
Comparing the Built-In Application
Architecture Models in the Web Browser

Antero Taivalsaari1, Tommi Mikkonen2, Cesare Pautasso3 and Kari Systä4
1Nokia Technologies, Finland, 2University of Helsinki, Finland

3USI Lugano, Switzerland, 4Tampere University of Technology, Finland

Abstract—Depending on one’s viewpoint, a generic standards-
compatible web browser supports three, four or five built-in
application rendering and programming models. In this paper,
we provide an overview of the built-in client-side web application
architectures. While the dominance of the base HTML/CSS/JS
technologies cannot be ignored, we foresee Web Components and
WebGL gaining popularity as the world moves towards more
complex and even richer web applications, including systems
supporting virtual and augmented reality.

Keywords—Web development, web application architectures

I. INTRODUCTION

As a result of the web browser evolution that has occurred
in the past two decades, today’s web browsers support a
number of complementary, partially overlapping rendering
and development models. These models include the dominant
Document Object Model (DOM) rendering architecture. They
also include the Canvas 2D Context API as well as WebGL.
Additionally, there are important and emerging technologies
such as Scalable Vector Graphics (SVG) and Web Components
that complement the basic DOM architecture.

The choice between the rendering architectures can have
significant implications on the structure of client-side web
applications. Effectively, all of the technologies introduce their
own distinct programming models that the developers are
expected to use. Furthermore, all of them have varying levels
of framework, library and tool support available to simplify
the actual application development work. The DOM-based
approach is by far the most popular and most deeply ingrained,
but the other technologies deserve a glimpse as well.

In this paper, we provide a comparison of the built-in
client-side web application architectures, i.e., the program-
ming capabilities that the web browsers provide out-of-the-
box before any additional libraries are loaded. This is a topic
that has received surprisingly little attention in the literature.
While there are countless papers on specific web development
technologies, and hundreds of libraries have been developed on
top of the browser, we are unaware of any papers comparing
the built-in development models of the browser itself.

The paper is motivated by the recent trend toward simpler,
more basic approaches in Web development. According to
recent studies, the vast majority (up to 86%) of web developers
feel that the Web and JavaScript ecosystems have become far
too complex (http://stateofjs.com/2016). There is a movement
to go back to the roots of web application development by
building directly upon what the web browser can provide with-

out the added layers introduced by various libraries and frame-
works. The recent “zero framework manifesto” crystallizes this
desire for simplicity [1]. However, even the “vanilla” browser
offers a cornucopia of choices when it comes to application
development, reflecting the historical, organic evolution of the
web browser as a software platform.

II. CLIENT-SIDE WEB RENDERING ARCHITECTURES

DOM / DHTML. In web parlance, the Document Object
Model (DOM) is a platform-neutral API that allows programs
and scripts to dynamically access and update the content,
structure and style of web documents. DOM is the foundation
for Dynamic HTML (DHTML) – the combination of HTML,
Cascading Style Sheets (CSS) and JavaScript – that allows web
documents to be manipulated using a combination of declar-
ative (CSS, HTML) and imperative (JavaScript) development
styles. Logically, the DOM can be viewed as an attribute tree
that represents the contents of the web page that is currently
displayed by the web browser.

In the web browser, the DOM serves as the foundation
for a retained (automatically managed) graphics architecture.
In such a system, the application developer has no direct,
immediate control over rendering. Rather, all the drawing
is performed indirectly by manipulating the DOM tree by
modifying its nodes; the browser will then decide how to
optimally lay out and render the display after each change.

DOM attributes can be defined from HTML, accessed and
evaluated from CSS and manipulated from JavaScript. As a
result, a number of entirely different development styles are
possible, ranging from purely imperative usage to a combina-
tion of declarative styles using HTML and CSS. For instance,
it is possible to create impressive 2D/3D animations using the
latest version of CSS animation capabilities without writing a
single line of imperative JavaScript code.

In practice, very few developers use the raw, low-level
DOM interfaces directly nowadays. The DOM and DHTML
serve as the foundation for an extremely rich library and tool
ecosystem that has emerged on top of the base technologies.
The manipulation of DOM attributes is usually performed
using higher-level convenience functions provided by popular
JavaScript / CSS libraries and frameworks.

Canvas. Canvas (officially known as the Canvas 2D Context
API) is an HTML5 feature that enables dynamic, scriptable
rendering of two-dimensional (2D) shapes and bitmap images



(https://www.w3.org/TR/2dcontext/). It is a low level, imper-
ative API that does not provide any built-in scene graph or
advanced event handling capabilities. It that regard, Canvas
offers much lower level graphics support than the DOM or
SVG APIs that will automatically manage and (re)render
complex graphics elements.

Canvas objects are drawn in immediate mode. This means
that once a shape such as a rectangle is drawn using Canvas
API calls, the rectangle is immediately forgotten by the
system. If the position of the rectangle needs to be changed,
the entire scene needs to be repainted, including any objects
that might have been invalidated (covered) by the rectangle. In
the equivalent DOM or SVG case, one could simply change
the position attributes of the rectangle, and the browser would
then automatically determine how to optimally re-render all
the affected objects.

The user interaction capabilities of the Canvas
API are minimal. A limited form of event handling
is supported by the Canvas API with hit regions
(https://developer.mozilla.org/en-US/docs/Web/API/Canvas
API/Tutorial/Hit regions and accessibility).

Conceptually, Canvas is a low level API upon which a
higher-level rendering engine might be built. Although canvas
elements are created in the browser as subelements in the
DOM, it is entirely possible to create just one large canvas ele-
ment, and then perform all the application rendering and event
handling inside that element. There are JavaScript libraries
that add event handling and scene graph capabilities to the
canvas element. For instance, with Paper.js (http://paperjs.org/)
or Fabric.js (http://fabricjs.com/) libraries, it is possible to
paint a canvas in layers, and then recreate specific layers,
instead of having to repaint the entire scene manually each
time. Thus, the Canvas API can be used as a full-fledged
application rendering model of its own.

WebGL (http://www.khronos.org/webgl/) is a cross-
platform web standard for hardware accelerated 3D graphics
API developed by Khronos Group, Mozilla, and a consortium
of other companies including Apple, Google and Opera. The
main feature that WebGL brings to the Web is the ability
to display 3D graphics natively in the web browser without
any plug-in components. WebGL is based on OpenGL ES
2.0 (http://www.khronos.org/opengles), and it leverages the
OpenGL shading language GLSL for shader definition. A
comprehensive JavaScript API is provided to open up OpenGL
programming capabilities to JavaScript programmers.

In a nutshell, WebGL provides a JavaScript API for render-
ing interactive, immediate-mode 3D (and 2D) graphics within
any compatible web browser without the use of plug-ins.
WebGL enables Web applications to take advantage of the
Graphics Processing Unit (GPU) to accelerate complex render-
ing, image processing and visual effects. WebGL applications
consist of control code written in JavaScript and shader code
written in GLSL that is typically executed on a GPU.

WebGL is widely supported in modern desktop browsers.
However, its availability and usability is dependent on var-
ious factors such as the GPU supporting it. Today, many

of the mobile browsers (e.g., the Android browser) still do
not support WebGL by default. Furthermore, even in many
desktop computers WebGL applications may run poorly unless
the computer has a graphics card that provides sufficient
capabilities to process OpenGL efficiently.

Just like the Canvas API, the WebGL API is a rather low-
level API that does not automatically manage rendering or
support high-level events. From the application developer’s
viewpoint, the WebGL API may in fact be too cumbersome
to use directly without utility libraries, such as A-Frame,
BabylonJS, three.js, O3D, OSG.JS, CopperLicht and GLGE.
For instance, setting up typical view transformation shaders,
loading scene graphs and 3D objects in the popular industry
formats can be very tedious and requires writing a lot of source
code.

Scalable Vector Graphics (SVG) is an XML-based vector
image format for two-dimensional graphics with support for
interactivity, affine transformations and animation. The SVG
Specification [5] is an open standard published by the World
Wide Web Consortium (W3C) originally in 2001. Although
bitmap images were supported since the early days of the
Web (the <IMG> tag was introduced in the Mosaic browser
in 1992), vector graphics support came much later via SVG.

While SVG was originally just a vector image format, SVG
support has been integrated closely with the web browser
to provide comprehensive means for creating interactive,
resolution-independent content for the Web. Similar to the
HTML DOM, SVG images can be manipulated using DOM
APIs via HTML, CSS and JavaScript code. This makes it
possible to create shapes such as lines, Bezier/elliptical curves,
polygons, paths and text and images that be resized, rescaled
and rotated programmatically using a set of built-in affine
transformation and matrix functions.

Just like with the HTML DOM, SVG support in the web
browser is based on a retained (managed) graphics architec-
ture. Inside the browser, each SVG shape is represented as
an object in a scene graph that is rendered to the display
automatically by the web browser. When the attributes of an
SVG object are changed, the browser will calculate the most
optimal way to re-render the scene, including the other objects
that may have been impacted by the change.

In the earlier days of the Web, SVG was the only means
to implement a scalable, “morphic” graphics system, which is
why the SVG DOM API was used as the foundation for graph-
ics implementation, e.g., in the original Lively Kernel web pro-
gramming system [4]. The following link provides a reference
to a more comprehensive, “Lively-like” example of an SVG-
based application that includes interactive capabilities (image
rescaling and rotation based on mouse events) as well: https:
//dev.w3.org/SVG/tools/svgweb/samples/svg-files/photos.svg/.

In general, it is important to summarize that in the context
of the Web, SVG is much more than just an image format. To-
gether with event handling capabilities, affine transformations,
gradient support, clipping, masking and composition features,
SVG can be used as the basis for a full-fledged, standalone
graphical application architecture or windowing system.



Web Components. Web Components (https://www.w3.org/
TR/#tr Web Components) are a set of features added to
the HTML and DOM specifications to enable the creation
of reusable widgets or components in web documents and
applications. The intention behind web components is to
bring component-based software engineering principles to the
World Wide Web, including the interoperability of higher-level
HTML elements, encapsulation, information hiding and the
general ability to create reusable, higher-level UI components
that can be added flexibly to web applications.

An important motivation for web components is the fun-
damentally brittle nature of the Document Object Model.
The brittleness comes from the global nature of elements in
the DOM created by HTML, CSS and JavaScript code. For
example, when you use a new HTML id or class in your
web application or page, there is no easy way to find out if it
will conflict with an existing name used by the page already
earlier. Subtle bugs creep up, style selectors can suddenly go
out of control, and performance can suffer, especially when
attempting to combine code written by multiple authors [2].
Over the years various tools and libraries have been invented
circumvent the issues, but the fundamental brittleness issues
remain. The other important motivation is the fixed nature of
the standard set of HTML elements. Web components make
it possible to extend the basic set of components and support
dynamically downloadable components across different web
pages or applications.

Web components are built on top of a concept known as
the Shadow DOM. In technical terms, the Shadow DOM
introduces the concept of nested subtrees in the Document
Object Model. These subtrees can be viewed conceptually as
“icebergs” that expose only their tip while the implementation
details remain invisible (and inaccessible) under the surface.
Unlike regular branches in the DOM tree, shadow trees
provide support for scoped styles and DOM encapsulation,
thus obeying the well-known separation of concerns and mod-
ularity principles that encourage strong decoupling between
public interfaces and implementation details [3]. Utilizing the
Shadow DOM, the programmer can bundle CSS with HTML
markup, hide implementation details, and create self-contained
reusable components in vanilla JavaScript without exposing
the implementation details or having to follow awkward nam-
ing conventions to ensure unique naming.

At the technical level, a shadow DOM tree is just a normal
DOM tree with two differences: 1) how it is created and
used, and 2) how it behaves in relation to the rest of the
web page. Normally, the programmer creates DOM nodes and
appends those nodes as children of another element. With
shadow DOM, the programmer creates a scoped DOM tree
that is attached to the element but that is separate from its
actual children. The element it is attached to is its shadow
host. Anything that the programmer adds to the shadow tree
becomes local to the hosting element, including <style>.
This is how shadow DOM achieves CSS style scoping.

Note that up until recently, many browsers did not support
web components yet. Therefore, they had to be emulated

in the form of polyfill libraries that implement the missing
functionality (http://webcomponents.org/polyfills/). As of this
writing, native support for the Shadow DOM is available both
in desktop and Android versions of Google Chrome, in desktop
version of Opera, as well as in Apple Safari desktop version
10. Mozilla Firefox currently supports web components only
as a developer option.

III. COMPARISON, USE CASES AND PREDICTIONS

An overview and a summary of the different approaches is
presented in Table I. The table covers topics such as the overall
development paradigm (imperative vs. declarative), rendering
architecture (retained/managed vs. immediate), information
hiding support, primary intended usage domain and current
popularity. We also provide impressions on more subjective
factors such as technology maturity, abstraction level and
ease of code reuse. Finally, the table summarizes whether
each technology provides support for defining animations in
a declarative fashion (as opposed to having to write lengthy
JavaScript timer scripts to drive animations), as well as
whether the technology is supported by mobile browsers.

Primary Use Cases. The following bullets provide a basic
characterization on the primary use cases for each technology.

• DOM/DHTML. HTML was originally developed as a
declarative markup language for creating static documents
and forms. Over the years, the use of DOM/DHTML has
expanded to almost every imaginable use case. Today, DOM-
based development approach dominates the web development
landscape. This approach is declarative in nature, so the
browser largely decides about rendering; this simplifies the
development of web sites that look like documents, but can
complicate the creation of sites that should behave like desktop
applications or require control of the display at pixel level.

• Canvas. The Canvas API was introduced at a time when
there was no other way to render lines, circles, rectangles or
other low-level graphics imperatively in the browser. Currently,
the Canvas API is utilized primarily by game developers. It is
also used sometimes in regular web pages for drawing custom
graphical content.

• WebGL. From technical viewpoint, WebGL is basically
a thin JavaScript wrapper over native OpenGL interfaces for
providing a programmatic API inside the web browser to
achieve hardware-accelerated (GPU) rendering. As a result,
the use cases of WebGL are a direct derivative of the OpenGL
use cases, including (especially) game development, computer-
aided design (CAD), scientific visualization, flight simulation,
virtual reality, or any other case in which advanced 3D (or
2D) graphics rendering capabilities are needed. WebGL is an
imperative, low-level API that places a lot of requirements on
developer skills. Today, the use of WebGL is still marginal,
but we foresee it gaining importance as the need to render
VR/AR content in the web browser increases.

• SVG. In the context of the web browser, SVG has a
dual role. First and foremost, SVG is a vector image for-
mat for rendering scalable graphics content on web pages.
However, SVG can also be used as a rich, generic graphics



Table I
COMPARISON OF BUILT-IN CLIENT-SIDE RENDERING TECHNOLOGIES

DOM / DHTML Canvas WebGL SVG Web Components
Development Paradigm Declarative and

imperative
Imperative Imperative Declarative and

imperative
Declarative and
imperative

Rendering Architecture Retained Immediate (explicit
repainting required)

Immediate (explicit
repainting required)

Retained Retained

Information Hiding No Not applicable (no
namespace support)

Not applicable No (except when
creating multiple
SVG images)

Yes (Shadow DOM
encapsulation and
scoped styles)

Primary Usage Domain Documents and
forms

2D graphics (e.g., in
games)

3D/2D graphics
especially in games
and VR/AR

2D image rendering Web applications
and graphical user
interfaces

Popularity Ubiquitous Popular in specific
use cases

Limited Popular in specific
use cases

Growing

Technology Maturity Mature Mature Mature (implementa-
tion underway)

Mature Emerging (standard-
ization underway)

Abstraction Level Medium Very low Low Medium High
Ease of Code Reuse Low to medium Low Medium (shaders) Low to high (high as

an image format)
High

Declarative Animation Support Yes (with CSS) No No Yes Yes
Mobile Browser Support Yes Yes Not in Android

(add-ons required)
Yes Not in iOS (polyfill

add-ons required)

context to drive scene graph based applications with support
for complex event handling, affine transformations (rotation,
zooming, scaling, shearing), gradients, clipping, masking and
object composition.

• Web Components. Web components are the “dark horse”
in web development – they are still little known to most
developers, and it is difficult to place betting odds on their
eventual success. Web components reintroduce well-known
(but hitherto missing) software engineering principles and
practices into the web browser, including modularity and the
ability to create higher-level, general-purpose UI components
that can be flexibly added to web applications. Web compo-
nents cater to nearly any imaginable use case but they are
especially well-suited to the development of full-fledged Web
applications that require an extensible set of GUI widgets.

Predictions. Out of the technologies discussed in this paper,
DOM/DHTML will likely maintain its dominant role as the
base technology. However, we foresee especially WebGL gain-
ing more popularity in the future, as the world moves towards
richer media experiences, including virtual and augmented
reality. WebGL enables browser-based, installation-free high-
performance applications for viewing VR/AR content. WebGL
will be also increasingly important for game developers. In
fact, the most dramatic impact of WebGL is that it will
effectively eliminate the “last safe bastion” of traditional
binary applications, allowing the creation of portable high-
performance applications in the context of the web browser.

Regarding web components, it is still too early to declare
victory or failure. Since web components offer a more disci-
plined approach to DOM/DHTML programming, reintroduce
established software engineering principles, and generally alle-
viate the ”spaghetti code” issues that have resurfaced with the
Web, we would certainly like to see them succeed. In reality,
the main obstacle to the wider adoption of web components
are the predominant JavaScript libraries that provide additional

abstraction layers on top of the underlying DOM and basic
browser features.

We also believe that the Web would benefit from a high-
performance, low-level 2D graphics API that would provide a
more comprehensive feature set and direct drawing capabilities
without any historical baggage of the Canvas API. Apple’s
recent WebGPU API proposal [6] is an interesting step towards
addressing both 2D/3D rendering capabilities.

IV. CONCLUSIONS

Web development today presents a cornucopia of choices
on all fronts. In this paper, we have studied one of the
perhaps most overlooked areas in web development: the client-
side web rendering architectures that have been built into the
generic web browser. The rapid pace of innovation has put the
developers in a complex position in which there are numerous
ways to build applications on the Web – many more than most
people realize, and also arguably more than are really needed.

ACKNOWLEDGMENTS

This work is supported by Academy of Finland (project
295913) and Nokia Technologies.

REFERENCES

[1] Bitworking.org. Zero Framework Manifesto: No More JS Frameworks,
2014. https://bitworking.org/news/2014/05/zero framework manifesto.

[2] T. Mikkonen and A. Taivalsaari. Web Applications — Spaghetti Code
for the 21st Century. In Proc. Int’l Conf. Software Engineering Research,
Management and Applications (SERA’2008, Prague, Czech Republic,
August 20-22, 2008), pages 319–328. IEEE Computer Society, 2008.

[3] D. L. Parnas. On the Criteria to be used in Decomposing Systems into
Modules. Communications of the ACM, 15(12):1053–1058, 1972.

[4] A. Taivalsaari, T. Mikkonen, D. Ingalls, and K. Palacz. Web Browser as an
Application Platform: the Lively Kernel Experience, Sun Labs Technical
Report TR-2008-175. January 2008.

[5] W3C. Scalable Vector Graphics (SVG) Specification 1.1 (Second Edi-
tion), 2011. https://www.w3.org/TR/SVG/.

[6] WebGPU. WebGPU API Proposal by Apple, Inc. https://webkit.org/
wp-content/uploads/webgpu-api-proposal.html, Jan 30, 2017.


