
Migrating and Pairing Recursive Stateful
Components between Multiple Devices with

Liquid.js for Polymer

Andrea Gallidabino

Faculty of Informatics, University of Lugano (USI), Switzerland
{name.surname}@usi.ch

Abstract. With the continuous development of new Web-enabled de-
vices, we are heading toward an era in which users connect to the Web
with multiple devices at the same time. Users expect Web applications to
be able to flow between all the devices they own, however the majority of
the current Web applications was not designed considering this use case
scenario. As the number of devices owned by a user increases, we have
to find new ways to give Web developers the tools to easily implement
the expected liquid behaviour into their software. We present a new con-
tribution provided by the Liquid.js for Polymer framework, allowing the
migration of recursive component-based Web applications from a device
to another. In this demo paper we will show how to create recursive com-
ponents, how to migrate them among devices, and how their state can
be paired among the various components.

Keywords: Web Components, Liquid Software, Liquid Web Applica-
tions, Stateful Web Components

1 Introduction

The Liquid.js for Polymer framework is based on the Liquid software paradigm [1,
2]. As a poured liquid adapts to the shape of the containers holding it, a soft-
ware adapts to the resources of the devices running it [3]. Liquid applications are
specifically designed to run on multiple devices following the users focus when-
ever the application flows among them [4]. From the user point of view these
applications run either: 1. sequentially: at any given moment in time an appli-
cation runs only on a single device, however the users may decide to move the
application to a different one. The state of the application in a sequential sce-
nario is never accessible from two devices simultaneously; 2. simultaneously:
the application has to be shared among multiple devices, while its state has to
be kept in sync.

Liquid.js for Polymer [5] is a novel framework for easily create liquid Web
applications. In a previous demo publication we showed how to create liquid
Web applications by using our framework API, in this demo we focus on a new
feature: while in the past the migration was only possible on flat components,



today we make a distinction between container and leaf components. Finally we
show how these complex structures can be paired with each other by invoking
methods provided by our API.

2 Liquid Framework

Liquid.js for Polymer extensively exploits the most recent HTML5 standards.
This approach allows to target as many devices as possible, achieving an in-
creased compatibility with any system or hardware able to run a Web browsers
complying with HTML5, like Google Chrome or Mozzilla Firefox.

The goal of Liquid is to automatise how an application is shared between mul-
tiple devices, the framework transparently decides where data has to be stored in
such a way it is always available and as close as possible to the source using it [5].
The environment created by Liquid is highly decentralised, the decentralisation
is achieved by delegating clients of storing data in a peer-to-peer mesh instead
of storing it in a central server and, whenever possible, clients also distribute
the application assets whenever they are requested. The server in a Liquid ap-
plication is used as a fallback whenever P2P technologies are not available, and
as the initial orchestrator of the P2P mesh by exchanging signalling messages
between the clients.

Liquid expects the developer to be able to build component-based applica-
tion by using the WebComponents standard, specifically by using the Polymer
library1. A developer has to decompose an application into smaller components
and he has to explicitly define which parts of the application are expected to
be shared between devices. In order to do so Liquid provides an API and gives
default tools to the Web developers for easily migrate, fork and clone stateful
liquid Polymer components between multiple devices: – migrate: the migrate
primitive moves a component from a device to another, the state of the com-
ponent is migrate as the component does. No trace of the component and the
state is kept on the initial device; – fork: Liquid makes a copy of a component
and its current state on another device. The state of the initial component and
the newly created one is not synchronised, meaning that upon state change they
don’t affect each other; – clone: Liquid makes a copy of a component and its
current state on another device, while keeping the state of the two components
automatically synchronised. These three behaviours can be imported into any
Polymer component by adding our liquid behaviour to it, in the case a Polymer
components import the liquid behaviour we call it a liquid component.

3 Demo

The demo will focus on a new feature of Liquid.js: liquid container components.
While the liquid components, discussed in the previous session, only import the

1 https://www.polymer-project.org/1.0/

https://www.polymer-project.org/1.0/


three liquid primitives into a solid component, they do not allow the compo-
sition of multiple liquid components into one, which is an expected use case
scenario whenever developers decide to use the WebComponents standard and
the component-base architectural style. For this reason we introduce the concept
of container and leaf components in Liquid.js: – container components: like a
normal liquid component, a container component imports the liquid behaviour.
Additionally it is possible to add into the containers any number of liquid compo-
nents, they can be either other containers or leaves. Whenever a liquid primitive
is invoked, the containers automatically broadcast the primitive invocation to all
subordinated components. – leaf components: leaf components do not accept
any subordinated liquid component. Whenever the application tries to create a
liquid component inside of a leaf component, it automatically rejects the opera-
tion.

In the demo we will present how to create container components by importing
the new liquid container behaviour into the Polymer behaviour list (Listing 1.1),
moreover we will show what is the expected behaviour of the component in a
live demonstration.

Listing 1.1: Liquid Container Paper-Input Component

1 <dom-module id="liquid-component-test">
2 <template>
3 ...
4 </template>
5 <script>
6 Polymer({
7 is: ’liquid-component-test’,
8 behaviors: [LiquidBehavior, LiquidContainerBehavior],
9 properties: {

10 ...
11 },
12 });
13 </script>
14 </dom-module>

In this demo we will also present how it is possible to pair variables in Liq-
uid.js. The pairing happens by invoking the pairVariables method passing two
URLs into the method (pairVariables(variableURL 1, variableURL 2)). In fact
all liquid variables in our framework are accessible by a unique URL (routing
1) which defines: – device: the device identifier which contains the component
with the registered liquid variable; – component: the component identifier that
registered the liquid variable; – variable: the name of the desired liquid variable.

/ : device/ : component/ : variable (1)

Developers are allowed to use wildcards (*) whenever they write a variable
URL. Routing 2 shows the routing that resolves as all registered variables named
text registered in all components contained in any devices.

/ ∗ / ∗ /text (2)



Moreover developers are allowed to write [componentNames] (surrounded
by brackets) whenever they write a variable URL. Routing 3 shows the routing
that resolves as all registered variables named image inside the ’liquidImage’
components in any device.

/ ∗ /[liquidImage]/image (3)

With this approach it is possible to pair liquid variables among any registered
variable in the distributed application. Example 4 show a possible pair case in
which the variable image registered by component c1 contained in device d1, is
paired with all other registered image variables in the system.

pairV ariable(′/d1/c1/image′, ′/ ∗ / ∗ /image′) (4)

4 Conclusion and Future work

Liquid.js provides the default mechanisms to migrate flat and recursive applica-
tions between devices. In the future we will add a new level of abstraction to the
variables URL routing, namely :users. In fact users own a set of devices, and by
adding the users resource in our routing, it is possible to reference all devices
owned by a single user. Moreover by introducing the concept of user in the sys-
tem, we are also looking forward to implement black and white lists, which will
increase the sharing security whenever users work with sensitive data.

Acknowledgments

This work is partially supported by the SNF and the Hasler Foundation with the
Fundamentals of Parallel Programming for Platform-as-a-Service Clouds (SNF-
200021 153560) and the Liquid Software Architecture (LiSA) grants.

References

1. Taivalsaari, A., Mikkonen, T., Systa, K.: Liquid software manifesto: The era of mul-
tiple device ownership and its implications for software architecture. In: Computer
Software and Applications Conference (COMPSAC), 2014 IEEE 38th Annual, IEEE
(2014) 338–343

2. Gallidabino, A., Pautasso, C., Ilvonen, V., Mikkonen, T., Systä, K., Voutilainen,
J.P., Taivalsaari, A.: On the architecture of liquid software:
technology alternatives and design space. In: accepted at WICSA’16. (2016)

3. Mikkonen, T., Systä, K., Pautasso, C.: Towards liquid web applications. In: Proc.
of ICWE. Springer (2015) 134–143

4. Levin, M.: Designing Multi-device Experiences: An Ecosystem Approach to User
Experiences Across Devices. O’Reilly (2014)

5. Gallidabino, A., Pautasso, C.: Deploying stateful web components on multiple de-
vices with liquid.js for Polymer. In: accepted at CBSE’16


