Gas Management Patterns in
Blockchain-enabled Process Execution

Hassan Atwi, Cesare Pautasso

Software Institute, Universita della Svizzera italiana, Lugano, Switzerland
Hassan.Atwi@usi.ch, c.pautasso@ieee.org

Abstract. In this paper, we present a methodology for modeling effi-
cient gas management in blockchain-enabled collaborative business pro-
cesses. We introduce four patterns designed to optimize and manage gas
fees throughout business process execution. These patterns are formally
represented using BPMN to provide a clear visual framework for integra-
tion into business workflows. Furthermore, we translate these patterns
into Solidity smart contracts and evaluate their performance within a
real-world business scenario. Our approach aims to enhance the efficiency
and cost-effectiveness of blockchain-based process execution.

Keywords: Blockchain - Gas - Solidity - Collaborative Processes - BPMN.

1 Introduction

Blockchain technology [II] has gained attention across many use cases due to
key characteristics such as transparency, immutability, and tamper-resistance.
One area where blockchain has shown strong potential is Business Process Man-
agement [I] (BPM). Smart contracts [2] allow collaborative business processes
to be encoded as deployable programs that enforce process logic directly on the
blockchain. This enables transparent and immutable execution of collaborative
processes, helping ensure trust and compliance among all participants.

As a result, blockchain-based workflow engines [6l9] compile business pro-
cesses into smart contracts to execute them on-chain. A key concern in writing
smart contracts is their execution cost. Unlike traditional workflow engines that
run on local infrastructure, blockchain-based execution requires the payment of
gas fees, which are determined by code complexity. This makes process execu-
tion potentially expensive [12]. Therefore, making gas usage visible at the process
modeling level can help reduce business operation costs for blockchain execution.

In this paper, we propose four design patterns aimed at managing and op-
timizing gas consumption in blockchain-based processes: event logging, guard
checking, partial recovery, and gas sponsorship. These patterns (Fig. [1)) are in-
tended for both business practitioners and blockchain developers designing pro-
cesses for on-chain execution. They are BPMN specific patterns and can be
applied across various business scenarios in process modeling.

2 Hassan Atwi et al.

(= = g
O—- Fund Gas Process Core Refund Gas | Rejease Gas -O
H

Gas Sponsorship

=

O—» Receive Task

Process
— Checkpoint

Event Logging

Guard Check

Partial Recovery

=
O—> Receive Task

—

Check Failed

Guard Checking

Early Failure]

Fig. 1: Gas management design patterns modeled in BPMN (highlighted in blue).

Sufficient
Balance?

Add Item to

1

1

1

1

1

[

1

Fund Gas JERRS v, |]
- [
1

1

1

1

Order (s2) J

Esqow () | A fee A s,
=
Refund Gas
(t6)
=3

Blockchain Network

A es
Sufficient
| Balance?,
1 o> Release Gas
Q2 i Escrow (s4)
! Insufficient P ltems
| Balance (e1) :
| =
tem
[Modifications
) ()
Item_IDs (e2))
! Orders A Orders ™, Order Cleared !
1 1 (€3) 1
1 1 !
Y > Y

Fig. 2: BPMN diagram representing a supply chain collaborative process in which
the four gas management patterns have been introduced.

To demonstrate these patterns, we apply them to a collaborative process
scenario involving four participants (Fig. [2]): Retailer, Logistics Provider, Cus-
tomer, and Customs. These participants interact through a blockchain network
that provides a shared view of the core supply chain process. In the scenario,
the Customer places an order with multiple items. The order is validated based
on stock availability and the Customer’s balance. If the order is approved and
it involves a cross-border transaction, Customs issues a clearance on-chain. The
Logistics Provider then logs the delivery on the blockchain. The process is com-
piled into a Solidity smart contract and deploy on a local Ethereum network. We
execute 500 traces of the process to evaluate the impact of each design pattern on
both deployment and execution gas costs. Our results show which pattern com-
binations improve gas efficiency, while others may introduce additional costs.

Gas Management 3

The paper is organized as follows: In Section [2] we formalize the seman-
tics of a blockchain-enabled collaborative process using BPMN so that its gas
consumption can be estimated. In Section [3] we introduce the design patterns
illustrating their application within the use case scenario. Section [presents an
experimental evaluation of their benefits in terms of gas usage during deploy-
ment and execution. In Section [5] we discuss the results before concluding the
paper in Section [6]

2 Background and Motivation

2.1 Blockchain-Enabled Business Process

To explain process execution costs, we introduce a set of assumptions on how
various blockchain-related aspects are mapped to BPMN elements. In particular,
we designate one pool to represent the on-chain logic. All other pools represent
off-chain business processes, locally executed by each participant. Formally, the
blockchain pool B is defined as:

B=(T,G,E,P,F,.)
where:

— T is the set of tasks, with Tr C T as Receive Message Tasks (from off-chain
participants), and Ts C T as Script Tasks (deterministic on-chain logic),

— G, E: sets of gateways and events, respectively, where Fr C F is the set of
error events

— P: set of participants

FC(TUGUE) x (T'UGUE): control-flow edges (sequence flows),

— v : Tr — P: maps each receive task to its initiating participant,

A blockchain transaction begins with a receive task and terminates at either
another receive task or an end event (end event may be an error event). Formally,
it is defined as a tuple:

/
T = (tstartv o,m,0, nend)

where:

— tstart € T is the initiating receive task,

— Nend € Tr U ER is the terminating node, either a receive task T (success)
or an error event Fr (failure),

— 7 ={ny,...,ng) € (TUGUE)* is a valid transaction control-flow path such
that:

(tstart7n1)7 (n17n2)7 B (nk—17nk)7 (nka nend) EF

— 0,0’ € X are the initial and resulting blockchain states,

— Executing 7 transitions the state from o to o', denoted (o, m,0’) € 6, where
0 C X x (TUGU E)* x X is the state transition relation,

— If nena € Er, the transaction is reverted: the blockchain state remains un-
changed (¢’ = ¢), and the control flow is rolled back to the initiating receive
task tstart~

4 Hassan Atwi et al.

2.2 Gas Cost in Transaction Execution

In blockchain networks, the execution of logic comes with a cost because of
the distributed nature of the network. For instance, in Ethereum blockchain
networks, to prevent abuse through computationally intensive or potentially un-
bounded code execution, a fee called gas [16] is applied to all operations per-
formed on-chain. Each transaction is assigned a gas limit and a gas price. The
total fee is determined by multiplying the gas consumed during execution by the
specified gas price. This fee is paid in ETH and deducted from the transaction
sender’s balance. If the transaction exceeds the specified gas limit, it is reverted,
but the gas consumed up to the point of failure is still paid.

To map gas fees to business processes, we relate them to the BPMN elements
executed during a blockchain transaction. Since each element corresponds to an
on-chain operation, the total gas cost can be represented as the sum of the
individual costs of these operations. Formally, the gas fee can be expressed as:

[m]—1
Gix(m) = g G(n;)
i=1
where ™ = (tstart, -« My -« -y Nend) 1S & valid transaction execution control-

flow path. G(n;) denotes the gas cost of executing each BPMN element n; along
the path. The total gas cost Gix(m) excludes the terminating node nenq and
represents the sum of gas consumed by all preceding elements in the transaction.
This total is paid by the sender of the transaction upon execution of the control
flow path triggered by its receipt on the blockchain.

2.3 Related Work and Research Gap

In [I0], the BPMN and CMMN notations are used to represent patterns covering
blockchain concepts such as oracles, tokenization, and on-chain encryption. The
study does not include any gas cost evaluation for the patterns. The pattern
collections presented in [I8[I7] provide a systematic overview of design pat-
terns for blockchain-based applications and serve as a foundation for integrating
blockchain components into broader software architectures. In [7], a specific cat-
egory of blockchain patterns is introduced, focusing on payment mechanisms and
transfer of funds between participants. While the primary objective of the study
is to explore payment patterns rather than transaction costs, it notes the high
deployment cost of the patterns. The study does not use business process mod-
eling to represent the patterns. [14] is a collection of Solidity design patterns and
best practices derived from real-world decentralized applications. In our work,
we adopt the Guard Check pattern from that collection and represent it using
BPMN.

To optimize the cost of executing business processes on blockchain, the au-
thors of [3] transform existing BPMN models into Petri nets and apply opti-
mization rules to enhance execution efficiency on the blockchain. The results are
empirically compared to a baseline by replaying execution logs and measuring

Gas Management 5

gas consumption. This work concentrates on low-level transformations of busi-
ness processes, rather than addressing application and domain specific concerns
at the business level. In [§], the authors explore a range of low-level optimization
strategies for Ethereum smart contracts. They evaluate strategies for analyzing
and minimizing gas consumption during both the contract generation and de-
ployment phases. However, this work remains focused on the technical level and
does not address higher-level business concepts as we do in this paper.

3 Gas Management Design Patterns

3.1 Partial Recovery

Context: In many blockchain applications, a participant may need to perform
multiple operations that are submitted together in a single transaction, com-
monly referred to as batching. In BPMN, this concept is often represented using
a multi-instance parallel task, where the same task is executed concurrently for
multiple items or data elements.

Problem: While batching reduces the overhead of submitting multiple separate
transactions, it also introduces dependencies between the batched operations
which are executed atomically. If one operation within the batch fails, the entire
transaction is reverted due to the atomic (all-or-nothing) nature of transactions.
This forces the user to resubmit the whole transaction after resolving the issue,
resulting in additional costs. How to avoid the participant having to resubmit
the entire batch to reprocess their operations, leading to increased gas fees?

Solution: Operations within a batch transaction are separated and executed in-
dividually rather than atomically as a batch. Successful operations are persisted
on-chain, while failed ones are flagged and skipped. A dedicated event is emitted
containing references to the failed operations. Participants can then resubmit
only the failed operations, i.e., performing a partial recovery of the batch, with
corrected parameters, avoiding the need to resend the entire batch.

Use Case: In the use-case scenario (Fig. , the partial recovery pattern is ap-
plied during the process of adding items to a customer order, where multiple
items are processed in a single batch. Assuming the customer has sufficient bal-
ance to place the order, the transaction 7,,4e; may result in one of two execution
paths depending on the availability of the requested items:

T = <t23917 51, {851)7 B SéN)}v 833937nf> where ny € {t4at5}7
7o = (t2, 41, S1, {sél), R SéN)},eg,t3>

Here, {sgl),sg), .. .,sgN)} represents the repeated execution of task s, for
each item in the original order. N denotes the total number of items in the cus-
tomer’s order. Task ss is treated as a multi-instance parallel task, corresponding
to the addition of each item individually.

Path 7 is followed when all requested items are in stock and the transaction
is completed successfully. Alternatively, path 75 is taken when some or all items

6 Hassan Atwi et al.

are out of stock. In this case, the transaction emits event es, which carries ref-
erences to the failed items. When the initial order contains out-of-stock items,
the customer submits a follow-up transaction 7o;qerr to modify the order with
the remaining items. This transaction may follow one of two paths:

(1)
2

M
3 = <t3792a {S P 'aS(Q)}7S3a933nf> where nf S {t4at5}a

T4 = (t3, g2, {Sél)w-'as(zM)}a€2,t3>

In these paths, M < N refers to the number of items that are still pend-
ing and need to be added in the follow-up transaction(s). Each instance sél)
corresponds to the processing of a single item, whether it succeeds or fails.

The gas consumed by the customer can be calculated as follows: if all items
are available in the initial transaction, the total gas usage is Gcustomer = Gix(71)-

If at least one item is unavailable, the total gas becomes:

chstomer = Gtx(ﬂ'2) + (6 - 1) ‘ Gtx(ﬂ'4) + Gtx(ﬂ3)

where § represents the number of attempts required to complete the order.

Application: The partial recovery pattern can be implemented using the mul-
ticall [4] approach in blockchain systems. In a multicall, multiple user operations
are bundled and executed within a single transaction to reduce overall execu-
tion fees. The partial recovery pattern complements this mechanism by allowing
individual operations within the bundle to fail without reverting the entire trans-
action. This ensures that successful operations are preserved while isolating and
handling failures independently, thereby saving additional cost, as there is no
need to resubmit the entire set of operations in case of partial failure.

3.2 Gas Sponsorship

Context: In blockchain-enabled collaborative processes, multiple participants
interact through the blockchain to achieve a shared business objective. Since
executing tasks on-chain requires initiating blockchain transactions, participants
are responsible for covering the gas fees. These fees can be substantial, especially
in high-frequency scenarios.

Problem: Blockchain technology offers many advantages for business processes,
such as traceability, decentralization, and immutability. However, these benefits
come at the cost of transaction fees. Transaction costs can deter participants from
engaging in blockchain-enabled processes, especially in environments where costs
are prohibitive and unstable. This challenge may outweigh the advantages of
blockchain-enabled processes, leading businesses to revert to centralized systems.
How to avoid participants paying transaction fees as they interact with a process?

Solution: To address the drawback of transaction costs in blockchain-based
business processes, participants in the collaboration agree to designate one or
more gas sponsors responsible for covering the transaction fees of other partic-
ipants. The agreed-upon process begins with an activity in which the sponsors

Gas Management 7

allocate funds within the smart contract, effectively acting as an escrow. Once
the escrow is funded, the process execution continues. At the end of the process,
the gas consumption of each participant is measured, and the escrow is released
proportionally based on each participant’s actual usage. With the help of the
business process model, the sponsorship can be made selective based on two
factors derived from the process itself. The first is resource-selective, identify-
ing the eligible participants who may be refunded. The second is path-selective,
referring to the specific control-flow path that a transaction has followed (7).
Certain paths can be excluded or included in the refunding logic. Both factors
can also be combined to enable a process-aware gas sponsorship strategy.

Use Case: In our use-case scenario [2, the participants agreed to adopt the
gas sponsorship pattern within the process. The retailer was selected as the
sponsor responsible for funding the escrow. Additionally, the participants agreed
to apply both resource-selective and path-selective strategies. In the resource-
selective strategy, only a defined set of participants are eligible for a refund,
specifically: {customer,logistics _provider}. In the path-selective strategy, the
following control-flow paths are excluded from the refunding logic:

<t27917 S1, {sél)a sy SgM)}v 62,t3,92, €1>,
(t2,91,€1),
3 = <t47 637t5>

Uyt

2

Paths 7 and 7y are excluded because they correspond to aborted transactions
that revert due to insufficient customer balance. In these cases, the retailer ex-
plicitly agreed not to sponsor failed transactions. Path 73 is excluded as it is
initiated by the customs participant, who is not eligible for a refund under the
agreed resource-selective policy. Therefore, the total gas sponsored by the re-
tailer is the sum of the gas fees for all valid transaction paths, excluding the
three excluded ones. Let IT be the set of all valid execution paths in the process,
and let {my,ma, m3} C II be the set of paths excluded from refunding. The total
gas cost Gretailer sSponsored by the retailer is computed as:

Gretailer = Z Gix ()

mell\{m1,m2,m3}

Applications: The gas sponsorship pattern has gained attention in recent re-
search aimed at abstracting users from the complexity and cost of interacting
with blockchain systems, particularly in the context of Account Abstraction
(AA) [1I5]. AA introduces a flexible transaction model that enables more user-
friendly blockchain interactions. One key component of this model is the Paymas-
ter, a smart contract responsible for sponsoring gas fees on behalf of users. This
allows users to interact with decentralized applications (dApps) without needing
to hold or manage native tokens for gas, thereby improving accessibility.

8 Hassan Atwi et al.

3.3 Guard Checking

Context: In blockchain-enabled business processes, task execution consumes
gas, regardless of its success. Even when a transaction fails and is reverted, the
participant still pays for the operations executed up to the failure point. Early
input validation is essential to avoid incurring unnecessary gas costs during task
execution.

Problem: A blockchain transaction is executed atomically, and while a failed
transaction reverts all state changes, participants still incur the gas costs for
the execution up to the point of failure. This is both counterproductive and
costly for participants. When critical validations, e.g., balance checks, access
permissions, are deferred to later stages of the process, earlier tasks may have
already performed multiple expensive, state-changing operations. Even though
the transaction is eventually reverted, the participant still incurs gas costs for
computation and memory usage up to the point of failure. How to reduce the
cost of failed transactions?

Solution: To avoid late failure in a blockchain process, early validation of crit-
ical conditions is applied in a process control-flow to ensure that faulty transac-
tions are halted as early as possible, before any expensive state-changing logic
is triggered. This pattern make use of decision gateways at the beginning of the
execution path to validate preconditions. If the guard fails, the process reverts
immediately with minimal gas consumption.

Use Case: In the process shown in Figure[2] the transaction for placing an order
follows the path:

= (t2, 01, 81, {sgl)7 .. .,sgN)},S3,gg,nf> where ny € {t4,t5}

Let 7 = (t2,s,m, s',ns) denote the transaction. If the customer’s balance is
insufficient, the control flow is redirected to a terminating event via the gateway
g1. However, if the balance check is deferred until s, the transaction proceeds
through s; and sy before failing. These tasks incur significant gas costs due to
their storage-intensive operations, i.e., order creation and item insertion, making
early validation crucial for cost efficiency.

— Without early guard: If balance validation is deferred until s3, the gas cost
upon failure becomes:

N
Graittate = G(t2) + G(s1) + Y G(s5)) + G(s3)

i=1

— With early guard: Placing the check at g; ensures early termination if the
balance is insufficient:

Gfail—early - G(tZ) + G(gl)
The gas savings in case of failure are:

N
AG = Grailate — Grail-early = G(s1) + Z G(s5)) + G(ss) — Glgn)

=1

Gas Management 9

This shows how guard checking reduces costs for failing transactions.

Applications: The guard checking pattern is widely adopted in many decen-
tralized application (dApp) smart contract codebases. It typically appears at the
beginning of function calls to enforce preconditions. Solidity offers a dedicated
"require ()" statement. In Uniswap [5] early checks are used to validate input
conditions, e.g., ensuring sufficient output amounts or valid recipient addresses,
before proceeding with more costly operations.

3.4 Event Logging

Context: Blockchain storage writes incur high gas costs, while event logging is
cheaper but still suited to track the achievement of key process milestones.

Problem: Participants need visibility into the state of a blockchain-enabled
process for monitoring, auditing, or coordination purposes. However, frequently
persisting state information on-chain through storage operations is costly in
blockchain environments, leading to increased gas consumption. How to reduce
the cost for on-chain logging of the process instance state?

Solution: To reduce the cost associated with frequent state modifications in
blockchain-enabled processes, we use blockchain events, which are modeled as
signal events in BPMN. These events are emitted at specific checkpoints within
the process and serve as lightweight markers that communicate progress without
altering the contract’s state. This approach offers a gas-efficient alternative for
broadcasting and auditing the status of a business process on-chain.

Use Case: In our use-case scenario (Fig. , the transactions Tcustoms clearance
and Torder delivered, cOrresponding to the execution paths m = (t4,es,t5) and
Ty = <t5,e_4,t6> respectively, demonstrate the application of gas-efficient check-
point logging. Upon successful customs clearance or order delivery, a signal event
is emitted to indicate the occurrence of a checkpoint within the process.

Since this status information, i.e., the order has been cleared or delivered, is
not consumed by any on-chain logic or referenced by other smart contracts, per-
sisting it via storage updates (e.g., order.cleared = true) incurs unnecessary
gas costs. Instead, emitting a signal event offers a lightweight and cost-effective
alternative for communicating progress to off-chain participants. Persisting such
data on-chain when it serves no purpose in subsequent smart contract logic rep-
resents an anti-pattern. Gas-efficient checkpoint logging avoids redundant state
changes while still sustaining transparency and traceability of process execution
for external observers through the event log.

Applications: Event logging is a widely adopted pattern in decentralized appli-
cations (dApps) to minimize state-changing operations and reduce gas costs. In-
stead of persisting non-critical state updates on-chain, many dApps emit events
to signal significant process milestones. A practical example is The Graph [I3],
a protocol that leverages blockchain-emitted events to index and query contract
data efficiently. This approach enables transparency and auditability without
incurring the high gas costs associated with on-chain storage operations.

10 Hassan Atwi et al.
4 Experimental Evaluation

We used the running example to quantitatively evaluate the patterns in terms
of gas usage during both deployment and execution. To enable this evaluation,
the collaborative process was compiled into a smart contract based on the state
machine pattern [I4]. The process state is represented by a token that marks
the currently active task. The smart contract maintains a mapping from tasks
to their corresponding state, i.e., process token. When a task becomes enabled,
a token is placed on it. Upon the execution of that task, the token moves to
the subsequent task according to the process flow. Public functions represent
user-invoked tasks, while internal functions capture the behavior of script tasks,
gateways, and events, i.e., callable only from within the contract itself.

During the evaluation, we distinguish between the base contract and the full
contract. The base contract implements only the core process logic, i.e., the state
machine, without incorporating any of the patterns. For instance, in the absence
of the event logging pattern, the base contract persists order status using on-
chain storage instead of emitting events. Guard checking is also omitted: control-
flow elements such as gateways g, and g, are not present in the base model.
Partial recovery is likewise not supported in the base contract. As a result, when
some items are unavailable, the customer must resubmit a transaction with the
entire item list. This leads to the execution path such as ey = (t2, $1, S2, €2),
with e € Fr being an error end event instead of a signal event. Lastly, the gas
sponsorship pattern is not implemented in the base contract. Tasks responsible
for funding and refunding participants, e.g., t; and tg, are omitted. In contrast,
the full contract includes all four patterns as specified in the process model.

4.1 Deployment Cost

The patterns discussed are designed to manage gas usage in a blockchain-enabled
business process. In addition to their execution cost, the deployment cost is
equally important. It is essential to evaluate the deployment cost to determine
whether implementing these patterns is affordable, particularly in relation to
their execution cost and overall profitability. We isolate the pattern from the
base contract to inspect the deployment cost of each pattern. We then deploy
the base contract along with the individual pattern and compare its deployment
cost to that of the base contract. Understanding how much additional gas each
pattern requires during deployment, relative to the base contract, is essential
for evaluating the trade-offs involved. Table [1| presents the deployment costs for
each pattern. The most expensive pattern to implement is the gas sponsorship
pattern, with a deployment cost of 1,130,273 gas (26.22%), which incurs higher
costs due to the continuous tracking of gas consumption in real-time across the
contract’s functions and the storage of gas usage by participants. The least ex-
pensive pattern to implement is event logging, with a deployment cost of 29,182
gas (0.68%), which is attributed to its simple implementation that involves emit-
ting a native Solidity event when triggered within the control flow. In total, the

Gas Management 11

Table 1: Breakdown of full contract deployment cost.

Component Deployment Cost (gas) Deployment Cost Share (%)
Base Contract 2,692,867 62.46%
Patterns
Event Logging 29,182 0.68%
Guard Checking 176,309 4.09%
Partial Recovery 282,067 6.54%
Gas Sponsorship 1,130,273 26.22%
Full Contract 4,310,698 100%

patterns represent 35.53% of the deployment cost of the base contract, which
has a deployment cost of 2,692,867 gas (62.46%).

4.2 Execution Cost

To assess the execution cost of the patterns, we need to run the collaborative
process by interacting with the deployed smart contracts. This interaction is
simulated through a generated event log, consisting of 500 traces, where each
trace represents an execution instance of the process. Each trace includes input
parameters required to execute the process, such as the retailer’s stock levels and
item prices, the initial gas amount funded by the retailer, and the customer’s
Ether balance, which determines whether the purchase can be completed. The
number of attempts (§) made by the customer to successfully fulfill the order
is generated as part of each trace, along with whether the order is domestic
or cross-border. These parameters are randomly assigned across the traces to
simulate different execution scenarios. The same event log is used to simulate
each process trace on both the full and base contracts, with the execution path
determined by the corresponding input parameters.

To analyze the gas cost impact of each pattern, we deploy contract variants
that combine the base process with a single pattern. This setup enables us to
isolate the cost contribution of each pattern and understand how it affects ex-
ecution independently. By comparing these variants with the base contract, we
observe the relative increase or decrease in total gas usage. In Table 2] the par-
tial recovery pattern results in the highest gas reduction of 49.64% compared
to the base contract, despite introducing the largest number of transactions.
Conversely, the Refund Gas pattern results in a 13.36% increase in total gas
usage. This is expected, as the pattern’s goal is not cost optimization but refund
management. It also introduces more transactions than the base contract, due
to additional operations for funding and refunding participants. When all pat-
terns are integrated in the full contract, we observe a 40.64% reduction in total
gas consumption compared to the base contract, despite an increased number
of transactions. This indicates that the combined use of patterns contributes to
overall cost efficiency in the process execution.

12 Hassan Atwi et al.

Table 2: Transaction count, average cost, total gas used, and relative difference
with respect to the Base Contract.

Total Relative
Component Transactions Gas Used Difference (%)
Count Avg. Cost (gas)
Base Contract 3,475 272,667.57 947,519,800 -
Patterns
Event Logging 3,475 256,525.79 891,427,135 -5.91%
Guard Check 3,475 268,767.43 933,966,831 -1.43%
Partial Recovery 4,594 103,902.50 477,328,105 -49.64%
Gas Sponsorhip 4,318 248.,719.16 1,073,969,351 +13.36%
Full Contract 4,318 130,314.79 562,699,263 -40.64%
1.000 €8
I Full
[0 Base
§0.100‘
2
3
¢ 0.010
Z

0.001-
Fund Order Customs Order Refund
Contract Details Clearance Delivered

Fig. 3: Comparison of average gas usage by task in full vs base contract.

Looking at the impact of the patterns from a task execution perspective
(Fig.[3), we can observe how each pattern affects different parts of the process in
terms of gas usage. For instance, in the Order Details task, the gas consumption
in the full contract is approximately 66% lower than that of the base contract.
This reduction results from the combined effect of the partial recovery and Guard
Check patterns integrated within the task’s logic. It is also worth noting the gas
usage in the Customs Clearance and Order Delivered tasks. Although both tasks
incorporate the event logging pattern in the full contract, Order Delivered still
consumes more gas than Customs Clearance. This discrepancy is due to the
additional logic introduced by the gas sponsorship pattern in Order Delivered,
i.e., tracking and storing gas usage on-chain. This observation highlights that
certain pattern combinations may not be cost-effective. In this case, the gas
sponsorship pattern introduces overhead that offsets the efficiency gains of event
logging, nullifying its intended benefit.

Figure [4 illustrates gas usage trends in relation to the number of customer
attempts. In the base contract, gas usage increases sharply as the number of

700000

600000

500000 4

400000 +

300000 4

Average Gas Used

200000

100000 4

IS
s

—.-._.\'~o—.—o~.—./'— /
N

T T
0 2

T
4

6 8 10 12 12
Attempt (6) Index

T
16

700000
600000

500000 4

|

4 i o
T T T T T T
3 4 5 6 7 8

o
b
£ 400000
0
©
O 300000

200000

100000

Gas Management 13

. Full
[Base

I

T T
9 10
Number of Items

(a) Average gas usage by attempts.

(b) Gas usage by number of items.

Fig.4: Gas usage scaling across attempts (0) and item counts.

Table 3: Distribution of funds among participants with their respective gas usage.

Participant Funded (ETH) Gas Used (ETH) Refund (ETH) Refund (%)

Retailer 295 0.11406309 294.72367810 99.91%
Customer 0 0.34435188 0.25267738 73.36%
Logistics 0 0.03658384 0.02364452 64.63%
Customs 0 0.01223939 0 0.00%

attempts grows (Gix(mran) - (0)) (Fig. [da). This behavior is due to the lack of
partial recovery pattern. Each failed attempt requires resubmitting the entire
order, resulting in redundant execution and higher costs. In contrast, the full
contract shows a decreasing trend in gas usage across attempts. Thanks to partial
recovery pattern, once certain items are successfully added, they are excluded
from future attempts. Thus, only the failed items are retried (M < N), leading
to reduced computational effort and lower cumulative gas costs. Similarly, as the
number of items in an order increases (Fig. [dp), the base contract shows a steep
rise in gas consumption. Since the full batch is reprocessed with every failure, the
cost of each additional item compounds. The full contract maintains a relatively
stable profile, as it isolates and reattempts only the necessary operations.

To demonstrate the utility of the gas sponsorship pattern, Table [3] presents
the distribution of funds among participants. In this setup, the retailer acts as the
sole sponsor, covering the gas costs of the entire process. Due to the adoption of
a resource-selective refunding strategy, Customs is excluded from gas reimburse-
ment and therefore receives no refund. Other participants, i.e., the Customer
and Logistics, receive only partial refunds. This shortfall arises from certain gas-
consuming operations that are not encompassed within the defined sponsorship
boundaries, i.e., path-selective. Notably, Logistics consistently exhibits the low-
est refund rate. As discussed in Fig. [3] this is attributed to the fact that the gas
cost of the logistics task itself is lower than the overhead required to track and
process gas usage on-chain, resulting in a refund gap for the participant.

14 Hassan Atwi et al.

5 Discussion

As observed in the evaluation, adding patterns to the base contract nearly dou-
bles the deployment cost. This increase is expected due to the additional logic
introduced by the patterns. However, this higher deployment cost represents an
investment that will return significant gas savings during execution.

In some cases, combining patterns leads to a reduction in both execution
costs and the number of transactions. Certain patterns may appear costly when
applied in isolation, but become more efficient in a combined contract. This
is due to the way patterns interact and complement each other, often reduc-
ing redundant operations. For example, the Partial Recovery pattern recorded
fewer transactions in the full contract compared to its isolated implementation.
This is largely due to the presence of a Guard Check, which filters out invalid
transactions, e.g., due to low balance, early in the process. Another observation
involves the gas sponsorship pattern, which shows significantly higher execution
costs when applied alone (almost double) compared to when it is used in com-
bination with other patterns. This is because it misses out on the optimizations
introduced by the other patterns.

Just as some patterns work well together, others may have a negative impact
when combined. For instance, gas sponsorship can increase the cost of otherwise
lightweight patterns such as Event Logging. This overhead stems from the ad-
ditional write operations needed to track gas usage. One way to address this is
to introduce a fixed gas refund for such lightweight tasks when user refunds are
necessary, thus avoiding excessive overhead for simple operations.

The presented patterns can act as a guide for process designers aiming to im-
plement blockchain-based workflows while managing gas costs. By applying these
patterns, designers can reduce gas usage and make blockchain adoption more at-
tractive to participants who are concerned about transaction fees. Although the
patterns are demonstrated within our own smart contract implementation, they
should also be tested with other blockchain-enabled workflow engines to assess
their general applicability and performance across different environments.

6 Conclusion

In this paper, we presented four BPMN-based gas management patterns for
blockchain-enabled processes. These patterns were demonstrated through a use
case scenario and evaluated under different settings to assess their effectiveness
in reducing gas consumption. The results showed that, while the patterns in-
troduce an increase in deployment cost, they offer significant gas savings during
execution. These patterns are BPMN specific and can be applied across vari-
ous business scenarios involving blockchain-based processes. They may serve as
practical guidelines for designing gas-aware and efficient blockchain workflows.

Acknowledgement This work is supported by the Swiss National Science Foun-
dation (SNSF) funded project "Flexible Choreographies in Multi-chain Environ-
ments”‘ (196958).

Gas Management 15

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Belchior, R., Guerreiro, S., Vasconcelos, A., Correia, M.: A survey on business pro-

cess view integration: past, present and future applications to blockchain. Business
Process Management Journal 28(3), 713-739 (2022)

Buterin, V., et al.: A next-generation smart contract and decentralized application
platform. white paper 3(37), 2-1 (2014)

Garcia-Baniuelos, L., Ponomarev, A., Dumas, M., Weber, I.: Optimized execution
of business processes on blockchain. In: Proc. 15th International Conference on
Business Process Management (BPM). pp. 130-146. Springer (2017)

Hughes, W., Russo, A., Schneider, G.: Multicall: A transaction-batching interpreter
for ethereum. In: Proc. 3rd ACM International Symposium on Blockchain and
Secure Critical Infrastructure. pp. 25-35 (2021)

Lo, Y.C., Medda, F.: Uniswap and the emergence of the decentralized exchange.
Journal of financial market infrastructures 10(2), 1-25 (2021)

Loépez-Pintado, O., Garcia-Banuelos, L., Dumas, M., Weber, 1., Ponomarev, A.:
Caterpillar: a business process execution engine on the ethereum blockchain. Soft-
ware: Practice and Experience 49(7), 1162-1193 (2019)

Lu, Q., Xu, X., Bandara, H.D., Chen, S., Zhu, L.: Patterns for blockchain-based
payment applications. In: Proc. 26th European Conference on Pattern Languages
of Programs. pp. 1-17 (2021)

Mandarino, V., Pappalardo, G., Tramontana, E.: Some blockchain design patterns
for overcoming immutability, chain-boundedness, and gas fees. In: 2022 3rd Asia
Conference on Computers and Communications (ACCC). pp. 65-71. IEEE (2022)
Mendling, J., et al.: Blockchains for business process management-challenges and
opportunities. ACM Transactions on Management Information Systems (TMIS)
9(1), 1-16 (2018)

Milani, F., Garcia-Banuelos, L., Filipova, S., Markovska, M.: Modelling blockchain-
based business processes: a comparative analysis of bpmn vs cmmn. Business Pro-
cess Management Journal 27(2), 638—-657 (2021)

Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)

Porkodi, S., Kesavaraja, D.: Escalating gas cost optimization in smart contract.
Wireless Personal Communications 136(1), 35-59 (2024)

Tal, Y., Ramirez, B., Pohlmann, J.: The graph: A decentralized query protocol
for blockchains (2018), https://raw.githubusercontent.com/graphprotocol/
research/master/papers/whitepaper/the-graph-whitepaper.pdf

Volland, F.: Solidity design patterns, https://fravoll.github.io/
solidity-patterns/, accessed: 2025-05-21

Wang, Q., Chen, S.: Account abstraction, analysed. In: 2023 IEEE International
Conference on Blockchain (Blockchain). pp. 323-331. IEEE (2023)

Wood, G., et al.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper 151(2014), 1-32 (2014)

Xu, X., Pautasso, C., Lo, S.K., Zhu, L., Lu, Q., Weber, I.: An extended pattern
collection for blockchain-based applications. In: Transactions on Pattern Languages
of Programming V, pp. 67-117. Springer (2025)

Xu, X., Pautasso, C., Zhu, L., Lu, Q., Weber, 1.: A pattern collection for blockchain-
based applications. In: Proc. 23rd European Conference on Pattern Languages of
Programs. pp. 1-20 (2018)

https://raw. githubusercontent.com/graphprotocol/research/master/papers/whitepaper/the-graph-whitepaper.pdf
https://raw. githubusercontent.com/graphprotocol/research/master/papers/whitepaper/the-graph-whitepaper.pdf
https://fravoll.github.io/solidity-patterns/
https://fravoll.github.io/solidity-patterns/

	Gas Management Patterns in Blockchain-enabled Process Execution

