
Transparent Transaction Ordering in
Blockchain-based Collaborative Processes

Hassan Atwi1, Tom Lichtenstein2, Cesare Pautasso1, Mathias Weske2

1 Software Institute, Università della Svizzera italiana, Lugano, Switzerland
{Hassan.Atwi,Cesare.Pautasso}@usi.ch

2 Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
{Tom.Lichtenstein,Mathias.Weske}@hpi.de

Abstract. Blockchain technology offers a promising solution for over-
coming trust-related challenges, such as transparency in interorganiza-
tional collaborative processes. However, since the ordering of transac-
tions in a block can affect the outcome of a process instance, fairness
and transparency concerns regarding block selection may arise. This
paper presents a consensus-agnostic approach to promote transparency
in transaction ordering in blockchain-based business processes. The ap-
proach allows participants to align the execution order of their trans-
actions with their business objectives, effectively mitigating the lack
of transparency associated with the arbitrary selection and ordering of
transactions during block selection. Our experiments reveal that the in-
creased transparency mitigates the risks of suppression and displacement
attacks at the cost of introducing additional latency and cost.

Key words: Blockchain, Choreography, Block selection, Transaction or-
dering, Transparency

1 Introduction

Coordinating the execution of processes across organizational boundaries typi-
cally relies on a trusted, centralized party. Recently, blockchain technology has
been studied as a potential infrastructure for cross-organizational collaboration
allowing us to overcome this trust issue [17, 2, 9], by providing a decentralized,
tamper-proof ledger of transactions. A blockchain is organized in blocks, each of
which contains an ordered list of transactions, with new blocks being linked to
the previous block using a cryptographic hash function [11]. New transactions
are propagated through the network as pending transactions before being added
to a block at the end of the blockchain.

While blockchain technology allows for transparency, ensuring fair and re-
liable ordering of transactions within blocks during block selection remains a
challenge. In most blockchains, one leader node, which may be reassigned over
time, is responsible for determining the inclusion and order of pending trans-
actions for the next block [20]. Since transactions may represent interactions
among collaborating parties, the order of transactions can affect the outcome

{Hassan.Atwi,Cesare.Pautasso}@usi.ch
{Tom.Lichtenstein,Mathias.Weske}@hpi.de

2 Hassan Atwi et al.

of a blockchain-based collaborative process or the profitability of the interac-
tion [4, 7, 16]. Therefore, malicious actors taking over the role of the leader
node could exploit the freedom to order transactions to gain an advantage over
their competitors. Given that in larger networks the pools of known pending
transactions and the order in which they are received may differ for each node
due to network latency, detecting fraudulent transaction orders remains a chal-
lenge [4, 15].

place order

Customer

Store

Enough Supplies?

send delivery
details

Store

Log. Provider

confirm shipping

Log. Provider

Store

cancel order

Customer

Store

item delivered

Log. Provider

Customer

reject order

Store

Customer

Yes

No

On- chain
Supplies

Count

Fig. 1: Choreography diagram representing a simple supply-chain choreography.

To illustrate the impact of transaction order manipulation, we refer to a
simple supply-chain choreography depicted in Fig. 1. This choreography orches-
trates the interaction between a customer, a store, and a logistic provider. It
begins with the customer placing an order at the store, triggering an inventory
check. If supplies are insufficient, the customer is notified and the choreography
ends. Otherwise, the store forwards delivery details to the logistic provider for
shipping. In the latter case, the customer retains the option to cancel the order
until the logistics provider confirms the shipping. Upon confirmation, the order
is delivered to the customer.

The choreography is implemented on-chain using a smart contract, similar to
other blockchain-based process execution approaches [17]. In such a decentral-
ized setting where transaction orders are not centrally managed, the arbitrary
nature of transaction ordering can significantly impact the fairness of the chore-
ography. For instance, multiple customers compete for limited supplies from the
same store, potentially leading to conflicts across instances of the choreography.
Given an on-chain inventory check, the ordering of the transactions determines
who acquires the limited supplies. In another scenario, a race condition may
occur within a single instance at the event-based gateway, where the logistic
provider and customer compete over who makes their choice first. In this case,
the ordering of transactions decides if the order will be confirmed for shipping
or canceled. While there is a natural race between multiple participants com-
peting for shared and limited resources, malicious participants could perform
front-running or censorship attacks [16], so that their transaction requests are
prioritized, compromising the fairness in the choreography.

Transparent Transaction Ordering 3

Existing solutions [1, 8, 12, 14] typically employ a random selection and order-
ing of transactions to maintain fairness. However, this can result in transaction
orders not aligning with the participants’ intentions. To address this challenge,
this paper contributes a novel consensus-agnostic, process-aware transaction or-
dering approach. This approach allows participants to impact the order of asso-
ciated transactions directly, ensuring fairness and transparency in block creation
that aligns with the participants’ intentions.

The paper is organized as follows: Section 2 describes the underlying concepts
of fairness in block selection and blockchain-based collaborative processes and
outlines related work. Section 3 introduces the transaction ordering approach as
the main contribution of this paper. Section 4 evaluates the protocol’s resilience
to transaction suppression and displacement and discusses the approach in detail.
Finally, Section 5 summarizes the paper and points out possible future research
directions.

2 Preliminaries and Related Work

This section provides an overview of blockchain-based collaborative processes
and fairness in block selection.

2.1 Blockchain-based Collaborative Processes

Blockchain technology offers a promising solution to enable collaboration be-
tween mutually distrustful organizations. Recently, model-driven approaches
have been investigated to facilitate the design and execution of processes that
span multiple organizations [17]. While various modeling languages are used to
design blockchain-based collaborative processes, in this paper we refer to Busi-
ness Process Model and Notation (BPMN) choreography diagrams [13].

Choreography diagrams (Fig. 1) represent interactions between two partici-
pants with choreography tasks, hereafter referred to as tasks, with participants
with a white band being the initiators. Sequence flow arcs specify the order of
tasks, while gateways express exclusive and concurrent behavior. The constraints
on the order of execution are referred to as control flow. Choreography diagrams
support two-way tasks with direct responses. We restrict this to one-way tasks,
as two-way tasks can be represented by two consecutive one-way tasks without
loss of generality. According to the lifecycle depicted in Figure 2, an initialized
task must first be enabled with respect to the control flow constraints before it
can be executed, resulting in the completed state. In addition, a task may be
skipped, for example, in the case of exclusive behavior [18].

In a blockchain environment, the execution of a task is typically reflected
by a blockchain transaction, hereafter referred to as transaction. In second-
generation blockchains, the business logic defined by a choreography diagram
can be enforced on-chain via smart contracts [17]. In the following, we refer to
smart contracts dedicated to workflow logic enforcement as workflow contracts.

4 Hassan Atwi et al.

enable

enabled

execute

detect cycle

ready pending buffered ordered

send

revert

order

revert

execute

initialized

skipped

buffer

completed

skipskip

Fig. 2: State transition diagram representing the lifecycle of a choreography task
in a blockchain environment using a traditional (red) and ordering contract-
based (blue) implementation.

As a blockchain-based task depends upon the successful completion of a
transaction, the lifecycle of a blockchain-based task includes additional states
between the initial enablement and the completion, as illustrated in Figure 2.
Each enabled task is initially in a ready state, signaling that a transaction can
be sent to execute the task. Once a transaction is sent to the transaction pools
of other blockchain nodes, the task is pending. In the following, we assume that
each transaction sent will eventually be included in a block. In a traditional
implementation (highlighted in red), once a transaction is included in a block,
it is either executed or reverted according to the constraints of the workflow
contract. The latter may occur if earlier transactions change the state of the
workflow contract so that the current transaction conflicts with the workflow
constraints, causing the task to be skipped. Thus, the course of a choreography
can be affected by the execution order of the corresponding transactions [7]. A
successful execution of the transaction, on the other hand, results in the task
being completed.

2.2 Fairness in Block Selection

In current blockchain systems, the responsibility for block selection, i.e., select-
ing and ordering pending transactions to form a new block [1], is typically dele-
gated to an elected leader node. Prominent protocols for leader election in public
blockchains include: proof of work (PoW), as used by Bitcoin [11], which requires
leader candidates to solve a computationally complex puzzle, and proof of stake
(PoS), adopted by Ethereum in 2022 [19], which bases leader election on the re-
spective balances of the nodes. Conversely, in private blockchain environments,
leader election typically relies on voting, pseudorandom functions, or round-robin
strategies among a predefined set of authority nodes. In the following, we will
refer to the leader node as the block proposer.

Most common blockchain implementations grant the block proposer full con-
trol over the selection and ordering of transactions for the next block. In public

Transparent Transaction Ordering 5

blockchains, block proposers often optimize their block selection based on trans-
action fees to maximize their profit. This incentive can be exploited to perform
front-running attacks [16], i.e., paying higher fees to place transactions first to
gain an advantage over the competition. Since private blockchains generally do
not charge transaction fees, front-running is only possible when block proposers
use their privilege to arrange transactions to their advantage by displacing trans-
actions or suppressing undesirable transactions, which raises the question of
fairness in block selection in private networks [1]. Since latency or transmission
errors can cause two nodes’ transaction pools to diverge in terms of included
transactions and transaction ordering, detecting malicious block proposers is
particularly challenging in decentralized environments [4].

2.3 Related Work

Fairness in block selection received attention in recent blockchain literature.
Kelkar et al. [4] identified receive-order-fairness as a relevant property for block
selection, implying that the order of transactions in a block should reflect the
transaction order observed by the majority of nodes. Due to Condorcet’s para-
dox [3], receive-order-fairness is impossible to achieve in a decentralized setting.
The authors propose block-receive-order-fairness, which ensures that transac-
tions are not assigned to separate blocks in an order that conflicts with the
observations of the majority. Wendy et al. [5] propose blockchain-agnostic pre-
protocols executed in parallel to the blockchain to address order fairness by
having validator nodes agree on a block before proposing it to the blockchain.
Similar to [4], the authors focus on ensuring order fairness between blocks. In [8],
the authors introduce FairLedger, a permissioned protocol in which each node of
a predefined committee has an equal opportunity to add its transactions to the
block, while all nodes must be aware of all transactions to be added to the next
block. The order of the transactions within the block remains undetermined.

Furthermore, Asayag et al. [1] propose Helix, a consensus protocol that uses
encrypted transactions to complicate transaction suppression in block selection.
In addition, the authors propose a hash-based pseudorandom ordering of trans-
actions to ensure fair block selection. The protocol is extended in [14] with a
joint block validation procedure that refines the assessment of the leader node’s
honesty by comparing the included transactions with those known to a com-
mittee of validator nodes. The extension also includes the concept of pending
transaction declarations, which allows nodes to periodically query other nodes
for their local transaction pool, further complicating transaction suppression.
Another extension to Helix is presented in [12], which introduces a reputation
system for leader and validator nodes. Finally, Sokolik et al. [15] propose age-
aware fairness, which aims to limit transaction latency by reserving a predefined
space in each block for senior transactions.

This work complements existing work by introducing a blockchain-agnostic
approach that achieves fair block selection by 1) providing resilience to suppres-
sion, 2) making transaction ordering collaborative and transparent, 3) detecting
conflicts in ordering decisions, and 4) allowing nodes to resolve them.

6 Hassan Atwi et al.

3 Transparent Transaction Ordering

To ensure transparency in the ordering of transactions within blockchain-based
collaborative processes, we propose an approach to achieve on-chain transaction
ordering based on process information derived from the choreography model.
The derived information helps in enabling process-aware transaction ordering.
This involves selecting orderers based on the ongoing interactions within the
process model.

The approach mainly relies on the introduction of an ordering smart contract,
which serves as a preprocessor to organize transaction orders before execution.
This approach is consensus-agnostic: it does not depend on the specific consensus
protocol adopted by the blockchain network. However, it is assumed that the
consensus protocol fairly redistributes the role of the block proposer among the
nodes after each added block. As illustrated in Fig. 3, there are three main phases
to the approach: buffering, ordering, and execution. We refer to a run through
all three phases as an epoch. In the following, we provide a detailed description
of the steps within an epoch. In addition, the impact of the approach on the
task lifecycle compared to traditional implementations is discussed.

3.1 Buffering Phase

In typical blockchain-based process engine architectures [9], transactions update
a workflow contract’s state when included in a block, allowing the block proposer
to control the execution order. We propose an alternative approach using an
ordering contract as a relayer between participants and the workflow contract.
Participants issue meta-transactions1 that are buffered in the ordering contract
rather than executed immediately. This buffering phase delays choreography
tasks state transitions by introducing an intermediate buffered state (Figure 2).
If a block is compromised by a malicious actor, buffered transactions can be
resubmitted by its original sender in subsequent blocks before execution. This
provides participants with an extended window for submitting transactions.

The buffering phase needs to be bounded so that all meta-transactions are
executed within a certain time limit. However, due to the decentralized execution
of smart contracts, deterministic time measurements are impossible. Oracles [10]
could address this limitation by providing access to external sources of precise
timing information. Depending on oracles for such essential information poses
a risk of undermining the core decentralized foundations of blockchain, as the
trust is placed in the hands of the timekeeping party [6]. A reliable alternative
to the timestamp is the block number. Thanks to the consensus protocol used to
maintain a strict block ordering along the chain, any attempt to manipulate the
number of blocks is certain to fail. In our approach, the ordering contract uses
the block number to introduce temporal awareness into the transaction ordering
process. The block number helps establish a specific duration of the window
during which the ordering contract buffers meta-transactions. Participants can

1 https://docs.openzeppelin.com/learn/sending-gasless-transactions

Transparent Transaction Ordering 7

Orderer

Orderer

Participant

Participant

Ordering Contract

Ordering Contract

Workflow Contract

Workflow Contract

Buffering Transactions

1 Send Transaction

2 Query Task State

alt [task enabled]

3 Transaction Added

4 Select Orderers

5 Notify Orderer

[task disabled]

6 Transaction Rejected

Ordering Transactions

7 Generate Domains

loop [voting Enabled]

8 Submit Ordering Sequence

9 Conflict Check

alt [Conflict free]

10 Ordering Sequence Added

[Conflict detected]

11 Ordering Sequence Rejected

12 Domain Flagged

Executing Transactions

13 Execute Transactions

Fig. 3: An epoch consisting of the buffering, ordering, and execution phases,
represented as a sequence diagram.

determine the number of blocks dedicated to this buffering period. By extending
the buffering phase, participants maximize their opportunities to submit meta-
transactions, which can reduce the risk of malicious attacks.

3.2 Ordering Phase

In each epoch, a set of orderers is selected from the choreography participants.
The role of an orderer grants the ability to cast votes on the desired sequence for
arranging the buffered transactions of an epoch. Notably, each orderer is limited
to ordering only the buffered transactions corresponding to the task where they
serve as either the sender or the receiver. During the ordering phase of the
epoch, the ordering contract stops accepting meta-transactions and proceeds
with accepting ordering sequences from the chosen orderers. Once all ordering

8 Hassan Atwi et al.

sequences are collected, the ordering contract combines each ordering sequence,
creating a merged list that reflects the consensus on the global ordering among
all participating orderers.

To facilitate the explanation of the orderer selection process, we represent the
buffered transactions as follows (Fig. 4). Each node in the graph corresponds to a
participant. In a choreography instance, each participant assumes a specific role,
which may vary from one choreography instance to another. Nodes are connected
by edges if a buffered transaction represents a task involving both participants.
The set of orderers for each epoch is the subset of participants involved in two
or more buffered transactions. Hence, let V be the set of nodes in the graph
where each v ∈ V represents a participant, and Nv is the set of neighbors of the
node v. The set of orderers can be expressed as: O = {v | v ∈ V ∧ |Nv| > 1}.
This simple strategy employed for selecting orderers will result in a group of
intermediaries who act as mediators between two or more participants, thereby
establishing them as neutral parties responsible for enforcing the most suitable
order. In a plain implementation, there is a risk that if two transactions race
against each other, one of the senders might be the block proposer determining
the order. Our strategy ensures instead that the mediator chooses the order.
For instance, as shown in Fig. 4, in Epochn+1, store1 serves as a neutral party
ordering transactions for both customers. Transactions occurring in isolation,
such as tx5 in domain 2, lack any form of competition, eliminating the need
for an orderer. Consequently, isolated transactions are inserted into the block
regardless of their ordering.

As each orderer individually submits their vote for a preferred sequence of
transactions, cycles may result from their combined preferences. The existence
of cycles in collective preferences introduces an additional layer of complexity to
the ordering process, which could potentially affect other instances by halting
the entire network. To mitigate this impact, the ordering contract isolates each
interaction graph during an epoch into separate domains. This isolation ensures
that if one domain faces cycles in voting, the other domains can proceed with
execution independently, thereby deterring any broader impact on the entire
network.

Each domain is isolated from the others, as they do not share any common
transactions. Orderers exclusively order the transactions within their respective
domains. Consequently, the global order between domains is not a concern, since
they are not interconnected within an epoch. For instance, in Fig. 4, Epochn is
depicted with two distinct domains, namely ‘Domain 1’ and ‘Domain 2’. Each
domain independently establishes its order of transactions. The final ordering
sequence of ‘Domain 1’ comprises transactions tx1, tx2, tx3, and tx4, arranged
according to the specific orders within ‘Domain 1’. ‘Domain 2’ encompasses only
one transaction, tx5, thus no ordering is required. The global order of Epochn

results from combining the orderings of both domains. The ordering contract
disregards the order between the two domains in the global order since they do
not share any common transactions.

Transparent Transaction Ordering 9

tx2
tx1

Customer1

Store2Store1

tx3
tx4

Customer2

tx5

Customer3

Store3

Domain 1 Domain 2

Log.
Provider1

Customer1

tx1 tx2

Store1

: Orderer

Epochn Epochn+1

time

Domain 1

: Domain

: Epoch

Fig. 4: Interaction graphs within two subsequent epochs.

To demonstrate the possibility of a cycle occurring within the ordering pref-
erences, we take domain 1 (Fig. 4) as an example. Each orderer casts their
preference on the ordering sequence. customer1 submits their preference with
the sequence tx2 > tx1, i.e., tx2 over tx1, store1 submits the sequence tx1 > tx3,
customer2 submits the sequence tx3 > tx4, and finally, store2 submits the se-
quence tx4 > tx2. The combined sequence of all submissions, based on their
submission order, results in the final order tx2 > tx1 > tx3 > tx4 > tx2. This
result serves as a notable instance of the Condorcet paradox [3]. Despite the va-
lidity of local orderings, their combination introduces conflict into the collective
order.

In case a cycle is detected, the transaction is reverted, and the associated
domain is flagged as conflicting. Note that a cycle in the ordering presents a
special case: Since all conflicting transactions are reverted, the states of the
workflow contracts do not change. Therefore, on the choreography level, the
states of the corresponding tasks are not skipped but return to the ready state, as
illustrated in Figure 2. This way, participants have the opportunity to resubmit
the conflicting transactions so that they can be buffered and ordered again.
Otherwise, if a valid order is found, the task advances to the ordered state.

3.3 Execution Phase

In the final stage of the epoch, the ordering contract executes the transactions
that do not involve conflicting domains by forwarding them to the workflow con-
tract. According to the lifecycle (Figure 2), it is still possible for a task to be
skipped at this point. This may happen when earlier transactions change the
state of the workflow contract so that the transaction of the task no longer sat-
isfies the workflow constraints. Otherwise, the transaction is executed, changing
the state of the workflow contract and causing the corresponding task to reach
the completed state. A new epoch begins once all phases are completed.

10 Hassan Atwi et al.

4 Evaluation and Discussion

The evaluation scenario comprises two instances of the choreography introduced
in Fig. 1 denoted by C1 and C2. The participants are distributed as follows: In
instance C1, the participants are {customer1, log. provider1, store1}, while in
instance C2, the participants are {customer2, log. provider2, store1}. We exe-
cute the scenario in 500 epochs, where competition among participants occurs
in two ways: across instances and within instances. Across instances, the two
customers race for placing orders for the limited supplies at the same store. We
limit the scenario to only one available supply item per epoch; thus, only one
customer emerges as the winner in each epoch. The competition within an in-
stance emerges at the event-based gateway, where the customer and the logistics
provider compete to cast their choice first, i.e., to confirm the shipment or to
cancel the order.

4.1 Setup

To conduct the evaluation, we established a network comprising five nodes run-
ning Quorum2 clients. The network operates on the QBFT3 consensus algorithm,
which is an enterprise-grade consensus protocol recommended for permissioned
networks. With QBFT as the adopted consensus mechanism, the block proposer
is selected in a round-robin fashion. The consensus protocol is configured to
generate a new block every five seconds. To ensure a full representation of par-
ticipants in the network, we allocate each node to a participant, meaning that
each participant possesses a dedicated node. Since a participant has complete
control over a node, there is potential to inject malicious behavior into the block
creation procedure, e.g., to execute front-running attacks.

Given the unpredictability of participants’ intentions in a network, we cate-
gorize the nodes into three distinct groups:

1. Honest Nodes: These nodes operate without malicious intent and propose
a block with the order of transactions as locally observed.

2. Displacement Nodes: These nodes prioritize their own transactions by
displacing the ones submitted by other participants.

3. Suppression Nodes: These nodes suppress all transactions competing with
their transactions.

Throughout the experiment, customer1 and log.provider2 play the role of ma-
licious nodes attempting to implement both strategies, namely suppression
and displacement, individually in two distinct experiments. Across instances,
customer1 will target customer2 to obtain the most supplies. Within their own
instance, customer1 will target log.provider1 to maximize canceled choices, while

2 https://github.com/Consensys/quorum
3 https://docs.goquorum.consensys.io/configure-and-manage/configure/

consensus-protocols/qbft/

https://github.com/Consensys/quorum
https://docs.goquorum.consensys.io/configure-and-manage/configure/consensus-protocols/qbft/
https://docs.goquorum.consensys.io/configure-and-manage/configure/consensus-protocols/qbft/

Transparent Transaction Ordering 11

log.provider2 will target customer2 to ensure the most confirmed choices. The
remaining participants serve as honest nodes.

In our evaluation, we distinguish two setups for invoking choreography tasks:
a plain setup, and an ordering contract (OC) setup. In the plain setup, partic-
ipants send transactions directly to the workflow contract without buffering. In
the OC setup, all transactions must pass through the ordering contract, where
they are buffered, ordered, and finally executed in the workflow contract. In this
experiment, we implemented a straightforward ordering strategy where orderers
distribute transactions fairly among participants in a rotating sequence. In each
epoch, the priority changes so that each participant’s transaction gets a chance
to be processed first in turn. Depending on business objectives, the selected or-
derers could implement more sophisticated strategies. To mitigate the effect of
malicious attacks, we implemented a buffer of two blocks for this experiment.
This gives honest nodes a window of two blocks to submit their transactions,
thus reducing the likelihood of censorship. To have a reproducible experiment,
we generate an event log that contains the initial order of interactions and ran-
domly injected delays for 500 epochs. The inclusion of delays serves the purpose
of injecting noise into the network, thereby ensuring that the selection of block
proposers is not consistently aligned with the order of transactions.

The prototype implementation, including the smart contracts, the event logs,
and their analysis results are available on GitHub 4.

4.2 Results

We report the results of the experiment conducted for each setup with the two
attack types, i.e., transaction suppression and displacement. In addition, we
compare the performance between the setups in terms of latency and cost.

Across Instances. Fig. 5 illustrates the results of supply distribution between
the two customers. In a plain setup, the malicious node (customer1) could se-
cure the majority of supplies using both types of attacks, primarily through
suppression. When employing the ordering contract setup, the supply distribu-
tion becomes more evenly distributed between the customers.

Within Instances. Fig. 6 and Fig. 7 show the number of times each path
following the deferred choice was selected within the instances. The malicious
nodes (customer1 in C1 and log. provider2 in C2) won most of the races in
both instances by applying the two types of attacks. On the other hand, the
ordering contract setup enforced an even distribution of deferred choices despite
the malicious nodes’ actions.

Performance. In terms of performance, as illustrated in Fig. 8, the duration
of epochs in the ordering contract setups, on average, exceeds that of the plain
setups by a factor of four regardless of the attack type. The cost associated with

4 https://github.com/Hassan42/Transparent-Transaction-Ordering

https://github.com/Hassan42/Transparent-Transaction-Ordering

12 Hassan Atwi et al.

ordering contract setups was at least nine times that of the plain setup. This
outcome is expected, given that the ordering approach involves the execution of
additional on-chain logic.

The results indicate that the ordering contract facilitates a process-aware
ordering of transactions by selecting the appropriate orderer throughout the
choreography’s execution. Even in a malicious node-free environment, the order-
ing contract leverages the transparency and domain-specific ordering of business
transactions. However, the trade-off for achieving process-aware transaction or-
dering is an increase in latency and cost.

0 100 200 300 400 500
0

100

200

300

S
up

pl
ie

s

Epochs

Customer 1*
Customer 2

(a) Plain Setup Dis-
placement Attack

0

50

100

150

200

250

Customer 1*
Customer 2

0 25
0

10

0 100 200 300 400 500
Epochs

S
up

pl
ie

s

(b) OC Setup Dis-
placement Attack

Customer 1*
Customer 2

0 100 200 300 400 500
0

100

200

300

S
up

pl
ie

s

Epochs

(c) Plain Setup Sup-
pression Attack

0 100 200 300 400 500
0

50

100

150

200

S
up

pl
ie

s

Epochs

0 25
35
40

Customer 1*
Customer 2

(d) OC Setup Sup-
pression Attack

*) customer1 is the malicious participant.

Fig. 5: Distribution of supplies between customers across instances.

0 100 200 300 400 500
0

50

100

150

C
ho

ic
es

Epochs

Customer 1 - Cancel*
Log. Provider 1 - Confirm

(a) Plain Setup Dis-
placement Attack

0 100 200 300 400 500
0

25

50

75

100

125

C
ho

ic
es

Epochs

0 25
0

5

Customer 1 - Cancel*
Log. Provider 1 - Confirm

(b) OC Setup Dis-
placement Attack

0 100 200 300 400 500
0

50

100

150

200

C
ho

ic
es

Epochs

Customer 1 - Cancel*
Log. Provider 1 - Confirm

(c) Plain Setup Sup-
pression Attack

0 100 200 300 400 500
0

25

50

75

100
C

ho
ic

es

Epochs

0 25
0

5

Customer 1 - Cancel*
Log. Provider 1 - Confirm

(d) OC Setup Sup-
pression Attack

*) customer1 is the malicious participant.

Fig. 6: Distribution of deferred choices within instance C1.

4.3 Discussion

Based on the experiment’s findings, we will discuss the approach regarding live-
ness, consistency, cost, and latency, with each attribute providing insights into
the functionality and constraints of the proposed approach.

Liveness. Complete assurance of liveness is not guaranteed, as certain ordering
sequences may result in conflicts with undefined duration. Resolving such con-
flicts often requires conflicted participants to compromise on their preferences.

Transparent Transaction Ordering 13

0 100 200 300 400 500
0

20

40

60

80

100

C
ho

ic
es

Epochs

Customer 2 - Cancel
Log. Provider 2 - Confirm*

(a) Plain Setup Dis-
placement Attack

0 100 200 300 400 500
0

25

50

75

100

125

C
ho

ic
es

Epochs

0 25
0

5

Customer 2 - Cancel
Log. Provider 2 - Confirm*

(b) OC Setup Dis-
placement Attack

0 100 200 300 400 500
0

20

40

60

C
ho

ic
es

Epochs

Customer 2 - Cancel
Log. Provider 2 - Confirm*

(c) Plain Setup Sup-
pression Attack

0 100 200 300 400 500
0

25

50

75

100

C
ho

ic
es

Epochs

0 25
0

5

Customer 2 - Cancel
Log. Provider 2 - Confirm*

(d) OC Setup Sup-
pression Attack

*) log.provider2 is the malicious participant.

Fig. 7: Distribution of deferred choices within instance C2.

Plain

Displacement Suppression

OC
0

10

20

30

A
vg

 T
im

e
P

er
 R

ou
nd

 (
se

co
nd

s)

6.78

27.08

Plain OC

6.71

23.36

(a) average epoch duration

Displacement

Plain OC
0.0

0.5

1.0

1.5

2.0

2.5

A
vg

 G
as

 P
er

 R
ou

nd
 (

m
il

li
on

s)
0.2

2.4

Plain OC

0.2

1.9

Suppression

(b) average gas consumption

Fig. 8: Trading-off fairness against performance (a) and gas consumption (b)
under suppression and displacement attacks

In our approach, the ordering contract emits an event and flags such cases, en-
abling conflicting participants to resubmit the transactions. To avoid blocking
the entire network, the ordering contract minimizes the potential damage by
segregating buffered transactions into domains, thereby ensuring partial liveness
in the network. Another crucial factor influencing liveness is the continuous gen-
eration of blocks by the network hosting the ordering contract, even for empty
blocks. Regular block generation is crucial to the buffering phase in order to
maintain regular time intervals and the eventual termination of the phase, even
if no new transactions are sent.

Consistency. The inherent properties of the blockchain guarantee a consistent
ordering of all transactions included in a block. Executing the ordering procedure
on-chain ensures a uniform view among all participants. Hence, in our approach,
each phase in an epoch remains visible and consistent for all participants.

Cost. Due to the extra on-chain logic introduced by the ordering contract,
executing blockchain-enabled choreographies becomes more costly compared to
a plain implementation. Therefore, this approach is better suited for private
networks rather than public ones, where transaction costs and gas prices are not
as significant.

14 Hassan Atwi et al.

Latency. Incorporating the ordering contract into workflow execution increases
latency, primarily caused by transaction buffering. The duration of transaction
buffering can be adjusted through a collective agreement among participants as
the network progresses. However, reducing the length of the transaction buffer
can facilitate displacement or suppression attacks, as fewer block proposers prop-
agate the transactions for an epoch. Further exploration is needed to develop a
dynamic approach for tuning the epoch length to balance the trade-off between
latency and the level of protection against malicious attacks.

5 Conclusion and Future Work

This paper proposes a novel transparent approach for ordering transactions using
contextual information provided by choreography models. The approach mainly
relies on buffering transactions and arranging them on-chain before they are
forwarded to a smart contract implementing the underlying business logic. The
additional measures reduce or in some cases even eliminate the impact of front-
running attacks, e.g., transaction suppression or displacement. While the evalu-
ation demonstrates significant improvements in fairness and transparency com-
pared to the baseline, this outcome comes at the expense of increased latency
and cost. The suggested approach lays the foundation for additional experi-
ments involving scenarios with a larger number of participants as well as future
enhancements and additional investigations into optimizing epoch length selec-
tion, exploring new ordering strategies, and embedding process awareness in the
underlying consensus protocol.

Acknowledgement

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) – 450612067, and by the Swiss National Science Foundation (SNSF) un-
der project ”Flexible Choreographies in Multi-chain Environments“ (196958).

References

1. Asayag, A., Cohen, G., Grayevsky, I., Leshkowitz, M., Rottenstreich, O., Tamari,
R., Yakira, D.: A fair consensus protocol for transaction ordering. In: 26th IEEE
International Conference on Network Protocols. pp. 55–65 (2018)

2. Dwivedi, V., Norta, A.: Auto-generation of smart contracts from a domain-specific
xml-based language. In: Intelligent Data Engineering and Analytics: Proc. of the
9th International Conference on Frontiers in Intelligent Computing: Theory and
Applications (FICTA 2021). pp. 549–564. Springer (2022)

3. Gehrlein, W.V.: Condorcet's paradox. Theory and Decision 15(2), 161–197 (1983)
4. Kelkar, M., Zhang, F., Goldfeder, S., Juels, A.: Order-fairness for byzantine consen-

sus. In: Micciancio, D., Ristenpart, T. (eds.) 40th Annual International Cryptology
Conference. LNCS, vol. 12172, pp. 451–480. Springer (2020)

Transparent Transaction Ordering 15

5. Kursawe, K.: Wendy, the good little fairness widget: Achieving order fairness for
blockchains. In: 2nd ACM Conference on Advances in Financial Technologies. pp.
25–36 (2020)

6. Ladleif, J., Weske, M.: Time in blockchain-based process execution. In: 24th Inter-
national Enterprise Distributed Object Computing Conference. pp. 217–226 (2020)

7. Ladleif, J., Weske, M.: Which event happened first? deferred choice on blockchain
using oracles. Frontiers Blockchain 4, 758169 (2021)

8. Lev-Ari, K., Spiegelman, A., Keidar, I., Malkhi, D.: Fairledger: A fair blockchain
protocol for financial institutions. In: 23rd International Conference on Principles
of Distributed Systems. vol. 153, pp. 4:1–4:17 (2019)

9. López-Pintado, O., Garćıa-Bañuelos, L., Dumas, M., Weber, I., Ponomarev, A.:
Caterpillar: A business process execution engine on the ethereum blockchain. Soft-
ware: Practice and Experience 49(7), 1162–1193 (2019)

10. Mühlberger, R., Bachhofner, S., Castelló Ferrer, E., Di Ciccio, C., Weber, I.,
Wöhrer, M., Zdun, U.: Foundational oracle patterns: Connecting blockchain to
the off-chain world. In: Proc. Blockchain and Robotic Process Automation Forum
(at BPM). pp. 35–51 (2020)

11. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Tech. rep. (2008),
https://bitcoin.org/bitcoin.pdf

12. Nassar, M., Rottenstreich, O., Orda, A.: Communication-aware fairness in
blockchain transaction ordering. In: 23rd IEEE International Conference on High
Performance Switching and Routing. pp. 175–182 (2022)

13. Object Management Group (OMG): Business Process Model and Notation
(BPMN), Version 2.0.2 (2014), https://www.omg.org/spec/BPMN/2.0.2/

14. Orda, A., Rottenstreich, O.: Enforcing fairness in blockchain transaction ordering.
Peer-to-Peer Netw. Appl. 14(6), 3660–3673 (2021)

15. Sokolik, Y., Rottenstreich, O.: Age-aware fairness in blockchain transaction order-
ing. In: 28th IEEE/ACM International Symposium on Quality of Service (2020)

16. Torres, C.F., Camino, R., State, R.: Frontrunner jones and the raiders of the dark
forest: An empirical study of frontrunning on the ethereum blockchain. In: 30th
USENIX Security Symposium. pp. 1343–1359 (2021)

17. Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.:
Untrusted business process monitoring and execution using blockchain. In: 14th
International Conference on Business Process Management. LNCS, vol. 9850, pp.
329–347 (2016)

18. Weske, M.: Business Process Management - Concepts, Languages, Architectures,
Third Edition. Springer (2019). https://doi.org/10.1007/978-3-662-59432-2

19. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper (2014), https://ethereum.github.io/

yellowpaper/paper.pdf

20. Xiao, Y., Zhang, N., Lou, W., Hou, Y.T.: A survey of distributed consensus pro-
tocols for blockchain networks. IEEE Communications Surveys & Tutorials 22(2),
1432–1465 (2020)

https://bitcoin.org/bitcoin.pdf
https://www.omg.org/spec/BPMN/2.0.2/
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

	Transparent Transaction Ordering in Blockchain-based Collaborative Processes
	Hassan Atwi, Tom Lichtenstein, Cesare Pautasso, Mathias Weske

