 3.4, and the corresponding execution
schedule. The primitives asyncNow and asyncChained can be combined to obtain
partial scheduling of events, as described in Figure 3.4 (d). In particular, unordered
events sharing an event target with chained ones will have to wait for all the previous
chained events to complete before executing. Similarly, chained events will have to
wait for all the unordered events present in the system.

Thanks to the extended API, callbacks can be scheduled in the PEV to obtain dif-
ferent execution orderings. The two event emission primitives have to be considered
core, low-level, tools for building higher-level abstractions for asynchronous parallel
programming. In the following sections the primitives are used as building blocks for
an extended event emission API which will then be used as the core API for high-level,
structured, parallel programming models.

3.3.1 Shared memory and atomicity

Event handlers are executed by the PEV runtime as atomic and isolated tasks. The
execution is automatically enforced by the runtime, which implements specific mecha-
nisms to ensure atomicity and isolation. As a result of the automatic runtime manage-
ment of concurrent access, event handlers always appear as if they were executed on
a single thread. Consider the following example:

// an object in the scope of the two functions, and therefore potentially shared

var shared = 0;

function f1() { shared++; }

function f2() { shared--; }

asyncNow('global', f1);

asyncNow('global', f2);

Notwithstanding the fact that both functions f1 and f2 are allowed to run concur-
rently, the final value of the shared variable will always be zero, as both event handlers
will execute atomically.

3.4 Strictly ordered events

To ensure full backward compatibility with applications developed for the single-
threaded event loop model, the PEV model must provide an implementation of the
emit primitive. The primitive can be supported in the PEV model just by using the
asyncChained primitive with global event target:

Object.prototype.emit = function(label, arguments) {

for(var callback in this.callbacks[label]) {

asyncChained('global', this.callbacks[label][callback], arguments);

}

}

34 3.4 Strictly ordered events

ev1

ev3

(a)

ev2

ev4

ev1
ev3ev2

ev4

ev1

ev3

(c)

ev2

ev4

ev1

ev3

(d)

ev2
ev4(b)

time

time

time

time

1 function ev1() { ... }
2 function ev2() { ... }
3 function ev3() { ... }
4 function ev4() { ... }
5

6 // (a) Strictly sequential, global
7 asyncChained('global', ev1);
8 asyncChained('global', ev2);
9 asyncChained('global', ev3);

10 asyncChained('global', ev4);
11

12 // (b) Chained (different event targets run in parallel)
13 var objA = {}; var objB = {}
14 asyncChained(objA, ev1);
15 asyncChained(objB, ev2);
16 asyncChained(objA, ev4);
17 asyncChained(objB, ev3);
18

19 // (c) Unordered
20 asyncNow('global', ev1);
21 asyncNow('global', ev2);
22 asyncNow('global', ev3);
23 asyncNow('global', ev4);
24

25 // (d) Partially ordered
26 asyncChained('global', ev1);
27 asyncNow('global', ev2);
28 asyncNow('global', ev3);
29 asyncChained('global', ev4);

Figure 3.4. Execution of multiple event handlers using asyncNow and asyncChained.

This ensures that every event emission made through the emit primitive will belong
to the same global target, and will use FIFO ordering. This is demonstrated in the code
presented in Figure 3.5. The three event handlers in the example simply perform

35 3.4 Strictly ordered events

ev1 ev2

ev1

ev2
ev3

ev3

time

(a)

(b)

1 var obj = {};
2 // register three event handlers for three distinct events
3 obj.on('ev1', function() {
4 var r = computeNthFibonacciNumber(10);
5 print('event 1 result: ' + r);
6 });
7 obj.on('ev2', function() {
8 var r = computeNthFibonacciNumber(20);
9 print('event 2 result: ' + r);

10 });
11 obj.on('ev3', function() {
12 var r = computeNthFibonacciNumber(30);
13 print('event 3 result: ' + r);
14 });
15

16 // emit an event instance for each handler.
17 obj.emit('ev1'); obj.emit('ev2'); obj.emit('ev3');

Figure 3.5. Ordered event processing with the Parallel Event Loop (a) and a single-
threaded event loop (b).

some arbitrary CPU-bound computation (in the example, calculate the N th Fibonacci
sequence number) and then print the result on the system’s standard output console.
Figure 3.5 depicts the execution of the three event handlers in both a single-threaded
event loop system and one of the potential execution schemes in the PEV runtime.
The three events are processed sequentially, in order (they might potentially run in
different threads). Since the PEV supports globally shared state, there is no difference
between the two execution schemes in terms of memory model. The only noticeable
difference is that the PEV runtime might concurrently process event handlers of other
classes (e.g., unordered ones) in other threads.

In both a single-threaded loop and the PEV, the three events are pushed accord-
ingly into the event queue, and handlers are executed with the expected ordering.
Eventually, the console will always show the following output for both the PEV-based
execution and the SEL-based one:

event 3 result: 832040

event 2 result: 6765

event 1 result: 55

36 3.5 Relaxed ordering of events

3.5 Relaxed ordering of events

The strictly ordered execution of events supported by the PEV runtime guarantees
compatibility with the single-threaded loop model. Events with chained ordering as
well as unordered events can be treated by the PEV runtime with a different, potentially
parallel, execution policy.

3.5.1 Chained execution

Event targets can be leveraged to combine multiple events in a convenient way, to chain
event emissions. In particular, it is possible to combine strictly sequential emissions
with chained and unordered emissions, to obtain complex execution patterns. This
can be made possible by introducing the emitChained primitive:

Object.prototype.emitChained = function(label, arguments) {

// The object instance is the event target

for(var callback in this.callbacks[label])

asyncChained(this, this.callbacks[label][callback], arguments);

}

By using the current object instance as the target of the event emission, the
emitChained primitive has the important property that all the events emitted against
the this target will synchronize only with their object instance, and will ignore event
handlers with a different target (including global ones). By exploiting this property,
events can be chained between multiple event emissions. The emitChained function
can be used to chain all the events that will be generated after its first invocation using
the other primitives previously discussed. In the simplest case, this can be used to em-
ulate an execution model similar to the replication of two event loops, as shown in the
example depicted in Figure 3.6. The emission of the event ev0 through emitChained

causes the corresponding event handler to run immediately. As emitChained has
chained ordering, it acts as the root event for all the other events emitted by its han-
dler. The handler in the example will emit a potentially infinite set of events of type
ev1, which will run with sequential ordering. However, such events will not have to
wait for the other ev1 events generated by the execution of the second ev0 event, as
they will belong to a distinct target.

3.5.2 Unordered execution

Another event emission primitive can be introduced to support the parallel execution
of event handlers out-of-order, emitNow:

Object.prototype.emitNow = function(label, arguments) {

// The object instance is the event target

for(var callback in this.callbacks[label])

asyncNow(this, this.callbacks[label][callback], arguments);

}

37 3.5 Relaxed ordering of events

loop1

ev0

loop2

ev0 ev1 ev1 ev1 ev1

ev1 ev1 ev1

emit

emit

emit emit emit emit

emit emit emit

...

...

have to wait

don't have to wait

1 var loop1 = {};
2 var loop2 = {};
3

4 function start() {
5 // callbacks are executed using "apply", passing as "this" the current target.
6 this.emitChained('ev1');
7 }
8 function loop() {
9 if(some_condition) {

10 this.emitChained('ev1');
11 }
12 }
13

14 loop1.on('ev0', start);
15 loop1.on('ev1', loop);
16

17 loop2.on('ev0', start);
18 loop2.on('ev1', loop);
19

20 loop1.emitChained('ev0');
21 loop2.emitChained('ev0');

Figure 3.6. Chained events. Events of type ev1 have to synchronize with events
belonging to the same event target (i.e., ev0), but don’t have to respect strictly
sequential ordering.

The emitNow primitive schedules an event handler for immediate execution. Con-
sider the example depicted in Figure 3.7, corresponding to a modified version of the
example in the previous section. By using emitNow, all the events are executed out-
of-order. In other words, events of type ev1 will not have to wait for events ev2 to
complete, and so on.

Events emitted using emitNow do not have to synchronize between each other.
Still, they have to synchronize with other events emitted against the same event tar-
get, thus, they can be safely combined with events generated using the emitChained

primitive. Consider the example of event emission combining strictly sequential events
and chained event emission, depicted in Figure 3.8. Events emitted with emitNow have
to wait for event ev0 before being allowed to complete. Similarly, event ev3 have to
synchronize with events ev1 and ev2. The execution scheme for this last example is

38 3.5 Relaxed ordering of events

ev3

SEL

time

(b) ev1 ev2

ev3(a)

ev1
ev2

PEV

time

1 var obj = {};
2 obj.on('ev1', function() {
3 var r = computeNthFibonacciNumber(10);
4 print('event 1 result: ' + r);
5 });
6 obj.on('ev2', function() {
7 var r = computeNthFibonacciNumber(10);
8 print('event 2 result: ' + r);
9 });

10 obj.on('ev3', function() {
11 var r = computeNthFibonacciNumber(10);
12 print('event 3 result: ' + r);
13 });
14 obj.emitNow('ev1');
15 obj.emitNow('ev2');
16 obj.emitNow('ev3');

Figure 3.7. Event emission using emitNow running on a PEV and on a SEL system

also depicted in Figure 3.8.

3.5.3 Globally unordered events

Similarly to chained events, another primitive function can be introduced to sched-
ule events for full out-of-order execution. This can be done with the emitUnordered

primitive:

Object.prototype.emitUnordered = function(label, arguments) {

// Using global target

for(var callback in this.callbacks[label])

asyncNow('globalUnordered', this.callbacks[label][callback], arguments);

}

The primitive can be used to schedule events with global unordered scheduling:
events generated with emitUnordered will not have to synchronize with any event in
the system, including globally ordered events. The following code example presented

39 3.6 Utility functions

ev0 ev3

SEL

time

(b) ev1 ev2

ev0 ev3(a)

ev1
ev2

PEV

time

1 var obj = {};
2 obj.on('ev0', function() {
3 var r = computeNthFibonacciNumber(10);
4 print('event 0 result: ' + r);
5 });
6 obj.on('ev1', function() {
7 var r = computeNthFibonacciNumber(10);
8 print('event 1 result: ' + r);
9 });

10 obj.on('ev2', function() {
11 var r = computeNthFibonacciNumber(10);
12 print('event 2 result: ' + r);
13 });
14 obj.on('ev3', function() {
15 var r = computeNthFibonacciNumber(10);
16 print('event 3 result: ' + r);
17 });
18 obj.emitChained('ev0');
19 obj.emitNow('ev1');
20 obj.emitNow('ev2');
21 obj.emitChained('ev3');

Figure 3.8. Event emission combining emitNow and emitChained running on a PEV
(a) and on a SEL (b).

in Figure 3.9 demonstrates this primitive by registering three event handlers and exe-
cuting them. Differently from the execution on a single-threaded loop, the events will
be scheduled using a non-predictable order, and retired as soon as possible, always
potentially in parallel, without any need for synchronization.

3.6 Utility functions

In addition to the async primitives, the PEV model provides two utility functions that
can be used to wait for some specific events to be executed. Such utility functions can
be used to listen for some event handlers to be executed, and can be used to compose
multiple event executions. As with every other event-based API, the primitives are

40 3.6 Utility functions

ev1 ev2

ev1

ev2
ev3

ev3

PEV
SEL

time

(a)

(b)

time

1 var obj = {};
2 // register three event handlers for three distinct events
3 obj.on('ev1', function() {
4 var r = computeNthFibonacciNumber(10);
5 print('event 1 result: ' + r);
6 });
7 obj.on('ev2', function() {
8 var r = computeNthFibonacciNumber(20);
9 print('event 2 result: ' + r);

10 });
11 obj.on('ev3', function() {
12 var r = computeNthFibonacciNumber(30);
13 print('event 3 result: ' + r);
14 });
15 // emit an event instance for each handler.
16 obj.emitUnordered('ev1');
17 obj.emitUnordered('ev2');
18 obj.emitUnordered('ev3');

Figure 3.9. Parallel event processing using emitUnordered on a PEV (a) and on a
SEL (b).

nonblocking3. The first of the two functions is called waitN and has the following
signature:

waitN([event target], [emission instances], [callback function]);

The primitive can be used to register a callback function to be executed after the
event handler associated with a specific event has been executed on a specific event
target for a given number of times. The callback is executed only once, and this is an
example of its usage:

var obj = {}

obj.on('foo', function(n) {

print('foo '+n);
});

3In the worst case, the registered callback will never be executed.

41 3.6 Utility functions

obj.waitN('foo', 2, function() {

print('foo was emitted and consumed 2 times')
});

for(var i=1; i<6; i++)

obj.emit('foo',i);

The anonymous function passed to waitN as an argument is called after two event
emissions have been completed, and this is the output generated by this code snippet:

foo 1

foo 2

foo was emitted and consumed 2 times

foo 3

foo 4

foo 5

A second utility function provided by the PEV model is waitEach, which has be-
havior similar to waitN with the difference that its callback is re-triggerable. Consider
the following example:

var obj = {};

obj.on('foo', function(n) {

print('foo '+n);
});

obj.waitEach('foo', 2, function() {

print('foo was emitted and consumed again 2 times');
});

obj.emit('foo',1);
obj.emit('foo',2);
obj.emit('foo',3);
obj.emit('foo',4);
obj.emit('foo',5);

The function passed to waitEach is called every time two event emissions have
been completed, and this is the output generated by this code snippet:

foo 1

foo 2

foo was emitted and consumed again 2 times

foo 3

foo 4

foo was emitted and consumed again 2 times

foo 5

The callback function of the two utility functions has an important property: it is
called having as an argument an array composed of all the results of the invocations of
the event emission callbacks. Consider the following example:

var obj = {};

obj.on('foo', function(n) {

print(n);

return n+1;

});

42 3.7 Programming model overview

obj.waitEach('foo', 2, function(results) {

print('foo was emitted 2 times, with result '+result);
});

obj.emit('foo',1);
obj.emit('foo',2);

which will produce the following output:

foo 1

foo 2

foo was emitted 2 times, with result [2,3]

By exploiting the results array, the two utility functions can be conveniently used
to synchronize between multiple event emissions, as well as to implement complex
synchronization patterns and intermediate computation steps. Being the PEV model
compatible with a single-threaded event loop, both functions can also be implemented
in a SEL model. This is an equivalent implementation of the waitN function for a
single-threaded runtime:

Object.prototype.waitN = function(label, emissions, callback) {

this.results = [];

var self = this;

var originalCallback = this.handlers[label];

this.on(label, function() {

var result = originalCallback();

self.results.push(result);

if(self.results.length === emissions) {

callback(self.result);

}

});

}

A similar semantics is also provided in the domain of single-threaded JavaScript in
the form of ECMA6 promises [119].

3.7 Programming model overview

The PEV event-based programming model is to be considered a low-level instrument
for deterministic and nondeterministic scheduling of events. Differently from other
low-level concurrency control mechanisms such as locks and mutexes, however, the
core event emission API of the PEV enforces atomicity between event handlers at the
runtime level, thus avoiding data races. Complexity, as often happens, comes along
with the advantage of expressiveness: in Chapter 4 we will show how the low-level
API can be used to build higher-level programming models hiding the complexity of
event emission behind structured programming models, including implicitly parallel
programming models and structured skeletal-based models. As a reference, Table 3.3
summarizes the core API introduced in this chapter.

43 3.7 Programming model overview

Method Event scheduling

asyncChained(’global’, ...) Schedules an event handler function with global
ordering.

asyncNow(’globalUnordered’, ...) Schedules an event handler for immediate execu-
tion.

asyncChained(obj, ...) Schedules an event handler with chained order-
ing, synchronizing only with previously emitted
events with the same event target. When multiple
targets are used in the PEV, events of this class will
not have to synchronize with other events from
other event targets.

asyncNow(obj, ...) Schedules an event handler for immediate execu-
tion with respect to other events of the current
event target. Callbacks might have to synchronize
with chained events of the same event target.

waitN(...) Registers an ad-hoc event handler which is called
after a given event handler is executed for fixed
number of times, collecting the return values of
each invocation.

waitEach(...) Re-triggerable version of waitN.

obj.emit(...) Emits an event with global sequential ordering.
Fully compatible with the single-threaded emit

primitive.
obj.emitUnordered(...) Emits an event with global unordered scheduling.

The event runs immediately and might be exe-
cuted in parallel. It does not have to synchronize
with any other event at all.

obj.emitNow(...) Schedules an event for immediate execution. The
event runs immediately and might be executed in
parallel with other events. It might need to syn-
chronize with other events emitted with the same
event target.

obj.emitChained(...) Emits an event chained with other events that
have been emitted with the same event target.
Events emitted using of distinct event targets are
consumed in parallel.

Table 3.3. PEV event emission API summary.

44 3.7 Programming model overview

Event emission #1
asyncChained asyncChained asyncChained asyncNow asyncNow asyncNow

Event #2 Target: global Target: A Target: B Target: global Target: A Target: B

asyncChained
ev1→ ev2 undef undef ev1→ ev2 undef undef

Target: global

asyncChained
undef ev1→ ev2 undef undef ev1→ ev2 undef

Target: A

asyncChained
undef undef ev1→ ev2 undef undef ev1→ ev2Target: B

asyncNow
ev1→ ev2 undef undef undef ∗ undef undef

Target: global

asyncNow
undef ev1→ ev2 undef undef undef undef

Target: A

asyncNow
undef undef ev1→ ev2 undef undef undef

Target: B

Table 3.4. PEV happened-before relation for different event emissions. The cell marked
with the ∗ symbol corresponds to the event emission discussed in the example.

3.7.1 Happened-before relation

The classes of events supported by the PEV model enable the out-of-order execution
of event handlers. Some event classes have a strict ordering guarantee, whereas other
event handlers do not. It is important to specify what classes of event handlers support
deterministic (ordered) execution. To this end, we can define a notion of happened-
before relation for event classes. The happened-before relation for the PEV is depicted
in Table 3.4. The table presents the happened-before relation between two events
scheduled by the same event handler. For example, consider the following two events
scheduled using the asyncNow primitive4:

// Event emission #1, with target 'Global'
asyncNow('global', emission1);

// Event emission #2, with target 'Global'
asyncNow('global', emission2);

Depending on the event target and on the core API function used to schedule the
event handler (i.e., asyncNow and asyncChained) the PEV model guarantees a differ-
ent happened-before relation and semantics. The happened-before relation is specified
in the Table by using the symbol "→", with the following meaning:

ev1 → ev2 : All the write operations to any object performed by the event han-
dler#1 are visible (i.e., happened-before) from any read operation to the same
object instance performed by event handler#2.

4The example event emission corresponds to the cell marked with the symbol ∗ in Table 3.4.

45 3.7 Programming model overview

undef : There is no happen-before relation, and event handler#2 might or might
not see all the write operations performed by event handler#1 at the moment it
is executed (as the PEV model enforces atomicity).

For clarity, the table presents the happened-before relation with respect to three
distinct event targets, i.e., "global", "A", and "B". In principle, however, the "global"
event target is just like any other event target, with the only difference that it is the
one already being used by single-threaded event loop runtimes.

46 3.7 Programming model overview

Chapter 4

Case studies

The PEV API is a low-level tool for asynchronous event scheduling and synchro-
nization. The goal of the PEV is to give a way to combine asynchronous event con-
sumption with the advantages of the impression of a single-threaded programming
model, to exploit multicore shared-memory machines. The parallel event emission API
is a low-level instrument that can be used to schedule and concatenate multiple events,
spanning from FIFO scheduling down to out-of-order execution. Because of its level
of abstraction, the API is not intended for direct use, and in particular is not supposed
to be used by application developers. Conversely, the API can be used as a layer for
the development of more convenient higher-level programming models. In this Chap-
ter we present some case studies relying on the PEV model and its API to build more
advanced high-level programming model abstractions.

4.1 Event-based parallel programming

Event-based systems use the asynchronous execution of callback functions as the core
programming metaphor to model the interactions with concurrent events. By relaxing
the order in which callbacks can be processed, opportunities for parallel processing
naturally increase, as the runtime system does not have to incorporate synchroniza-
tion points into its core execution logic. Moreover, by enforcing a consistent memory
model (characterized by atomicity and isolation), it is possible to further increase the
abstraction of programming models that can be supported by the PEV system. Accord-
ing to a popular classification of parallel programming models [80], we can identify
the following two main categories:

• Implicitly parallel models. Programming models that do not require any sort
of manual parallelization by the developer, and in which the parallelization is
completely and automatically carried out by the runtime system. In these models
the developer can freely reason as if no concurrency was present in the system.

47

48 4.1 Event-based parallel programming

• Explicitly parallel models. Programming models that require (in multiple and
very diverse ways) the intervention of the developer in order to introduce parallel
execution in the application.

The PEV API can be used to derive programming models lying in both categories.
Examples of implicit parallel programming models are all programming models that
somehow support the automatic parallelization of an application either because of
some properties of some algorithms or of some application domain (e.g., natural par-
allelism. as defined in Chapter 2), where parallelism can be naturally found, as in the
case of stateless services (e.g., stateless HTTP dynamic content providers), or the case
for array-based computations [126]. For all such cases the developer can freely develop
the applications as if the application only had to accept one request at a time, without
having to deal with parallelization and synchronization. The runtime system can then
freely parallelize (through process replication) the service as many times as required.
Similar automatic parallelization techniques can also be introduced in the context of
more complex scenarios in which there is still some sort of natural parallelism which
can be automatically exploited by the runtime (for instance through speculation).

Examples of explicit parallel programming models are many, and span from thread-
level to process-level parallelism, from distributed systems to more structured ap-
proaches. Rather than giving a unified definition for such models, we can classify
explicit models according to one of their main properties, that is, the use of an explicit
parallel entity, i.e., the use of a well-defined component responsible for the execution
of a parallel task in the application. By adopting this categorization, we can identify
two general classes of explicitly parallel programming models:

• Unstructured models (relying on some explicit parallel entities) are all the models
requiring the developer to deal with the creation and the coordination of multiple
explicit parallel entities. Examples of parallel entities are threads, actors [31],
agents, and processes. All such programming models are usually considered
advanced models, as they usually require the developer to deal with deadlocks,
data races, race conditions, or complex message-based coordination patterns.
Moreover, the lack of any structured approach to parallelization might result in a
suboptimal utilization of resources, as developers can hardly implement scalable
applications without any structured approach1

• Structured models in which parallel entities are hidden behind more high-level,
structured, forms of parallelism. Examples of such programming models are all
the models belonging to the class of algorithmic skeletons [56], usually identi-
fied by the class of parallel patterns [126, 139] they use. Popular examples of

1As an example, identifying the grain of the task to be parallelized, as well as the ideal number of
threads or processes to be started is often non-trivial. Moreover, models like the Actor model that usually
are considered more simple than threads still present relevant limitations when shared state is needed by
the computation, e.g., in the domain of Graph processing.

49 4.2 Implicit parallelism in Node.JS

such models are MapReduce-like data-parallel computing models [64], as well
as more generic scatter/gather models. Other examples of such models are par-
allel DSLs for processing peculiar data structures such as graphs (e.g., Green-
Marl [100], or signal collect [143]).

Thanks to its speculative runtime and its parallel API, the PEV model can be em-
ployed in multiple scenarios, covering a wide spectrum of programming models from
implicitly parallel ones to structured, more scalable, ones. In this chapter we present
some relevant high-level applications of the model. In particular, the following case
studies are considered:

• Implicit parallelism in the context of Node.JS applications and the actor model.
The PEV can be used to replace the single-threaded runtime of Node.JS, en-
abling the speculative automatic parallelization of Node.JS applications. Sim-
ilarly, the Actor model of concurrency is an explicitly parallel model in which
single-threaded entities (i.e., actors) are coordinated by means of explicit mes-
sage passing. Being single-threaded and stateful (with a share-nothing model not
allowing to share state between actors), the actor model is perceived as a subop-
timal model for parallelism in all scenarios that do not match the share-nothing
abstraction [145]. In particular, this is evident when a single centralized stateful
actor becomes the bottleneck of an application, as each actor cannot internally
benefit from parallel processing. The PEV model can be used in the context of
actor-like applications to solve this issue in the same way that Node.JS processes
are parallelized, i.e., by using the PEV runtime to process multiple requests in
parallel, speculatively, without violating the impression of the single-threaded
actor model.

• Structured parallelism in the context of a single-threaded language VM. A single-
threaded language VM (e.g., a JavaScript engine) having the requirement of
never blocking (to ensure responsiveness either to the GUI or to incoming client
requests) can benefit from the introduction of the parallel processing of callbacks
either in the form of asynchronous data-parallel models, as well as in the more
complex form of structured parallel programming. In this domain it is of par-
ticular interest the class of reactive applications for the development of stream
processing systems. The PEV can be used in such domains for structured par-
allelization of reactive applications, enabling a structured asynchronous parallel
programming model which we call parallel functional reactive programming.

4.2 Implicit parallelism in Node.JS

As discussed in Chapter 2, event-driven frameworks like Node.JS are limited by their
runtime system at least in two aspects, namely (1) the impossibility of sharing a com-

50 4.2 Implicit parallelism in Node.JS

mon memory space among processes (when parallelized), and (2) the difficulty of
building high-throughput services using blocking, CPU-intensive, function calls.

Concerning the first limitation, the reason is that common event-based program-
ming frameworks are not designed to express shared memory parallelism, and the only
way of exploiting multiple cores is by replicating the service process. This approach
forces the developer to adopt parallelization strategies based on master-worker pat-
terns (e.g., WebWorkers [8]), which however require a share-nothing architecture to
preserve the memory model of the event loop. Whenever multiple processes need to
share state (e.g., to implement a stateful Web service), the data needs to be stored in a
database or in a in-memory external repository (e.g., Memcached [12]), providing the
necessary concurrency control.

Replication-based approaches present the limitation of inhibiting different pro-
cesses from sharing a common memory space (with low latency). This could represent
a programming model limitation for all the cases in which a non-persistent state is
needed by the service application (for instance in the case of latency bound services
that need the use of some forms of caching). With replication-based approaches (as in
the case of Node.JS) the developer is forced to rely on external, additional, frameworks
which however increase the response time of the service.

Concerning the second limitation, event-based programming requires the devel-
oper to deeply understand the event loop runtime architecture and to write services
with non-blocking mechanisms so as to break down long-running operations into mul-
tiple processing steps. As already discussed in Chapter 2, for such services it is fun-
damental not to halt the loop even with simple processing tasks (e.g., sorting a small
array in order to produce an answer). Due to the nature of the event loop, nonblock-
ing processing becomes a requirement for high-throughput services, as potentially any
long-lasting function call could result in a CPU-bound operation which could eventu-
ally halt the event loop. To deal with blocking method calls which could halt the event
loop, the service developer has to make a massive and extensive usage of asynchronous
functions and algorithms, and needs to offload any CPU-bound operation to another
process2. Unfortunately, such mechanisms usually involve the adoption of program-
ming techniques which increase the complexity of developing even simple services.
Moreover, while non-blocking techniques help increasing the throughput of a service,
they might also increase the latency of the responses. As a consequence, services often
need to be developed by carefully balancing synchronous and asynchronous opera-
tions.

To solve the above two limitations without altering the single-threaded program-
ming model, chained event emission can be used in the runtime of Node.JS: as soon
as a request is received by the Node.JS service, a new event target is created for that
request, and all future events belonging to that specific request will be processed with
the same event target.

2Consider the example of sorting an array discussed in Chapter 2

51 4.2 Implicit parallelism in Node.JS

By adopting this parallelization strategy, the service can be automatically paral-
lelized, having multiple requests processed in parallel without any manual paralleliza-
tion, as the PEV acts as a fork for every incoming request. The speculative runtime of
the PEV ensures that requests that will alter some shared state will be processed in a
safe way, and provides scalability in the case of stateless services, whereas in the case of
stateful services the speculative engine might anyway be able to increase the through-
put of the system without having the developer to introduce explicit parallelization.

The simplest Node.JS service is usually presented with the following code:

// Create a new service listening on port 8080

http.createService(function(request, response) {

// Reply back to the client

response.end('Hello world');
}).listen(8080);

The service registers a callback function, which is successively executed upon any
incoming client request. The majority of the Node.JS runtime is written in self-hosted
JavaScript. The framework-level source code of the previous example is implemented
in the following way3:

this.on('connection', function(socket) {

// create a buffer to store incoming data

var buffer = runtime.createInputBuffer();

var self = this;

// register an handler to accumulate incoming data

socket.on('data', function(data) {

if(data != '\n\r') {

// accumulate data chunks

buffer.push(data);

} else {

// once the data has been received, notify

self.emit('newRequest', buffer);

}

});

});

Thanks to the PEV parallel engine, the Node.JS single-threaded runtime can be
converted to an implicitly parallel framework in which each request is potentially pro-
cessed in parallel. This is depicted in Figure 4.1. The simple parallelization technique
does not affect the Node.JS programming model, and therefore does not require the
service developer to deal with the manual parallelization of the service. Conversely,
the developer can comfortably use the Node.JS framework having the impression of
developing the service for a single-threaded execution engine. When multiple concur-
rent requests will be received, the PEV runtime will attempt to speculatively process
them in parallel, leading to an implicitly parallel programming model. Such implicit
parallelization approach would also allow for latency-oriented optimizations (rather
than throughput-oriented) through parallelization. In fact, a relevant advantage of

3The code corresponds to a simplified version of the original Node.JS source code. The characteristics
of this example have already been discussed in Chapter 2.

52 4.3 WebWorkers with safe shared state

1 // PEV-enabled request handling
2 this.on('connection', function(socket) {
3 // create a buffer to store incoming data
4 var buffer = runtime.createInputBuffer();
5 // "self" is a per-connection instance
6 var self = this;
7 // register an handler to accumulate incoming data
8 socket.on('data', function(data) {
9 if(data != '\n\r') {

10 // accumulate data chunks
11 buffer.push(data);
12 } else {
13 // Emit a chained event with per-request target: multiple requests will
14 // potentially execute in parallel
15 self.emitChained('newRequest', buffer);
16 }
17 });
18 });

Figure 4.1. Implicitly parallel Node.JS using the PEV event emission API.

PEV over the existing Node.JS engine is represented by the possibility of optimizing
new and existing services for latency, and not only for throughput, whereas current
approaches to parallelization of Node.JS-based services all rely on the mere replication
of the JavaScript execution engine.

4.3 WebWorkers with safe shared state

On single-threaded frameworks like Node.JS the only way to support CPU-bound
computations is by offloading the computation to another worker process (WebWork-
ers [8], in JavaScript), at the cost of losing shared state. This limitation can represent
a relevant issue for services featuring in-memory data structures (e.g., a cache) often
used to reduce the service’s latency. This limitation can be solved in the PEV model by
introducing a form of WebWorkers (called SharedWorkers in this example) that can
safely access and modify shared data structures. Like standard WebWorkers, Shared-
Workers can interact through the onMessage/postMessage API; unlike WebWorkers,
they can also safely access shared state. Consider the example of two workers concur-
rently reading and modifying a shared array, depicted in Figure 4.24.

The code in the example describes a possible scenario for safe workers. A Web
service needs to perform some computation involving shared state in order to produce
the response (e.g., searching in a shared data structure and collecting some statistics,
as in the example). A dedicated worker can be used to perform the computation (line
4), while the service can process other requests. If needed, other workers can be

4The HTTP server initialization is omitted for brevity.

53 4.3 WebWorkers with safe shared state

1 // Init an http server
2 var http = require('http');
3

4 // the shared array
5 var shared = new Array(...);
6

7 // First worker scanning the array
8 var w1 = new SafeWorker();
9 // Second worker updating the array

10 var w2 = new SafeWorker();
11

12 w1.onMessage(function(message) {
13 var total = 0, max = shared[0], min = shared[0];
14 // The array can be accessed by the worker
15 for(var i=0; i<shared.length; i++) { |\label{w1}|
16 total = total + shared[i];
17 max = _max(max, shared[i]);
18 min = _min(min, shared[i]);
19 }
20 message.response.writeHead(200, {"Content-Type": "text/plain"});
21 message.response.end(total+"\n"+max+"\n"+min);
22 })
23

24 w2.onMessage(function(message) {
25 var id = someHashing(message.data);
26 shared[id] = message.data; |\label{w2}|
27 message.response.writeHead(200, {"Content-Type": "text/plain"});
28 message.response.end(id);
29 })
30

31 // Simple Node.JS service handling requests: GET will read, PUT will update
32 http.createServer(function(request, response) {
33 // Get one of the two workers, depending on the type of request
34 var worker;
35

36 // Parse the request details from the client
37 var data = parseMessage(request);
38

39 if (request.method == 'GET') worker = w1;
40 if (request.method == 'PUT') worker = w2;
41

42 // We send to the worker also the "response" object, to let him reply to the client
43 if (worker)
44 worker.postMessage({data:data, response:response});
45 else
46 response.status = 405;
47 }).listen(port)

Figure 4.2. Safe WebWorkers implemented using the PEV.

54 4.4 Asynchronous tasks and events

started with different tasks (e.g., storing new data in the shared array, at line 18).
SharedWorkers can be implemented in the PEV using the following event emission
mechanism:

var SharedWorker = function(receiver) {

this.on('message', this.onMessageCallback);

this.receiver = receiver;

}

SharedWorker.prototype.onMessage = function(callback) {

this.onMessageCallback = callback;

}

SharedWorker.prototype.send = function(message) {

this.receiver.emitUnordered('message', message);

}

Despite having a similar API, SharedWorkers differ from standard WebWorkers in
the following aspects:

• By using emitUnordered multiple requests to the same Worker might be pro-
cessed in parallel, and the order in which requests will be processed is not deter-
ministic.

• The message handler of the safe worker is guaranteed to be executed atomically
and in isolation, but has access to all the objects in the scope of its event handler
at the moment it is created.

• When event handlers can be executed in parallel (that is, assuming unordered
or chained events are used by the worker internal implementation) the worker
might process multiple requests in parallel. Making the worker equivalent to an
actor that self-parallelizes itself when more than a single request is received.

• As with standard WebWorkers, interactions happen via message passing. How-
ever, since message-based interactions in the PEV correspond to event emissions,
the on/emit API allows developers to specify interaction patterns different than
1 : N communication. Moreover, send-by-reference can be supported efficiently,
when required.

• When Workers have conflicts, however, the two workers cannot offer ideal scal-
ability, as standard workers would. This comes at the price of providing safe
shared state.

4.4 Asynchronous tasks and events

The PEV API can be used to derive common task-based programming models. In this
section we describe a PEV-based version of some popular task-based programming
models, and we discuss their event-based implementation.

55 4.4 Asynchronous tasks and events

4.4.1 Asynchronous safe futures

Many programming languages feature a notion of future tasks [119]5. Futures that
can safely run in parallel have been proposed for Java [153], and can be introduced in
JavaScript using event emission. To this end, the Future object can be introduced:

// Create a future object

var future = new Future(fun)

An utility function called spawn can be used to schedule the asynchronous safe
future:

// Execute the 'fun' function with arguments 'args'
// asynchronously and potentially in parallel

future.spawn(args, function(result) {

// 'result' contains the return value

// for 'fun(args)'
})

In the example, a future object is created using the Future constructor, which
accepts a function to be executed asynchronously (i.e., fun) as an argument. The
function can then be scheduled for asynchronous execution through spawn. Once the
function will have completed, the result will be the argument to the callback function
provided as the second argument.

Since there is no ordering requirement for a single future object, the spawn prim-
itive can be implemented using the emitUnordered primitive. By using the future
object instance as its event target, the future is guaranteed not to have to synchronize
with other event handlers:

var Future = function(toRunInParallel) {

var self = this;

this.on('go', function(args) {

var result = toRunInParallel(args);

self.emitUnordered('done', result);

});

}

Future.prototype.spawn = function(args, onDone) {

// register the callback

this.on('done', onDone);

// The function 'toRunInParallel' has already been stored in the object instance when

the future was created

this.emitUnordered('go', args);

}

5A specification for future-like objects in JavaScript has also been proposed [5]. However, being
JavaScript a single-threaded language, the proposed API can be only used to model the asynchronous
interaction with entities external to the main JavaScript event loop such as other services, the Browser,
or the Operating System

56 4.4 Asynchronous tasks and events

4.4.2 Task-based parallelism

Task-based parallelism can be supported asynchronously by the PEV runtime. Since
event emission is asynchronous, it can be easily composed, meaning that it is possible
to emit events from other events, like in the following example of an infinite event
emission.

var foo = { data : 0 }

foo.on('event', function() {

this.data++;

this.emitNow('event');
});

// Trigger the first event emission.

foo.emitNow('event');

Recursive event emission can be used to extend the Array object prototype with
some asynchronous parallel builtin operations, in the following way:

// Create a new array in parallel with the squared root of the input array

[1,2,3].mapPar(function(idx, element) {

return Math.sqrt(element);

}, function(result) {

// once completed, 'result' will hold the new array (created potentially in parallel)

})

The mapPar function can be considered an asynchronous version of the equiva-
lent synchronous RiverTrail’s one. The function can be implemented in the PEV by
combining chained and unordered event emission, as presented in Figure 4.36:

Since the map tasks are expected to run in parallel, the emitNow event emission is
used. The chunkDone event is used to accumulate the partial results as computed by
parallel tasks. Events of this type are emitted using emitChained as it is very likely
that such events will not be able to run in parallel (as they will all modify the same
object to accumulate the partial results). The chained event emission is bound to an
event target instance (i.e., the array itself) which is private to the mapPar computation.
This means that two (or more) successive invocations of the function will potentially
cause multiple computations to be executed in parallel:

var a1 = new Array(...); var a2 = new Array(...);

a1.mapPar(sqrt, onDone);

a2.mapPar(sqrt, onDone);

In this example, both computations for a1 and a2 will be executed in parallel, and
will execute the onDone function nondeterministically.

Multiple mapPar function calls can be combined even further to derive a parallel
tree processing function. Assuming a tree is expressed as a combination of arrays
(or JSON objects), a function called visitTree can be introduced to perform parallel

6For simplicity, we assume the array to be divisible by a factor of 2. Therefore, the source code does
not show bound checks, overflow management, etc.

57 4.5 Parallel functional reactive programming

1 doInParallel = function(inArray, sequentialKernel, threshold, onDone) {
2 function doSequentialKernel(from, to) {
3 for(var idx = from; idx<to; idx++) {
4 sequentialKernel(idx, inArray[idx]);
5 }
6 };
7 var self = this;
8 var result = { finalResult : [], missing:this.length };
9 this.on('task', function(from, to) {

10 if((from-to) < threshold) {
11 var chunkResult = doSequentialKernel(from, to);
12 result.emitChained('chunk', chunkResult, from, to);
13 } else {
14 self.emitNow('task', from, (from+to)/2);
15 self.emitNow('task', (from+to)/2, to);
16 }
17 });
18 result.on('chunk', function(chunkResult, from, to) {
19 for(var i=from; i<to; i++) {
20 this.finalResult[i] = chunkResult[i];
21 }
22 if(result.missing-- == 1) {
23 onDone(this.finalResult);
24 }
25 });
26 this.emitNow('task', 0, this.length);
27 }
28

29 Array.prototype.asyncMap = function(mapFun, onDone) {
30 // The threshold can be a factor of the cores in the system and the size of the array
31 var threshold = someFactorOf(System.CPU(), this.length);
32 doInParallel(this, mapFun, threshold, onDone);
33 }

Figure 4.3. Implementation of an asynchronous MapReduce API using the PEV.

tree traversal. Like with the mapPar function, visitTree can be implemented using
unordered event emission. A reference implementation for such visitTree function
with an example of usage is presented in Figure 4.4.

4.5 Parallel functional reactive programming

Reactive applications are applications that have to be deployed within time-varying
contexts in which any external stimuli might influence the application’s behavior. Func-
tional reactive programming [131, 127, 73, 60] (FRP) is a programming model for the
development of reactive applications based on pure (i.e., side-effect-free) functions
and events. FRP allows developers to model systems that must respond to input over
time in a simple and composable way. The primary concepts of FRP are signals (also
called behaviors, that is, time-varying values) and events, corresponding to collections

58 4.5 Parallel functional reactive programming

1 var treeVisitor = {};
2 treeVisitor.on('visit', function(nodes, index, visitor, done) {
3 if (index < nodes.length) {
4 visitTree(nodes[index], visitor, function () {
5 visitNodes(nodes, index+1, visitor, done);
6 });
7 } else {
8 // Optional "done" function, not used in this example
9 done();

10 }
11 });
12

13 function visitTree(tree, visitor, done) {
14 if (Array.isArray(tree)) {
15 // The parallel computation is triggered here
16 for(var i=0; i < tree.length; i++) {
17 treeVisitor.emitNow('visit', tree, i, visitor, done);
18 }
19 } else {
20 visitor(tree, done);
21 }
22 }
23

24 // Traverse the given tree in parallel
25 visitTree([[1,3,[2]],[6,3],[18,10,83]], function(node) { console.log(node); });

Figure 4.4. A parallel tree traversal API expressed in the PEV.

of instantaneous values, or time-value pairs. Events are used to model any form of
interaction with external entities (i.e., a mouse click), and behaviors are used to react
to the external event producing a change in the system’s state. Among the different
implementations of FRP-inspired models that have been proposed in the literature, re-
active models have become popular in languages featuring some notion of a builtin
event loop. Examples of languages for which reactive programming frameworks ex-
ist are JavaRX [19], Akka’s Scala [1], C# [144], and of course JavaScript [17]. In
many of the libraries for FRP in JavaScript (e.g., Rx.JS [13]), a reactive application is
presented using examples like the following:

var mousedrag = mousedown.selectMany(function (md) {

// calculate offsets when mouse down

var startX = md.offsetX, startY = md.offsetY;

// Calculate delta with mousemove until mouseup

return mousemove.select(function (mm) {

(mm.preventDefault) ? mm.preventDefault() : event.returnValue = false;

return { left: mm.clientX - startX, top: mm.clientY - startY };

}).takeUntil(mouseup);

});

// Update position

subscription = mousedrag.subscribe(function (pos) {

dragTarget.style.top = pos.top + 'px'; dragTarget.style.left = pos.left + 'px';
});

59 4.5 Parallel functional reactive programming

The simple example is used to implement a drag-and-drop function for controlling
the mouse in JavaScript using FRP. The code does not include any explicit use of addi-
tional data structures to keep track of the mouse position, and makes use of a simple
reactive abstraction which assigns to every event (e.g., "mouse move") a function to
be invoked. Events are then considered streams to be subscribed (using subscribe)
and observed (using select). Examples like this implicitly rely on the fact that events
are strongly executed one after the other, as it would not make sense to start execut-
ing the mouse up event (associated with the end of the drag-and-drop) before all the
mouse move events have been consumed (or even before the event mouse down has
been processed). Interestingly, this is not always the case with reactive programming,
and relaxed event processing can be introduced also in this domain. Beyond the simple
drag-and-drop example, reactive applications are commonly used for the development
of services that have to deal with streams of data. An example of reactive data pro-
cessing is represented in the following code snippet, showing how a data file can be
retrieved from the web and processed chunk-by-chunk as data is received.

var maximum = 0;

http.get('http://yahoo.finance.com/stocks?AAPL\&from=..to=..')
.asStream(function(chunk) return parseInt(chunk.split(" ")))

.map(function(number) {

if(number > maximum) {

maximum = chunk;

return maximum;

}

})

.subscribe(function(max) {

print('got a new local maximum '+max);
});

Conceptually, the asStream function causes an event emission for every new data
chunk received by the HTTP query, and each emission will cause the map function to
be executed. In a PEV system, the map function will automatically start being executed
in parallel. For every element returned by the map function, the successive callback
(registered using subscribe) is called. As the callback is called only wheb the map

callback returns a value, it can be used to filter elements.
Infinite streams can be processed in a similar way. Of course, this is particularly

convenient when the process of consuming data also involves some CPU-intensive com-
putation. Consider the following example:

var s1 = open("http://www.twitter.com/...");

var s2 = open("http://www.facebook.com/...");

join([s1, s2]).asStream()

.map(function(data) {return process(data)})

.onDone(function(data) {print(data)})

In a single-threaded loop model the example above would be affected by a lack
of parallelization, preventing the loop from accepting other requests as long as the
main thread is performing the processing phase. This is however not the case in a PEV

60 4.5 Parallel functional reactive programming

thread #1

mainStage

thread #2

mainStage

main
stage stage2 stage3

emit(stage2) emit(stage3)

stage2

stage2

stage3

stage3

thread #1

mainStage mainStage stage2 stage2 stage3 stage3
(a)

(b)

1 function Pipeline() {
2 this.stages = [];
3 this.firstStage = {};
4 }
5

6 Pipeline.prototype.addStage = function(fun) {
7 var newStage = {};
8

9 newStage.on('element', function(data) {
10 var result = fun(data);
11 if (this.nextStage) {
12 this.nextStage.emitNow('element', result);
13 }
14 });
15

16 var prevStage = this.stages.length;
17

18 if (prevStage == 0) {
19 this.firstStage = newStage;
20 } else {
21 this.stages[prevStage - 1].nextStage = newStage;
22 }
23 this.stages.push(newStage);
24 return this;
25 }
26

27 Pipeline.prototype.open = function(url) {
28 var pipeline = this;
29 Stream.open(url).onData(function(streamElement) {
30 // Each element of the stream is sent to the first stage in the pipeline
31 pipeline.firstStage.emit('element', streamElement);
32 });
33 return this;
34 }
35

36 // Example usage:
37 var pipe = new Pipeline()
38 pipe.addStage(mainStage)
39 .addStage(stage2)
40 .addStage(stage3)
41 .open('http://www.some.data.service.com/');

Figure 4.5. A software pipeline with three stages.

61 4.5 Parallel functional reactive programming

system, where a chained event emission of events can be used to spawn the concur-
rent processing of a data chunk as soon as it is received. It is important to note that
the event loop is not blocked, and therefore other reactive applications can still run
in the meantime. Similarly to this example, other continuous streaming processing
applications could be written in the following way:

var bigDocument = "http://en.wikipedia.com/...";

var wordDistribution = [];

open(bigDocument).asStream()

.map(function(chunk) {

updateTable(wordDistribution, chunk.split(" "));

});

In this example a simple map-reduce computation is used to count the distribution
of words in a table. Differently from the common (distributed) implementation of the
map-reduce job, the example is making use of a shared data structure which is updated
in-place.

4.5.1 Software pipelining

Relaxed events can be conveniently combined to build dataflow-like event-based com-
putation models that can automatically take advantage of the PEV parallel execution
model.

Let’s assume that a given computation could be expressed as a sequence of three
distinct stages (that is, three operations that have to be executed sequentially), and
that the computation can be exposed using the following reactive API:

// Define a new pipeline

var pipeline = new Pipeline();

// Define the pipeline

pipeline.addStage(function(element) { return mainStage(element); })

.addStage(function(element) { return stage2(element); })

.addStage(function(element) { return stage3(element); });

// Start the pipeline with a streaming source

pipeline.open('http://www.some.streaming.service.com/');

The three stages can be modeled as three distinct event handlers, as depicted in
Figure 4.57.

The three stages are combined in a chain of multiple events, which are intercon-
nected using unordered event emission. Every time a new element enters the pipeline
(that is, a new stream element is received) an event emitter corresponding to a stage
in the pipeline emits an event using emitNow.

On a single-threaded event loop the natural ordering of event processing will re-
sult in a sequential execution of each event handler, which will emit new events while

7For simplicity, we assume the pipeline to be balanced, i.e., a pipeline in which each stage has the
same execution time (on average). Balanced pipelines are commonly found in many streaming computa-
tions [55].

62 4.5 Parallel functional reactive programming

main
stage

inner stage3

done

inner

emit(stage2) emit(stage3)

emit(Inner)

emit(done)

stage2

thread #1

mainStage

thread #2

mainStage

thread #3

stage2

stage2

inner

inner

thread #4

done stage3inner

stage3

inner

inner

inner doneinner

inner

emitNow

emitNow

...

1 Pipeline.prototype.addParStage = function(fun) {
2 var newStage = {};
3 if(Array.isArray(data)) {
4 var stage = this; var scatterStage = {};
5 scatterStage.on('data', function(elem) {
6 var parallelStage = {};
7 var results = [];
8 parallelStage.on('inner', function(elem) {
9 // Store each result in the array

10 result[i] = fun(elem);
11 });
12 parallelStage.on('done', function(elem) {
13 // Result contains the final result
14 if(stage.nextStage)
15 stage.nextStage.emit('data', result);
16 });
17 for(var i=0; i<elem.length; i++)
18 parallelStage.emitNow('inner', elem[i]);
19 // Chained emission ensures that the 'done' event
20 // will be executed after all the 'inner' handlers
21 parallelStage.emitChained('done');
22 });
23 newStage.on('element', function(data) {
24 scatterStage.emit('data', data);
25 });
26 } else
27 newStage.on('element', function(data) {
28 var result = fun(data);
29 if (this.nextStage)
30 this.nextStage.emit('data', result);
31 });
32 var prevStage = this.stages.length;
33 if (prevStage == 0) {
34 this.firstStage = newStage;
35 } else {
36 this.stages[prevStage - 1].nextStage = newStage;
37 }
38 this.stages.push(newStage);
39 return this;
40 }

Figure 4.6. A software pipeline with one of the three stages internally parallelized
using a task farm.

63 4.5 Parallel functional reactive programming

completing its execution. By using a dedicated event emitter per each stage in the
pipeline, however, the same application executed using the PEV will process multiple
stream elements in parallel, as depicted in Figure 4.5. The parallel event loop auto-
matically schedules events as soon as they enter the pipeline, eventually leading to a
full utilization of the computing resources in the system (2 cores, in this example). As
long as stages do not conflict, the efficiency of the system is guaranteed to be optimal
as the pipeline is balanced [55].

Balanced pipelines usually correspond to an ideal subclass of all the possible cases.
More frequently, one or more stages in a pipeline have an higher execution time, thus
resulting in a bottleneck for the whole pipeline. A common solution to bottlenecks
on a single stage is inner parallelism, that is, the parallel execution of the internal
computation carried out by a single stage. Assuming the bottleneck is identified in
the second stage and assuming its computation can be parallelized just by splitting
its input into multiple elements (i.e., it operates on an array-like data structure), the
pipeline object can be extended with a parallel stage. The stage can be implemented
using a combination of emitNow and emitChained, and internally consumes events in
parallel, as depicted in Figure 4.6.

This parallelized version would lead to an automatic parallelization of the pipeline.
By introducing unordered events (through emitNow) in the second stage, the

pipeline is able to perform the internal computation for the stage in parallel. Chained
ordering ensures that all the events of type ’done’ will execute just waiting for their
predecessor to complete, without having to wait for their peers (that is, they all termi-
nate as soon as possible). This execution scheme ensures full parallelism for the given
pipeline (in the case of non-conflicting event handlers). The emission of events with
chained ordering to the next stage will cause the pipeline to restore the global ordering
once all the chained events (for a single element value) have been processed.
As discussed, the pipeline can be exposed to the PEV developer using the following
reactive-like API, hiding the complexity of the event-based implementation. A fixed
three stages pipeline with an internal parallel stage (called a TaskFarm [55]) would
have the following usage:

function preprocess(element) { return someFunctionOf(element); }

function postprocess(element) { return someFunctionOf(element); }

function taskFarm(element) { return someFunctionOf(element); }

var pipe = new TaskFarmPipeLine();

pipe.addStage(preprocess)

.addParStage(taskFarm)

.addStage(postprocess)

pipe.open('http://www.some.streaming.service.com/');

Every time a new element from the incoming stream will be emitted, the pipeline
will automatically start processing events in parallel. Since some stages might access
shared state or have side effects, the PEV could also be used to obtain a programming

64 4.5 Parallel functional reactive programming

model combining data-flow programming and side effects similar to the one presented
in [82, 83].

Part III

Speculative Runtime

65

Chapter 5

The parallel event loop runtime

The parallel event loop API is not bound to a specific runtime architecture. In this
chapter we introduce three distinct implementations of a PEV runtime system, and we
discuss the characteristics of each implementation. Each implementation is based on
some notion of event scheduling and speculative execution. Scheduling is used by the
runtime to ensure the correct event execution order as prescribed by the PEV API, while
speculative execution is used to overlap as much as possible parallel event execution,
always ensuring safety. The runtimes presented in this chapter are based on pessimistic
(lock-based) and optimistic (STM-based) speculative parallelization.

5.1 Runtime system overview

Any runtime supporting the PEV API can be seen as a fixed-size thread pool executor
service processing only a specific class of executable tasks, that is, event handlers.
Differently from popular executor services (e.g., the Java ForkJoin Pool [110]), tasks
submitted to the parallel event loop for execution might have to respect a constrained
execution order. Moreover, event handlers always have to be transparently executed
atomically and in isolation.

In this chapter we describe three implementations of runtimes supporting partially
or completely the PEV API. The high-level execution scheme for the three PEV runtime
systems can be introduced with the scheme depicted in Figure 5.1.

Events are produced either by the I/O substrate (e.g., by the Operating System) or
by the event emission API (a), causing one or more event handlers to be scheduled for
execution (b). Depending on the type of the event (e.g., chained vs. unordered) and on
other runtime parameters (e.g., event target) events are submitted for direct execution
to a specific thread. Right before execution, any event handler is automatically modi-
fied with specific runtime barriers implementing the runtime system enabling the safe
parallel execution of the handler (c). Depending on the parallel runtime, some event

67

68 5.1 Runtime system overview

(a)

(b)

(c)

(e)

(d)

event #001 Callback

event #002 Callback
...

dispatching

instrumentation

emission

execution

event queue

callbacks table

speculative thread

Figure 5.1. Parallel Event Loop general execution scheme.

handlers can be modified ahead-of-time (e.g., at parsing time), and -for frequently
used handlers- modified call targets can be cached. Once an event handler is selected
for execution, the worker thread executes it by means of a speculation engine which
ensures safe parallel execution. Based on the speculation policy and on other runtime-
level information, the engine might execute the handler (usually in parallel), or might
abort the handler execution (d) and re-execute it in the same thread or on a different
one. Once the event handler has finally been executed (e), its side effects (including
new events that it might have emitted) become visible to other event handlers. The
speculation engine ensures that side effects publication is consistent with the correct
event scheduling1.

There are two crucial aspects of each event handler execution, namely ordering and
safe execution:

• Event ordering. The correct event execution order has to be enforced by the
PEV runtime. The correct execution ordering is enforced in several moments
during event execution. In particular, every worker thread makes use of various
information (e.g., shared metadata, queues policies) to take local decisions on
which event handler to execute.

• Safe execution. Once selected for parallel execution, every handler might run in
parallel with other handlers, with potential conflicting access to shared object
instances. To prevent inconsistent access to shared data, data races and race
conditions, every event handler has to be executed atomically and in isolation.
To this end, handlers are executed through a speculative runtime ensuring such

1In other words, the engine takes care of publication safety, also with respect to the system memory
model

69 5.1 Runtime system overview

Global
queue

I/O
substrate

Main
thread

Worker
thread #1

Worker
thread #N

emit

Figure 5.2. Parallel Event Loop runtime high-level architecture. Continuous arrows
between the main thread and the I/O substrate indicate that all I/O events are
executed by the main thread. Dashed arrows indicate that relaxed event handlers
may be executed by other workers in parallel.

properties. The speculative runtime is a runtime component that tries to exe-
cute handlers in parallel, taking care of conflict resolution between concurrent
handlers. Speculation can be implemented using multiple techniques.

Depending on the PEV runtime, the two operations can be implemented in different
ways. All the implementations presented in this Chapter feature a runtime system that
is embedded within the language runtime (i.e., the language VM or engine), and share
the same high-level system architecture, which is depicted in Figure 5.2. The following
main components can be identified in the system:

• I/O substrate. Runtime layer dealing with I/O operations, responsible for
scheduling callbacks from any event source executed outside of the language
runtime (e.g., the Operating System). For compatibility with single-threaded
loops, events emitted by this runtime are always globally ordered events.

• Global event queue. The main event queue for I/O operations. The queue is
always used by the I/O substrate to emit globally ordered events. Depending on
the PEV runtime, the queue can also be used to support other event types.

• Worker (and main) threads. Threads responsible for modifying event handlers
and for executing them in parallel ensuring isolation and atomicity. The num-
ber of threads is fixed and is usually close to the number of hardware threads
available in the system. A privileged thread called the main thread is usually
responsible for processing event handlers emitted by the I/O substrate through
the global queue. Depending on the PEV implementation, the main thread can
also be responsible for processing other event types.

70 5.2 Speculation engines

• Thread-local event queue. Every thread also manages a thread-private queue. The
queue usually contains event handlers that are ready for processing. Depending
on the PEV implementation, thread-local queues can also be leveraged to enforce
local ordering as well as to implement load balancing via work stealing [110].
In order to enforce the correct ordering, each runtime implements work stealing
only for event handlers with relaxed concurrency.

The need for a clean separation between the main thread a worker threads is also
motivated by the fact that the PEV system has to ensure compatibility with the single-
threaded event loop.

5.2 Speculation engines

Event scheduling and speculative execution can be implemented using several ap-
proaches. In this Dissertation we describe and analyze the following three distinct
implementations:

• Pessimistic runtime. An implementation based on pessimistic lock-based con-
currency control. Fine grained locking and a global reader-writer lock are
used to enforce atomicity and isolation. Scheduling is obtained by exploiting
queues, without using metadata. Globally ordered events are processed by the
main thread only, while unordered and chained events are processed by worker
threads. Different event targets can be processed in parallel, while two un-
ordered events belonging to the same event target cannot benefit from per-target
parallelization (excluding the global target). The main performance character-
istics of this implementation are its reduced execution overhead, balanced with
good scalability for read-only and side-effects-free (pure) workloads.

• Optimistic runtime. An implementation based on a fully-optimistic approach
in which every callback is executed in a dedicated software transaction [91],
thus providing atomicity and isolation. Additional metadata for validation and
commit-time synchronization is used to enforce the correct event execution or-
dering, and a "transactions everywhere" approach gives the system the ability
to execute speculatively any type of event handlers, including globally ordered
ones. This implementation presents an increased runtime overhead, but also
offers better scalability for high-contention workloads.

• Hybrid runtime. An implementation combining aspects of the previous two ap-
proached by mixing optimistic worker threads with a pessimistic main thread.
With this runtime, all the ordered event handlers belonging to the global event
target are executed by a main thread using very light runtime barriers. All other
event handlers (including out-of-order handlers belonging to the global event

71 5.2 Speculation engines

event handler
started

emit('ev1')

event
handler

completed

Event emission
is buffered, and 'ev1'

is not added to the queue

Event 'ev1' is added to
the queue with a reference to

its handler

Figure 5.3. Buffered event emission in a single-threaded event loop.

target) are executed by the workers. Event handlers executed by the main thread
always commit, reducing the overhead (for single-threaded execution) while in-
creasing the probability of conflicts with other non-global event handlers. Event
handlers (executed by workers) that are found to have an high abort rate are
re-scheduled to the main thread, thus preventing the system from degrading its
performance when the speculation is not effective. This speculation engine of-
fers a limited execution overhead with respect to non-modified single-threaded
event loops, still offering good scalability for read-dominated workloads. The
speculative runtime is based on the FastLane STM algorithm [151] but other
STM algorithms featuring a notion of irrevocable transaction [154]might be sup-
ported as well. As with the Optimistic system, additional commit-time reordering
and synchronization is implemented to enforce correct event ordering.

Each of the PEV systems presented in this chapter has been designed to meet the
following goals:

• Single-threaded loop performance. When running only globally ordered events
(as with a single-threaded loop) the system shall provide acceptable execution
overhead.

• Server-side workloads scalability. Being the PEV mainly targeted at server-side
workloads, a PEV system shall be scalable for workloads that are common in the
server-side domain. In particular, read-only workloads and stateless workloads.

• Speculation effectiveness. The engine shall be able to improve the single-threaded
execution overhead any time the workload (i.e., the handlers pending in the
queue) allows for potential parallel execution.

The three implementations discussed in this Chapter share some common compo-
nents and aspects. In the following subsections we describe their main characteristics.

72 5.2 Speculation engines

5.2.1 Event emission

In a single-threaded event loop system, events emitted by the I/O substrate or by
the main thread are added to the global event queue as soon as they are produced.
Being the runtime single-threaded, such events will start being consumed only once
the event handler currently running will have returned. This is equivalent to buffering
all event emissions as they happen, and flushing the buffer once the current event
handler completes (see Figure 5.3).

The PEV runtime adopts the same buffered event emission model. The main reason
is that event buffering and flushing is compatible with any STM-based speculation
engine, and events emitted by any parallel event handler (running in a transaction) can
be actually emitted only once the transaction is allowed to commit. In other words,
event emission is considered a special class of side effects that does not need to be
validated, and has the need to become public only after the current event handler has
completed.

Depending on the ordering requirements of events that are emitted, the event loop
implements distinct execution strategies. However, event scheduling always imple-
ments the following high-level scheduling rules:

• Since globally ordered events must appear as if they were executed in the emis-
sion order, any side effect produced by an event handler must be visible to suc-
cessive events, and must not interfere with handlers executed previously. Spec-
ulation can be used to overlap multiple ordered event executions, but the order
in which side effects are made public must be respected.

• As with strictly ordered events, chained ones must be executed in the order they
are emitted. Differently, multiple chained events can be interleaved, meaning
that side effects produced by events of two distinct event targets can potentially
be seen by other events even out-of-order.

• Unordered events can be executed as soon as possible. Given the absence of
any ordering, the system can arbitrarily re-schedule event handlers in the most
convenient way.

The above scheduling rules are implemented independently from the speculation
runtime.

5.2.2 Hashed event emission for chained events

Depending on the PEV runtime, event emission can be implemented very differently for
different event types. Usually, globally ordered events are added to the global queue,
while chained events are added to worker threads. With the goal of reducing synchro-
nization costs and increasing locality, each PEV runtime adopts a simple scheduling

73 5.2 Speculation engines

policy for chained event handlers, which we call hashed emission: every event target is
bound to a specific worker thread, and every time a chained event belonging to that
event target is emitted it is scheduled by the runtime into the local queue of the same
worker thread. In this way, the local queue of the worker thread can be used to enforce
the ordered execution of chained event handlers. Assigning event targets to threads is
done using a simple hashing function relying on the fact that the number of threads in
the PEV is fixed, and every worker thread can be identified with a unique id.

5.2.3 Event emission and I/O

The asynchronous nature of the event loop is of great advantage for including a specu-
lation engine in the runtime, as the only operation that needs to be treated as a special
case is event emission. In fact, a failed speculative execution (e.g., an aborted trans-
action) which emits an event immediately before committing, will be re-executed by
the runtime, and will likely re-emit the same event. This could easily lead to incon-
sistencies. To avoid this, the PEV API model does not assume that events are actually
emitted immediately when any of the async functions is called. The emission of events
is asynchronous by design (there is no guarantee that a thread will be ready for exe-
cuting the corresponding callback at the moment the event is emitted), and therefore
event emission can be safely postponed after commit-time. Hence, during the execu-
tion of an event handler, emitted events are buffered in a thread-local log. Only after
the handler has successfully completed, the event log is processed and deferred events
are safely emitted for parallel processing.

In a system with everything mediated by a speculation engine it becomes crucial to
properly handle all the deterministic blocking operations which cannot be re-executed
in case of a speculation failure. This is usually the case with I/O operations such
as blocking I/O operations, as well as standard output operations. Fortunately, the
case for the event loop is simpler, as no blocking operation is usually supported (and
I/O operations already happen asynchronously, that is, after event handlers have been
executed). Therefore, all I/O operations in the PEV play well with speculative systems,
as they are already happening outside of event handlers, in the I/O substrate. As an
example, consider the following event handler:

obj.on('dataFromIOSubstrate', function(data) {

// Do something with 'data', potentially in parallel...

console.log(data);

});

The dataFromIOSubstrate event handler receives some data from the I/O sub-
strate, and is executed by a speculation engine. Assuming optimistic execution using
an STM runtime, the handler might be aborted and re-executed multiple times dur-
ing its execution. Aborting the handler multiple times, however, does not involve any
additional operation from the I/O substrate to manage the data buffer, as it was al-
ready emitted by a previous event (that successfully committed). In other words, any

74 5.2 Speculation engines

input data to an event handler does not need to be re-created in case of aborts and
re-execution.

On the other hand, any data created by the event handler has to be buffered and
published only in case of successful execution of the handler. This is the case for the
standard output operation in the example. In general, output operations can be con-
sidered a special case of asynchronous I/O operations: they can be buffered during the
speculative execution of the event handler, and be concretely sent to the console output
or the I/O substrate once the event handler successfully completes. Event ordering can
be used to obtain deterministic console output when needed (using globally ordered
events).

5.2.4 Bailout and worst-case scenario

In some cases the speculation might not be effective, or might not be possible. This
could be due to practical implementation issues (e.g., some system-level builtin oper-
ations that cannot be parallelized), or for performance reasons (e.g., for contention
management). Every PEV runtime discussed in this Dissertation features a notion of
irrevocable execution that can be used to enforce the mutual exclusion of an event han-
dler with respect to other handlers running in parallel. Such notion of irrevocable ex-
ecution is implemented differently depending on the PEV runtime, but is semantically
equivalent to acquiring a global lock (for the irrevocable event handler) to prevent any
other handler from running concurrently. Each PEV runtime implements this "worst-
case" solution in a different way, and implements different policies for deciding which
event handler has to be executed using this modality.

5.2.5 Common data structures

Independently from the speculative engine implementation, every PEV runtime dis-
cussed in this Dissertation features some data structures to be shared between worker
threads. Every event handler in the system implements the following basic class2:

abstract class Event {

// Unique event id

private final long eventSequenceNumber;

// Event target

private final EventTarget eventTarget;

// Executable handler

private final Runnable eventHandler;

}

2We adopt the convention of expressing runtime components in Java.

75 5.3 Pessimistic PEV runtime

At the moment it is emitted, every event instance is assigned a unique sequence
number id. Events not requiring any ordering (e.g., globally unordered events) are
assigned a special id for immediate execution. The event id is a unique identifier
assigned increasingly by the current event target, which is used by the runtime to
ensure the correct event execution order:

abstract class EventTarget {

// Generator of sequence ids

private final AtomicLong nextEventSequence;

// Sequence number of the next committing event

private volatile long nextRetiredSequenceNumber;

public long getNextSequenceNumber() {

return nextEventSequence.incrementAndGet();

}

}

Another sequence number (i.e., nextRetiredSequenceNumber) is used to enforce
the correct ordering between events. Being the sequence number a per-target field,
two event handlers belonging to two distinct event targets do not need to synchronize.

Events are always emitted by either the I/O substrate (e.g., as a consequence of
a new socket connection), or by another retired event handler. Depending on the
runtime implementation, event emission might require some ad-hoc scheduling (for
instance to bind a specific event target to a specific thread). This implies that distinct
implementations of the PEV might require multiple queues to be used to store event
instances. Every implementation, however, always features at least a single centralized
shared queue which is used to store events emitted in the global target by the I/O
substrate. In addition to the global shared queue, every worker thread in the system
features a private event queue, used to store events that have to be processed by a
specific thread.

5.3 Pessimistic PEV runtime

The first of the three PEV runtimes described in this Chapter is the Pessimistic run-
time. In this implementation, the main thread processes all the events that have to re-
spect global ordering (generated using emit), while events belonging to other targets
(both chained and unordered ones) are processed by worker threads, and are directly
emitted into the queue of the worker thread responsible for a given event target using
hashed emission. Worker threads are also used as helper threads that attempt to run
globally unordered event handlers concurrently, often providing good scalability when
such events are read-only or purely functional.

Event ordering is ensured in the Pessimistic runtime by the natural ordering guar-
anteed by global and local queues. Safe event execution is enforced through fine-

76 5.3 Pessimistic PEV runtime

grained locking, while a global shared lock is used to support irrevocable event han-
dlers. Fine-grained locking is used to ensure atomicity in the execution of the event
handler via the following scheme:

• At the moment an event handler is to be scheduled, a static analysis phase its
performed to identify the set of object instances that will be accessed by the
event handler.

• If the analysis can determine that the handler will access shared data using
read-only operations, a readers-writer lock will be acquired protecting the ob-
ject instance. Hashing is used to avoid allocating a lock instance for every object
instance, as well as to re-use locks.

• If the analysis can determine that the handler will potentially modify shared
data, a write lock is acquired.

The analysis can either fail or succeed. In case of success, the set of locks required
to protect the entire event handler are acquired at the first read/write operation. To
this end, the read/write barriers of the event handler implement the lock acquisition
respecting global ordering.

In case of unsuccessful analysis, a global lock is used to ensure atomicity. The
global lock acts as a readers-writer lock that can be acquired by multiple threads for
read operations, and can be upgraded (to writer) by one thread only. The shared lock
implements the following schema:

• The lock is acquired in read-only mode by every thread not holding it before
executing an event handler with successful analysis.

• When an event handler requires global exclusive access, the lock is upgraded to
writer.

In the Pessimistic PEV, writing event handlers operating on the same shared object
contribute only for a minimal part to the performance of the application, and the sys-
tem does not offer good scalability for workloads having mixed contention on shared
resources. However, the system already offers good scalability for read-dominated
workloads and workloads dominated by pure functions. Moreover, the fine-grain lock-
ing mechanism can offer acceptable scalability for workloads modifying non-contented
objects.

By using the global lock and the main event loop thread, the system has the fol-
lowing characteristics:

• The main thread has very light runtime barriers, and runs at almost the same
speed of a single-threaded event loop.

77 5.3 Pessimistic PEV runtime

Global
queue

I/O
substrate

Main
thread

Worker
thread #1

Worker
thread #N

emit

emit
emitNow

emitChained
emitUnordered

emitChained (#1)
emitNow

emitUnordered
emitChained (#N)

 emit

Figure 5.4. Pessimistic routing scheme.

• Worker threads have very light barriers as well, and contribute to the overall
performance of the system when the workload is dominated by event handlers
that are pure or read-only.

• The queuing scheme ensures that any workload dominated by chained or glob-
ally unordered events can benefit from parallel execution.

The main characteristic of this implementation is that no form of logging is needed
to execute multiple events in parallel, and event handlers are never aborted. The
disadvantage of the implementation is of course that it can efficiently support only
a subset of all the existing single-threaded applications, that is, applications written
using a read-only immutable or pure (side-effect-free) event handlers.

In the worst-case, this implementation is expected to have performance close to
the ones of a single-threaded runtime. Conversely, when the application presents op-
portunities for parallelization, it can safely run multiple handlers in parallel, always
enforcing the same semantics of an equivalent single-threaded runtime.

5.3.1 Scheduling and speculation algorithm

An overview of the scheduling scheme adopted by the Pessimistic PEV runtime is de-
picted in Figure 5.4. Each thread of the runtime has to pass through the following
operations:

• Fetching and Code modification. A new event handler is retrieved from the global
queue or from the thread-local queue and is modified with the required runtime
barriers accordingly. Depending on the event target, a scheduling decision is
made.

78 5.3 Pessimistic PEV runtime

Main thread Worker threads

emit In Received from global queue Cannot receive
Out Sent to global queue Sent to global queue

emitChained In Cannot receive From local queue (emitted
by worker itself)

Out To hashed worker To local queue, if same
hash. Else, to hashed
worker

emitNow In Cannot receive From local queue
Out To random worker To local queue

emitUnordered In Cannot receive From local queue
Out To random worker To random worker

Barriers Same for main and workers (lock-based)
Out-Of-order speculation Not supported

Irrevocability Default

Table 5.1. Pessimistic runtime summary.

• Execution. The handler is executed. The runtime barriers ensure that the correct
fine-grained locks will be acquired, if any. When the analysis cannot determine
a safe locking strategy, the global lock is acquired.

• Commit. Once the handler has terminated, it will release the acquired locks
(lock acquisition and release happen using a fixed ordering, to avoid deadlocks).
Before that, the event handler emits the events emitted locally (i.e., buffered)
during its execution. This ensures that read-only event handlers can emit events
only when it is safe to do so. Considering event emission at the same level of
other side effects would imply that every event handler has to acquire the write
lock before committing. Depending on the event target, the new events are
added to the thread-local queue or to the globally shared one.

All the events generated by the I/O substrate are added to the global queue, which
is responsible for holding all the globally ordered events in the system. The queue
is implemented as a concurrent single-consumer/multiple-producers queue [86], and
can accept events from the main thread and from workers as well. The main thread is
responsible for executing all the globally ordered events emitted by the I/O substrate,
and for dispatching other events emitted using the PEV API. The reason for this de-
sign is that in the absence of event emission using the extended API the main thread
will correspond to a single-threaded loop (with the exception of locking and runtime
barriers). Once dispatched, chained events are assigned (using hashed emission) to
a worker thread, and will always be processed by the same thread, thus enforcing

79 5.4 Optimistic runtime

ordered execution through the local queue. Hashed emission is also used by other
worker threads, that will add event handlers directly to thread-local event queues. To
allow this, also thread-local queues are concurrent single-consumer/multiple-producer
queues. Unordered events emitted by the main thread are randomly executed by a
worker thread, while unordered events emitted by a worker thread are directly pro-
cessed by the worker itself, that is, are added to its local queue. This implies that only
unordered event emissions with the global target will be processed in parallel.

A summary of the execution policy is depicted in Table 5.1. This implementation
of a PEV runtime corresponds to a simple lightweight implementation targeting mostly
chained events, and does not support advanced features such as work stealing between
multiple workers and out-of-order execution of ordered events.

The Pessimistic runtime for the PEV runtime shares some similarities with the TML
algorithm [63]. The most significant difference is the usage of fine-grained locking
when possible, and the fact that event handlers never abort.

5.4 Optimistic runtime

The second PEV implementation is represented by the Optimistic runtime. This
implementation is based on the execution of all the event handlers through a software
transactional memory (STM) runtime. The STM runtime does not make any difference
between unordered events, globally ordered events, and chained events, meaning that
all the event handlers can be executed by any available worker thread, and there is
no specific thread bound to a specific event target. As with the Pessimistic runtime,
hashing is used to schedule events on specific worker threads. However, the presence
of work stealing in the runtime makes it possible for event handlers to be executed by
any thread.

In addition to work stealing, ordered and chained event handlers can also ben-
efit from an additional speculation technique implemented by the runtime, allowing
ordered events to be safely executed out-of-order.

5.4.1 STM-based speculation

The STM-based runtime executes every event handler in a dedicated software trans-
action, and is implemented by extending the TL2 algorithm [66, 69] for ordered ex-
ecution of transactions. The TL2 algorithm is a well-known STM algorithm for the
generic implementation of software transactions, meaning that it does not make any
strong assumption on the higher-level API. At very high level, a software transaction
in TL2 operates as an isolated context of execution performing any operation in a
"sandboxed" environment, not exposing to other concurrent transactions or threads its
modifications to shared objects until it is allowed to do so. Event handlers executed in

80 5.4 Optimistic runtime

TxStart

TxCommit

Add to read log
and validate

Add to write
(redo) log

TxRead

TxWrite

TxRead

tmp	 =	 shared.x

shared.x	 =	 tmp	 +	 1

return	 shared.xRead from
write log

Validate and
write back to shared

1 // This object is created somewhere else in the code, and is potentially shared
2 var shared = { x : 0 }
3

4 // an event handler using the object
5 asyncNow(shared, function() {
6 var tmp = shared.x;
7 // ...
8 shared.x = tmp + 1;
9 // ...

10 return shared.x;
11 });

Figure 5.5. Example of STM-based speculative execution.

a software transaction behave similarly. Consider the example depicted in Figure 5.5.
The execution of the event handler scheduled using asyncNow operates as follows:

• TxStart barrier: The event handler is started. A shared global counter is used
to keep track of the progress of the transaction, and is read at the moment the
event handler starts.

• TxRead barrier: At the moment the shared object is read, the shared counter is
used to validate the operation, that is, to verify if in the meantime some concur-
rent transaction modified shared. Some additional logging is needed to keep
track of the operation at commit time. This operation can of course cause the
transaction to abort in case of failed validation.

• TxWrite barrier: When the object is modified, no real modifications to the actual
object are performed. Rather, the transaction-local modification (that is, the
value computed locally by the transaction) is stored in a transaction-private log,
called redo-log. This log will be used later on to perform the actual modifications
to the object in case of successful execution.

81 5.4 Optimistic runtime

• TxRead barrier: The next time the object is read, the transaction has to return
the value that was previously modified, avoiding reading from the actual shared
object.

• TxCommit barrier: Eventually, if the transaction was not aborted during its exe-
cution, the values present in the redo-log are committed, that is, are written to
the shared object. Some additional validation is needed to ensure that all the
values read during the execution of the transaction are still consistent, and syn-
chronization is needed to ensure that the commit phase is atomic and visible to
other transactions.

The TL2 algorithm has been chosen since it is one of the most studied STM algo-
rithms. Other algorithms with similar characteristics and with different performance
characteristics [91] could be supported as well. In particular, any STM system with
the following desirable characteristics can be potentially adapted to be executed in the
context of a PEV runtime:

• Strong atomicity [91] is not needed for the PEV runtime, as no user code can
ever be executed outside of a transaction.

• Opacity [91] is a desirable property, as it is not possible to predict all the possible
conflicts that might be generated by two conflicting transactions, and zombie
transactions [91] cannot be tolerated by the system.

• Irrevocable transactions are desirable in order to implement contention manage-
ment strategies aimed at speeding up frequently aborting transactions as well
as to run transactions making use of some non-parallelizable operations as dis-
cussed in Section 5.2.4.

5.4.2 Runtime barriers

Depending on whether an event handler needs to wait for some other events (to en-
force ordering) or not, this PEV runtime modifies event handlers with two different
commit-time barriers:

• Unordered commit barrier. Event handlers that do not require any ordering use
standard STM commit barriers.

• Ordered commit barrier. Event handlers that require synchronization with respect
to some event targets (including globally ordered events) execute a special com-
mit barrier that can be used to implement commit-time reordering. This barrier
makes it safe to run ordered events out-of-order, speculatively.

The event handler modification performed by the Optimistic runtime operates as
follows:

82 5.4 Optimistic runtime

• Since every event handler is executed as a standalone software transaction, every
event handler callback is extended with the necessary barriers for starting the
software transaction (i.e., TxStart).

• Every function call in the event callback is modified with a dynamic dispatch
mechanism that will replace the actual call target with a new call target im-
plementing the proper runtime barriers. This ensures that all needed runtime
barriers will propagate through the execution of the event handler. Caching can
be used to make this operation inexpensive for frequently-used functions.

• Every operation potentially involving access to shared data is replaced with STM
read or write barriers (TxRead/TxWrite). Examples of such operations are prop-
erty access, element access, frame variables, level variables, and other language-
specific operations such as the Arguments array in JavaScript.

• Event handlers using operations that are known to be unsafe for parallelization,
(e.g., the eval construct in JavaScript) are marked as not parallelizable, and
will be executed as irrevocable transactions. If the unsafe operation is detected
at runtime, the transaction is aborted and re-started as irrevocable.

In the following subsections the ordered and unordered executions are discussed
in detail.

5.4.3 Events scheduling

The Optimistic PEV runtime implements a different, simpler, scheduling policy than the
Pessimistic one. The high-level description of the scheduling approach for this runtime
is depicted in Figure 5.6.

In the Optimistic runtime, both the main thread and worker threads are responsible
for processing any type of event, regardless of their event target. The goal for this
design is providing a fair scheduling not biased towards the main thread. As with
the Pessimistic runtime, the main thread is the only thread receiving events from the
global queue (generated by the I/O substrate); differently, the main thread does not
use the global queue for global ordered events, meaning that calls to emit from the
main thread will not cause events to be added to the global queue, but rather to one
of the worker’s queues, selected randomly. Globally ordered events are considered
at the same level of other event types, and are therefore processed by workers. Like
with the Pessimistic runtime, chained events are assigned to a specific worker using
hashing. Differently, every unordered event emission -including unordered events with
a non-global target- are potentially processed in parallel by the PEV runtime, as worker
threads implement work stealing. In particular, every worker has a concurrent double-
ended queue used by worker threads to route chained events and to steal tasks using
an approach similar to the one of the Java ForkJoin Pool [110]. Differently from

83 5.4 Optimistic runtime

Global
queue

I/O
substrate

Main
thread

Worker
thread #1

Worker
thread #N

emit

emitChained (#1)
emitUnordered

emitNow

emitChained
 (#N)

Work
 stealing

emit
emitNow

emitChained
emitUnordered

Figure 5.6. Optimistic routing scheme.

the ForkJoin pool, however, tasks emitted by a worker to its own queue are always
added on top of the queue, and therefore the worker thread always processes oldest
tasks first3. Following the same approach, idle threads that attempt to steal work
from a worker thread will do so by trying to steal tasks from the top of the queue.
Independently of the type of event that was acquired (ordered vs. unordered) the thief
thread will immediately attempt execution. In this way, also ordered event handlers
will potentially run in parallel. As will be discussed in the next section, a special
commit-time STM barrier will make sure that this kind of out-of-order speculation
does not violate the semantics of the PEV API for ordered event emission. A summary
of the Optimistic PEV runtime is presented in Table 5.2.

Shared metadata and unordered commit barriers

The Optimistic PEV runtime implemented using the TL2 algorithm uses event targets to
implement event processing with the correct order (event targets rely on the structure
described in Section 5.2.5). Every event instance holds a reference to its correspond-
ing event target object, which is usually the object that emitted the event instance.
Depending on the event emission type, the event is modified with distinct TM barriers,
as follows:

• Globally unordered events are executed directly, with barriers implementing the
standard TL2 algorithm. Depending on the global target, they might be assigned
to any available thread, or to a subset of threads.

3Conversely, when a thread in the ForkJoinPool attempts to process tasks from its own queue, usually
tries to process youngest task first.

84 5.4 Optimistic runtime

Main thread Worker threads

emit In Received from Global queue from Main thread or work
stealing

Out Sent to random worker To local queue (might be
stolen). Commit-time bar-
rier enforces ordering.

emitChained In Cannot receive From local queue (emitted
by the worker itself) or
work stealing

Out To hashed worker To local queue (might be
stolen). Commit-time bar-
rier enforces ordering.

emitNow In Cannot receive From local queue (emitted
by the worker itself) or
work stealing

Out To random worker To local queue (might be
stolen)

emitUnordered In Cannot receive From local queue (emitted
by the worker itself) or
work stealing

Out To random worker To local queue (might be
stolen)

Barriers Same for main and workers (STM)
Out-Of-order speculation Supported, for every event type including emit

Irrevocability Via global lock acquisition

Table 5.2. Optimistic speculation summary.

• Other types of events require different runtime barriers that make use of a unique
sequence id. The id is assigned to every event instance, and is compared against
the nextCommittingEvent of the corresponding event target to impose the cor-
rect event execution order for multiple event handlers. Event IDs are guaranteed
to be unique on a per-target basis.

Unordered events use standard STM barriers, and are executed by some worker
threads as soon as possible. Their execution loop is presented in Figure 5.7, and cor-
responds to a common loop for software transactions, extended with events buffering
and delayed emission. As common with STM-based runtimes, the software transaction
runs in an infinite loop that will exit only when the transaction will have successfully
committed. While executing, no other thread will be able to see the modifications

85 5.4 Optimistic runtime

1 // The infinite event loop for this worker thread
2 while (true) {
3 boolean commit = false;
4 // Get the event from the queue
5 Event event = localQueue.pop();
6 do {
7 try {
8 // Try to run the event handler in a software transaction
9 TxStart(event);

10 commit = TxCommit(event);
11 } catch (TxAbortAndRestartException e) {
12 // If aborted, restart
13 event.localEmitBuffer.clear();
14 continue;
15 }
16 } while (!commit);
17 for(Event e : event.localEmitBuffer) {
18 // send the event to the correct queue according to scheduling rules
19 schedule(e);
20 }
21 }

Figure 5.7. Event handlers execution loop using an STM-based runtime.

done by the transaction (as it is running in isolation). In case of early abort or commit-
time abort (e.g., because of conflicts with other concurrent transactions) an exception
is thrown that will force the transaction to invalidate its transactional logs, and the
transaction will be re-started. The workerCommit method for unordered events simply
compares the transaction-local logs against the global metadata in order to validate
the transaction, and in case of successful validation publishes the values as computed
by the transaction.

5.4.4 Ordered events speculation

By wrapping every event in a software transaction, the side effects produced by ev-
ery transaction become public in a serializable way. This implies that it is potentially
possible to schedule the execution of every event handler out-of-order (including or-
dered ones), as long as the side effects of an event committing at time t i is not causing
conflicts with events at t i+n that might still be running in the system.

By relaxing this time constraint for what concerns the entire transaction execution
only to the transaction commit-time, it is possible to run event handlers that have been
scheduled for ordered execution using an unordered execution policy, imposing the
correct execution ordering only on transaction validation. The Optimistic PEV runtime
can support this type of out-of-order speculation for ordered events -that is, globally
ordered and with chained ordering-, which can be implemented in the following way
(see Figure 5.8):

86 5.4 Optimistic runtime

TxStart

TxCommit

Event with
sequence #2

starts concurrently
with event #1,
even if ordered

Thread
validating read set

while waiting
for event #1
to commit

TxStart

TxCommit

Event handler
sequence #2

Event handler
sequence #1

waitGreenLight}

Figure 5.8. Out-of-order execution of ordered events.

• Once selected for execution, every ordered event handler gets a unique identifier,
from its event target.

• Once retrieved from the event queue, any ordered event is started as soon as pos-
sible, without having to wait for its predecessors (potentially running in another
thread) to commit.

• Every event handler, however, is not allowed to commit until all of its predeces-
sors in the same target have successfully committed.

• Once allowed to commit, the read set of the out-of-order event handler is vali-
dated, and in case of success the commit operation can be executed. In case of
failure, the transaction can be re-executed.

An exemplification of the effects of the speculative execution is depicted in Fig-
ure 5.9, where a comparison of the execution of three events in the PEV model is
compared against the single-threaded loop execution.

As an example, consider the code example presented in Figure 5.9 (already pre-
sented in Chapter 4). According to the specification of the emit function, the three
event handlers have to be executed sequentially, in the same order they are produced.
As the three handlers simply perform some arbitrary CPU-bound computation (in the
example, calculate the N th Fibonacci sequence number), and then print the result on
the system’s standard output console, there is no interdependency between handlers in
terms of conflicting access to shared data structures. Figure 5.9 (c) corresponds to the
execution of the three event handlers in both a single-threaded event loop system and
on a Pessimistic PEV. In both executions, the three events are pushed accordingly into
the event queue, and handlers are executed with the expected ordering. Eventually,

87 5.4 Optimistic runtime

ev1 ev2

ev1

ev2
ev3

ev3

PEV
SEL

time

(a)

(c)

(retired)

(retired)

(retired)

ev3

(b) (retired)

(retired)

(retired)

(idle)ev1

(idle)ev2

1 var obj = {};
2 // register three event handlers for three distinct events
3 obj.on('ev1', function{
4 var r = computeNthFibonacciNumber(10);
5 print('event 1 result: ' + r);
6 });
7 obj.on('ev2', function{
8 var r = computeNthFibonacciNumber(20);
9 print('event 2 result: ' + r);

10 });
11 obj.on('ev3', function{
12 var r = computeNthFibonacciNumber(30);
13 print('event 3 result: ' + r);
14 });
15 // emit an event instance for each handler.
16 obj.emit('ev1'); obj.emit('ev2'); obj.emit('ev3');

Figure 5.9. Parallel event processing with the Optimistic PEV (a, b) and a single-
threaded event loop or a Pessimistic PEV (c).

the console will always show the following output for both the PEV-based execution
and the SEL-based one:

event 1 result: 55

event 2 result: 6765

event 3 result: 832040

The Pessimistic PEV cannot take any advantage from the parallel nature of the three
event handlers, as they are executed one by one in the main thread, and no worker
thread is involved (this would also be the scenario for chained events).

Conversely, the Optimistic runtime can adopt a more aggressive approach and can

88 5.4 Optimistic runtime

try to execute transactions out-of-order as soon as a worker thread can offer some
work to do. With such approach, the PEV will speculatively try to run the three event
handlers in parallel, as soon as they are pushed into the event queue. This eventu-
ally results in the automatic parallelization of event processing. All the events in the
example modify a shared resource (the standard output), and generate side effects.
However, the side effects generated by each event handler do not depend on prior
handlers’ effects, and thus none of the three event handlers will have conflicts while
validating, nor will see partial results as computed by concurrent handlers (lazy con-
flict detection). Still, the PEV runtime has to make sure that events are retired with
the correct ordering. In other words, the runtime has to make sure that events commit
in the correct order. This also implies that for each event handler, side effects will be
made public with the correct event ordering, and events will wait until they are allowed
to make any change to the shared resource (that is, writing to the standard output).

Strict ordering implies that events emitted in a given order will impact the total
execution time on the PEV. This is the case for the following event emission:

// emit an event instance for each handler.

emit('ev3'); emit('ev2'); emit('ev1');

In this case (also described in Figure 5.9/b), the PEV will schedule all the events for
parallel execution, however, the last event (that is, ev1) will not be allowed to complete
until all of its predecessors will have completed. This means that at the moment it will
try to commit it will wait for other events, wasting computing resources. Despite the
inefficient execution, also in this case parallelization leads to improved execution. The
execution loop for ordered events can be described with the following pseudocode:

// The infinite event loop for this worker thread

while (true) {

do {

try {

// Try to run the event handler in a software transaction

TxStart(event);

waitForCommitGreenLightAndValidate(event);

commit = TxCommit(event);

} catch (TxAbortAndRestartException e) {

// If aborted, continue

continue;

}

} while (!commit);

}

The event handler immediately starts its execution, and pauses execution until it is
allowed to commit. This is done in the waitForCommitGreenLight method:

void waitForCommitGreenLight(Event event) {

EventTarget target = event.getTarget();

long eventSeq = event.getSequenceNumber();

// Active wait

while(target.nextRetiredSequenceNumber.get() != eventSeq)

validate();

}

89 5.5 Hybrid runtime

Global
queue

I/O
substrate

Main
thread

emit

emit

emitChained
(less than K attempts)

Work
stealing

emitNow
emitChained

emitUnordered
Worker

thread #N

emit
emitChained (K attempts)

Worker
thread #1

Figure 5.10. Hybrid runtime routing scheme.

The event handler waits until the sequence number of the next ordered event al-
lowed to commit for the given event class matches its sequence number. Since se-
quence numbers are unique and per-target, events with different event target will not
interfere. At the moment the sequence number matches with the one of the next event
handler allowed to commit, the method returns and the event handler can perform
the final validation. Since event sequence numbers are unique, it is always guaranteed
that the event will be the only one allowed to commit even in the case of conflicts with
other event handlers, and the event handler will never abort because of a conflict with
event handlers with higher commit sequence. Event handlers might still fail because
of conflicts with event handlers belonging to other event targets (or unordered ones).
The runtime does not privilege ordered events against unordered ones.

5.5 Hybrid runtime

The third implementation of the PEV runtime is represented by the Hybrid runtime.
This implementation’s goal is to reduce the overhead for ordered events (as such events
are the most common ones with single-threaded event loop runtimes) still offering
good scalability for other workloads.

This hybrid PEV system is based on the principle of irrevocable transactions [154],
transactions that are always allowed to commit, and therefore do not have to validate
their metadata at commit time. This runtime system can be considered an hybrid ap-
proach between the Pessimistic and the Optimistic runtimes, as it reduces the overhead
for the main thread by employing a dedicated barrier for event handlers it executes,
and makes use of optimistic speculation through a transactional memory to execute
event handlers in the other threads.

90 5.5 Hybrid runtime

5.5.1 STM-based speculation

The STM runtime algorithm implemented by this PEV runtime is based on the Fast-
Lane [151] algorithm, a software transactional memory runtime explicitly designed
to reduce the execution overhead of STM systems by reducing the runtime barriers
cost of one of the threads in charge of executing the transactions. Differently from the
approach in the Optimistic runtime (where worker threads had the same type of trans-
actional barriers except for the commit one), in FastLane two distinct types of barriers
are used:

• Main thread: only the write operations need to implement runtime barriers. No
logging is needed (nor for reads or writes), and both the TxStart and TxCommit

barriers simply need to acquire a globally shared lock.

• Worker threads: other threads have runtime barriers similar to the ones of TL2.

Being the main thread in the system relying on very light barriers, a low execution
overhead can be provided by the runtime for the majority of the workloads. By not hav-
ing logs, the main thread cannot abort transactions, and therefore its transactions are
always irrevocable. The advantage of having a fast, low-overhead main thread, comes
at the price of scalability, as the irrevocable transaction might force other concurrent
transactions to abort more often. Moreover, the need to acquire the global lock at the
beginning of every irrevocable transaction has the effect of reducing the efficiency of
worker threads. On the other hand, as long as transactions do not conflict, nor abort
they can still contribute to the total throughput of the application.

5.5.2 Scheduling

The general scheduling strategy of the hybrid runtime is a combination of the schedul-
ing strategy of the Pessimistic runtime and the one of the Optimistic runtime. Like
with the Pessimistic PEV, every globally ordered event handler is executed by the main
thread, including the ones emitted by the main thread and by other worker threads.
In this way the main thread can offer low execution overhead for operations that are
dominated by global events. As events different than globally ordered are emitted,
however, they are sent by the main thread to worker threads. Like with the other run-
times, hashing is used to schedule chained events, and like with the Optimistic runtime
system, worker threads can perform work stealing. Tasks, however, can be stolen by
idle threads only if they are unordered and can be executed in parallel. For chained
events, the Hybrid runtime implements another execution strategy:

• Chained events are emitted either by the main thread or by a worker thread, and
are added to the local queue of the proper (hashed) worker thread.

91 5.5 Hybrid runtime

Main thread Worker threads

emit In Received from Global queue Cannot receive
Out To Global queue To Global queue

emitChained In From main queue (After K
attempts)

From local queue (emitted
by worker itself) or from
work stealing.

Out To hashed worker To local queue or hashed
worker

emitNow In From main queue (After K
attempts)

From local queue (emitted
by worker itself) or from
work stealing.

Out To random worker To local queue (might be
stolen)

emitUnordered In From main queue (After K
attempts)

From local queue (emitted
by worker itself) or from
work stealing.

Out To random worker To local queue (might be
stolen)

Barriers FastLane Main FastLane Worker
Out-Of-order speculation Only for chained and unordered events (no emit)

Irrevocability Via main thread

Table 5.3. Hybrid PEV speculation summary.

• Once selected for execution, the event is run by the worker in a transaction. In
case of failure, the transaction is not re-executed until it can commit, as in the
Optimistic runtime. Conversely, after a number of K failures, the event handler
is added to the global queue, and will therefore be executed by the main thread.
The number of failures is a constant factor equivalent to the number of available
cores in the system.

By adopting this simple contention management strategy, the execution overhead
of conflicting event handlers is attenuated by the main thread. Since chained events
already have to be executed following a fixed order, they will be executed in the main
thread without violating the semantics of the PEV API, and at the same time the worker
thread will have more opportunities for executing other tasks. In other words, the main
thread is used to reduce contention on certain event handlers.

Work stealing is still possible between worker threads, but will affect only un-
ordered and chained events. An overview of the scheduling policies of the Hybrid PEV
runtime is presented in Table 5.3.

92 5.6 Summary

5.5.3 Runtime barriers

As discussed, the runtime adopts the following two types of runtime barriers:

• Main thread. Globally ordered events are executed only by the main thread of the
PEV system, and are modified with light barriers that do not require transactional
metadata or perform validation and additional bookkeeping. Only one of such
events is allowed at time, and such events always commit. In our Java-based
FastLane implementation, the barrier corresponds to a single volatile write on
every write operation (no barriers are used for reads).

• Worker threads. All the other event handlers running in worker threads are mod-
ified to run with more complex STM barriers. Unordered events have a spe-
cific commit-time barrier that allows them to validate their metadata as soon
as possible, whereas transactions with chained ordering have to wait for other
transactions of their same target to complete before committing.

The FastLane STM algorithm is extended to support commit time reordering and
synchronization for ordered events, similarly to what is already supported in the Opti-
mistic runtime. This is achieved in the following way:

• Main thread. Event handlers scheduled for execution by the main thread cannot
be stolen (no out-of-order speculative execution).

• Worker threads. Tasks ready for execution in the local queue of worker threads
can be acquired by other idle threads for out-of-order execution. Differently than
what implemented in the Optimistic runtime, however, out-of-order speculative
execution is implemented attempting to execute the task only for a fixed number
of times, and after a number of failed attempts the task is sent to the global
queue and will be executed by the main thread.

As the main thread always commits, the out-of-order execution of ordered tasks
in the Hybrid PEV runtime cannot contribute to the overall system throughput for a
relevant factor. However, workloads characterized by non-conflicting event handlers
might still benefit from out-of-order execution when chained events are employed.

As the main thread always commits, it is very unlikely that workers could improve
the system’s throughput with conflicting event handlers.

5.6 Summary

In this Chapter we introduced the design and the main runtime characteristics of three
runtime systems implementing the PEV model. Each of the three systems described in
this Chapter comes along with its own peculiarities and limitations, offering different

93 5.6 Summary

performance characteristics. The rationale behind the design of multiple runtimes
lies in the fact that for certain workloads latency could be preferred over throughput,
and vice versa. The PEV programming model and its event emission API ensures that
applications developed targeting the PEV can be redeployed in any of the described
runtimes, as well as on a plain single-threaded event-based system.

5.6.1 Overview and Limitations

Each of the PEV runtimes introduced in this chapter has different characteristics. The
following general considerations can be made regarding performance as well as limi-
tations:

• The Pessimistic model does not offer good scalability for highly-contented work-
loads and cannot parallelize unordered events with target different than global,
However, it requires very lightweight barriers. The model can thus be already
beneficial when the PEV is employed to run well parallelizable applications, still
allowing developers to program with side effects and the impression of a single-
threaded runtime.

• The Optimistic and Hybrid STM-based runtimes attempt to increase the level of
parallelism by leveraging work stealing and scheduling. Speculative execution
of ordered event handler, is also implemented by the two runtimes, at the cost of
a more heavy runtime overhead. The models can be employed with workloads
relying on the full set of API offered by the PEV model so as to benefit from the
fairness between multiple events processing.

• The Hybrid model can be seen as a compromise between the two models, giv-
ing low overhead and execution latency for applications dominated by the core
single-threaded API, still supporting the parallel execution of event handlers as
well as the speculative execution of every type of event (including globally or-
dered ones).

5.6.2 Implementations overview

The PEV model can be implemented using different runtime designs. The choice de-
pends on whether the system should support the full set of events or only a subset, and
the performance goals for the speculative runtime (e.g., latency vs. throughput). In the
next Chapters we will describe three implementations of PEV-based runtimes, namely,
Node.Scala, TigerQuoll, and Truffle.PEV. Each implementation has specific runtime im-
plementation details and peculiarities:

• Chapter 6, Node.Scala. An HTTP server and programming framework based on
a PEV system supporting only globally ordered and chained events for Scala and

94 5.6 Summary

the JVM. The main applicative domain for Node.Scala is server-side computing
for stateless and stateful (read-dominated) workloads that also need to perform
CPU-bound computations. The PEV runtime is based on the Pessimistic specula-
tive system described in Section 5.3.

• Chapter 7, TigerQuoll. A language execution engine with an embedded PEV sys-
tem supporting unordered events for JavaScript based on SpiderMonkey [20].
The main applicative domain for TigerQuoll is CPU-bound computations in
JavaScript, for applications that cannot halt the event loop. The PEV runtime
is implemented with an Optimistic speculative system as discussed in Section 5.4
and supports only the global event target (with both ordered and unordered
events).

• Chapter 8, Truffle.PEV. A language execution engine for JavaScript with a PEV
system supporting the full PEV API implemented on a Truffle-based execution
engine for JavaScript [157]. The main applicative domain for this implementa-
tion is server-side applications with mixed read-only and CPU-bound workloads.
Two versions of the runtime have been implemented to test both the Optimistic
and the Hybrid PEV as described in Section 5.4 and Section 5.5.

In the following chapters we provide a detailed description of the three implemen-
tations, with a performance evaluation for each of the runtimes.

Chapter 6

Node.Scala

The first of the PEV-based runtimes described in this Dissertation is
Node.Scala [40]. Node.Scala is an event-based HTTP Web server for the JVM plat-
form bringing a programming model similar to the one of Node.JS to the Scala lan-
guage, featuring implicit automatic parallelization of the event-based service. Using
Node.Scala, services can be developed using a plain single-threaded event loop model
and requests are handled and consumed concurrently, when possible, still enforcing
correctness and thread safety [86]1.

Node.Scala is implemented without any VM-level modification, and relies on byte-
code rewriting to enforce thread-safety and automatic parallelization. Reader/writer
locking is used to implement a Pessimistic PEV runtime system, as described in Sec-
tion 5.3.

6.1 Programming model for service development

Node.Scala is a server-side framework for HTTP services development. The program-
ming model of Node.Scala is similar to the one of Node.JS, as it features a program-
ming model based on asynchronous callback invocations. Thanks to the PEV runtime,
blocking method calls can be executed directly from the main event loop without block-
ing the service, and concurrent requests running on different threads can safely share
state. The goal of the framework is to let developers write services using the same as-
sumptions (single-process event loop) made on the Node.JS platform, while automat-
ically and safely carrying out the parallelization to fully exploit multicore machines.
This has the effect of freeing the developer from dealing with the issues of concurrent
programming, while keeping all the benefits of the asynchronous programming model

1Scala has been chosen as a target language for the speculative runtime due to its support for anony-
mous functions. Other JVM-based languages could be supported in a similar way, including lambdas in
Java 8.

95

96 6.1 Programming model for service development

1 def fiboS(n: Int): Int = n match {
2 case 0 | 1 => n
3 case _ => fiboS(n-1) + fiboS(n-2)
4 }
5 val cache = new NsHashMap[Int,Int]()
6 val server = new NsHttpServer(8080)
7 server.start(connection => // 1st callback
8 {
9 val n = connection.req.query("n").asInstanceOf[Int]

10 if(cache.contains(n))
11 connection.res.end("result: " + cache.get(n))
12 else
13 server.nextTick(=> // 2nd callback
14 {
15 val result = fiboS(n)
16 cache.put (n, result)
17 connection.res.end("result: " + result)
18 })
19 })

Figure 6.1. Stateful Web Service in Node.Scala.

with implicit parallelism, overlapping I/O and CPU-bound operations, and lock-free
synchronization.

The two distinguishing aspects of Node.Scala compared to single-threaded event-
based alternatives such as Node.JS are the possibility of using globally shared stateful
objects, and the possibility of using blocking time-consuming CPU-bound calls in any
event handler without affecting the overall service latency and throughput. An exam-
ple of a simple Node.Scala Web service (Fig. 6.1) computing the n-th Fibonacci se-
quence number can be used to describe these two aspects. The stateful object (cache,
of type NsHashMap) is used as a cache to store the values of previously computed re-
quests. To perform the computation, a simple blocking function call (fiboS) is used.
The service makes also use of two callback functions. As in Node.JS, the first callback
represents the main entry point for the service, that is, the callback function that will
be triggered for every new client connection. The callback is passed as an argument
to the start() method (implemented in the NsHttpServer class). The second call-
back used in the example is the argument to the nextTick method, which registers the
callback to perform the actual computation and to update the cache. The nextTick

method is the Node.Scala equivalent of asyncChained.
Each callback is invoked by the Node.Scala runtime whenever the corresponding

data is available. For instance, as a consequence of a client connection, an HTTP re-
quest, or a filesystem access, the runtime system emits an event, which is put into the
event queue. The event will then be taken from the queue by one of the threads run-
ning the event loop, which will invoke the corresponding callback function with the re-
ceived data passed as an argument. In this way, when a new client request is received,
the runtime calls the first user-defined callback function passing the connection object
as argument. The object (created by the runtime) can be accessed by all other nested

97 6.2 System architecture

callbacks, and holds all the details of the incoming request (connection.req), as well
as the runtime object for generating the client response message (connection.res).

The service is stateful since the first callback uses an object with global scoping,
cache, which is not local to a specific client request (to a specific callback), but is
global and thus potentially shared among all parallel threads running the event loop.
Node.Scala enables services to safely share state through a specific library of common
data structures, which can be used by the runtime system to automatically synchronize
multiple concurrent callbacks accessing shared data using the Pessimistic runtime.

The second callback calls a synchronous CPU-bound method. In common event
loop frameworks such a blocking call would result in a temporary interruption of the
event loop, as discussed in Chapter 2. The parallel runtime system of Node.Scala over-
comes this limitation in its architecture by using multiple event processing threads and
a Pessimistic parallel event loop. Therefore, blocking synchronous calls do not have a
negative impact on Node.Scala service performance as they would have in traditional
frameworks. Consequently, programmers can focus on developing the service busi-
ness logic without having to employ more complex programming techniques to obtain
scalability.

6.2 System architecture

Node.Scala uses a single JVM process with multiple threads to execute a Web ser-
vice, granting shared memory access to the threads running the parallel event loops.
As illustrated in Fig. 6.2 (b), the request processing pipeline consists of tree stages:
(1) handling, (2) processing, and (3) completion.

Request handling. Incoming HTTP connections are handled by a dedicated server
thread, which pre-processes the request header and emits an event to the parallel event
loop to notify a new request has arrived. The operations performed by the HTTP server
thread are implemented using the Java New I/O (NIO) API for asynchronous I/O data
processing.

Request processing. Multiple event loop threads concurrently process events gen-
erated by incoming requests. In particular, each event loop thread removes an event
from its local event queue, accesses the callback table associated with that event type,
and executes the registered callbacks. New events generated by the execution of a call-
back are inserted into the local event queue of the processing thread. This mechanism
ensures that all the events generated by a specific request are processed sequentially,
enforcing ordering for chained events. The callback table is automatically updated
each time the execution flow encounters the declaration of a new callback function
(see lines 7 and 13 in Fig. 6.1).

Request completion. Responses are buffered using the end method. Once all
events generated by a request are processed, the system replies to the client using the
HTTP server thread, which also performs some post-processing tasks (e.g., generating

98 6.2 System architecture

Multicore hardware
NUMA or SMP

Java NIO
Request handling

JVM Memory Space

Node.Scala
stateful

components
library

Node.Scala Application

Parallel
event loop

Node.Scala HTTP Server

(a) High-level Architecture

Handling

Pre-processing

Dispatching

Callback
execution

emit(event) emit(event)

HTTP Server Thread Event loop Th. #1

Parallel event loop

Event loop Th. #n

Event #001 Callback

Event #002 Callback
...

Callbacks
Table

1

2

3
Post-processing Callback

execution

...

...

(b) The Parallel event loop

Figure 6.2. Overview of Node.Scala.

the correct HTTP response headers and eventually closing the socket connection).

6.2.1 Implementation

Like any PEV runtime, Node.Scala Web services are guaranteed to be thread-safe. To
this end, the runtime distinguishes between three types of requests: stateful exclusive,
stateful non-exclusive, and stateless. This classification depends on the type of accesses
to shared variables2. If the processing of a request can trigger the execution of a
callback that writes to at least one shared variable, the request is considered stateful
exclusive. Similarly, if the processing of a request can result in at least one read access
to a global variable, the request is considered stateful non-exclusive. All other requests
are considered stateless. As a consequence, a stateful exclusive request cannot be
processed in parallel with other stateful requests. Conversely, multiple stateful non-
exclusive requests can be executed in parallel as long as no stateful exclusive requests
are being processed. Finally, stateless requests can be executed in parallel with any
other stateless and stateful request. All the three different classes of callbacks are
guaranteed to be safe by the locking scheme of the Pessimistic PEV system.

To identify where the synchronization lock has to be acquired and released,
Node.Scala intercepts class loading by means of the java.lang.Instrument API and
performs load-time analysis of the bytecodes of each callback. Each user-defined call-
back is parsed by Node.Scala to track accesses to global variables. To speedup the
analysis, a special class of components that can be safely shared between callbacks is

2Accesses to final values are not considered for the classification of requests.

99 6.3 Performance evaluation

provided, and methods of classes from this library are marked with two custom anno-
tations: @Exclusive and @Nonexclusive.

Each time the analysis classifies a new callback as performing stateful exclusive or
stateful non-exclusive operations, its bytecode is manipulated to inject read and write
barriers acquiring the necessary read (i.e., ReadLock) and write (i.e., WriteLock) locks
in order to ensure thread safety. The locking scheme follows the readers-writer pattern
of the Pessimistic PEV runtime described in Chapter 5. Lock acquisition instructions are
injected at every possible first acquisition of a shared data structure for each callback,
while lock release operations are injected at the end of every callback. Therefore, the
entire body is guarded by the necessary locks. In case of failure in acquiring the lock,
the event loop thread can delay the execution of the callback of a specific request, as
the chained event processing model does not impose global ordering for all the events
in the system. Thus, the system can continue processing events generated by different
requests without breaking the programming model and without halting the service.
After a predefined number of failed attempts, exponential backoff is used to guarantee
progress of a stalled thread and avoid starvation.

In the worst-case scenario (i.e., every callback performs exclusive callbacks requir-
ing exclusive access to shared state) only a single event loop thread can execute a
single request at any given time. Given the very low footprint of the runtime barriers,
this ensures very low overhead. In this case, the performance of the service is com-
parable to the one of single-process, event-based frameworks. In all the other cases,
Node.Scala can safely parallelize the execution of callbacks, taking advantage of all
available cores to increase throughput, as illustrated in the following section.

6.3 Performance evaluation

To assess the performance of the Node.Scala runtime, we have implemented a Web
cache service similar to the one presented in Fig. 6.1. Instead of the simple Fibonacci
function, we used a mix of different computations from the set of CPU-bound bench-
marks of the SciMark 2.03 suite, a well-known collection of scientific computing work-
loads. The service has been implemented using blocking function calls only, and both
stateless and stateful services performance have been evaluated.

The machine hosting the service is a Dell PowerEdge M915 with four AMD Opteron
6282 SE 2.6 GHz CPUs and 128 GB RAM. Each CPU consists of 8 dual-thread modules,
for a total of 32 modules and 64 hardware threads. Since threads on the same module
share access to some functional units (e.g., early pipeline stages and the FPUs), the
throughput of Node.Scala is expected to scale linearly until 32 event loop threads with
ideal workload. The system runs Ubuntu GNU/Linux 11.10 64-bit, kernel 3.0.0-15,
and Oracle’s JDK 1.7.0_2 Hotspot Server VM (64-bit).

3http://math.nist.gov/scimark2/

http://math.nist.gov/scimark2/

100 6.3 Performance evaluation

1,000 2,000
0

1,000

2,000

Th
ro

ug
hp

ut
[m

sg
/s
] 1 event loop thread

598

1,000 2,000

2 event loop threads

1171

1,000 2,000

4 event loop threads
2345

650

1,300

Latency
[m

s]

4,000 10,000 16,000
0

5,000

10,000

15,000

Request rate [msg/s]

Th
ro

ug
hp

ut
[m

sg
/s
] 8 event loop threads

4627

4,000 10,000 16,000

Request rate [msg/s]

16 event loop threads

8288

4,000 10,000 16,000

Request rate [msg/s]

32 event loop threads

13649

0

500

1,000

1,500 Latency
[m

s]

Figure 6.3. Stateless service: throughput () and latency () depending on the
arrival rate and the number of event loop threads. The dashed reference line ()
indicates linear scalability.

The runtime performance of Node.Scala is measured using a separate machine,
connected with a dedicated gigabit network connection. We use httperf-0.9.04 to gen-
erate high amounts of HTTP requests and compute statistics about throughput and
latency of responses. For each experiment, we report average values of five tests with
a minimum duration of one minute and a timeout of 5 seconds. Requests not processed
within the timeout are dropped by the client and not considered for the computation
of the throughput.

6.3.1 Stateless services

To evaluate the performance of the Node.Scala runtime with stateless requests (i.e.,
with callbacks neither modifying nor accessing any global state), we have disabled the
caching mechanism in the evaluated service.

Fig. 6.3 illustrates the variation of throughput and latency of responses depending
on the request rate and on the number of event loop threads. The experiment with a
single event loop thread resembles the configuration of common single-threaded event-
driven frameworks for Web services, such as Node.JS. In this case, the throughput
matches the request rate until a value of 600 requests per second. During this interval,
the latency remains below 10ms. Afterwards, the system saturates because the single
event loop thread cannot process more requests per unit time. As a consequence, the

4http://code.google.com/p/httperf/

http://code.google.com/p/httperf/

101 6.3 Performance evaluation

10 30 50 70 90
0

2

4

6

Stateful exclusive requests [%]

Th
ro

ug
hp

ut
[1

03
m

sg
/s
]

32 event loop threads

Figure 6.4. Stateful services: throughput of SciMarkSf1 () and SciMarkSf2 ()
depending on the percentage of stateful exclusive requests. The reference line ()
refers to the throughput achievable using a single event loop thread.

throughput curve flattens and the latency rapidly increases to more than one second.
Experiments with larger amounts of threads follow a similar behavior: the latency

remains small as long as the system is not saturated, and it rapidly increases after-
wards. The peak throughput measured at the saturation point scales almost linearly
with the number of event loop threads, up to a value of 13600 msg/s with 32 threads.
This confirms the ability of Node.Scala to take advantage of all available CPU cores to
improve the throughput of stateless Web services. Our experiments also confirm that
the parallel runtime of Node.Scala allows the developer to use blocking function calls
without any performance degradation.

6.3.2 Stateful services

To evaluate the performance of stateful services, we enabled the caching mechanism of
the Node.Scala service used for the evaluation, and we have tested it with two different
workloads. The first one (called SciMarkSf1) makes an extensive use of the caching
mechanism, forcing the runtime to execute either exclusive or non-exclusive callbacks.
The second one, (called SciMarkSf2) uses the caching mechanism only to store new
data. Therefore, the second workload requires the runtime to process both exclusive
and stateless callbacks.

The goal of both workloads is to assess the performance of the service in the worst
possible cases, i.e., when the service is intensively using a single common shared object.

Fig. 6.4 reports the peak throughput of the two considered Web services, executed
with 32 event loop threads, depending on the amount of stateful exclusive requests.
As reference, we plot a line corresponding to the performance with a single event loop
thread. When the number of stateful exclusive requests is high, performance is compa-
rable to those of traditional, single-threaded, event-driven programming frameworks.
However, when this number is smaller, Node.Scala can effectively take advantage of
available cores to achieve better throughput. The difference with the non-modified
single-threaded benchmark presented in the picture (less than 3%) also shows that the

102 6.3 Performance evaluation

Pessimistic PEV runtime has very little runtime overhead, still supporting shared state
when needed (at the cost of pessimistic synchronization).

Chapter 7

TigerQuoll

The second PEV runtime described in this Dissertation is the TigerQuoll parallel
runtime [41]. TigerQuoll is a JavaScript execution engine (based on Mozilla Spider-
Monkey) supporting the execution of event handlers in parallel via an Optimistic PEV
system based on the TL2 STM algorithm [66]. The engine supports only globally or-
dered and unordered events, and the core event emission API of the PEV is used to
build high-level parallel constructs such as MapReduce, as discussed in Chapter 4.

7.1 Runtime system architecture

The TigerQuoll engine is a prototype JavaScript engine derived from Mozilla Spider-
Monkey [20]. The TigerQuoll runtime features an event-based execution system based
on a master/worker pattern for processing multiple events in parallel: a main thread
carries out the execution of ordered events, while worker threads support the execu-
tion of unordered events in parallel. Both event handlers are executed with the same
runtime barriers enabling STM-based speculation. The system is composed of multi-
ple threads holding a pointer to a shared double-ended queue containing references
to event objects. Globally ordered events are processed by the main JavaScript engine
thread, while unordered events are consumed nondeterministically by the threads,
therefore allowing for parallelism. Under speculative execution, each event handler is
run and re-executed until completion, and no commit-time reordering is implemented.
A runtime mechanism called runtime switching is used to mediate between parallel and
sequential execution.

The PEV event emission API is directly exposed to the developer, and the PEV
runtime in TigerQuoll is not used as a speculative engine for the parallelization of
existing JavaScript applications. Rather, the event emission API can be used to build
high-level programming models based on asynchronous event emission and shared
state.

103

104 7.1 Runtime system architecture

The event-based model of TigerQuoll in JavaScript to parallelism is not competing
with emerging parallel solutions for JavaScript (e.g., WebWorkers and RiverTrail), but
instead should be considered as a complementary one. In particular, the approach does
not prevent developers from using such solutions, but offers them an alternative for de-
veloping applications using a parallel programming model other than message passing
or read-only data parallelism, still without introducing the complexity of explicit par-
allel programming models. The programming model of TigerQuoll is an asynchronous
event-based programming model with safe access to shared state. Other solutions such
as WebWorkers can still be used in all the circumstances in which a master-worker
parallelism pattern is more natural to be expressed. However, we think that shared-
memory event-based parallelism represents a suitable solution for parallelizing several
problems peculiar to the domain of JavaScript, like for instance the real-time parallel
processing of data streams from sources such as HTTP-based services [78] or WebSock-
ets, where a blocking fork/join model such as RiverTrail could affect the overall service
latency1. In terms of programming model, it would be interesting to explore how to
combine multiple models, having for instance WebWorkers which internally execute
multiple events in parallel.

The TigerQuoll engine has been developed and tested with multiple workloads.
The overhead introduced by the event-based system is negligible, while the overhead
imposed by the STM runtime depends on the measured workload. The overhead intro-
duced by STM metadata is proportional to the size of the transaction’s logs. When the
parallelization is not possible (e.g., because of primitive operations that are not safe to
be executed in parallel), the event handler is executed in the main thread, without any
runtime barrier.

7.1.1 VM level modifications

The most relevant changes to the SpiderMonkey VM include modifications to the native
implementation of the JavaScript JSObject class to associate every object instance
with the needed transactional metadata. Moreover, the JSObject class has also been
modified to enable objects with support for event emission, consumption and syn-
chronization through the on and emit primitives, all based on async. The TigerQuoll
runtime runs multiple threads accessing the same memory heap mediated by an STM
layer. In its experimental implementation, the engine supports the fully transparent
STM-based speculation over the event loop only for property access on objects shared
between multiple functions’ scope. Every property access is mediated by the STM-
based runtime by modifying the Proxy mechanism of SpiderMonkey, a VM-internal
mechanism used to implement JavaScript Harmony Proxies [4, 59]. By exploiting this
mechanism, the virtual machine intercepts each data access and redirects it to the

1RiverTrail blocking operations could of course be offloaded to another worker, at the cost of losing
immutable shared state, i.e., one of its most attractive peculiarities.

105 7.2 Transactional support

thread-local transactional copy of shared objects. As a consequence, each operation
such as field read and write, but also field add or delete are mediated by the STM. The
TigerQuoll engine also features support for transactions operating on fields using a dif-
ferent transactional semantics called eventual fields. Such fields are treated differently
by the STM runtime, which manages two distinct logs.

7.1.2 Global runtime switch

To guarantee compatibility with existing JavaScript applications, as well as to enforce
ordered execution, the TigerQuoll engine behaves as a standard non-parallel engine as
long as the TigerQuoll runtime is not explicitly activated via unordered event emission.
Once unordered events are emitted, the main thread stops processing ordered events,
and waits until all unordered events (running in worker threads) have completed. This
mechanism, called global runtime switch, ensures that existing applications that use
neither the event-based API nor the TigerQuoll runtime will always run sequentially.
Furthermore, this ensures that the application is always running either using parallel
workers or using the main threaded, ensuring progress and never halting the appli-
cation (e.g., never blocking the service). The user has no control over the switching
mechanism, which is transparent and simply mediates between the parallel event loop
and the single-threaded one.

As discussed, in order to guarantee TigerQuoll applications to run in non-parallel
JavaScript engines, the TigerQuoll event-based API can be implemented in pure
JavaScript by extending the prototype of the Object object. All the event emissions
and consumptions can be therefore made asynchronous just by using a global queue
shared by all the objects within the same application. Indeed, this is the same exe-
cution model as in Node.JS, which handles event consumption and emission in the
JavaScript space.

7.2 Transactional support

The TigerQuoll runtime features a STM with global versioning, lazy version manage-
ment, and commit-time locking [91]. Conflicts are detected both at commit-time and
during transactions’ execution. The STM algorithm implemented by the TigerQuoll
runtime is TL2 [66], and TigerQuoll features per-property versioning (as opposed to
per-object versioning), and supports a relaxed semantics for a class of transactional op-
erations called eventual fields. The commit-time locking with redo logs fits well with the
event-based design of the TigerQuoll engine, as state changes are made persistent only
after the transaction has completed. This also guarantees that read-only transactions
(i.e., read-only event handlers) can operate in parallel. The per-field version manage-
ment prevents transactions operating on different fields of the same object from failing
because of versioning conflicts.

106 7.2 Transactional support

1 // shared object to collect the statistics
2 var stats = {
3 total : 0 // total number of words
4 word : new Array() // occurrences of each word
5 }
6 finish(function() {
7 // open and scan the input file
8 open(url, function(chunk) {
9 // spawn a parallel task for each chunk

10 asyncNow(function() {
11 var tokens = tokenize(chunk)
12 // for each token update the statistics
13 for(var i=0; i<tokens.length; i++) {
14 var word = tokens[i]
15 if(! stats.word[word]) {
16 stats.total++
17 stats.word[word] = 0
18 }
19 stats.word[word]++
20 } }) }) })
21 .ondone(function() {
22 // once all chunks have completed return the statistics
23 console.log(stats.total)
24 });

Figure 7.1. Parallel word count function in TigerQuoll, using the high-level task
parallelism library presented in Chapter 4.

7.2.1 Eventual fields in transactions (eventual transactions)

For certain workloads, TigerQuoll offers the possibility to relax the default transac-
tional isolation allowing to modify shared data using a different transactional seman-
tics. This mechanism, called eventual transactions, corresponds to a class of transac-
tions which never fail to commit, and always succeed in updating the global state after
their execution.

The key consideration for speeding up transactional workloads in TigerQuoll is that
some applications do not require shared data to be consistent during the execution
of the event handler, but only after commit has happened. For instance, this is the
common case when parallel tasks are performing computations on partial results on a
shared data structure. This consideration can be used to implement transactions which
never fail to commit, as data inconsistencies on the same shared value during the
transaction do not mean any incorrect semantics, as long as the transactional system
is given a way to solve the conflict when the transaction completes.

Consider the case of a JavaScript word counter, that is, a function to count the
frequency of the words within a text. The function consumes a stream of data by
tokenizing each input chunk in order to count the number of occurrences of each word.
Such functions are very common in server-side applications for buildings systems such
as Web crawlers or to generate trending topics for services such as Twitter.

107 7.2 Transactional support

As every event handler is executed atomically and in isolation, there is no way to
let event handlers communicate partially computed values. In other words, the result
of the execution of any event handler (including eventual transactions) become visible
to other handlers only when the handler terminates (and commits its result).

The code in the example (Figure 7.1) reads from a data stream by opening a URL
(which could correspond to a remote Web resource or a file stored locally). The URL is
opened through the open function, which invokes its callback as soon as a data chunk
is available. As the callback uses async, the chunks will be potentially processed in
parallel. For each chunk, the parallel callbacks will tokenize the string and will update
the global shared object containing the statistics (stats).

One important consideration about the example is that the stats object (more
precisely, its fields) is not required to be consistent during the execution of the parallel
event handlers, as what really matters for the word counter is to produce a consistent
result, i.e., to return a consistent (and correct) value of stats. In other words, the
fields of the stats object need to be consistent only eventually, i.e., after all parallel
callbacks have completed.

This property can be explicitly specified by the developer by marking certain fields
of an object as eventual. In the example this can be done using the markEventual()

primitive provided by the TigerQuoll API:

// The 'total' field is eventual

stats.markEventual('total', sum)

// All the elements of the array are eventual

stats.word.markEventual('*', sum)

Marking a field as eventual tells the runtime not to fail in case it detects an incon-
sistent value of the field at commit or validation time. This implies that the runtime
needs to know how to deal with inconsistent values. More precisely, it needs to know
how to accumulate the partial value of an eventual field when committing its value to
the global shared state. This is done by passing another argument to markEventual(),
called the accumulator function. In the example above the accumulator function only
has to add the partially computed value of field to the global value. This can be speci-
fied as follows:

function sum(global, initial, final) {

return global+(final-initial)

}

Accumulator functions receive three arguments as input, and return the new value
to be stored in the global object. The three input arguments are (1) the value of the
global field at the moment the accumulator function is called, (2) the initial value of
the field before the parallel event handler was called, and (3) the final value of the
field at the end of the execution of the event handler.

In the example, eventual fields are used to count, and therefore the accumulator
function corresponds to a simple sum function adding the partial result as evaluated
by the event handler to the global value. This is natural for fields with numeric values.

108 7.2 Transactional support

Start Tx

Field operations on shared objects
(read, write, add, delete)

Event emission

Event Handler

(1) Commit Tx

Lock
write set

Validate
read set

Write updates
and unlock

(2) Commit Eventual Tx
Whole redo log locked

Lock
object

Call accumulator
function and

update

Unlock
object

One lock per object at a time
(3) Emit events

Exclusive access to
write set

Exclusive access to
eventual fields

Figure 7.2. Overview of the commit phase of the TigerQuoll runtime.

Since the TigerQuoll programming model does not constrain the type of fields which
can be marked eventual, other kinds of accumulator functions may be specified by the
developer. The only constraint for accumulator functions is that they must be side-
effect-free and they should not access any shared object different from the ones they
are passed as arguments.

Transactions are committed in three distinct steps, namely (1) non-eventual fields
commit, (2) eventual fields commit, and (3) deferred event emission. The whole pro-
cess is summarized in Figure 7.2, while the three phases are described in detail in the
following sections.

Non-eventual Fields Commit

Read and write operations on non-eventual fields are mediated through a redo log and
two sets tracking field reads and field writes, respectively. The redo log keeps a thread-
local copy of global objects as locally managed by each parallel event handler. The
redo log is managed with a lazy strategy, meaning that global object fields are copied
to the redo log only when accessed for the first time.

Conflicts are resolved using per-field versioning. Each time a transaction is exe-
cuted, it reads the most recent value of a shared global clock (a 64-bit integer), ob-
taining a Read Version number (RV) which is used to validate both the read and write
sets. Both during the transaction and at commit time, the RV of the transaction is com-
pared against the version of the fields as stored in the corresponding global state field.
When a field with a more recent version is found, the transaction is aborted, as the
current value of the field has been changed by another transaction in the meanwhile.
Modifications to the object structure (i.e., field additions and deletions) are treated as
special cases of transactional write operations. At commit-time, the STM (1) acquires
all the per-object locks of all the fields in the write set; (2) validates the the read set
against the RV; (3) in case of no conflicts (either with lock acquisition or read version
management), commits and updates the shared objects writing the new values. (4)
Eventually it releases all the locks.

109 7.2 Transactional support

1 // tx struct which holds all the logs
2 Transaction tx;
3 // start the transaction
4 do {
5 // event handler execution: the redo_log
6 // is created and modified as well as the
7 // read set, the write set, the eventual log
8 // and the events log
9 } while(! Tx_Commit_redo(&tx));

10 // redo_log committed: eventual fields can be processed
11 foreach(JS_OBJECT obj in eventual_log) {
12 // Get a reference to the global shared object
13 JSObject *global = tx->eventual[obj]->global;
14 // --- (1) Lock the object --- //
15 Lock(&global);
16 // scan all its eventual fields
17 foreach(EV_FIELD f in global->ev_fields) {
18 // Get the accumulator for this field
19 jsval accFun = global->acc_fun[f];
20 // prepare the arguments for the accumulator
21 jsval *argv;
22 argv[0] = JS_ReadField(global, f);
23 argv[1] = tx->eventual[iter]->delta;
24 argv[2] = tx->eventual[iter]->snapshot;
25 // --- (2) Execute the accumulator function --- //
26 jsval result = JS_Execute(&accFun, argv);
27 // store back the result
28 JS_WriteField(global, f, result);
29 }
30 // Release the lock
31 UnLock(&global);
32 }

Figure 7.3. Eventual transactions commit-phase pseudocode.

Eventual Fields Commit

The design goal for eventual fields is to propose a programming model abstraction
which provides transactions which never abort, at the cost of ensuring only eventual
consistency. As implemented in TigerQuoll, the model is complementary to existing
STM-based approaches and allows us to speed-up transactional event handlers when
strong consistency is not needed. The metadata overhead for managing eventual fields
is equivalent to the overhead of standard transactions, as all the operations on each
field have to be tracked. Similarly, the consistency management overhead of eventual
fields is similar to the one of transactions, as eventual fields are made consistent by
acquiring a lock. Performance benefits come from the fact that the commit phase
never forces a transaction to re-execute, therefore eventual transaction’s performance
is comparable to the one of regular transactions which always commit.

Transactions using only eventual fields have the property of never failing. They
always commit by accumulating data in shared fields marked as eventual through a
user-given function called accumulator. This is made possible by operating on a thread-

110 7.3 Performance evaluation

local copy of the value of local fields which is managed by the STM runtime through a
separate log, called the eventual log.

During an event handler execution, all the accesses of eventual fields are mediated
by the eventual log, and no actual access to the global object’s fields is performed.
Similarly to regular transactions, the eventual log keeps track of all the operations per-
formed on eventual fields. Conversely, the log is not used for validating the consistency
of the field neither during the transaction’s execution nor at commit-time. As any op-
eration happens on the local copy of every eventual field, any operation on such data
structures happens with snapshot isolation [91] from the event handler perspective.

At the end of the event handler execution, the eventual log holds the locally com-
puted value of the eventual field (called the delta) plus the initial value of the field,
called snapshot. Together with the current global value, these two values are then
passed to the accumulator function as arguments.

The commit phase for eventual fields (Figure 7.3) is performed in two steps:

(1) Locking of objects with eventual fields. The eventual log is scanned and for every
eventual field, a lock is acquired on the corresponding objects. Locks on different
objects are not acquired all-at-once, as in the commit phase of the standard STM.
Instead, it is safe to acquire only one lock at a time, as eventual fields do not need
to guarantee atomicity. The eventual log is sorted so as to acquire only one lock per
object, thus allowing to commit all the eventual fields belonging to the same object at
the same time.

(2) Accumulator function execution. Once the lock is acquired, the accumulator
function corresponding to the eventual field is called passing as arguments the current
value of the global object, the delta value, and the snapshot value. The value returned
by the function is written back to the global value. The lock on the object can be
released once all its eventual fields have been updated.

7.3 Performance evaluation

To evaluate the performance of the TigerQuoll engine we have performed two distinct
classes of experiments. First, we evaluated the performance of the engine to assess
the overhead of the TigerQuoll engine compared to the most popular existing share-
nothing parallelism solution (i.e., WebWorkers). Second, we evaluated the engine in
the context of shared-memory applications, to observe the performance of eventual
transactions for high- and low-contention workloads. All the experiments have been
executed on a 32 cores AMD-Bulldozer machine with support for 64 parallel (hyper-
threaded) threads. The machine has a total of four CPUs connected to four NUMA
nodes. All the results presented in this Section are average values computed over five
independent runs of each experiment. The standard deviation is negligible.

111 7.3 Performance evaluation

10 20 30 40 50 60

10

20

30

40

50

60

Threads

Sp
ee

du
p

Figure 7.4. Share-nothing scalability. The graph shows the scalability of TigerQuoll
for the Primes () and Mandelbrot () benchmarks compared with the equiv-
alent WebWorkers Primes () and Mandelbrot () benchmarks. Speedup is
relative to a TigerQuoll engine running with 1 worker thread.

7.3.1 Share-nothing Scalability

To assess the performance of the engine in comparison with existing share-nothing
solutions, we have parallelized some existing JavaScript benchmarks using TigerQuoll
and WebWorkers, and we have measured how the execution time decreases when
adding more parallel threads to the engine. Results are depicted in Figure 7.4.

The algorithms selected for the evaluation are the parallel calculation of a
1024x1024 Mandelbrot Set and a parallel primes checker scanning 106 integers look-
ing for prime numbers. As clearly depicted in the figure, the TigerQuoll engine has per-
formance comparable to the ones of WebWorkers, and scales linearly with almost ideal
scalability up to the number of physical cores (32) in the system (lines and).
This shows that the event emission, routing and consumption mechanism of the en-
gine as well as its transactional support do not prevent share-nothing applications from
scaling. This also means that share-nothing algorithms can be parallelized using the
on/emit primitives of TigerQuoll in addition to using explicit parallel entities such as
WebWorkers and message passing coordination.

7.3.2 Shared Memory Scalability

Of the algorithms presented in the previous section, one can be easily modified to
become a shared memory algorithm. In fact, the primes number calculator can be
modified to use a shared object to keep track of the prime numbers it has found. In
more detail, the algorithm implements a traditional divide-and-conquer scheme by
partitioning the space of integer numbers to check, and by assigning each parallel
event handler a partition of the space for processing. Each handler thus receives an

112 7.3 Performance evaluation

10 20 30 40 50 60

10

20

30

40

50

Threads

Sp
ee

du
p

Figure 7.5. Shared Memory Scalability: Primes checker with shared counter. The
graph presents TigerQuoll scalability in case of high contention with regular trans-
actions () and eventual transactions (), as well as low contention with reg-
ular transactions () and eventual transactions (). Speedup is relative to a
TigerQuoll engine running with 1 worker thread.

interval to scan and searches for primes in its local partition only, eventually updating
the global object with the number of prime numbers it has found once done with its
job.

As in many data-parallel computations with shared state, the size of the task as-
signed to parallel workers is a crucial performance parameter. In fact, tasks with a
too small size can easily degrade performance because of contention, while tasks with
an out-sized dimension tend to degrade scalability (especially when the tasks are not
homogeneous in terms of processing time). To measure the impact of task size in the
case of the primes checker we have performed an additional experiment measuring the
performance of the algorithm using the shared counter with different task size. Results
depicted in Figure 7.5 describe how with a small task size (102 numbers per event) the
STM is forced to abort very often (see line , where the STM aborts are on average
more than 30% of the total started transactions), while with a bigger task size (103

numbers per event) the STM is still able to scale (line , with a failure rate of less
than 5%).

Fortunately, this is the classic case in which the partial result of the computation
(i.e., updating the counter) is not needed by the parallel task. Therefore, we could
mark the field of the shared object counting the number of primes as eventual, and
specify that we need an accumulator function which just sums the delta to the global
value of the counter. The performance of the TigerQuoll runtime using the eventual
counter are depicted in the same figure (lines and). Using eventual fields
significantly out-performs the version using regular transactions, since the presence of
the eventual field saves the transaction from aborting and re-starting.

The impact of contention on shared-memory algorithms can in some cases dramat-

113 7.3 Performance evaluation

0 2 4 6 8
0

2

4

6

8

Threads

Sp
ee

du
p

Figure 7.6. Shared Memory Scalability: word counter. The graph presents
TigerQuoll scalability in case of high contention with regular transactions ()
and eventual transactions (), as well as low contention with regular transactions
() and eventual transactions (). Speedup is relative to a TigerQuoll engine
running with 1 worker thread.

ically affect the performance of an STM system. This is the case for the experiment
depicted in Figure 7.6, where a data-intensive workload with high and low contention
has been evaluated. The experiment corresponds to the word-counter example pre-
sented in Figure 7.1. In the experiment, the parallel MapReduce word-counter is given
a text file of 4MB to parse. The file contains a variety of equally distributed words
which corresponds to the creation of thousands of items on the shared array. The ex-
periment has been executed with two chunk sizes to vary the contention on the shared
array. As expected, using regular transactions will not scale, since the abort rate of the
transactions is very high as soon as multiple threads are handling events in parallel
(lines and). With almost certain probability two parallel event handlers will
try to create or update the same element of the shared array, and all but one trans-
action will have to be aborted and re-executed. By marking all the fields of the array
as eventual, this effect is mitigated and the system scales when adding more parallel
threads (lines and).

The metadata overhead for managing eventual fields is equivalent to the overhead
of standard transactions, as all the operations on each field have to be tracked. Sim-
ilarly, the consistency management overhead of eventual fields is similar to the one
of transactions, as eventual fields are made consistent by acquiring a lock. Perfor-
mance benefits come from the fact that the commit phase never forces a transaction to
re-execute, therefore eventual transaction’s performance is comparable to the one of
regular transactions which always commit.

114 7.3 Performance evaluation

Chapter 8

Truffle.PEV

The third implementation of a PEV system presented in this Dissertation is Truf-
fle.PEV, a JavaScript engine derived from the Truffle JavaScript research engine [157]
implementing an Optimistic speculative system and an Hybrid system. The engine has
been implemented specifically targeting server-side applications and JavaScript, with
the goal of providing a complete implementation of a PEV-based system. In the follow-
ing subsections we first introduce Truffle as a platform for building high-performance
engines for dynamic languages based on the JVM, and we then describe two implemen-
tations of the PEV runtime supporting the full set of events as introduced in Chapter 3.

8.1 Truffle and Graal

Truffle [157] is an open-source language implementation framework based on the
Java Virtual Machine (JVM), which enables the development of high-performance Ab-
stract Syntax Tree (AST) interpreters for multiple languages. The system presented in
this section is derived from the Truffle-based JavaScript engine, which has performance
comparable to the ones of leading JavaScript engines such as V8 and SpiderMonkey1.

Truffle is a VM construction framework based on an high-performance AST in-
terpreter that can be automatically compiled by an optimizing compiler (i.e., the
Graal [157, 72] JIT compiler) to highly-specialized machine code. The compiler ex-
ploits the structure of the AST interpreter, and compiles the AST (using partial evalu-
ation [81, 57]) to generate code. This approach enables a variety of language imple-
mentations to exploit the same optimizing compiler (that is, the same JIT compiler).
Each implementation consists of a language-specific AST interpreter [102, 156], and
the compiler is reused for all languages. The Truffle.PEV engine consists of a thread-

1The Truffle.PEV runtime has been implemented in the context of a collaboration with Oracle Labs
and the VM research team.

115

116 8.2 Runtime Overview

safe AST interpreter for JavaScript extended to support the parallel execution of mul-
tiple functions using a Software Transactional Memory runtime for speculation.

The Truffle.PEV engine is derived from the Truffle.JS single-threaded JavaScript
Truffle-based execution engine. The single-threaded engine achieves high-performance
from a combination of techniques:

• Each AST node eagerly rewrites itself with an optimized version. Node rewriting
specializes the AST for the actual types used, and can result in the elision of
unnecessary generality, e.g., boxing and complex dispatch.

• The AST interpreter is automatically compiled by Graal. Compilation by au-
tomatic partial evaluation leads to highly optimized machine code without the
need for writing a language-specific dynamic compiler.

• De-optimization from machine code back to the AST interpreter handles spec-
ulation failures. As long as deoptimization is infrequent, the optimized AST
interpreter can itself be optimized by Graal.

Like other existing engines, the Truffle-based JavaScript engine is a single-threaded
engine with no support for parallel execution. We extended the AST interpreter
with two PEV-based runtime systems to enable parallel speculative execution of
event handlers. Differently from modifying existing engines (e.g., SpiderMonkey and
TigerQuoll), Truffle allows any change to the engine to be applied directly at the AST
level. As the AST is partially evaluated and then compiled in an automatic way, any
modification to the AST interpreter is automatically and implicitly compiled by the
Graal partial evaluator. This implies that the STM system for the JavaScript engine in
Truffle is itself compiled by the Graal compiler, and is thus optimized like any other
runtime component of the JavaScript engine. Thanks to this approach, all the barriers
implementing the Truffle.PEV speculative runtime are compiled by the JIT compiler,
greatly reducing the runtime overhead.

8.2 Runtime Overview

We implemented two distinct versions of Truffle-based PEV engines. The first en-
gine runs an Optimistic system based on the TL2 algorithm [66], while the second one
runs an Hybrid PEV system relying on the FastLane algorithm [151]. Both systems
are implemented in Truffle by means of AST rewriting, meaning that the original AST
of the application to be modified for parallel execution is dynamically extended with
runtime barriers enabling parallel execution. The two runtime systems implemented
in Truffle support all event classes as introduced in Chapter 3.

117 8.2 Runtime Overview

At the API level, each Truffle-based PEV system supports a programming model
similar to the one of TigerQuoll, with the main difference that the systems support all
the types of events discussed in Chapter 5.

The following two speculative runtime systems have been implemented:

• Optimistic system. The first implementation is an Optimistic system as described
in Chapter 5. As opposite to the implementation in TigerQuoll, the engine is
always enabled, and all events (including ordered ones) are executed by the
STM runtime. The STM runtime is based on the TL2 algorithm, extended with
commit-time reordering in order to support the speculative parallel execution of
ordered events.

• Hybrid STM. The second implementation is an Hybrid PEV runtime as described
in Chapter 5, based on the FastLane algorithm [151], also supporting the specu-
lative execution of ordered event handlers.

Both runtime systems feature automatic and dynamic modification of the AST of
the functions that have to be executed. When a JavaScript function is to be executed by
the STM runtime, its AST is modified on-the-fly with special AST nodes implementing
the STM barriers. Examples of AST nodes replaced with STM-enabled ones include,
for instance, read and write access to properties, array elements, and level variables
accessed from closures. Functions are modified with nodes implementing different as-
pects of the STM algorithm (e.g., property read and write, function calls, transaction
start, commit, etc.), and each node is responsible for implementing a specific STM op-
eration, without introducing any limitation on the existing Truffle runtime, which can
self-optimize the AST in the same way it would do with a non-modified AST interpreter.
The runtime barriers are designed to be compatible with all the Truffle optimizations.
In particular, STM barriers can benefit from partial evaluation like any other Truffle
AST node, and are therefore compiled to very optimized machine code.

8.2.1 TM Metadata speculative management

The Truffle approach based on the automatic optimization of AST interpreters allows
for some optimizations of the two STM runtimes that help reducing the overhead of
the speculative runtime. In particular, the Truffle.PEV runtime features the following
two classes optimizations:

• Log elision: with the goal of reducing unnecessary logging, the Truffle.PEV run-
times trace objects that are allocated during the current transaction, and there-
fore are not visible to other transactions until commit time. This information
is exploited by the STM runtime to avoid logging objects allocated in the scope
of the current transaction, and the Graal JIT compiler can thus remove all the
STM barriers for such object instances. Similarly, the Truffle runtime speculates

118 8.2 Runtime Overview

1 public class TxReadPropertyNode {
2

3 private final TxRuntime tx;
4 private final String propName;
5 private final ObjectDescriptor desc;
6

7 @Override
8 public Object execute(VirtualFrame frame) {
9 JSObject target = frame.getObject(desc);

10 if(target.isTxPrivate()) {
11 return target.getProperty(propName);
12 } else {
13 JSObject txLocal = tx.getWriteLogEntry(target);
14 if(txLocal.hasProperty(propName)) {
15 return txLocal.getProperty(propName);
16 } else {
17 tx.preReadBarrier();
18 Object sharedValue = target.getProperty(propName);
19 // throws TxAbortException
20 tx.postReadBarrier();
21 tx.addToReadSet(txLocal);
22 return sharedValue;
23 }
24 }
25 }
26 }

Figure 8.1. Read barrier for JavaScript object properties implemented as a Truffle
AST node.

on certain objects (in particular, the JavaScript global object) assuming they are
read-only: as long as this assumption holds, the STM barriers for such objects
simply avoid logging, as the object is considered immutable. At the moment one
transaction tries to invalidate such assumption, all the transactions are aborted,
and a version of the transaction using all the correct STM barriers (not relying
anymore on the read-only speculative assumption) is executed.

• Log optimization: when log elision cannot be applied (that is, for object instances
that have to be logged to enforce atomicity), the Truffle.PEV runtimes still imple-
ment a per-barrier optimization that can reduce the logging overhead, exploiting
a key feature of dynamic languages, that is, object shapes [99].

Object shapes are a runtime technique that is used in common JavaScript engines
(as well as in other dynamic language runtimes) to optimize the cost for the dynamic
resolution of object fields 8 in dynamic objects. Being JavaScript a dynamically typed
language, every object can dynamically change the number of its properties, with the
type of each property being itself mutable during runtime. To deal with such dynamic
nature, object shapes (often also called Hidden classes) are data structures keeping

119 8.2 Runtime Overview

track of the "class" of each object at runtime, and are the key data structure behind
several optimizations in modern engines. Consider the following example:

// obj has shape S0=[] (empty shape)

var obj = {}

// obj's shape is replaced with S1=[x:int]

obj.x = 3

// obj's shape mutates again to S2=[x:int,y:string]

obj.y = 'foo'

At runtime, the object changes its shape three times. First -like with every new
object- the object is assigned an empty shape. After the first property is added, the
shape is replaced with a different one (S1). Similarly, when a second property is
added the shape is replaced with a new one, i.e., S2. Since objects with the same
shape always have the same internal object layout, shapes can be efficiently used to
replace expensive property lookup operations with optimized ones (i.e., using a fixed
offset rather than a dynamic lookup mechanism). In this simple example, for instance,
the read operation accessing objects with shape S2 is always guaranteed to have the
y property (of type String) at fixed offset. Therefore, the property can be directly ac-
cessed, without having to query the object’s shape to get the property location. Shapes
are used to replace generic operations with specialized -and more efficient- ones.

In each of the Truffle.PEV-based implementations, a mechanism similar to object
shapes is used by the TM runtime to reduce the overhead of the transactional log. Con-
sider the following example of a callback executed by the PEV engine in a transaction:

// obj.x has to be added to the read log. Before the log was empty: []

var x = obj.x

// obj.x is also modified. The write log is modified, and the new value of

// 'x' is stored in a redo log, at offset 0.

obj.x++

// nothing to do here: the object is already logged, just return the

// value of obj.x as in the redo log.

return obj.x

Each of the above operations happens at a fixed overhead, and performs the same
operations on the transaction-local metadata. In particular, for the above example the
following operations are always re-executed:

• First read: add the object to the log, at offset 0.

• Second read (at x++): do nothing, just validate.

• First write: add the object to the write set, at offset 0. Store the locally computed
value of x in the redo log, at offset 0.

• Last read: do nothing, just validate and return the value from the redo log at
offset 0.

By exploiting the fact that for many transactional operations metadata are always
modified with a fixed offset, the Truffle.PEV performs an optimization on the log’s

120 8.3 Performance Evaluation

access patterns, and injects in the machine code fixed offsets for reading and writing
directly from the logs. This class of optimization, called transactional shapes helps
reducing the runtime overhead, and is based on the speculative assumption that event
handlers performing certain operations will most likely have the same access pattern
when interacting with metadata. A similar optimization is also used by the engine
(in both implementations) to speculate on some operations for their locality: when
possible, the runtime barrier for such operations is just a simple assumption check,
which does not require any TM barrier.

8.3 Performance Evaluation

The Truffle.PEV engine has been evaluated using different workloads and use cases
with the goal of assessing the performance of the two PEV implementations in the con-
text of different workloads. To this end, the evaluation has been focused on workloads
belonging to the following categories:

• Read-dominated workloads. The Truffle.PEV engine’s main target is server-side
computing, where workloads are often stateless or read-only. In this context the
PEV programming model can be used to automatically speculatively parallelize
the execution of the service, as discussed.

• CPU-intensive workloads. Having the possibility to execute event handlers in
parallel opens up the opportunity for executing new, previously unsupported,
workloads that can mix shared data and CPU-bound computations in JavaScript.
Since the PEV supports shared state, such benchmarks are not purely-functional,
side-effects-free benchmarks. Rather, they make use of some shared state during
the computation, with a reduced number of conflicting event handlers.

• Data-intensive workloads. The speculative runtime allows the engine to execute
in parallel also workloads that make intensive use of shared state with conflict-
ing accesses. Data-intensive workloads have also been used to assess the effec-
tiveness of the runtime in the context of conflicting event handlers and non-
parallelizable workloads.

The PEV runtime is expected to expose good scalability with the first two classes
of benchmarks. Depending on the STM runtime and on the scheduling policies, how-
ever, the two runtimes are expected to behave differently, with the Optimistic runtime
offering better scalability at the cost of higher runtime overhead. Concerning the third
class of experiments, the Hybrid PEV runtime is expected to offer better latency, as it
relies on an STM algorithm designed to limit the overhead.

The performance evaluation has been conducted measuring the following aspects:

121 8.3 Performance Evaluation

• Barriers and runtime overhead: the two PEV runtimes implement different run-
time barriers. The selected benchmarks have been executed comparing the per-
formance of single-threaded instances of PEV runtimes running with the required
runtime barriers against a non-modified single-threaded version. Both measure-
ments also include other runtime-level overhead that are shared by each of the
runtimes, e.g., event emission.

• Scalability: each benchmark is executed with an increasing number of parallel
threads to assess the ability of the runtime to exploit the resources of the system
as they are added.

• Reordering overhead: ordered, chained, and unordered events are exposed as
distinct classes of events in the PEV model. Therefore, they should not be consid-
ered equivalent, but rather alternative solutions: when event ordering is needed
by the semantics of the application, ordered events should be used; when event
ordering is not needed (or can be relaxed) other classes of events should be pre-
ferred. Despite this programming model distinction, we modified some of the
benchmarks by introducing different event classes with the goal of measuring
the overhead of executing events as ordered or unordered.

The above aspects (combined) give an idea of the characteristics of the two Truf-
fle.PEV runtimes, and can be used to identify under which circumstances a runtime is
preferable over the other.

A set of new and existing workloads has been used for the evaluation. All the
benchmarks have been ported to JavaScript and adapted to comply with the event-
based programming model of the event loop. In particular, all the benchmarks have
been converted to resemble the form of event-based services for which each request
triggers the execution of one or more event handlers.

Using this benchmarking approach implies that every benchmark will also make
use of event emission, buffering, and dispatching, and the results of the performance
evaluation will also be affected by all the components involved in the PEV system,
including the shared queue. To avoid measuring the overhead introduced by the I/O
substrate, I/O requests have been simulated by directly adding events to the global
queue.

Because of the event-based benchmarking approach, it was not possible to do a full
port of some popular STM benchmarks (e.g., [129]) to the PEV model, mostly because
of the impossibility of adapting them to the JavaScript language2.

Every experiment presented in this section has been executed on a Dell I329 server
machine with 128GB or RAM running 4 Intel Nehalem i7 CPUs for a total of 24 cores
(with hyper-threading and dynamic frequency switching disabled to reduce nondeter-
minism). The machine has a NUMA-cc architecture. All the experiments have been

2For instance, some benchmarks such as STAMP [129] explicitly rely on the presence of threads and
on the ability to interleave transactional with non-transactional code.

122 8.3 Performance Evaluation

executed multiple times, and we report the average peak performance of the different
PEV runtimes. Peak performance is obtained after a warmup time that is big enough to
let the Graal VM JIT compiler to optimize the executed code. Warmup time is omitted
since we focus on benchmarks deployed as services.

0 5 10 15 20 25
0

10

20
1M

100k

1k

Threads (#)

Sp
ee

du
p

Array: Optimistic PEV

0 5 10 15 20 25
0

5

10

15
1M
100k

1k

Threads (#)

Sp
ee

du
p

Array: Hybrid PEV

0 5 10 15 20 25
0

5

10

15

20

1k

10k

100

Threads (#)

Sp
ee

du
p

CPU-bound: Optimistic PEV

0 5 10 15 20 25
0

5

10

15 1k

10k

100

Threads (#)

Sp
ee

du
p

CPU-bound: Hybrid PEV

Figure 8.2. Truffle.PEV microbenchmarks. Speedup is relative to a Truffle.PEV
engine running with 1 worker thread. Each experiment is executed with a different
size of the input parameter: 1k (103), 10k (104), and 1M (106).

A total of nine different benchmarks (plus some microbenchmarks) have been
adapted to run with the Truffle.PEV engine.

8.3.1 Event emission

The first set of microbenchmarks has been designed to assess the overhead derived
from event emission in the context of different PEV runtimes, as well as to have an
estimate of the maximum performance of the PEV system with ideal workloads (i.e.,

123 8.3 Performance Evaluation

workloads that the PEV engine can easily parallelize). The microbenchmarks consist
of two distinct classes of experiments aimed at assessing the baseline performance for
each PEV runtime system:

• Pure stateless. This benchmark consists of executing a growing number of event
handlers that simply keep the CPU busy with a transaction-local CPU-intensive
operation, that is, the creation, allocation, and sorting of an array not escaping
the event handler’s scope, and that therefore can be considered private by the
PEV STM runtime, which will remove all the TM barriers for accessing it. The
goal of this benchmark is to measure the maximum throughput of the PEV engine
when the only shared state is represented by PEV runtime itself (e.g., by the
global event queue).

• Read-intensive. This benchmark has the goal of assessing the performance of the
PEV engines with read-only workloads. For this class of benchmarks, To this
end, a shared immutable data structure is allocated on the service’s heap, and is
accessed by multiple event handlers in parallel. The benchmark also gives an in-
dication of the effect of the impact of the memory bus in the machine considered
for evaluation.

To increase the potential for parallel execution, all the benchmarks of this section
use unordered events only. The results are depicted Figure 8.2. For each benchmark
the execution time is presented with an increasing input parameter size. For the CPU-
bound benchmarks the input corresponds to the average execution time for a single
event handler (with an increasing size of the array to be sorted), whereas for the
read-intensive benchmarks it corresponds to the size of the shared data structure, im-
plemented as a single JavaScript array object instance. The CPU-intensive microbench-
mark shows that the PEV system can scale almost linearly with a relatively small size
of the array to be sorted. Contention can become a problem for both PEV runtimes
when the size of the computation to be executed in parallel is too small (i.e., 1k). The
microbenchmarks also show that the two STM runtimes (i.e., TL2 and FastLane) have
different scalability characteristics. In general, TL2 scales better than FastLane in both
workload types.

8.3.2 CPU-intensive workloads

To assess the performance of the engine with CPU-bound workloads, some CPU-
intensive workloads have been adapted to use the event-emission API of the PEV. The
benchmarks selected for evaluation are the following:

• Primes. A brute-force prime number calculator. The benchmark calculates all the
prime numbers for a given range, storing the results in a shared data structure.
Unordered events only are used in this benchmark, and only a single event target
is used.

124 8.3 Performance Evaluation

0 10 20
0

10

20

30

Opt. 100

Opt. 1k

Hybrid 1k

Threads (#)

Ex
ec

ut
io

n
ti

m
e

(s
ec

)

Primes (time)

0 10 20
0

5

10

Opt. 100

Opt. 1k

Hybrid 1k

Threads (#)

Sp
ee

du
p

Primes (speedup)

2 4 6 8

1

1.1

1.2

1.3

Hybrid 1k

Threads (#)

Sp
ee

du
p

Hybrid PEV speedup detail

Figure 8.3. Primes benchmark: Optimistic vs. Hybrid PEV. Speedup is relative to
the corresponding Truffle.PEV engine running with 1 worker thread.

• Mandelbrot. A mandelbrot set calculator. The resulting Mandelbrot set is stored
in a shared data structure. Also with this benchmark, unordered events are used
and there is one event target.

• Matrix multiplication. A matrix multiplication benchmark derived from an STM
benchmark, adapted to single-threaded event emission. The two input matrices
are accessed read-only by the benchmark, and results are stored on a third shared
matrix. This benchmark makes use of unordered events to perform the parallel
multiplication, and chained (ordered) events to assemble the final result.

• PageRank. The popular PageRank algorithm [43] adapted to use event emis-
sion. The benchmark performs a map-reduce-like computation where each map
computation is modeled ad an unordered event that does not modify shared state
(i.e., it is a read-only handler). Another version of the same benchmark modified
to use shared state also on the map operation is discussed in the next section.
The benchmark makes use of a combination of chained and unordered events.

Performance data for each CPU-bound benchmark with different workloads is de-
picted in Figures 8.3 and 8.4. The Primes benchmark shows that with CPU-intensive
computations that involve shared state only for a few objects the TL2-based runtime
can offer very good scalability, as the event handlers conflict very rarely. Conversely,
the FastLane-based algorithm cannot offer the same scalability. This is partially, ex-
pected, as the FastLane algorithm is designed to scale only with a limited number of
threads. Another reason for the FastLane-based implementation, however, is workload-
specific, and depends on the fact that the Primes benchmark always modifies the same
data structure. The main thread (with higher priority) will therefore almost always
cause the other event handlers to abort. Performance are similar with the Mandelbrot
benchmark (which also involves a single shared data structure), but are different with

125 8.3 Performance Evaluation

0 5 10 15 20 25
0

5

10

15

20

Size 3202

Size 6402

Threads (#)

Sp
ee

du
p

Matrix Multiplication (Optimistic)

0 5 10 15 20 25

1

1.5

2

Size 3202

Size 6402

Threads (#)

Sp
ee

du
p

Matrix Multiplication (Hybrid)

0 5 10 15 20 25
0

5

10
Opt. 105

Opt. 103

Hybrid 105

Threads (#)

Sp
ee

du
p

Mandelbrot

0 5 10 15 20 25

2

4

6 Optimistic

Hybrid

Threads (#)

Sp
ee

du
p

PageRank

Figure 8.4. CPU-bound workloads: Matrix multiplication, Mandelbrot and PageR-
ank. Speedup is relative to the corresponding Truffle.PEV engine running with 1
worker thread.

the other two benchmarks (Matrix and PageRank in Figure 8.4), where the workload
mixes access to different data structures. In this case, both PEV runtimes can offer good
scalability. In general, the Optimistic runtime is able to expose a better scalability, since
all event handlers have the same opportunity of committing. This is particularly clear
with the Primes and Matrix benchmarks, where the engine has almost ideal speedup
for certain workload sizes. Conversely, the hybrid STM cannot expose high scalability
for such workloads, as the main thread always modifies the shared data structure with
higher priority, often forcing other transactions to abort and restart. The effect is at-
tenuated in benchmarks where most of the computation performed by parallel event
handlers are not conflicting (as operating on distinct or read-only object instances).

126 8.3 Performance Evaluation

0 5 10 15 20 25
0

1

2

3

Prob 0%

Prob 5%

Prob 20%

Threads (#)

Ex
ec

ut
io

n
ti

m
e

(s
ec

)
Intset RB 4096 (time)

0 5 10 15 20 25
0

5

10

Prob 20%

Prob 5%

Prob 0%

Threads (#)

Sp
ee

du
p

Intset RB 4096 (speedup)

0 5 10 15 20 25
0

5

10

Prob 0%

Prob 5%

Prob 20%

Threads (#)

Ex
ec

ut
io

n
ti

m
e

(s
ec

)

Intset LL 8192 (time)

0 5 10 15 20 25

2

4

6

8
Prob 0%

Prob 5%

Prob 20%

Threads (#)

Sp
ee

du
p

Intset LL 8192 (speedup)

Figure 8.5. IntSet benchmark with the Optimistic PEV. Speedup is relative to a
Truffle.PEV engine running with 1 worker thread.

8.3.3 Read-intensive and data-intensive workloads

To assess the performance of the STM runtimes executed by the PEV system, we
also adapted some data-intensive server-side and STM benchmarks to the event-based
model. The following benchmarks have been considered for evaluation:

• Intset. The service consists of a set of integer numbers implemented with differ-
ent data structures (i.e., a linked list and a red-black tree). The service is queried
with an increasing number of write requests (modify or delete, with write prob-
ability going from 5% to 20%). The benchmark simulates a service cache, and
therefore makes use of different event target (one per client request). Each event
target might issue a number of unordered events.

• Bank. The benchmark simulates a bank Web service mediating online payments.
The benchmark is based on unordered events.

127 8.3 Performance Evaluation

0 5 10 15 20 25
0.5

1

1.5

Prob 5%

Prob 20%

Threads (#)

Ex
ec

ut
io

n
ti

m
e

(s
ec

)
Intset RB 4096 (time)

0 5 10 15 20 25

1

1.2

1.4

1.6

Prob 5%

Prob 20%

Threads (#)

Sp
ee

du
p

Intset RB 4096 (speedup)

0 5 10 15 20 25

1

2

3

Prob 0%

Prob 5%

Prob 20%

Threads (#)

Ex
ec

ut
io

n
ti

m
e

(s
ec

)

Intset LL 8192 (time)

0 5 10 15 20 25

1

1.5

2

2.5

Prob 0%

Prob 5%
Prob 20%

Threads (#)

Sp
ee

du
p

Intset LL 8192 (speedup)

Figure 8.6. IntSet benchmark with the Hybrid PEV. Speedup is relative to a Truf-
fle.PEV engine running with 1 worker thread.

• WordCount. The benchmark simulates a service hosting some static files, and
performing some queries over the files. Since every client request requires the
service to scan multiple files, each file correspond to one or more event emis-
sions, and therefore multiple files are parsed in parallel for every single client
request. The service makes use of a shared data structure to accumulate the
temporary state needed in order to produce the request, and is therefore a write-
intensive benchmark. The benchmark is based on unordered and chained events,
using only the global event target.

• PageRank (with side effects). The benchmark implements the PageRank algo-
rithm presented in the previous section, with the main difference that each "map"
task updates a shared data structure in place to store the temporary data struc-
tures thus increasing the amount of conflicting event handlers. This version of
the benchmark corresponds to a more JavaScript-like way of writing sequential

128 8.3 Performance Evaluation

CPU-oriented applications, as side effects are used to store temporary results.

The performance data for the IntSet benchmark is presented in Figure 8.5 and 8.6.
As expected, the Optimistic system features a better scalability compared to the hybrid
system. The two figures also show the absolute execution time for the benchmarks
(corresponding to the average execution time for performing a fixed number of oper-
ations on the data structure). The execution time shows clearly that the two runtime
systems offer a trade-off between scalability (i.e., throughput) and latency. With a low
number of threads, the Hybrid runtime can serve client requests with a latency which
is up to 4 times lower than the one offered by the Optimistic runtime, and is very close
to the one of the non-modified single-threaded runtime. Conversely, the Optimistic
runtime offers higher throughput also for data-intensive computations. The perfor-
mance data for the other benchmarks (in Figure 8.7 and Figure 8.8, and Figure 8.9)
seem to confirm this trend, always having the Optimistic system exposing better scala-
bility with an increasing number of requests at the cost of response latency. In general,
the benchmarks indicate that when the workload involves data-intensive operations
with no CPU-intensive operations of any type the two runtime systems offer differ-
ent performance characteristics, with the TL2-based one offering better scalability for
data-intensive computations at the cost of execution latency, whereas the FastLane-
based one can offer almost the same execution latency of a single-threaded event loop,
but can scale only up to 3x times the execution time of a single-threaded loop.

0 10 20

0.2

0.4

0.6

0.8 Opt.

Hybrid

Threads (#)

Ex
ec

ut
io

n
ti

m
e

(s
ec

)

Bank (time)

0 10 20
0

2

4

6

Opt.

Hybrid

Threads (#)

Sp
ee

du
p

Bank (speedup)

2 4 6 8

1

2

3
Opt.

Hybrid

Threads (#)

Sp
ee

du
p

Primes (speedup detail)

Figure 8.7. Bank benchmark. Speedup is relative to the corresponding Truffle.PEV
engine running with 1 worker thread.

8.3.4 Runtime overhead

In order to assess the runtime overhead of runtime barriers, all the benchmarks intro-
duced in the previous sections have been executed running the Truffle.PEV runtimes
with a single thread only (i.e., the main thread). All the single-threaded executions

129 8.3 Performance Evaluation

0 5 10 15 20 25

20

40

Opt.

Hybrid

Threads (#)

Ex
ec

ut
io

n
ti

m
e

(s
ec

)
WordCount (time)

0 5 10 15 20 25

1

2

3

4
Opt.

Hybrid

Threads (#)

Sp
ee

du
p

WordCount (speedup)

Figure 8.8. Truffle.PEV WordCount. Speedup is relative to the corresponding
Truffle.PEV engine running with 1 worker thread.

0 5 10 15 20 25

10

20

30

Opt.

Hybrid

Threads (#)

Ex
ec

ut
io

n
ti

m
e

(s
ec

)

Pagerank (time)

0 5 10 15 20 25

1

2

3

4

5
Opt.

Hybrid

Threads (#)

Sp
ee

du
p

Pagerank (speedup)

Figure 8.9. Truffle.PEV Pagerank. Speedup is relative to the corresponding Truf-
fle.PEV engine running with 1 worker thread.

have then been compared against a non-modified single-threaded execution of the
benchmarks. In this way, it is possible to measure the cost of the runtime barriers for
the two PEV runtimes. Results are described in Table 8.1. As a reference, the experi-
ments have also been executed using the Nashorn [10] JavaScript engine included in
the recent release of the JDK1.8. Nashorn is a state-of-the-art JavaScript runtime for
the JVM, and is included in the evaluation as a reference for the non-modified Truffle
JavaScript engine. Other engines such as V8 and SpiderMonkey tend to perform better
than Nashorn, but are not based on the JVM runtime.

As depicted in the Table, the overhead for the benchmarks considered is in line
with the runtime overhead of STM-based runtimes, going from 1.15% up to a factor of

130 8.3 Performance Evaluation

Av
er

ag
e

LL
81

92
,P

ro
b.

0
LL

81
92

,P
ro

b.
5

LL
81

92
,P

ro
b.

20
RB

40
96

,P
ro

b.
0

RB
40

96
,P

ro
b.

5
RB

40
96

,P
ro

b.
20

M
an

de
lb

ro
t

Pr
im

es

Ba
nk

W
or

dc
ou

nt

Pa
ge

ra
nk

M
at

rix

Not-modified 1 - - - - - - - - - - - -
Optimistic 3.25 1.16 3.88 3.75 1.2 5.31 4.88 2.86 1.11 3.43 4.43 2.65 4.31
Hybrid 1.28 1.16 1.33 1.25 1.5 1.31 1.36 1.07 1.01 1.75 1.23 1.16 1.13
Nashorn 1.95 1.26 1.39 1.25 3.5 2.81 3.23 1.05 2.78 2.12 2.22 1.12 0.75

Table 8.1. PEV runtime overhead (% slowdown factor).

4 times the non-modified execution time.
As expected, the Hybrid runtime is able to expose a lower overhead, and such

runtime is always faster than the Optimistic one. In general, however, it has to be
considered that for server-side applications the overhead of the Optimistic runtime
might still be acceptable, as it allows the service to serve clients in parallel.

8.3.5 Chained and ordered events

All the benchmarks presented in the previous sections use a mix of ordered and un-
ordered event emission, usually with unordered events to trigger the execution of some
computation in parallel. To assess the performance of the two PEV runtimes with event
handlers involving a more complex interaction with the different classes of events they
support, we modified some of the benchmarks of the previous section and we mea-
sured the scalability with an increasing amount of ordered tasks for a same given event
target.

As we did for the previous section, we also modified the microbenchmarks of the
previous section to measure the systems in ideal conditions. For each experiment we
executed the microbenchmarks with two distinct event classes, one with ordered event
ordering and another with out-of-order execution. We then measured the performance
of the PEV engines with an increasing amount of ordered tasks. As defined by the
PEV programming model, each ordered task has to wait for its predecessors before
execution; an increasingly number of ordered tasks is therefore expected to reduce the
throughput of the engine, as event handlers must be executed sequentially. Moreover,
an increasing number of ordered tasks might introduce additional overhead due to
out-of-order speculative event execution, as executing such event handlers in parallel
might reduce the ability of the PEV system to process other unordered events (if any).
This is however balanced by the ability to speedup ordered event execution when event
handlers do not conflict.

The results for the two classes of microbenchmarks discussed are depicted in Fig-
ure 8.10. To show the performance degradation caused by commit-time reordering and
avoid measuring other aspects such as the contention on the global queue, we executed
the experiment on the ideal case, where both systems can offer ideal scalability. In gen-

131 8.3 Performance Evaluation

0 10 20
0

5

10

15
Ord 0%

Ord 10%

Ord 50%

Threads (#)

Ex
ec

ut
io

n
ti

m
e

(s
ec

)

Orptimistic PEV

0 10 20
0

5

10

15 Ord 0%

Ord 10%
Ord 50%

Threads (#)

Sp
ee

du
p

Hybrid PEV

0 10 20

1

2

3 Ord 10%

Ord 50%

Threads (#)

Sp
ee

du
p

Hybrid PEV (detail)

Figure 8.10. Array microbenchmark (1M) with an increasing number of chained
events. Speedup is relative to a Truffle.PEV engine running with 1 thread.

eral, the microbenchmarks show that with an increasing amount of (non-conflicting)
event handlers that have to wait for their predecessor before committing the overall
system’s performance are affected very differently, depending on the PEV implementa-
tion. For the Optimistic runtime, a small number of ordered event handlers does not
affect scalability until the number of parallel workers reaches a certain number. This
is partially because the Optimistic runtime also executes ordered handlers in parallel,
speculatively. Since event handlers do not conflict, the runtime can effectively execute
them in parallel. Things are different with the Hybrid runtime, in which ordered tasks
are executed by the main thread, and only a subset of the worker threads attempts
to speculatively execute them out-of-order. This speculative approach offers scalability
for non-ordered handlers only up to a factor of 2x, and shows that the Hybrid PEV can
speculatively execute ordered events out-of-order only for a limited factor.

0 10 20
0

10

20 Ord. 0%

Ord. 10%

Ord. 50%

Threads (#)

Ex
ec

ut
io

n
ti

m
e

(s
ec

)

Optimistic PEV

0 10 20
0

5

10

15
Ord 0%

Ord 10%

Ord 50%

Threads (#)

Sp
ee

du
p

Hybrid PEV

0 10 20

1

1.2

1.4

1.6

1.8 Ord 10%

Ord 50%

Threads (#)

Sp
ee

du
p

Hybid PEV (detail)

Figure 8.11. CPU-intensive microbenchmark (1M) with an increasing number of
chained events. Speedup is relative to a Truffle.PEV engine running with 1 thread.

132 8.3 Performance Evaluation

0 5 10 15 20

1

2

3

4
Ord. 10%

Ord. 50%

Threads (#)

Sp
ee

du
p

IntSet LL (prob 0%)

0 5 10 15 20 25

1

2

3
Ord 10%

Ord. 50%

Threads (#)

Sp
ee

du
p

IntSet LL (prob 5%)

0 5 10 15 20 25
0

5

10

15

20

Unordered

Ord. 10%

Ord. 50%

Threads (#)

Sp
ee

du
p

Matrix Mult. (6402)

0 5 10 15 20 25

2

4

6 Unordered

Ord. 10%

Ord. 50%

Threads (#)

Sp
ee

du
p

Bank

0 5 10 15 20 25

1

2

3

4

Unord.

Ord. 10%

Ord 50%

Threads (#)

Sp
ee

du
p

WordCount

0 5 10 15 20 25

1

2

3

4
Unord.

Ord. 10%

Ord 50%

Threads (#)

Sp
ee

du
p

PageRank

Figure 8.12. Truffle.PEV Mixed chained and unordered workloads. Speedup is
relative to an Optimistic runtime running with 1 worker thread.

133 8.3 Performance Evaluation

0 5 10 15 20 25

1

1.5

2 Unordered

Ord. 10%

Threads (#)

Sp
ee

du
p

Matrix Mult. (6402)

0 5 10 15 20 25
0.5

1

1.5

Unordered

Ord. 10%

Ord. 50%

Threads (#)

Sp
ee

du
p

Bank

0 5 10 15 20 25

1

1.5

Unord.

Ord. 10%

Ord. 50%

Threads (#)

Sp
ee

du
p

WordCount

0 5 10 15 20 25

0.5

1

1.5

Unord.

Ord. 10%

Ord. 50%

Threads (#)

Sp
ee

du
p

PageRank

Figure 8.13. Truffle.PEV Mixed chained and unordered workloads. Speedup is
relative to an Hybrid runtime running with 1 worker thread.

We also executed a subset of the benchmarks presented in the previous sections
with the same approach, i.e., with ordered events. Results for the Optimistic runtime
are depicted in Figure 8.12, while the same experiments using the Hybrid PEV are pre-
sented in Figure 8.13. For both runtimes we present data only for experiments in which
the PEV was able to improve its performance by using speculative parallelization.

For what concerns the Optimistic runtime, the benchmarks confirm that a limited
number of ordered event handlers affects the system performance by a factor that is
roughly proportional to their number. In particular, when the workload is using a
limited number of ordered event emissions (e.g., 10%) most of the benchmarks offer
performance close to the one of unordered event emission, thus confirming the ef-
fectiveness of the speculative parallelization performed by the PEV runtime. When the
number of event handlers that have to be executed respecting global ordering becomes
significant (i.e., 50%) the Optimistic PEV runtime can still offer some scalability.

134 8.3 Performance Evaluation

For what concerns the Hybrid runtime, the benchmarks are in line with the mi-
crobenchmarks, as the increasing number of ordered events limits the scalability of the
system by a considerable factor. In all the considered benchmarks, however, the en-
gine can still offer some speedup over single-threaded execution. Considering that the
Hybrid system’s focus is runtime overhead this confirms that also with ordered events
the engine can still offer some improvement.

8.3.6 Summary

The two PEV runtimes based on the Truffle framework introduced in this Chapter offer
different performance characteristics, with the Optimistic runtime almost always out-
performing the Hybrid one in terms of scalability, and -dually- the Hybrid one almost
always offering a lower overhead. In all the considered cases the Optimistic system
offers a better scalability with mixed ordered and unordered events, even presenting
good scalability for benchmarks featuring ordered events that do not conflict, leading
to an effective parallelization of the workload (e.g., matrix multiplication and intset).
In general, when the workload offers some opportunities for parallel execution, either
because event handlers do not conflict or because unordered event emission is used
to implement certain computations (or both) the two engines can improve the exe-
cution time of the event-based application through parallel execution. In particular,
the Optimistic PEV runtime can offer very good speedup when the workload is nicely
parallelizable, and still offers opportunities for parallel execution when data is con-
tented between event handlers. When contention is high, the Hybrid PEV should be
preferred over the Optimistic one, as it offers better execution latency. For pathological
cases (e.g., applications in which every event handler cannot be executed in parallel),
a single-threaded event loop could be preferred over the parallel event loop: thanks to
the programming-model compatibility enforced by the PEV API, it is always possible to
deploy applications developed with unordered execution in single-threaded runtimes.

Part IV

Epilogue

135

Chapter 9

Related Work

This Dissertation covers research topics from multiple fields. Related work can be
found from programming languages to runtime systems research, through Web services
and service-oriented systems, up to software transactional memory runtimes and spec-
ulative runtimes in general. In this chapter we give an overview of the related research
work which has not been already covered in other chapters of this Dissertation.

9.1 Server runtime systems

In the past decades, significant engineering and research efforts have focused on
Web server design [49]. Server runtime architectures can be roughly classified
into three categories [135]: one-process/thread-per-connection, event-based, and hy-
brid [89, 116]. The first category corresponds to servers in which each connection
is assigned a single thread/process which handles the request and generates the ap-
propriate response. This class of services is usually characterized by a good response
latency, but presents scalability issues in terms of concurrent connections handling.
Also, instantiating a thread per connection has an impact on memory utilization. The
second category of runtime design corresponds to servers in which every I/O-related
operation is associated with a callback which is executed upon the emission of a spe-
cific runtime event. Events are enqueued in a specific queue and are processed by an
event loop executed on a single process. This design solution allows a single process
to handle multiple connections per thread/process, thus reducing the memory foot-
print of the server. The third class corresponds to servers designed using a hybrid
architecture featuring both threads and event queues. An important example of such
architectures is represented by the Staged Event-Driven Architecture (SEDA) [155]. In
SEDA the server is composed of multiple processing stages, each of which processes
events similarly to an event loop, but using a pool of concurrent threads. For what
concerns the first two categories, there also exist several examples of event-based Web

137

138 9.1 Server runtime systems

servers [133], as well as thread/process-based servers [149].
A long-running debate (e.g., [132, 149]) comparing the merits of the two ap-

proaches has been summarized in [135]. In the same paper, an exhaustive evaluation
shows that event-based servers yield higher throughput (in the order of 18%) com-
pared to thread-based servers under certain conditions (i.e., for serving static pages).

In the context of hybrid server systems, recent research has attempted to paral-
lelize existing event-based static HTTP servers (i.e., Web servers serving static pages
to clients) with techniques to statically or manually identify which callback could be
executed in parallel. For instance, the libasync-mp library [158] enables event-based
servers to execute multiple callbacks on multiple cores. The parallelization approach
adopted by the library is based on callback coloring: each callback is assigned a color
(manually, by the developer), and callbacks with the same colors will be executed
on the same core, while callbacks having different colors will be executed on different
cores. Coloring-based approaches have shown good performance, and further research
has also demonstrated possible optimizations based on work-stealing [85]. The main
limitation is that developers must manually indicate which callback should be executed
in parallel. To overcome this limitation some static analysis techniques to automate
color assignment to callbacks can be used. For instance, Elyze [134] is a static-analysis
tool which analyzes the source code of multiple callbacks, and by identifying sets of
callbacks sharing the same data can schedule them in parallel. Callbacks coloring is a
static, manual, scheduler-based, approach which shares with event targets in the PEV
the goal of scaling services when multiple connections can be processed in parallel.
Event targets are however a programming model abstraction, and can be employed
in contexts other than connection handling. Moreover, coloring-based approaches do
not benefit from any dynamic optimization, and therefore might offer only limited
scalability if employed at the VM-level as the PEV1.

9.1.1 Asynchronous programming and event-based services

As discussed, event-based servers [61, 135] have proven to be very scalable, as they
are able to handle concurrent requests with a simple and efficient runtime architec-
ture [118, 115]. However, programming services to run on asynchronous event-based
servers has always been considered a complex task. Event-based services developed
in native languages such as C are subject to the so-called problem of stack-ripping,
which forces the developer to manually manage the data needed for processing each
asynchronous operation, as successive callbacks (one per event) cannot be called se-
quentially, and thus cannot benefit from the automatic stack management found in
modern languages. Also, the presence of multiple callbacks makes it hard to compose
multiple I/O operations based on multiple callbacks.

1For instance, in a coloring-based system a callback featuring an if block that cannot be statically
analyzed must be "pessimistically" considered as unsafe for parallelization, whereas any PEV runtime
system will adapt its parallel execution strategy dynamically.

139 9.1 Server runtime systems

Another limitation is that the event loop forces the developer to use asynchronous
callbacks invocation. Such model often requires to use the continuation passing pro-
gramming style [104] in which either callbacks must be nested or manually man-
aged [108]. Furthermore, continuation passing style might require developers to in-
vert the control flow of the application’s logic, for instance requiring to register the
event handler for a specific I/O operation before the I/O operation starts. Stack rip-
ping and inversion of control, are outside of the scope of this Dissertation, as several
solutions have already been proposed [105].

A proposed solution to the issues of low-level native asynchronous programming
is the AC [90] (“Asynchronous C”) programming model adopted for implementing the
I/O primitives in the Barrelfish OS [36]. With AC any I/O operation is expressed using
a synchronous call which is then executed asynchronously. The approach introduces
some new constructs (like async and do ... finish) to the C language and adopts
a compiler-based approach (or C-Macros, where possible) to translate synchronous
operations into operations which will be executed asynchronously. An alternative ap-
proach is represented by Conch [107]. Conch is a library for event-based development
of network applications which increases the abstraction level for the I/O interaction,
thus enabling systems developed using its API to be efficiently executed on both event-
based and thread-based runtime systems. Like AC, Conch adopts a compiler-based
approach (more precisely, a source-to-source translator), and a library.

Both the programming models of AC and Conch share with the PEV model the no-
tion of callback-based asynchronous programming. Differently from such approaches,
the PEV is explicitly designed to be integrated in the (dynamic) language used for the
development of the service core business logic, whereas AC/Conch are limited at con-
nection handling and processing. Moreover, none of the approaches above relies on the
impression of single-threaded concurrency, and leaves to the developer the manage-
ment of the parallelization of the service (which has to be carried out using traditional
techniques). Finally, other approaches have been proposed to ease the management of
event-based programs using static analysis techniques (such as eel [58]).

9.1.2 Event-based frameworks

The performance of event-driven architectures has promoted custom programming
models for Web service development that rely (explicitly or implicitly) on event loops.
Frameworks of this class are based on modern Operating Systems’ asynchronous APIs
such as epoll or select [135]. Examples of event-based frameworks include libraries
(e.g., Java NIO [35], and Ruby’s EventMachine [18]), and language-level integrations
such as Node.JS [111]. A similar approach with relevant differences is represented by
a JVM-based framework called Vert.x [26]. Vert.x features the same asynchronous pro-
gramming model of Node.JS, with the main difference that no explicit process-based
parallelism can be used, and multiple requests are automatically distributed across
multiple share-nothing event loops. Vert.x uses a coloring-based parallelism model for

140 9.1 Server runtime systems

callbacks execution (each new connection is assigned a core which will handle the
request until its end, preventing per-request parallelism). Differently from Node.JS,
Vert.x processes can share some global data structures between multiple processes.
Such data structures must be read-only and cannot be modified, and differently from
a PEV model, Vert.x-based services cannot exploit per-request parallelism (i.e., each
single request cannot be processed in parallel, unless standard JVM-based models such
as Threads and locks are used).

Out of the realm of event-based systems, other approaches have been proposed to
deal with asynchronous I/O. For instance, a thread/events hybrid approach has been
proposed by Li and Zdancewic’s in [117]. Their approach based on Haskell allows to
write highly concurrent services using monads as an abstraction for both threads and
events. The F# language [144] also features a set of rich asynchronous primitives
with elements of type Async<T> representing computations which could return before
their completion. The asynchronous extensions of F# (and their similar counterpart
for the Scala language [1]) enable a reactive-like programming style similar to the one
described in Chapter 4 with the PEV. The main difference is that the PEV targets single-
threaded runtime systems providing safe parallelism, whereas these asynchronous ex-
tensions address more complex runtime systems (such as the CLR or the JVM) and
usually do not provide safe parallel execution.

9.1.3 Event emission and Asynchronous task-based programming

The event-based model shares some similarities with the asynchronous execution of
tasks supported by popular frameworks such as the Java Fork/Join Pool [110]. Indeed,
from a pure runtime perspective any task asynchronous executor service (including the
Fork/Join pool) running with a single worker thread is conceptually equivalent to a
single-threaded event loop2. However, differences with respect to common executor
services can be summarized by the following two aspects:

• Safe execution. In a PEV model every task is protected against data raced from
other tasks by enforcing isolation and atomicity at the runtime level.

• Ordered execution. The PEV model enforces ordering via a specific API, whereas
an executor service attempts to execute parallel tasks as soon as possible.

Following with the analogy with other parallel programming models for shared-
memory concurrency, event handlers resemble the approach of safe futures [153], with
the main difference that safe futures have to be protected against races with code
executed outside of the future (enforcing so-called strong atomicity [91]).

2There are, however, still relevant differences in the way an event loop interleaves parallel processing
of I/O with sequential execution of callbacks, as in the PEV model every event handler does not execute
I/O operations using blocking primitives.

141 9.1 Server runtime systems

9.1.4 Explicit parallelism models

The one-process/thread-per-connection model can be implemented using several
general-purpose parallel programming models. Systems developed using a separate
process-per-connection (all threads of execution are in different address spaces) are
often called multi-process servers (MP), while shared-memory thread-per-connection
architectures (multiple threads within a single address space) are called multi-threaded
servers [133] (MT). MP services can be implemented with popular high-performance
libraries (e.g., boost [3]), requiring the developer to manage the connection handling
phase (for instance, using an embeddable HTTP server as a front-end [11]), and pre-
venting multiple processes from sharing a common memory space. This has the ad-
vantage of allowing a more simple deployment on distributed architectures. MT ser-
vices can be implemented with basically any programming language supporting multi-
threading. Despite the advantage of having a common memory space, the coordination
and the synchronization between threads has to be manually implemented by the de-
veloper. Other, more high-level, solutions for the development of such services exist
(e.g., Servlets [9] and RESTlets [120]). However, such models still require manual
synchronization.

9.1.5 Actors

Alternative to threads, the Actor model [31] is a concurrency and coordination ab-
straction based on component isolation and asynchronous message passing. The Actor
model lies between high-level implicit parallelism approaches and explicit parallelism
models, as it enables to express parallel applications without having to deal with con-
currency primitives such as locks or barriers, but it still requires the developer to reason
about the relations between multiple parallel entities (and about the number of such
entities). Actors are supported in many programming languages, like Scala [112], Er-
lang [23], Io [24], and are also available through specific libraries [103]. Of particular
interest in the context of server-side development is the Akka framework [1]. Akka is
an actor-based framework for the development of distributed applications for the JVM
(supporting Scala, Java, and other languages). One of Akka’s most interesting features
is the possibility to target both clusters and multicores with the same abstraction (the
actor), allowing the developer to write distributed applications which can be transpar-
ently re-deployed on both multicores and clusters. The approach is able to guarantee
high scalability. However, the Akka framework still requires the developer to reason
in terms of parallel entities, of their number, and about how (and when) their con-
figuration should be adapted for performance tuning. The framework also offers a
limited support for STM-based speculative execution (based either on the DeuceSTM
bytecode rewriting STM for Scala [88] or on the CCSTM runtime [46]), which still
requires the developer to explicitly use atomic blocks or transactional references. The
PEV model can be used in a similar way, with the main difference that its runtime as

142 9.2 Speculative runtime systems

well as the speculative execution of callbacks is transparent to the user. Finally, other
similar approaches are [47, 37].

9.2 Speculative runtime systems

In our research we investigate how speculative runtimes could be used to safely ex-
ecute event-based services on multicores, and in particular to investigate the relation
between asynchronous callbacks and atomic operations. Runtimes to execute atomic
blocks in parallel can be divided in two main classes, namely pessimistic (lock-based)
and optimistic concurrency control.

Lock-based approaches rely on the correct acquisition of all the needed locks to
ensure isolation and atomicity. Several approaches in this class are based on a static
analysis aimed at identifying for each atomic block the set of locks to be acquired, and
the appropriate acquisition order to prevent deadlocks. The static analysis thus tries to
identify for each atomic block the potential side effects, and protects the shared data
structures accordingly. In [52], for instance, the authors present a compiler-based
automatic lock-inference framework. The system is based on a compile-time analysis
which identifies the set of locks to be acquired, and a runtime library to perform the
lock acquisition. The analysis is able to infer multi-granularity locks, and has shown
good performance on a variety of workloads. Many other compiler-based approaches
have been proposed [87, 125], with differences in the type of locks acquired (e.g.,
granularity, read/write locks, etc.), and the way the static analysis identifies shared
data access patterns.

Optimistic concurrency control techniques rely on either software or hardware
transactional memory [91]. Transactional memories adopt a concurrency model in
which operations appear to be consistent and to happen atomically and isolated (ACI).
To this end, operations are executed in parallel, and in case of any conflict, opera-
tions either succeed (and commit their result), or fail. In the latter case, transactions
are usually aborted and re-executed. Ensuring the ACI properties through a program-
ming model-level abstraction greatly simplifies the way concurrency can be managed
by developers [91].

Many software transactional memories (SMT) models and implementations have
been proposed [48, 66, 114, 69, 138]. The design of STMs can vary in several as-
pects, and in general STMs are categorized in the way they manage concurrency, data
versioning, and conflict detection [91]. To manage concurrency some STMs adopt a
pessimistic approach which protects each data modification using locks. This ensures
that the TM system can detect and resolve a conflict at the moment it occurs. Other
TMs use an optimistic approach and log every data modification. Conflicts are detected
and resolved after they occur [91]. To manage versioning TMs need to log shared data
access. Two general approaches can be identified: eager and lazy version manage-
ment. With eager management [130] updates are immediately applied to the shared

143 9.2 Speculative runtime systems

data, and the TM system needs to hold an undo log to rollback operations in case of
failure. With lazy versioning, TMs do not modify shared data until they are able to
commit. To this end, the system keeps a re-do log, which can be used to re-execute
the transaction upon failure. Finally, TMs can adopt an eager or lazy approach also to
identify conflicts, detecting the conflict as soon as possible or at commit-time.

Despite the simplicity and the convenience of the atomic block abstraction, main-
taining atomicity and isolation requires a computational overhead which often limits
TMs’ performance (some argue such overhead is too relevant for adopting STMs as
a practical solution [50], others do not [68]). To solve these limitations, several ap-
proaches have been proposed to optimize conflict detection [66, 67, 141], transactions
scheduling [92], and in general contention management [70, 121]. Some other ap-
proaches have tried to combine locks and transactions to improve performance [122]
through a compiler-based analysis to infer where locks could perform better than trans-
actions [74]. Likewise, run-time techniques have been proposed to dynamically switch
between locks and transactions [147], as well as to change the STM algorithm cur-
rently in use, in order to obtain more stable performance [152]. A notable software
transactional system is the SpecTM [71] transactional memory. SpecTM proposes to
trade off the expressibility (and the generality) of traditional transactional memory
APIs against performance. In particular, SpecTM identifies a set of data access patterns
which could be addressed using a transactional approach with performance compara-
ble to Compare-And-Swap [97] operations. As discussed in Chapter 5, the runtime sys-
tems described in this Dissertation are based on the TL2 [66] and the FastLane [151]
algorithms.

9.2.1 Commit-time reordering

Reordering speculative tasks (in the form of transactions) at commit time with the goal
of enforcing deterministic execution has already been described in [45, 44], where
speculative execution is used in the context of an event-processing system3 to pro-
cess events out-of-order. Another example of commit time reordering has been de-
scribed in the context of the IPOT model [150], a programming model providing the
developer with a way to deterministically execute transactions with a given ordering.
Transactions in IPOT are used as a mechanism to extract parallelism from a sequential
application. Differently from the PEV model, the IPOT programming model requires
developers to manually annotate blocks of sequential code to be executed potentially
in parallel, by the STM runtime. Moreover, the PEV model supports events reordering
at a logical (programming model) level, which does not necessarily imply that ordered
events will really be executed sequentially and/or in parallel. Indeed, some runtime
systems presented in this Dissertation (e.g., the Optimistic PEV in Truffle) do not give
any guarantee on the actual degree of parallelism of any event execution.

3Not to be confused with a single-threaded event loop.

144 9.3 Parallel programming for the Web

9.2.2 Single-threaded overhead reduction

The problem of the runtime barriers cost for STM systems has been studied from many
perspectives, and several solutions have been proposed. One of the PEV runtimes
implemented in Truffle.PEV is FastLane [151] which is perhaps the most recent STM
algorithm aimed at reducing the overhead for at least one (main) thread. Other ap-
proaches exist. In [30], for instance, authors propose a model in which one transaction
at time is allowed to execute writes directly to shared objects (using an undo log) while
other transactions use a re-do log, and buffer writes. The goal of this hybrid model is to
reduce the overhead of some logging-intensive transactions over other ones. Another
approach is represented by the notion of Irrevocable transactions [154] (sometimes
also called Inevitable transactions [140]). In both cases, the general idea is that a
transaction is marked with highest priority than others, and thus can survive commit-
time conflicts with other lower-priority transactions (and handle I/O). In principle, a
PEV system could be seen as a system in which the current globally ordered event (i.e.,
the next event which will commit with global target) is an irrevocable event handler.

9.3 Parallel programming for the Web

Notable efforts are being directed towards overcoming current limitations of JavaScript
concerning its support for parallelism. As part of the HTML5 standardization, Web-
Workers [8] offer a simple message-passing abstraction for implementing the Actor
model in JavaScript. This technology has been used in [75] to develop an event-based
programming model for parallelizing JavaScript applications, which hides WebWorkers
from the developer’s perspective but still assumes a share-nothing memory model. On
the server-side, Cluster [111] is a process-based parallelism library for Node.JS imple-
menting a programming model similar to Actor-based concurrency. On the client-side,
RiverTrail [93] offers an API for developing data-parallel computations by means of
automatic compilation of JavaScript functions (which might potentially even be of-
floaded to an OpenCL [16] runtime, so that parts of the computation is executed on
the GPU). Only applications using temporary immutable data structures are supported.
The model is inspired by a similar solution for the Java platform called Parallel Clo-
sures [123]. The approach attempts to bring temporal immutable parallelism to Java
through constructs similar to async and finish. Parallel Closures operate on im-
mutable (read-only) shared data, and support only fork/join parallel patterns. All of
these approaches show the importance and the need for simple parallelism support
in JS applications, and motivate solutions like the one of the PEV for the server-side
nonblocking counterpart.

Out of the realm of JavaScript and client-side development, many languages fea-
ture libraries and tools suitable for parallel programming. As an example, task-based
parallel programming can be found in languages such as X10 [51], F# [144] and other

145 9.3 Parallel programming for the Web

structured models [101, 54, 139, 148]. Each language provides different ways of con-
trolling and interacting with parallel tasks, but none of them is targeting an inherently
single-threaded language such as JavaScript.

9.3.1 Scheduler-based approaches and the S scripting language

Any speculative runtime presented in this Dissertation relies on the assumption that it
is not possible to statically assert that an event handler will (or will not) conflict with
other events executed concurrently, as it is impossible to make any assumption on the
kind of requests a service will receive. This consideration motivates the adoption of
speculative runtimes such as the ones using STM.

A radically different approach is represented by scheduling-based systems. In such
systems, it is possible to statically identify all the possible conflicts between parallel
tasks (usually at compile time) delegating to the runtime only the scheduling of such
tasks. Relevant examples of such systems are represented by [98]. Belonging to this
same class of runtime systems is S [42], a scripting language for the development of
server-side applications in which the developer can only express operations that are
pure, stateful, or stateless, and the runtime automatically takes care of the paralleliza-
tion of operations that can be safely executed in parallel.

146 9.3 Parallel programming for the Web

Chapter 10

Concluding remarks

In this Dissertation we introduced an API and a runtime system for extending
single-threaded event-based programming frameworks with relaxed forms of event
ordering. By relaxing the way events are processed by the underlying event loop, the
programming model offers potential opportunities for parallel execution. To this end,
we have described the implementation of three runtime systems based on some forms
of relaxed events processing. Each of the implementations described in this Disserta-
tion is based on some notion of runtime speculation finalized at the execution of events
in parallel. Approaches relying on STM-based speculation have been implemented in
the context of two existing language runtimes for JavaScript, while an approach based
on a more conservative lock-based approach has been described in the context of the
Scala language.

The main goal of our research has not been to propose an advanced programming
model for experts in parallel programming, but rather to improve an existing program-
ming abstraction (perhaps the most popular one on the Web), providing for a popular
single-threaded programming model a minimal set of limited changes enabling paral-
lel speculative execution. The set of changes introduced by the PEV model are con-
servative, meaning that no application written for a single-threaded runtime would be
affected by them. The main application domain for the PEV model is server-side devel-
opment, with a particular focus on the JavaScript language and Node.JS. The peculiar
characteristics of the workloads commonly found in such context (e.g., read-only, state-
less, I/O-bound) permit to employ the PEV model for the safe parallelization of appli-
cations written using a single-threaded event loop programming model. Moreover, the
support for safe parallel execution of callbacks opens the door to a new, unexplored,
class of parallel applications mixing event-based computing, parallel processing, and
safe mutable shared state.

Each of the implementations described in this Dissertation is based on some no-
tion of runtime speculation finalized at the execution of events in parallel. Each of the

147

148 10.1 Future research directions

runtime systems presented in this Dissertation behaves differently with different work-
loads, and does not correspond to a generic solution addressing all the issues proper of
the parallel programming research domain. There is no best solution, and each runtime
system trades runtime overhead against scalability.

Although the research community agrees on the fact that (software) transactional-
memory-based approaches have limitations, the research presented in this dissertation
suggests that although STM-based systems cannot be considered a generic solution for
high scalability (say, thousands of cores), they can still correspond to valid runtime
solutions to bring safe parallelism into high-level managed languages based on single-
threaded concurrency.

10.1 Future research directions

Providing the developer with the single-threaded strongly ordered event loop impres-
sion comes at the cost of scalability. We have shown that by relaxing the order in which
events can be processed more scalable systems can be built in the context of server-side
computing. Still, enforcing atomicity and isolation on a per-event basis has the cost
of logging and metadata management. In this dissertation we argued that for certain
workload types the overhead might still be acceptable, in particular in the domain of
single-threaded languages such as JavaScript, where the only alternative is manual
share-nothing parallelization.

Looking forward, language runtimes are moving towards a diffuse cloud-based
deployment of services. Dominant trends seem to anticipate a near future in which
cloud-based deployment will be the rule, and cloud developers will have to deal with
parallelism more than ever. The peculiarities of the Cloud-based deployment, however,
will unavoidably make existing approaches to high-performance computing such as,
e.g., MPI [39] and pthreads unpractical, as the cloud hosting infrastructure might
virtualize any OS-level service (and any language runtime), and it thus might even be
impossible for a developer to rely on the fact that the number of processes started by
his application will map to real OS processes.

A solution might come from models offering the properties of structured paral-
lelism and PGAS memory [51], as such systems give more freedom to the language
runtime to optimize the parallelization strategy to adopt. However, such models might
need to be re-designed, and adapted to the needs of the Cloud scenario. In such con-
text, the PEV might be extended to support safe and isolated blocks only for specific
operations (e.g., only while accessing the PGAS space).

Finally -and more specifically to some of the PEV runtimes presented in this
Dissertation- Hybrid HTM/STM-based solutions (such as [124, 62, 76]) might cor-
respond to an open opportunity to improve the performance of the PEV runtimes for
certain workload types.

Bibliography

[1] Akka: A Java and Scala framework with Actors, STM and Transactors. http:

//www.akka.io/.

[2] ASM.JS. http://asmjs.org/spec/latest/.

[3] The Boost library. http://www.boost.org/.

[4] ECMAscript 6 Harmony proxies. http://wiki.ecmascript.org/doku.php?

id=harmony:proxies.

[5] ECMAscript 6 specification Draft. http://wiki.ecmascript.org/doku.php?

id=harmony:specification_drafts.

[6] Google V8 High-performance JavaScript Engine. https://code.google.com/

p/v8/.

[7] Heroku Cloud. http://www.heroku.com/.

[8] HTML5 WebWokers API. http://dev.w3.org/html5/workers/.

[9] Java EE Servlet API. http://docs.oracle.com/javaee/5/api/javax/

servlet/Servlet.html.

[10] JDK8 Nashorn JavaScript Engine. http://openjdk.java.net/projects/

nashorn/.

[11] The Jetty High-Performance Web Server Project. http://jetty.codehaus.

org/.

[12] Memcached: a distributed memory caching system. http://memcached.org.

[13] Microsoft Reactive Extentions. https://github.com/Reactive-Extensions/
RxJS.

[14] Microsoft Windows Azure Cloud Platform. http://www.windowsazure.com/.

[15] Node.JS: Evented programming for networked services in JavaScript. http:

//www.nodejs.org.

149

http://www.akka.io/
http://www.akka.io/
http://asmjs.org/spec/latest/
http://www.boost.org/
http://wiki.ecmascript.org/doku.php?id=harmony:proxies
http://wiki.ecmascript.org/doku.php?id=harmony:proxies
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
https://code.google.com/p/v8/
https://code.google.com/p/v8/
http://www.heroku.com/
http://dev.w3.org/html5/workers/
http://docs.oracle.com/javaee/5/api/javax/servlet/Servlet.html
http://docs.oracle.com/javaee/5/api/javax/servlet/Servlet.html
http://openjdk.java.net/projects/nashorn/
http://openjdk.java.net/projects/nashorn/
http://jetty.codehaus.org/
http://jetty.codehaus.org/
http://memcached.org
https://github.com/Reactive-Extensions/RxJS
https://github.com/Reactive-Extensions/RxJS
http://www.windowsazure.com/
http://www.nodejs.org
http://www.nodejs.org

150 Bibliography

[16] OpenCL, the Standard for parallel programming of GPUs. http://developer.
amd.com.

[17] ReactJS: A JavaScript library for building user interfaces. http://facebook.

github.io/react/.

[18] Ruby EventMachine. http://rubyeventmachine.com.

[19] RxJava: Reactive Java. https://github.com/ReactiveX/RxJava.

[20] SpiderMonkey JavaScript Engine. https://developer.mozilla.org/en-US/

docs/Mozilla/Projects/SpiderMonkey.

[21] Strawman JS parallelism. http://wiki.ecmascript.org/doku.php?id=

strawman:data_parallelism.

[22] The Dart language. http://www.dartlang.org/.

[23] The Erlang language. http://www.erlang.org/.

[24] The Io language. http://iolanguage.com/.

[25] The WebSocket API. http://www.w3.org/TR/websockets/.

[26] Vert.X. https://github.com/purplefox/vert.x.

[27] Web of Things. http://www.w3.org/community/wot/.

[28] WebRTC 1.0: Real-time communication between browsers. http://www.w3.

org/TR/webrtc/.

[29] World Wide Web Consortium - HTML5 Candidate Reccomendation 04. http:

//www.w3.org/TR/html5/.

[30] A.-R. Adl-Tabatabai and A. Welc. Hybrid transactions for low-overhead specu-
lative parallelization, June 5 2012. US Patent 8,195,898.

[31] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT
Press, Cambridge, MA, USA, 1986.

[32] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. F. Sweeney. A survey of adaptive
optimization in virtual machines. In Processings of the IEEE, 93 (2), 2005. Special
Issue on Program Generation, Optimization, and Adaptation, 2004.

[33] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. Operating Systems: Three Easy
Pieces. Arpaci-Dusseau Books, May 2014.

http://developer.amd.com
http://developer.amd.com
http://facebook.github.io/react/
http://facebook.github.io/react/
http://rubyeventmachine.com
https://github.com/ReactiveX/RxJava
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
http://wiki.ecmascript.org/doku.php?id=strawman:data_parallelism
http://wiki.ecmascript.org/doku.php?id=strawman:data_parallelism
http://www.dartlang.org/
http://www.erlang.org/
http://iolanguage.com/
http://www.w3.org/TR/websockets/
https://github.com/purplefox/vert.x
http://www.w3.org/community/wot/
http://www.w3.org/TR/webrtc/
http://www.w3.org/TR/webrtc/
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/

151 Bibliography

[34] D. I. August, J. Huang, S. R. Beard, N. P. Johnson, and T. B. Jablin. Auto-
matically exploiting cross-invocation parallelism using runtime information. In
Proceedings of the 2013 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), pages 1–11, 2013.

[35] J. Bahi, R. Couturier, D. Laiymani, and K. Mazouzi. Java and Asynchronous
Iterative Applications: Large Scale Experiments. In Proceedings of the IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS), pages 1–7,
2007.

[36] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe,
A. Schüpbach, and A. Singhania. The Multikernel: a new OS architecture for
scalable multicore systems. In Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles (SOSP), pages 29–44, 2009.

[37] J. R. v. Behren, E. A. Brewer, N. Borisov, M. Chen, M. Welsh, J. MacDonald,
J. Lau, and D. E. Culler. Ninja: A framework for network services. In Proceed-
ings of the General Track of the annual conference on USENIX Annual Technical
Conference (ATC), pages 87–102, 2002.

[38] K. Birman and T. Joseph. Exploiting virtual synchrony in distributed systems.
SIGOPS Oper. Syst. Rev., 21(5):123–138, Nov. 1987.

[39] B. Blaise. MPI: A message passing interface, 1993.

[40] D. Bonetta, D. Ansaloni, A. Peternier, C. Pautasso, and W. Binder. Node.scala:
Implicit parallel programming for high-performance web services. In Proceed-
ings of the 18th International Conference on Parallel Processing, Euro-Par’12,
pages 626–637. Springer-Verlag, 2012.

[41] D. Bonetta, W. Binder, and C. Pautasso. TigerQuoll: Parallel event-based
javascript. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), pages 251–260, 2013.

[42] D. Bonetta, A. Peternier, C. Pautasso, and W. Binder. S: a scripting language
for high-performance restful web services. In Proceedings of the 17th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming (PPoPP),
New Orleans, LA, USA, February 2012.

[43] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search
engine. In Proceedings of the Seventh International Conference on World Wide
Web (WWW), pages 107–117, 1998.

[44] A. Brito. Optimistic parallelization support for event stream processing systems.
In Proceedings of the 5th Middleware Doctoral Symposium, MDS ’08, pages 7–12,
2008.

152 Bibliography

[45] A. Brito, C. Fetzer, H. Sturzrehm, and P. Felber. Speculative out-of-order event
processing with software transaction memory. In Proceedings of the Second In-
ternational Conference on Distributed Event-based Systems, DEBS ’08, pages 265–
275, New York, NY, USA, 2008. ACM.

[46] N. G. Bronson, H. Chafi, and K. Olukotun. CCSTM: A library-based STM for
scala. def, 9:10, 2010.

[47] B. Burns, K. Grimaldi, A. Kostadinov, E. D. Berger, and M. D. Corner. Flux:
a language for programming high-performance servers. In Proceedings of the
annual conference on USENIX ’06 Annual Technical Conference (ATC), pages 13–
13, 2006.

[48] J. a. Cachopo and A. Rito-Silva. Versioned boxes as the basis for memory trans-
actions. Sci. Comput. Program., 63(2):172–185, Dec. 2006.

[49] V. Cardellini, E. Casalicchio, M. Colajanni, and P. S. Yu. The State of the Art
in Locally Distributed Web-Server Systems. ACM Comput. Surv., 34:263–311,
2002.

[50] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras, and S. Chat-
terjee. Software transactional memory: Why is it only a research toy? Queue,
6(5):46–58, Sept. 2008.

[51] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von
Praun, and V. Sarkar. X10: an object-oriented approach to non-uniform cluster
computing. In Proceedings of OOPSLA, pages 519–538, 2005.

[52] S. Cherem, T. Chilimbi, and S. Gulwani. Inferring locks for atomic sections.
In Proceedings of the 2008 ACM SIGPLAN conference on Programming language
design and implementation (PLDI), pages 304–315, 2008.

[53] G. S. Choi, J.-H. Kim, D. Ersoz, and C. R. Das. A multi-threaded pipelined web
server architecture for SMP/SoC machines. In Proceedings of the 14th Interna-
tional Conference on World Wide Web (WWW), pages 730–739, 2005.

[54] W.-C. Chuang, B. Sang, S. Yoo, R. Gu, M. Kulkarni, and C. Killian. Eventwave:
Programming model and runtime support for tightly-coupled elastic cloud ap-
plications. In Proceedings of the 4th Annual Symposium on Cloud Computing
(SOCC), pages 21:1–21:16, 2013.

[55] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press, Cambridge, MA, USA, 1991.

[56] M. I. Cole. A Skeletal Approach to the Exploitation of Parallelism. In Proceedings
of the Conference on CONPAR 88, pages 667–675, 1989.

153 Bibliography

[57] C. Consel and O. Danvy. Tutorial notes on partial evaluation. In Proceedings of
the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL), pages 493–501, 1993.

[58] R. Cunningham and E. Kohler. Making events less slippery with eel. In Pro-
ceedings of the 10th conference on Hot Topics in Operating Systems - Volume 10
(HotOS), pages 3–3, 2005.

[59] T. V. Cutsem and M. S. Miller. Trustworthy proxies: Virtualizing objects with
invariants. In Proceedings of ECOOP 2013, 2013.

[60] E. Czaplicki and S. Chong. Asynchronous functional reactive programming for
GUIs. In Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’13, pages 411–422, 2013.

[61] F. Dabek, N. Zeldovich, F. Kaashoek, D. Mazires, and R. Morris. Event-Driven
Programming for Robust Software. In Proceedings of the 10th ACM SIGOPS
European Workshop (EW), pages 186–189, 2002.

[62] L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. L. Scott, and M. F.
Spear. Hybrid NOrec: A case study in the effectiveness of best effort hardware
transactional memory. SIGPLAN Not., 46(3):39–52, Mar. 2011.

[63] L. Dalessandro, D. Dice, M. Scott, N. Shavit, and M. Spear. Transactional mutex
locks. In Proceedings of the 16th International Euro-Par Conference on Parallel
Processing: Part II, Euro-Par’10, pages 2–13, 2010.

[64] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large
clusters. In Proceedings of OSDI’04, pages 137–150.

[65] S. Deconinck. Linux system programming. Stéphane Deconinck, 2010.

[66] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In Proceedings of the
20th international conference on Distributed Computing, DISC’06, pages 194–
208. Springer, 2006.

[67] D. Dice and N. Shavit. Understanding tradeoffs in software transactional mem-
ory. In Proceedings of the International Symposium on Code Generation and Opti-
mization, CGO ’07, pages 21–33. IEEE Computer Society, 2007.

[68] A. Dragojević, P. Felber, V. Gramoli, and R. Guerraoui. Why STM can be more
than a research toy. Commun. ACM, 54(4):70–77, Apr. 2011.

[69] A. Dragojević, R. Guerraoui, and M. Kapalka. Stretching transactional memory.
In Proceedings of the 2009 ACM SIGPLAN conference on Programming language
design and implementation, PLDI ’09, pages 155–165. ACM, 2009.

154 Bibliography

[70] A. Dragojević, R. Guerraoui, A. V. Singh, and V. Singh. Preventing versus curing:
avoiding conflicts in transactional memories. In Proceedings of the 28th ACM
symposium on Principles of distributed computing, PODC ’09, pages 7–16. ACM,
2009.

[71] A. Dragojević and T. Harris. STM in the small: trading generality for perfor-
mance in software transactional memory. In Proceedings of the 7th ACM euro-
pean conference on Computer Systems, EuroSys ’12, pages 1–14. ACM, 2012.

[72] G. Duboscq, T. Würthinger, L. Stadler, C. Wimmer, D. Simon, and H. Mössen-
böck. An intermediate representation for speculative optimizations in a dynamic
compiler. In Proceedings of the 7th ACM Workshop on Virtual Machines and In-
termediate Languages, VMIL ’13, pages 1–10, 2013.

[73] C. Elliott and P. Hudak. Functional reactive animation. In Proceedings of Inter-
national Conference on Functional Programming, pages 263–273, 1997.

[74] M. Emmi, J. S. Fischer, R. Jhala, and R. Majumdar. Lock allocation. In Pro-
ceedings of the 34th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’07, pages 291–296. ACM, 2007.

[75] A. Erbad, N. C. Hutchinson, and C. Krasic. Doha: scalable real-time web ap-
plications through adaptive concurrent execution. In Proceedings of the 21st
international conference on World Wide Web (WWW), pages 161–170, 2012.

[76] P. Felber, C. Fetzer, P. Marlier, M. Nowack, and T. Riegel. Brief announcement:
Hybrid time-based transactional memory. In Distributed Computing, pages 124–
126. Springer, 2010.

[77] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext Transfer Protocol – HTTP/1.1. 1999.

[78] R. T. Fielding. Architectural styles and the design of network-based software ar-
chitectures. PhD thesis, 2000.

[79] D. Flanagan. JavaScript. The Definitive Guide. O’Reilly, 5th rev. edition, 2006.

[80] V. W. Freeh. A comparison of implicit and explicit parallel programming. Journal
of Parallel and Distributed Computing, 34(1):50–65, 1996.

[81] Y. Futamura. Partial evaluation of computation process: An approach to a
compiler-compiler. Higher Order Symbol. Comput., 12(4):381–391, Dec. 1999.

[82] V. Gajinov, S. Stipic, O. S. Unsal, T. Harris, E. Ayguadé, and A. Cristal. Integrating
dataflow abstractions into the shared memory model. In SBAC-PAD, pages 243–
251, 2012.

155 Bibliography

[83] V. Gajinov, S. Stipic, O. S. Unsal, T. Harris, E. Ayguadé, and A. Cristal. Supporting
stateful tasks in a dataflow graph. In PACT, pages 435–436, 2012.

[84] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat, B. Ka-
plan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ruderman, E. W. Smith, R. Reitmaier,
M. Bebenita, M. Chang, and M. Franz. Trace-based just-in-time type specializa-
tion for dynamic languages. In Proceedings of the 2009 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI ’09, pages
465–478, 2009.

[85] F. Gaud, S. Genevès, R. Lachaize, B. Lepers, F. Mottet, G. Muller, and V. Quéma.
Efficient workstealing for multicore event-driven systems. In Proceedings of
the 2010 IEEE 30th International Conference on Distributed Computing Systems,
ICDCS ’10, pages 516–525. IEEE Computer Society, 2010.

[86] B. Göetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes, and D. Lea. Java concur-
rency in practice. Addison-Wesley, 2006.

[87] G. Golan-Gueta, N. Bronson, A. Aiken, G. Ramalingam, M. Sagiv, and E. Yahav.
Automatic fine-grain locking using shape properties. In Proceedings of the 2011
ACM international conference on Object oriented programming systems languages
and applications, OOPSLA ’11, pages 225–242. ACM, 2011.

[88] D. Goodman, B. Khan, S. Khan, C. Kirkham, M. Luján, and I. Watson. Muts:
Native scala constructs for software transactional memory. In Scala Days Work-
shop, Stanford, Palo Alto, CA, USA, 2011.

[89] P. Haller and M. Odersky. Actors that Unify Threads and Events. In Proceedings
of the International Conference on Coordination Models and Languages (COORDI-
NATION), pages 171–190, 2007.

[90] T. Harris, M. Abadi, R. Isaacs, and R. McIlroy. AC: Composable Asynchronous IO
for Native Languages. In Proceedings of the 2011 ACM international conference
on Object oriented programming systems languages and applications, OOPSLA
’11, pages 903–920. ACM, 2011.

[91] T. Harris, J. Larus, and R. Rajwar. Transactional Memory, 2nd Edition. Morgan
and Claypool Publishers, 2nd edition, 2010.

[92] T. Heber, D. Hendler, and A. Suissa. On the impact of serializing contention
management on STM performance. J. Parallel Distrib. Comput., 72(6):739–750,
June 2012.

[93] S. Herhut, R. L. Hudson, T. Shpeisman, and J. Sreeram. Parallel programming
for the Web. In Proceedings of the 4th USENIX conference on Hot Topics in Paral-
lelism, HotPar’12, pages 1–6, 2012.

156 Bibliography

[94] S. Herhut, R. L. Hudson, T. Shpeisman, and J. Sreeram. River Trail: A Path to
Parallelism in JavaScript. In Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages and Applications,
OOPSLA ’13, pages 729–744, 2013.

[95] M. Herlihy. The art of multiprocessor programming. In Proceedings of the
Twenty-fifth Annual ACM Symposium on Principles of Distributed Computing,
PODC ’06, pages 1–2, 2006.

[96] M. Herlihy and V. Luchangco. Distributed Computing and the Multicore Revo-
lution. SIGACT News, 39(1):62–72, Mar. 2008.

[97] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan
Kaufmann Publishers Inc., 2008.

[98] S. T. Heumann, V. S. Adve, and S. Wang. The tasks with effects model for safe
concurrency. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’13, pages 239–250, 2013.

[99] U. Hölzle, C. Chambers, and D. Ungar. Optimizing dynamically-typed object-
oriented languages with polymorphic inline caches. In ECOOP’91 European Con-
ference on Object-Oriented Programming, pages 21–38. Springer, 1991.

[100] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. Green-marl: A DSL for easy and
efficient graph analysis. In Proceedings of the Seventeenth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 349–362, 2012.

[101] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed data-
parallel programs from sequential building blocks. In Proceedings of EuroSys’07,
pages 59–72.

[102] T. Kalibera, P. Maj, F. Morandat, and J. Vitek. A fast abstract syntax tree in-
terpreter for r. In Proceedings of the 10th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, VEE ’14, pages 89–102, 2014.

[103] R. K. Karmani, A. Shali, and G. Agha. Actor Frameworks for the JVM Platform:
a Comparative Analysis. In Proceedings of the 7th International Conference on
Principles and Practice of Programming in Java, PPPJ ’09, pages 11–20. ACM,
2009.

[104] R. A. Kelsey. A correspondence between continuation passing style and static
single assignment form. In Papers from the 1995 ACM SIGPLAN workshop on
Intermediate representations, IR ’95, pages 13–22, 1995.

157 Bibliography

[105] A. Kennedy. Compiling with continuations, continued. In Proceedings of the
12th ACM SIGPLAN International Conference on Functional Programming, ICFP
’07, pages 177–190, 2007.

[106] K. Kinder. Event-Driven Programming with Twisted and Python. Linux J., 2005.

[107] M. Krohn, E. Kohler, and M. Kaashoek. Simplified Event Programming for Busy
Network Applications. In Proceedings of the 2007 USENIX Annual Technical Con-
ference, Santa Clara, CA, USA, pages 351–364, 2007.

[108] M. Krohn, E. Kohler, and M. F. Kaashoek. Events can Make Sense. In 2007
USENIX Annual Technical Conference on Proceedings of the USENIX Annual Tech-
nical Conference, ATC’07, pages 7:1–7:14. USENIX Association, 2007.

[109] J. R. Larus. Look up!: Your future is in the cloud. SIGPLAN Not., 48(6):1–2,
June 2013.

[110] D. Lea. A Java Fork/Join framework. In Proceedings of the ACM 2000 conference
on Java Grande, JAVA ’00, pages 36–43, 2000.

[111] R. M. Lerner. At the Forge: Node.JS. Linux J., 2011, 2011.

[112] M. Lesani, M. Odersky, and R. Guerraoui. Concurrent Programming Paradigms,
A Comparison in Scala. Technical report, 2009.

[113] B. P. Lester. The art of parallel programming. Prentice-Hall, Inc., 1993.

[114] Y. Lev, V. Luchangco, V. J. Marathe, M. Moir, D. Nussbaum, and M. Olszewski.
Anatomy of a Scalable Software Transactional Memory. In 2009, 4th ACM SIG-
PLAN Workshop on Transactional Computing (TRANSACT09), 2009.

[115] P. Li and E. Wohlstadter. Object-Relational Event Middleware for Web Appli-
cations. In Proceedings of the Conference of the Center for Advanced Studies on
Collaborative Research (CASCON), pages 215–228, 2011.

[116] P. Li and S. Zdancewic. A Language-based Approach to Unifying Events and
Threads. CIS Department University of Pennsylvania April, 2006.

[117] P. Li and S. Zdancewic. Combining Events and Threads for Scalable Network
Services Implementation and Evaluation of Monadic, Application-level Concur-
rency Primitives. In Proceedings of the 2007 ACM SIGPLAN conference on Pro-
gramming language design and implementation, PLDI ’07, pages 189–199. ACM,
2007.

[118] Z. Li, D. Levy, S. Chen, and J. Zic. Auto-Tune Design and Evaluation on Staged
Event-Driven Architecture. In Proceedings of the 1st Workshop on MOdel Driven
Development for Middleware (MODDM), pages 1–6, 2006.

158 Bibliography

[119] B. Liskov and L. Shrira. Promises: Linguistic support for efficient asynchronous
procedure calls in distributed systems. In Proceedings of the ACM SIGPLAN
1988 Conference on Programming Language Design and Implementation, PLDI
’88, pages 260–267, 1988.

[120] J. Louvel, V. Templier, and T. Boileau. RESTlet in Action. Manning Publications,
2009.

[121] W. Maldonado, P. Marlier, P. Felber, A. Suissa, D. Hendler, A. Fedorova, J. L.
Lawall, and G. Muller. Scheduling Support for Transactional Memory Con-
tention Management. In Proceedings of the 15th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’10, pages 79–90. ACM,
2010.

[122] S. Mannarswamy, D. R. Chakrabarti, K. Rajan, and S. Saraswati. Compiler Aided
Selective Lock Assignment for Improving the Performance of Software Transac-
tional Memory. In Proceedings of the 15th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’10, pages 37–46. ACM, 2010.

[123] N. D. Matsakis. Parallel closures: a new twist on an old idea. In Proceedings
of the 4th USENIX conference on Hot Topics in Parallelism, HotPar’12, pages 1–6,
2012.

[124] A. Matveev and N. Shavit. Reduced hardware transactions: a new approach
to hybrid transactional memory. In Proceedings of the 25th ACM symposium on
Parallelism in algorithms and architectures, pages 11–22. ACM, 2013.

[125] B. McCloskey, F. Zhou, D. Gay, and E. Brewer. Autolocker: Synchronization
Inference for Atomic Sections. In Conference record of the 33rd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages (POPL), pages 346–
358, 2006.

[126] M. D. McCool. Structured parallel programming with deterministic patterns. In
Proceedings of the 2nd USENIX conference on Hot topics in parallelism, HotPar’10,
pages 1–6, 2010.

[127] E. Meijer. Your mouse is a database. Commun. ACM, 55(5):66–73, May 2012.

[128] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Greenberg, A. Bromfield,
and S. Krishnamurthi. Flapjax: a programming language for Ajax applications.
In Proceedings of OOPSLA, pages 1–20, 2009.

[129] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stanford trans-
actional applications for multi-processing. In Workload Characterization, 2008.
IISWC 2008. IEEE International Symposium on, pages 35–46. IEEE, 2008.

159 Bibliography

[130] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood. LogTM:
Log-based Transactional Memory. In Proceedings of the 12th International Sym-
posium on High-Performance Computer Architecture, pages 254–265. Feb 2006.

[131] H. Nilsson, A. Courtney, and J. Peterson. Functional reactive programming, con-
tinued. In Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell, Haskell
’02, pages 51–64, 2002.

[132] J. Ousterhout. Why Threads are a Bad Idea (for Most Purposes). In USENIX
Winter Technical Conference, 1996.

[133] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: an Efficient and Portable
Web Server. In Proceedings of the annual conference on USENIX Annual Technical
Conference (ATEC), pages 15–15, 1999.

[134] K. Pamnany and J. Jannotti. Elyze: Enabling Safe Parallelism in Event-driven
Servers. In Proceedings of the 8th ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering, PASTE ’08, pages 15–21. ACM, 2008.

[135] D. Pariag, T. Brecht, A. Harji, P. Buhr, A. Shukla, and D. R. Cheriton. Comparing
the Performance of Web Server Architectures. In Proceedings of the 2nd ACM
SIGOPS European Conference on Computer Systems (EuroSys), pages 231–243,
2007.

[136] O. Phelan, K. McCarthy, M. Bennett, and B. Smyth. On using the real-time web
for news recommendation discovery. In Proceedings of the 20th international
conference companion on World wide web (WWW), pages 103–104, 2011.

[137] A. Raman, H. Kim, T. R. Mason, T. B. Jablin, and D. I. August. Speculative
parallelization using software multi-threaded transactions. In Proceedings of the
Fifteenth Edition of ASPLOS on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 65–76, 2010.

[138] T. Riegel, P. Felber, and C. Fetzer. A lazy snapshot algorithm with eager valida-
tion. In Proceedings of the 20th international conference on Distributed Comput-
ing, DISC’06, pages 284–298. Springer, 2006.

[139] C. Rodrigues, T. Jablin, A. Dakkak, and W.-M. Hwu. Triolet: A programming
system that unifies algorithmic skeleton interfaces for high-performance cluster
computing. In Proceedings of the 19th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’14, pages 247–258, 2014.

[140] M. Spear, M. Michael, and M. Scott. Inevitability mechanisms for software trans-
actional memory. In 3rd ACM SIGPLAN Workshop on Transactional Computing,
New York, NY, USA, 2008.

160 Bibliography

[141] M. F. Spear, V. J. Marathe, W. N. Scherer, and M. L. Scott. Conflict Detection and
Validation Strategies for Software Transactional Memory. In Proceedings of the
20th international conference on Distributed Computing (DISC), pages 179–193,
2006.

[142] I. Stoica. A berkeley view of big data: algorithms, machines and people. In UC
Berkeley EECS Annual Research Symposium, 2011.

[143] P. Stutz, A. Bernstein, and W. Cohen. Signal/collect: graph algorithms for the
(semantic) web. In The Semantic Web–ISWC 2010, pages 764–780. Springer,
2010.

[144] D. Syme, T. Petricek, and D. Lomov. The F# Asynchronous Programming Model.
In Proceedings of the 13th international conference on Practical aspects of declar-
ative languages, PADL’11, pages 175–189. Springer, 2011.

[145] J. Throop. OpenMP: Shared-memory parallelism from the ashes. Computer,
32(5):108–109, May 1999.

[146] S. Tilkov and S. Vinoski. Node.js: Using JavaScript to build high-performance
network programs. IEEE Internet Computing, 14:80–83, November 2010.

[147] T. Usui, R. Behrends, J. Evans, and Y. Smaragdakis. Adaptive locks: Combining
transactions and locks for efficient concurrency. J. Parallel Distrib. Comput.,
70(10):1009–1023, Oct. 2010.

[148] T. Van Cutsem and W. De Meuter. Event-driven mobile computing with objects.,
2010.

[149] R. Von Behren, J. Condit, and E. Brewer. Why Events Are a Bad Idea (for High-
Concurrency Servers). In Proceedings of the 9th Conference on Hot Topics in
Operating Systems - Volume 9, page 4, 2003.

[150] C. von Praun, L. Ceze, and C. Caşcaval. Implicit parallelism with ordered trans-
actions. In Proceedings of the 12th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’07, pages 79–89, 2007.

[151] J.-T. Wamhoff, C. Fetzer, P. Felber, E. Rivière, and G. Muller. FastLane: Improv-
ing performance of software transactional memory for low thread counts. In
Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’13, pages 113–122, 2013.

[152] Q. Wang, S. Kulkarni, J. Cavazos, and M. Spear. A Transactional Memory with
Automatic Performance Tuning. ACM Trans. Archit. Code Optim., 8(4):54:1–
54:23, Jan. 2012.

161 Bibliography

[153] A. Welc, S. Jagannathan, and A. Hosking. Safe futures for Java. In Proceedings
of the 20th Annual ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 439–453, 2005.

[154] A. Welc, B. Saha, and A.-R. Adl-Tabatabai. Irrevocable transactions and their
applications. In Proceedings of the Twentieth Annual Symposium on Parallelism
in Algorithms and Architectures, SPAA ’08, pages 285–296, 2008.

[155] M. Welsh, D. Culler, and E. Brewer. SEDA: an Architecture for Well-Conditioned,
Scalable Internet Services. In Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), pages 230–243, 2001.

[156] C. Wimmer and S. Brunthaler. ZipPy on Truffle: A fast and simple implementa-
tion of Python. In Proceedings of the 2013 Companion Publication for Conference
on Systems, Programming, and Applications: Software for Humanity, SPLASH
’13, pages 17–18, 2013.

[157] T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq, C. Humer,
G. Richards, D. Simon, and M. Wolczko. One VM to rule them all. In Proceed-
ings of the 2013 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, Onward! ’13, pages 187–204,
New York, NY, USA, 2013. ACM.

[158] N. Zeldovich, E. Yip, F. Dabek, R. T. Morris, D. Mazieres, and F. Kaashoek. Mul-
tiprocessor Support for Event-Driven Programs. In Proceedings of the USENIX
Annual Technical Conference (USENIX), pages 239–252, 2003.

	Contents
	List of Figures
	List of Tables
	I Prologue
	Introduction
	Event-based programming, parallelism, and the Web
	JavaScript as a programming language for parallel programming
	Initial overview of the Parallel event loop
	Thesis statement
	Contributions
	Summary and outline

	Background: single-threaded event loop
	Event-based concurrency
	Event-based server architectures
	Event-based Frameworks and Web Programming
	Event-based programming models
	Explicit event emission
	Implicit loop manipulation and Node.JS

	Limitations of single-threaded event loop systems

	II Programming Model
	The parallel event loop model
	The design of the parallel event loop
	Implicit parallelism and event ordering
	Core parallel event emission API
	Shared memory and atomicity

	Strictly ordered events
	Relaxed ordering of events
	Chained execution
	Unordered execution
	Globally unordered events

	Utility functions
	Programming model overview
	Happened-before relation

	Case studies
	Event-based parallel programming
	Implicit parallelism in Node.JS
	WebWorkers with safe shared state
	Asynchronous tasks and events
	Asynchronous safe futures
	Task-based parallelism

	Parallel functional reactive programming
	Software pipelining

	III Speculative Runtime
	The parallel event loop runtime
	Runtime system overview
	Speculation engines
	Event emission
	Hashed event emission for chained events
	Event emission and I/O
	Bailout and worst-case scenario
	Common data structures

	Pessimistic PEV runtime
	Scheduling and speculation algorithm

	Optimistic runtime
	STM-based speculation
	Runtime barriers
	Events scheduling
	Ordered events speculation

	Hybrid runtime
	STM-based speculation
	Scheduling
	Runtime barriers

	Summary
	Overview and Limitations
	Implementations overview

	Node.Scala
	Programming model for service development
	System architecture
	Implementation

	Performance evaluation
	Stateless services
	Stateful services

	TigerQuoll
	Runtime system architecture
	VM level modifications
	Global runtime switch

	Transactional support
	Eventual fields in transactions (eventual transactions)

	Performance evaluation
	Share-nothing Scalability
	Shared Memory Scalability

	Truffle.PEV
	Truffle and Graal
	Runtime Overview
	TM Metadata speculative management

	Performance Evaluation
	Event emission
	CPU-intensive workloads
	Read-intensive and data-intensive workloads
	Runtime overhead
	Chained and ordered events
	Summary

	IV Epilogue
	Related Work
	Server runtime systems
	Asynchronous programming and event-based services
	Event-based frameworks
	Event emission and Asynchronous task-based programming
	Explicit parallelism models
	Actors

	Speculative runtime systems
	Commit-time reordering
	Single-threaded overhead reduction

	Parallel programming for the Web
	Scheduler-based approaches and the S scripting language

	Concluding remarks
	Future research directions

	Bibliography

