WebAssembly Modules as Lightweight
Containers for Liquid IoT Applications

Niko Mikitalo®)1, Tommi Mikkonen®, Cesare Pautasso?, Victor Bankowski!,
Paulius Daubaris', Risto Mikkola!, and Oleg Beletski?

! University of Helsinki, Helsinki, Finland
first.last@helsinki.fi
2 University of Lugano, Lugano, Switzerland
cesare.pautasso@usi.ch
3 Huawei Technologies, Helsinki, Finland
oleg.beletski@huawei.com

Abstract. Going all the way to IoT with web technologies opens up
the door to isomorphic IoT system architectures, which deliver flexible
deployment and live migration of code between any device in the overall
system. In this vision paper, we propose using WebAssembly to imple-
ment lightweight containers and deliver the required portability. Our
long-term vision is to use the technology to support developers of liquid
IoT applications offering seamless, hassle-free use of multiple devices.

Keywords: Light-weight containers - internet of things - IoT - liquid
software - containers - WebAssemly - web of things - WoT.

1 Introduction

Today, in the context of Internet of Things (ToT), web APIs are commonly used,
but actual devices and applications in them are often implemented with native
technologies. However, going all the way to IoT with web technologies would
open up the door to isomorphic IoT system architectures. In such architectures,
devices, gateways, and the cloud can run the same software components and
services, unaltered. This will allow flexible migration of code between any ele-
ment in the overall system. Practical isomorphic application scenarios include
virtual assistants and other ubiquitous applications for messaging, gaming, read-
ing, writing, listening to music/podcasts/news, or watching video.

Unfortunately, today’s container techniques are often too heavy-weight for
that, especially when considering devices with limited resources or direct ac-
cess to hardware [5,21]. A recent taxonomy of IoT client architectures [25] dis-
tinguishes bare metal RTOS systems, systems with a language runtime, and
systems with full OS. Besides, some propose containers as a solution for IoT
systems, where requirements regarding resources are relaxed. However, the tax-
onomy overlooks other architecture options than that the containers are built
on top of an OS.

2 N. Makitalo et al.

In this paper, we propose using the language runtime approach — the simplest
option to enable 3rd party application code [25] — as the basis for lightweight
containers. As the concrete implementation environment, we use WebAssembly
(WASM). WASM was initially conceived to enable near-native execution speed
[10] inside the browser. Following the same path of JavaScript runtimes which
left the browser many years ago, today there are WASM implementations that
can be run outside the browser as well [3].

Our long-term vision is to use WASM to implement the concept of liquid
software [20] — user-centric, hassle-free use of multiple computers with software
which can dynamically flow between them — in the context of the IoT. In essence,
building liquid web applications needs two facilities, (i) ability to relocate code
freely across different computing environments; and (ii) ability to synchronize
the state of the application across all devices running the code. In our previous
work, we have used the DOM [26] and Web Components with Polymer [7] as
the underlying technology. However, both technologies are closely tied to the
browser, and target at the Ul layer of web applications. In particular, the unit
of deployment in both approaches has been a web page, which is not optimal for
embedded device, especially those that have no screen. WASM’s characteristics
— small footprint, near-native performance, advanced security, support for mod-
ules, and in-built support for isomorphic use — make it an attractive candidate
for considering to use the Web as a platform for IoT applications.

2 Background and Related Work

This work is based on and related to the following relatively distinct technologies:

Web of Things. Web of Things (WoT) describes a set of standards by
the W3C for solving the interoperability issues of different Internet of Things
(IoT) platforms and application domains*. In essence, WoT is about making each
‘thing’ part of the Web by giving it an URI that can be used for communicating
with it. The communication with each thing should be supported with a common
data model and a uniform interface that is recognized by every thing®.

Assuming such Web API for things deployed widely, programming IoT could
be simplified to a large degree. Then, every device would provide this API and
its features for programs that want to address its properties. Given a powerful
enough API — in the context of this work, powerful enough to allow offloading
of software on the fly — the promise of the Programmable Web [19] could be
extended to cover the programmable world concept [27], using the Web as the
underlying standard, interoperable technology platform [18].

WebAssembly. WASM [29] is a fast, safe and portable binary instruction
format which can be executed on a stack-based virtual machine that can leverage
contemporary hardware [3, 12]. WASM code is validated and run in a sandboxed
environment; there is no ambient access to the computing environment in which
code is being run except through explicit permission. Actual programs have

4 https://www.w3.org/TR/wot-architecture/Overview.html, accessed Oct. 21, 2020.
® https://iot.mozilla.org/wot/, accessed Oct. 21, 2020.

WebAssembly Modules as Lightweight Containers 3

compact representation, so they are small to transmit, especially in comparison
to text or native code. Programs can be written by a variety of programming
languages and then compiled to WASM for execution.

WASM programs are organized into modules, which are the unit of deploy-
ment, loading, and compilation [10]. Each module can contain definitions for
types, functions, tables, memory areas, and global variables. These definitions
may be imported or exported. To support rapid startup and dynamic configu-
rations, WASM offers facilities for execution time dynamic linking.

Each WASM module executes within a sandboxed environment separated
from the host runtime using fault isolation techniques. Hence, applications exe-
cute independently, and only specific features can be accessed by providing ex-
plicit permissions to APIs. Moreover, the security policies of its embedding are
applied to the module. Within a web browser, this means the same-origin policy.
On a non-web platform, no uniform model exists yet. So far, domain-specific and
capability-based security models have been proposed.

The original design goals of WASM were to make it compatible with the
web browser [29]. To this end, WASM applications can call into and out of the
JavaScript context and access browser functionality through the same Web APIs
accessible from JavaScript. For web pages and browser applications, which have
already become overly complex [4], embedding WASM to JavaScript is an option
that does not add many memory or performance related constraints.

Despite the increasing computing capacity of chips, it is still expected that
the future networks include memory and performance-related challenges as many
devices have limited memory. Moreover, in the context of IoT systems, comput-
ers, in general, have diverging performance capabilities, ranging from almost
bare metal in sensors to cloud systems where everything is virtualized [22].

Lightweight WASM Containers for IoT. There are numerous WASM
virtual machines that can be run outside the browser. The exact features of these
systems vary®, with some targeted for smallest devices, with the simplest possible
interpretation, and others supporting sophisticated features such as streaming
and ahead-of-time compilation”. Thus, small memory footprint and near-native
performance make it an attractive alternative for building IoT systems [28].

Some work on the performance of WASM has already been composed, but
the results seem inconclusive. The reasons are many, and include the fact that
there are multiple runtimes for WASM, with varying performance and resource
consumption®. For instance, [13] claim that in many of their benchmark applica-
tions, WASM was slower than native by a factor of 1.5. The work was conducted
inside the browser, not using a runtime only, which may have affected the results.
At the same time, [28] claim that the Wasmachine runtime is up to 11% faster
than Linux for common IoT and fog applications.

5 https://github.com/appcypher/awesome-wasm-runtimes, accessed Jan. 6, 2020.

" https://github.com/wasm3/wasm3,/blob/master/docs/Performance.md, accessed
Jan. 5, 2020.

8 https://medium.com/wasmer /benchmarking-webassembly-runtimes-18497ce0d76e,
accessed Oct. 21, 2020.

4 N. Makitalo et al.

With the above facilities, we seek to build lightweight IoT containers, using
the WASM language runtime as the basis for the implementation. Such systems
can support third-party application development and dynamic changes, and it
is possible to update the device software (or parts thereof) dynamically without
having to reflash the entire firmware. Basically, applications run in a sandbox
that provides only limited access to the underlying platform features — something
that WASM immediately provides us at the level of modules.

Despite the idea’s attractiveness, it seems that the idea has not received
much attention in research. A recent thesis that includes a literature review
points out that little research has been invested in considering the use of WASM
modules as lightweight containers [23]. The study also points out that there
are issues with memory usage at runtime when comparing WASM to Docker
containers. What the study overlooks, however, is the fact that WASM module
images are smaller than corresponding Docker images (or even smaller than
compiled C/C++ modules), where facilities related to the infrastructure are
included. Furthermore, while some WASM virtual machines can be run in various
micro-controllers? and play the role of an operating system [28] — even bare-metal
implementation is proposed!®.

Finally, to complement the ability to use WASM runtimes and modules as
lightweight containers for IoT devices, WASM has also been used for serverless
computing [11,24]. Hence, the same technology has been demonstrated to be
feasible across all the elements needed to build IoT applications.

3 Our Vision

Our prime motivation of this work is to rely on Web technologies all the way to
IoT. Figure 1 represents how our goal is to push the boundaries of the devel-
opment up to a point we reach isomorphic computations, where no constraints
regarding the underlying architecture or platform are placed on applications,
but they can be run everywhere, taking the context and its computational re-
sources into account. In this deployment, using the Web as the underlying plat-
form liberates developers from the restrictions of mainstream containers that
rely on virtualizing a full operating system. This, in turn, results in more fine-
grained deployment. Moreover, it is possible to consider hardware-related aspects
by discovering the features available in this particular computing unit. Hence,
the deployment loads modules on-demand basis only when necessary and cus-
tomizes which module gets loaded, depending on the device. Such dynamic self-
configuration is difficult to achieve with static images, which are commonly used
by mainstream containers. Finally, since the device configurations and availabil-
ity can change over time, the running software’s deployment configuration needs
to adapt dynamically. In other words, we want to go past dynamic deployment
only and reach the full liquid web software vision [20], where software can flow
and adapt to multiple devices. In essence, the solution must be able to migrate

9 https://github.com/bytecodealliance/wasm-micro-runtime, accessed Oct. 21, 2020.
10 https://github.com/lastmjs/wasm-metal, accessed Oct. 21, 2020.

WASM
moduledata fl = i

2

Source
languages

WebAssembly Modules as Lightweight Containers

s
i

TIB MID

Development
pipeline »

BER MID

=
]}

A

Legend

@ Lightweight WASM
container

State
synchronization

B WASM
metadata

Compile and
generate

@ Context

a WASM
binary

&

Online
repository

7 Deployment

On demand
loading and linking

@car

Fig. 1. Liquid IoT Application Lifecycle.

the execution’s code and state so that the execution can continue one computer
from the same program execution state it had on the previous computer [6].

WebAssembly’s characteristics — small footprint, near-native performance,
advanced security, support for modules, availability of language runtimes for
different hardware devices — lead to potential support for isomorphic IoT appli-
cations. Using WebAssembly, one can relocate application code in a fine-grained
fashion to different computing units commonly used in IoT systems. To this
end, an approach similar to Apple’s Handoff API [9] where applications can
roam from device to device can be constructed, or one can rely on mobile agents
for ToT like in [14], for instance.

In addition to simply deploying WebAssembly modules, it is also possible
to support self-configuration by allowing the application to determine its en-
vironment, and dynamically load the necessary modules on the fly. Then, the
initial deployment can be rapid — only a bootloader that is able to determine
its functions at a particular location is needed. With the isomorphic nature of
WebAssembly, actual application code can be the same despite its eventual loca-
tion in the IoT architecture. This turns WebAssembly modules into lightweight
containers that can easily be relocated.

Relocating and adapting code is only half of the liquid web application vision;
also, application state and data should be transferred [20]. As WebAssembly re-
lies on binary formats, techniques proposed in previous work, relying on browser
facilities, cannot transform the application state. However, serialization tech-
niques proposed in, e.g., [2] can be used to transfer the state of the applications
when a WebAssembly module is relocated somewhere else in the IoT system.
For the data part, techniques proposed in our previous work will be enough [7].

4 Proof of Concept Design

Currently, WebAssembly virtual machines outside of the browser do not support
dynamic linking. Instead, all parts of an application must be present to run it.
This essentially predefines task allocation at startup, and does not leverage full
benefits of isomorphic architectures. To support more liberal configurations, we
have implemented an execution time dynamic linking system, where modules

6 N. Makitalo et al.

can be loaded on the need basis [17]. With this facility, the application can
adapt to the role of the bigger context. The implementation uses execution time
shared-everything linking approach, meaning that modules can use each other’s
functions and resources once they have been loaded. A video of these loading
capabilities is available for demonstration purposes on YouTube!!.

Based on its context, the application can decide what modules to load. Mod-
ules can be loaded from the local disk or from an online repository, which in turn
can contain parts of the code that can be freely allocated in the IoT network. At
present, the implementation still lacks support for migrating live applications.
Here, we plan to follow the approach of [14], where the developer defines the
migration with a special API, at least initially.

5 Way Forward to the Vision

While the research done for this paper has been promising, there are numerous
issues that still require practical solutions. Some key issues are listed below.

State synchronization. As already mentioned, our proof-of-concept im-
plementation lacks support for application state migration. The main design
decision documented in the design space [8] concerns whether developers need
to explicitly annotate the state to be migrated and synchronized or whether the
underlying runtime transparently takes care of it. In particular, reflection will
be a topic of further investigation to help automate the migration.

Dynamic orchestration. Migrating applications from one computer to an-
other cannot happen randomly, but it needs orchestration. This facility is to
some degree a novel avenue to us, although it has received some attention in the
context of stream processing [1]. In addition to an API that assumes full control,
as in [1], we also plan to consider techniques used for self-organization [16].

Generalized API for hardware access. To truly enable isomorphic soft-
ware architectures, also the environment where the software is run should be
similar. In our present implementation, we have introduced adaptability mech-
anisms for taking the environment into account, but for large-scale use, such
requirement can be a burden. Instead, a generalized API for hardware access
would be a better solution. At the moment, WebAssembly offers WASI'2, a mod-
ular system interface for WebAssembly applications, but it is not generic enough
for arbitrary IoT devices. However, it can act as a starting point for designing
a uniform hardware access API across IoT architectures. Finally, even with a
generalized hardware API, mechanisms are needed to discover what hardware
modules are present at runtime, where the situation may change over time.

Fine-grained security model. While WebAssembly provides a sandboxing
mechanism for applications at runtime level, something more comprehensive is
needed at the scale of full liquid applications, their adaptive configurations,
and migration. Here, our plan is to seek inspiration from mobile agents [15].

" https://youtu.be/gZj3M31Zful, accessed Dec. 28, 2020.
2 https://wasi.dev/, accessed Oct. 21, 2020.

WebAssembly Modules as Lightweight Containers 7

However, to truly address this aspect in detail, more specific use cases need to
be considered, whereas here we have focused on technological factors only.

Benchmarking. As already mentioned, there is no conclusive data on the
performance of WebAssembly applications in comparison to native ones. Per-
forming systematic tests in the context of IoT and containers is therefore in our
interests when our prototype implementation is more mature. Moreover, issues
related to migration and liquid features also require benchmarking in the context
of IoT to better understand the feasibility of the approach.

6 Conclusion

Going all the way with web in IoT development will help iron out numerous
device and technology specific complications. In this paper, we propose using
WebAssembly as a mechanism for building lightweight containers, which are
capable of assuming different roles, depending on their location and roles in an
IoT application. We demonstrated the use of the technology with a proof-of-
concept implementation, and provided links to solutions that can be used to fill
in the missing pieces needed for migrating full-fledged live applications.

References

1. Babazadeh, M., Pautasso, C.: A restful api for controlling dynamic streaming
topologies. In: Proceedings of the 23rd International Conference on World Wide
Web. pp. 965-970 (2014)

2. Bellucci, F., Ghiani, G., Paterno, F., Santoro, C.: Engineering javascript state per-
sistence of web applications migrating across multiple devices. In: Proceedings of
the 3rd ACM SIGCHI symposium on Engineering interactive computing systems.
pp. 105-110 (2011)

3. Bryant, D.: Webassembly outside the browser: A new foundation for pervasive
computing. In: Keynote at ICWE’20, June 9-12, 2020, Helsinki, Finland. (2020)

4. Butkiewicz, M., Madhyastha, H.V., Sekar, V.: Characterizing web page complexity
and its impact. IEEE/ACM Transactions on Networking 22(3), 943-956 (2013)

5. Celesti, A., Mulfari, D., Fazio, M., Villari, M., Puliafito, A.: Exploring container
virtualization in iot clouds. In: 2016 IEEE International Conference on Smart Com-
puting (SMARTCOMP). pp. 1-6. IEEE (2016)

6. Fuggetta, A., Picco, G.P., Vigna, G.: Understanding code mobility. IEEE Trans-
actions on software engineering 24(5), 342-361 (1998)

7. Gallidabino, A., Pautasso, C.: The liquid.js framework for migrating and cloning
stateful web components across multiple devices. In: Proceedings of the 25th In-
ternational Conference Companion on World Wide Web. pp. 183-186 (2016)

8. Gallidabino, A., Pautasso, C., Mikkonen, T., Systd, K., Voutilainen, J.P., Taival-
saari, A.: Architecting liquid software. J. Web Eng. 16(5&6), 433-470 (2017)

9. Gruman, G.: Apple’s handoff: What works, and what doesn’t. InfoWorld (2014)

10. Haas, A., Rossberg, A., Schuff, D.L., Titzer, B.L., Holman, M., Gohman, D., Wag-
ner, L., Zakai, A., Bastien, J.: Bringing the web up to speed with webassembly. In:
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation. pp. 185-200 (2017)

8

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

N. Makitalo et al.

Hall, A., Ramachandran, U.: An execution model for serverless functions at the
edge. In: Proceedings of the International Conference on Internet of Things Design
and Implementation. pp. 225-236 (2019)

Jacobsson, M., Willén, J.: Virtual machine execution for wearables based on we-
bassembly. In: EAI International Conference on Body Area Networks. pp. 381-389.
Springer (2018)

Jangda, A., Powers, B., Berger, E.D., Guha, A.: Not so fast: analyzing the per-
formance of webassembly vs. native code. In: 2019 USENIX Annual Technical
Conference. pp. 107-120 (2019)

Jarvenpéd, L., Lintinen, M., Mattila, A.L., Mikkonen, T., Systé, K., Voutilainen,
J.P.: Mobile agents for the internet of things. In: 2013 17th International Confer-
ence on System Theory, Control and Computing. pp. 763-767. IEEE (2013)
Kumar, S.A.; et al.: Classification and review of security schemes in mobile com-
puting. Wireless Sensor Network 2(06), 419-440 (2010)

Kurzyniec, D., Wrzosek, T., Drzewiecki, D., Sunderam, V.: Towards self-organizing
distributed computing frameworks: The H20 approach. Parallel Processing Letters
13(02), 273290 (2003)

Makitalo, N., Bankowski, V., Daubaris, P., Mikkola, R., Beletski, O., Mikkonen,
T.: Bringing webassembly up to speed with dynamic linking. Accepted to SAC’21
Mékitalo, N., Nocera, F., Mongiello, M., Bistarelli, S.: Architecting the web of
things for the fog computing era. IET Software 12(5), 381-389 (2018)
Maximilien, E.M., Ranabahu, A.: The programmable web: Agile, social, and grass-
root computing. In: International Conference on Semantic Computing (ICSC 2007).
pp. 477-481. IEEE (2007)

Mikkonen, T., Systa, K., Pautasso, C.: Towards liquid web applications. In: Inter-
national Conference on Web Engineering. pp. 134-143. Springer (2015)

Morabito, R.: A performance evaluation of container technologies on internet of
things devices. In: 2016 IEEE Conference on Computer Communications Work-
shops (INFOCOM WKSHPS). pp. 999-1000. IEEE (2016)

Morabito, R., Cozzolino, V., Ding, A.Y., Beijar, N., Ott, J.: Consolidate iot edge
computing with lightweight virtualization. IEEE Network 32(1), 102-111 (2018)
Napieralla, J.: Considering webassembly containers for edge computing on
hardware-constrained iot devices. Master’s thesis, Blekinge Institute of Technol-
ogy, Karlskrona, Sweden (2020)

Shillaker, S., Pietzuch, P.: Faasm: Lightweight isolation for efficient stateful server-
less computing. arXiv preprint arXiv:2002.09344 (2020)

Taivalsaari, A., Mikkonen, T.: A taxonomy of iot client architectures. IEEE soft-
ware 35(3), 83-88 (2018)

Voutilainen, J.P., Mikkonen, T., Systd, K.: Synchronizing application state using
virtual dom trees. In: International Conference on Web Engineering. pp. 142-154.
Springer (2016)

Wasik, B.: In the programmable world, all our objects will act as one. Wired.
Available online: http://www. wired. com/2013/05/internet-of-things-2/(accessed
on Oct. 13, 2020) (2013)

Wen, E., Weber, G.: Wasmachine: Bring iot up to speed with a webassembly os. In:
2020 IEEE International Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops). pp. 1-4. IEEE (2020)

World Wide Web Consortium: WebAssembly Core Spec-
ification (2019), https://www.w3.org/TR/wasm-core-1/,
https://webassembly.github.io/spec/core/_download/WebAssembly.pdf

