
An empirical study of
Web API versioning practices

Souhaila Serbout ID and Cesare Pautasso ID

Software Institute (USI), Lugano, Switzerland
first-name.last-name@usi.ch

Abstract. As Web APIs evolve, developers assign them version iden-
tifiers to reflect the amount and the nature of changes that the API
clients should expect. In this work we focus on identifying versioning
practices adopted by Web API developers by extracting and classifying
version identifiers found in a large collection of OpenAPI descriptions. In
particular, we observe how frequently different versioning schemes have
been adopted for identifying both stable and preview releases (e.g., sim-
ple version counters, semantic versioning, or release timestamps). We
further study the stability of versioning schemes during APIs evolution.
We also detect APIs which offer dynamic access to versioning metadata
through dedicated endpoints as well as APIs which support clients ex-
pecting to reach up to 14 different versions of the same API at the same
time. Overall the results offer a detailed view over current Web API ver-
sioning practices and can serve as the basis for future discussions on how
to standardize critical API versioning metadata.

Keywords: API · Web API · OpenAPI · Empirical Study · Versioning

1 Introduction

The evolution of Web APIs requires versioning practices to ease compatibility
checking and maintainability for both API providers and clients [13,19]. API
providers often use version identifiers to make changes evident to clients, allowing
them to refer to specific versions of the API on which they depend. In some cases,
providers make multiple versions of the same API available to ease the transition
for clients as they switch from retired versions to newer versions [14].

The lack of a centralized registry for Web APIs, combined with the flexi-
bility for service providers to use their own versioning approaches [17], has led
to multiple and sometimes inconsistent practices in terms of discoverability and
notification of breaking changes [9]. Such variability in versioning practices raises
questions about the prevalence of semantic versioning [1] adoption among Web
APIs. In this study, we aim to classify the versioning schemes used for Web APIs
and to track how their adoption of changes over time and across the API release
cycle. Additionally, we aim to examine the frequency and extent of concurrent
availability of multiple API versions, as the introduction of backward incom-
patible changes in web APIs can have negative impacts on clients, unless both

https://orcid.org/0000-0002-8144-2606
https://orcid.org/0000-0002-2748-9665

2 Serbout and Pautasso

old and new versions are kept in production [14]. To achieve this, we analyze a
large dataset of 186,259 OpenAPI descriptions mined from GitHub, tracing the
change histories of 7114 APIs, to answer the following research questions:

Q1: What is the prevalence of versioning in Web APIs? How often is version
information located outside of the API metadata or discovered dynamically?

Q2: How do developers distinguish stable from preview releases?
Q3: To what extent is the practice of semantic versioning adopted in Web

APIs, and are there alternative versioning schemes in use?
Q4: How often do developers switch to different versioning schemes during

the lifespan of their APIs?
Q5: Has the adoption of semantic versioning changed over the past few years?
Q6: What is the prevalence of APIs with multiple versions in production?

how many concurrent versions exist, and which formats are used in this case?
Answering these questions will provide valuable observations on the state of

the practice regarding Web API versioning. Given the simple approach to ver-
sioning in the OpenAPI specification, there is room for different interpretations
on how to encode whether an API is a stable or preview release, and different
version identification strategies are possible. Our study results reveal a need for
more detailed versioning metadata in the OpenAPI standard [2]. Likewise, we
did not only observe the presence of a variety of formats to represent static ver-
sion identifiers, but also emerging support for dynamic version discovery, as well
as two or even more (up to 14) coexistent versions in production.

The remainder of this paper is organized as follows. In Section 2 we define
basic versioning concepts and how they are expressed in OpenAPI. In Section 3,
we describe the methodology used to collect the API artifacts. In Section 4,
we present the results obtained from our analysis. In Section 5, we discuss the
implications of these results and the main threats to their validity. We relate
them to previous work in the field in Section 6. In Section 7, we provide a
summary of our findings and offer recommendations for future research.

A replication package is available on GitHub [3].

2 Background

2.1 Semantic versioning and Web API versioning

The goal of semantic versioning [1] is to reflect the impact of API changes through
the version identifier format MAJOR.MINOR.PATCH. The MAJOR version counter is
incremented when incompatible API changes were introduced, the MINOR counter
is upgraded when new functionalities were added without breaking any of the
old ones, and the PATCH increases for backwards compatible bug fixes.

Several widely known package managers, such as NPM [4], Maven [21], and
PyPI, adopt semantic versioning as a standard for package version identifiers.
These package managers enforce the usage of semantic versioning and perform
version increment checks every time the package is republished [12].

When it comes to Web APIs, in addition to informing about the version
in the API metadata [13], clients may also refer to specific API version when

https://github.com/USI-INF-Software/API-Versioning-practices-detection

An empirical study of Web API versioning practices 3

invoking them. The version identifier can be embedded as part of HTTP re-
quest messages as a parameter or a segment in the endpoint path URL, such
as: https://<server-address>/API-URL/<version-identifier>/ as well as a
part of the server URL DNS name, such as: <server-address> = v1.api.com

| v2.api.com. Embedding version identifiers in endpoint URLs is commonly
used also when multiple versions of the API coexist simultaneously.

2.2 OpenAPI Versioning Metadata

API service providers typically provide API clients with information on how
to use the API through a description, which is often written in natural lan-
guage [20] or based on a standard Interface Description Language (IDL), such as
OpenAPI [2]. OpenAPI includes a specific required field {"version": string}
in the info section pertaining to the API’s metadata. However, there are no
constraints on the format used to represent the version identifier. Additionally,
version identifiers can be embedded in the API endpoint addresses, which are
stored in the server and path URLs. While the OpenAPI standard defines how
developers describe their APIs, there is no centralized standard documentation
manager service where developers can share API specifications. For example,
SwaggerHub [5] does not impose any rules on the format of version identifiers,
nor does it require developers to upgrade them when publishing a new version of
the API description. We aim to study the resulting variety of version identifier
formats found in a large collection of OpenAPI descriptions.

2.3 API Preview Releases

Test releases are often given specific marketing names to clearly reflect their
purpose and distinguish them from stable releases. Marketing names help also
to indicate the audience of the test releases, and allow users to understand that
they should expect bugs [6,7,15]. In our collection, we identified the following
six types of usage for preview release tags:

– Develop: A version under development is still in the process of being cre-
ated and is not yet complete or stable. It may contain new features or bug fixes
that have not yet been fully tested, and may not be suitable for use in a pro-
duction environment. Developers may use dev versions to test new features and
make changes before releasing a final version to the public.

– Snapshot: These versions are automatically built from the latest develop-
ment code and are intended to be used by developers.

– Preview: These are unstable versions that are made available to users
before the final release. Preview versions are typically released to a small group
of users or testers to gather feedback and iron out any bugs or issues before the
final release. They can also be used to give users a preview about new features
to expect to see in the next stable version.

– Alpha: These versions are considered to be very early in development and
are likely to be unstable and contain many bugs. They are often released to a
small group of testers for feedback.

4 Serbout and Pautasso

Fig. 1: Tree visualization of the endpoint structure of a subset of the SWR Audio
Lab - Radiohub API (version 2.14.0) [8] (see the whole API tree) - Different
version identifiers (v1, v2) are found in the path URL addresses.

– Beta: These versions are considered to be more stable than alpha versions
and are often released to a wider group of testers for feedback. They may still
contain bugs, but they are expected to be closer to the final release.

– Release Candidate (RC): These versions are considered to be very close
to the final release and are often the last versions to be released before the final
version. They are expected to be stable and contain only minor bugs.
Our goal is to quantify how often such types of pre-release versions are found.

3 Dataset Overview and Methodology

In this paper we analyze the versioning practices of Web APIs through an anal-
ysis of their descriptions written according to the OpenAPI specification [2].
Our dataset consists of 7,114 Web APIs, obtained from 186,259 commits pushed
to 3,090 open-source GitHub repositories, belonging to 2,899 GitHub reposi-
tory owners. To obtain this dataset, we filtered from 567,069 detected potential
OpenAPI descriptions to include only those that: (a) belonged to APIs with
more than 10 commits in their history (11,408 APIs); (b) were described in
JSON/YAML files that were parsable in all commits (10,062); and (c) had at
least one path specified in one of the commits (7,114), excluding descriptions of
JSON schemas without any API functionality [18].

To automate the extraction, we first retrieved 5,514 distinct version identifiers
from the info.version field in each OpenAPI description. We then searched
for any of these identifiers in the URL addresses listed as part of the endpoints
or server URL strings. For example, the Radiohub API [8] from the SWR audio
lab includes the version identifier, v2, in the endpoint URLs, which reflects the
major version of the API (Figure 1).

http://api-ace.inf.usi.ch/openapi-to-tree/?model=d46761b3d05bcbf60b024259866d11599fdb229bcf43f48e212522764176e09b
https://github.com/USI-INF-Software/API-Versioning-practices-detection/blob/main/all-versions.json

An empirical study of Web API versioning practices 5

Format Regular Expression

integer /^(\d{3}|\d{2}|\d{1})+$/i

v* /v\d*/i

semver-3 /^(v|)\d+\.\d+\.\d+$/i

date(yyyy-mm-dd) /^\d{4}-\d{2}-\d{2}/
semver-dev* /^(v|)\d+\.\d+(\.\d)*(\.|-)dev\d*$/i

semver-snapshot* /^(v|)\d+\.\d+(\.\d)*(\.|-)SNAPSHOT\d*$/i

date-preview* [date](-|\.)preview$/i
v*alpha* /^v\d+alpha\d*$/i

v*beta* /^v\d+beta\d*$/i

semver-rc*.* /^(v|)\d+\.\d+(\.\d)*-rc\d*\.\d+$/i

Table 1: Some detectors used to classify the version identifier formats

To classify the version identifiers, we employed a set of regular expression
rules (Table 1). These detectors were iteratively defined based on our observa-
tions to ensure that most of the samples could be labeled. We also distinguished
between version identifiers used to describe preview releases and stable versions
of the APIs. The complete list can be found in the Appendix A. All machine-
readable regular expression rules are included in the replication package.

4 Results

4.1 Location of Version Identifiers in API Descriptions

In Table 2, we classify the dataset of APIs and commits into eight categories
based on the locations of the API version identifiers. For completeness, we also
include separate categories for APIs that lack version identifiers (Lnover) and
APIs whose version identifier is discovered dynamically (Ldynamic).

We aggregate the commits of each API history as follows:
– L1

l = {api ∈ APIs,∃c ∈ Capi, Ll(c)}: the set of APIs where there is at
least one commit where the version identifiers are located in Ll.

– L∗
l = {api ∈ APIs,∀c ∈ Capi, Ll(c)}: the set of APIs where in all the

commits the version identifiers are located in Ll.
where Capi = {c} is the set of commits found during the history of the api,
Ll(c) indicates whether for commit c version identifiers are found in location
l ∈ {ips, ps, ip, is, p, s, i, nover, dynamic}.

Static Versioning. The majority of APIs (4,445 - 62.5%) and commits
(102,986 - 55%) has version identifiers located only in the info.version field of
the API description metadata (Li). The version identifiers were present in all of
the server and path URLs, as well as in the info.version metadata (Lips) for
453 commits belonging to 41 APIs. We did not observe any APIs that contained
version identifiers in both path and server URLs but not in the info.version

metadata field (Lps).

https://github.com/USI-INF-Software/API-Versioning-practices-detection/blob/6c785e7c4048cd3389f0d763a0b812232085f577/regex-detectors.js

6 Serbout and Pautasso

Location #Commits #APIs
info.version path server Total Identical L1

l L∗
l CV

Lnover - - - 2,076 168 76 (45%) 92 (54%)

Ldynamic - - - 5,985 220 129 (58%) 91 (41%)

Li x - - 102,986 5022 4445 (89%) 1236 (24%)
Lp - x - 915 61 12 (20%) 25 (40%)
Ls - - x 70 6 1 (16%) 1 (16%)
Lip x x - 61,010 36,441 1512 1139 (75%) 173 (11%)
Lis x - x 18,749 4,050 1017 741 (73%) 93 (9%)
Lps - x x 0 0 0 0 0
Lips x x x 453 8 41 16 (39%) 5 (12%)

Total Statically Versioned 184,183 40499 7038 6354 (90%) 2390 (34%)

Table 2: Number of Commits/APIs which include version identifiers in different
locations of the OpenAPI description artifacts

When version identifiers were present in multiple locations, we checked whether
the identifiers were consistent or varied across those locations. We found that
the identifiers were identical in 50.49% of the commits found in the history of
406 “consistently versioned” APIs. Furthermore, we identified 168 APIs that did
not include any version identifiers in any location (Lnover) for certain commits,
with 76 of these lacking all types of versioning throughout their entire history.

Dynamic Versioning. The version information of an API can also be ob-
tained dynamically by the client via a dedicated API endpoint. Instead of speci-
fying the version statically in the info.version field value, clients may retrieve
the API version dynamically by invoking the GET /version operation, as docu-
mented in the example {"version": "see /version below"}. This approach
was detected in 220 APIs in our collection, where 129 of them were dynamically
versioned during their entire history, such as the ONS Address Index API.

4.2 Evolution of Version Identifiers

Given the API history Capi = {ci}, we define CV as the set of APIs where we
detect at least one change in the value of the version identifier between two
distinct commits:

CV = {api ∈ APIs,∃cj , ci ∈ Capi, version(cj) ̸= version(ci)}}

For each Ll, in Table 2 we report as CV the number of APIs which change
their version identifiers. About one third of the APIs (2,390) undergo at least
one change of version identifier throughout their history of at least 10 commits.

In Figure 3, we present the correlation between the number of version changes
in API histories and the number of commits, differentiated by the location of
the version identifier. The dot color indicates the number of APIs with a given

https://github.com/ONSdigital/address-index-api/blob/develop/api-definitions/ai-openapi.json

An empirical study of Web API versioning practices 7

Lip

Lp

4

Lis

13

Li

52

8

26

69

Lips

10

233

118

Lnoversion

35

5 3

21

28

(a) Number of APIs where the
location changes once in API
history

Li

Lis

9 33

Lip

3

Lnoversion

53

3

9

Lips

3

33

Lp

5

(b) Number of APIs where the
location changes twice in API
history. Every color refers to a se-
quence of two location transitions.

Fig. 2: Number of APIs where the version identifiers changes its location during
the API’s history (includes only the changes observed in at least two APIs)

combination of version changes (x) and commits (y). As anticipated, y > x. A
small subset of APIs (47 APIs) demonstrates frequent version changes with each
commit (y = x + 1), while a considerable number of APIs (Li: 5119, Lp: 1446,
Ls: 973) maintain a constant version identifier (x = 0, y ≥ 10) despite having
in some cases a substantial number of commits in their history. The majority
of version changes occur in the location designated as Li, with fewer changes
observed for version identifiers embedded in URLs.

By analyzing changes of the info.version field, we could track the API
evolution through several iterations of preview releases followed by stable re-
leases (and vice-versa). Figure 4 shows how many APIs evolved with preview
and stable releases, and how many added or removed versioning information at
some commit of their history. We also measured the delay between each type of
release: on average, preview releases occur every 9.3 days, while stable versions
are released every 18.2 days.

4.3 Classification of Version Identifier Formats

We categorize the formats employed to represent version identifiers in Table 3.
The results show that the most widely utilized format for versioning API releases
is Semantic Versioning (SemVer), followed by a straightforward approach using
an integer to denote the major version of the API, often accompanied by a V pre-
fix. All types of preview release tags are most often found in the info.version
metadata, while release candidate and preview tags are never found as part of
path or server URLs.

8 Serbout and Pautasso

0 200 400

0

200

400

info.version changes

#
C
o
m
m
it
s

200 400

Number of APIs

ρ=0.13

7047 APIs

0 5 10 15

0

200

400

path URL changes

50 100

Number of APIs

ρ=-0.08

1592 APIs

0 5 10 15

0

200

400

server URL changes

50 100

Number of APIs

1042 APIs

ρ=-0.24

Fig. 3: Where do version identifiers change more often? Density plots of the
number of commits of each API as a function of the number of version identifier
changes detected in the three locations (Li, Lp, Ls).

The version formats for 534 out of 7114 APIs exhibited instability over time,
with the most prevalent change being from the absence of a version to Semantic
Versioning (SemVer). The most common format transitions are listed in Figure 5.
In contrast, 4941 APIs consistently utilized SemVer throughout their history.
Table 4 provides a more detailed classification of the version identifier format
used by APIs that maintained a consistent versioning scheme across all commits,
including statistics on the number of commits and version identifier changes. We
also include the most frequent version identifier detected in each category.

4.4 Adoption of Semantic Versioning Over the Years

In our collection of 7,114 APIs, we discovered that 5,292 APIs employed semantic
versioning (with 112,908 commits) at some point in their history. Additionally,
504 APIs utilized alternative formats in addition to semantic versioning (with
7,388 commits) and 4,565 APIs exclusively utilized SemVer-3 (e.g., 1.0.0) and
SemVer-2 (e.g., 1.0) throughout their history.

An examination of the adoption of semantic versioning (SemVer) over time,
as depicted in Figure 6, reveals that the usage of SemVer in final release versions
is consistently higher than other versioning schemes, with a relatively steady
level of adoption from 2015 to 2021.

4.5 Multiple Versions in Production

Our analysis identified a total of 135 APIs that incorporate various version iden-
tifiers in their paths, as demonstrated in Figure 7 (a). Out of these, 2102 paths
had two distinct version identifiers, while one API reached a maximum of 14 co-
existent versions during 5 commits. In addition, 51.11% (69 APIs) demonstrated
a change in the number of path versions at least once.

An empirical study of Web API versioning practices 9

release 6356 (18.2d)

preview release

135 (31d)No version

70 (20.4d)

6436
144 (17.7d)

433 (9.3d)

366

91 (20.9d)

2 (3.9d)

1 (18.4h)

353 (19.6d)

312

375

339

6400

Fig. 4: Number of APIs which evolve interleaving preview and stable releases
and average duration (in days) of the transitions

No version

SemVer

60 46

Date

16

Other

20

Major version number

51

Beta

15

Snapshot

25

Alpha

21

Release Candidate

14 10

60

10 31

34

6

20 10

6

6

10

APIs with stable formats
SemVer 4941
Major version number 804
Date 336
No version 268
Preview 73
Other 61
Beta 37
Tag 25
Snapshot 17
Alpha 10
Release Candidate 8
Total 6580

Fig. 5: Number of APIs where info.version identifiers formats changes were
detected during their history (includes only transitions happening in ≥ 4 APIs)

As an example, the RiteKit API introduced a new path with a v2 version
identifier. The Agent API underwent two changes: from v1,v3,v4 to v1,v2,v3,v4
on 2017-08-02, and from v1,v2,v3,v4 to v1,v2,v3,v4,v5 on 2017-09-27. Addi-
tionally, the version declared in the metadata increased from 1.46.0 to 22.9.1

over 51 commits during a five-year period, showing an example of inconsistency
between the version identifiers found in the API description metadata and the
endpoints exposed to the API clients.

We categorize the version identifier formats present in APIs with multiple
versions in production in Figure 7. The predominant trend among APIs with
multiple versions is to adopt a similar version format consisting of the use of a
major version number (MVN) often attached to the prefix V*, especially in APIs
that have fewer than six concurrent versions. We observed a deviation from this
trend in only 593 commits, out of which 292 commits combined different version
formats, as depicted in Figure 7 (b). This deviation is more commonly seen in

https://documenter.getpostman.com/view/2010712/SzS7Qku5?version=latest
https://raw.githubusercontent.com/finos/symphony-api-spec/13eaab1127e965d88558f1dc376f398cff92d771/agent/agent-api-public.yaml

10 Serbout and Pautasso

Location
Format info.version path server All

Major version number 29129 45310 14944 89383
SemVer 114663 788 18172 133623
Tag 845 1199 6 2050
Date 5447 299 27 5773
Other 1549 1354 0 2309

Develop 545 92 106 743
Snapshot 964 0 11 975
Preview 863 0 0 863
Alpha 3003 2339 10 5352
Beta 19410 15459 207 35076
Release Candidate 548 0 0 548

Table 3: Number of commits with version identifiers of stable (above) and pre-
view (below) releases classified by their format and location (a more detailed
classification is in Appendix B)

APIs that have more than six concurrent versions, and the most prevalent format
among these is the Semantic Versioning (SemVer) format.

5 Discussion

Q1: What is the prevalence of versioning in Web APIs? How often is version
information located outside of the API metadata or discovered dynamically?
Our study found that out of the 7114 APIs examined, only 76 were completely
unversioned, and 336 started their history with no metadata version while in [15]
the authors recommend using a version number from the start of the lifespan
of any software artifact. Of the remaining APIs, 4445 included static version
information exclusively in their metadata, while the others had version identifiers
present in their Paths or Server URLs. Notably, in the case of 1896 APIs, version
identifiers were present both in the info.version field and endpoint URLs.
Conversely, none of the APIs had version identifiers both in Paths and Server
URLs, without also having it in the info.version field. Another versioning
practice was detected in the case of 220 APIs where the developers dedicated
one of the endpoints to dynamically inform clients about the version of the
currently deployed API.

Q2: How do developers distinguish stable from preview releases?
Our analysis identified specific labels indicating a different type of preview release
version in 25,308 commits belonging to 535 APIs. The examination of 202 APIs
revealed that they have a history covering both preview and stable releases.
The absolute number and the portion of pre-releases increases during recent
years (Figure 6). The labeling accuracy appears to be confirmed also by the
differences in the average delay measured for each type of release (Figure 4).

An empirical study of Web API versioning practices 11

Most Frequent #Commits V C
Format Version Identifier #APIs max avg mdn stdev max avg mdn stdev

semver-3 1.0.0 40.45% 3531 1031 28 17 37 496 4 0 17
semver-2 1.0 64.92% 1093 3585 30 15 116 77 1 0 4
v* v1 80.32% 489 692 42 20 74 4 0 0 0
date(yyyy-mm-dd) 2017-03-01 4.87% 327 52 14 12 4 52 0 0 3
other v1b3 7.23% 213 222 29 18 32 33 1 0 3
integer 1 36.30% 48 143 27 17 24 113 5 0 20
v*beta* v1beta1 60.10% 115 360 136 35 146 3 0 0 1
date-preview* 2015-10-01-preview 11.93% 72 47 13 12 5 2 0 0 0
semver-3# 1.0.0-oas3 27.62% 33 215 32 15 41 18 2 0 4
v*beta*.* v2beta1.1 19.44% 26 30 24 24 4 12 3 3 4
latest* latest 52.75% 25 137 27 15 28 2 0 0 0
v*alpha* v1alpha 51.34% 18 339 56 24 91 3 0 0 1
semver-SNAPSHOT* 1.0.0-SNAPSHOT 31.61% 18 172 32 16 38 36 5 0 9
semver-beta* v1.0-beta 28.37% 17 113 40 29 29 9 1 0 2
v*p*beta* v1p3beta1 23.45% 9 347 162 35 153 3 1 0 1
beta 1beta1 100.00% 7 37 15 11 9 0 0 0 0
beta* beta 65.49% 7 47 26 26 12 0 0 0 0
semver-alpha* 1.0.0-alpha 28.04% 7 48 23 15 15 2 0 0 1
semver-2# 1.3-DUMMY 12.26% 6 24 16 15 5 3 2 2 1
semver (beta*) 1.0 (beta) 29.89% 6 58 39 46 13 46 18 26 18
date(yyyy.mm.dd) 2019.10.15 10.45% 6 24 22 24 4 24 20 24 9
#semver-3 2019.0.0 29.73% 5 37 22 17 11 3 1 2 1
semver-rc* 1.0.0-rc1 38.14% 4 190 60 20 75 8 4 5 3
semver-4 6.4.3.0 3.31% 4 23 16 17 5 9 2 0 4
semver-rc*.* 2.0.0-RC1.0 41.69% 4 85 54 63 26 0 0 0 0
v*alpha*.* v2alpha2.6 61.76% 3 26 23 22 2 4 1 0 2
alpha* alpha 73.85% 2 35 26 35 9 0 0 0 0
dev* dev 98.38% 2 172 91 172 81 0 0 0 0
date(yyyy-mm) 2021-10 67.44% 2 14 13 14 1 2 1 2 1
semver-pre*.* 3.5.0-pre.0 100.00% 1 10 10 10 0 0 0 0 0
date(yyyymmdd) 20190111 29.63% 1 13 13 13 0 0 0 0 0
semver-dev* 0.7.0.dev20191230 15.52% 1 40 40 40 0 0 0 0 0
v*-date v1-20160622 57.14% 1 18 18 18 0 2 2 2 0
semver-alpha*.* 1.1.0-alpha.1 4.94% 1 146 146 146 0 0 0 0 0

Table 4: How many APIs consistently use the same version identifier for-
mat in the info.version field during their lifespans? min(#Commits) = 10,
min(info.version Changes) = 0

Q3: To what extent is the practice of semantic versioning adopted in Web
APIs, and are there alternative versioning schemes in use?

Our findings indicate that semantic versioning (SemVer) is the most widely
adopted versioning scheme among API releases, specifically in the case of APIs
that use the info.version field (60.56%). In contrast, for APIs that use alterna-
tive methods for versioning, such as embedding version identifiers in endpoints
URLs or the server DNS name, the most common practice is to use shorter
version identifiers that include only the major version counter. Additionally, for
preview releases, SemVer is often combined with other tags to reflect the type of
preview release, such as Develop, Snapshot, Alpha, Beta, or Preview (Table 8).
More in detail, 3-counter semantic versioning (MAJOR.MINOR.PATCH) is adopted
more often than the 2-counter format (BREAKING.NONBREAKING) recommended
by [13]. The fourth largest group of APIs uses “visible dates” as version identifier

12 Serbout and Pautasso

2015 2016 2017 2018 2019 2020 2021 2022
0

1

2

3

4

5

0%

20%

40%

60%

80%

100%
·104

Year

#
C
om

m
it
s

S
em

an
ti
c
V
er
si
o
n
in
g
A
d
o
p
ti
o
n
(%

)

Stable (Semantic Versioning) Stable (Versioned)

Preview (Semantic Versioning) Preview (Versioned)

Fig. 6: Semantic versioning adoption over the years (2015-2022) in stable and
preview releases considering the version identifier found in the info.version

metadata.

format (Table 4), which appears to be anti-pattern according to [15], as it would
reveal how old a release has become.

Q4: How often do developers switch to different versioning schemes during
the lifespan of their APIs?

Only 785 APIs underwent changes in their versioning scheme during their evo-
lution. Figure 5 illustrates that, in the case of APIs that use info.version

identifiers, the most common target format adopted by 106 APIs changing their
scheme is Semantic Versioning (SemVer), which is also the most widely adopted
versioning scheme among APIs that did not switch to another format.

Q5: Has the adoption of semantic versioning changed over the past few years?

In this study, we assessed the prevalence of Semantic Versioning (SemVer) in
API versioning by analyzing the utilization of the info.version field in stable
releases of APIs that have been committed to GitHub between 2015 and 2022.
Our findings showed a relatively high adoption rate of SemVer in stable releases,
with a mean of 75.84% ± 4.79%. However, the adoption rate was lower for API
preview releases, where the most commonly used formats did not conform to the
SemVer format (Table 8). Our analysis revealed a linear decline in the adoption
of SemVer in preview releases from 2018 to 2022, with a significant increase
in the use of simpler versioning formats, such as v*beta* or v*alpha*, which
combine the major version number with a preview release tag.

An empirical study of Web API versioning practices 13

0
5
0

1
0
0

119

30

10
5 5 3 1 1 1

#
A
P
Is

2 3 4 5 6 7 8 10 14

0
1
,0
0
0

2
,0
0
0

Number of coexisting versions

#
C
o
m
m
it
s

2,102

462

184
73 51 25 3 1 5

Major Version Number (MVN)

Other version formats (see →)

(a) Number of API/Commits having
paths indicating more than one version

2 3 4 5 6 7 8 10 14
0

1
0
0

2
0
0

3
0
0

4
0
0

Number of coexisting versions

#
C
o
m
m
it
s

Tag—MVN (169)

SemVer (100)

Date (64)

Beta (60)

Other (60)

MVN—Other (58)

Date—MVN (28)

Beta—MVN (18)

Tag (17)

SemVer—MVN (12)

Tag—Beta (5)

SemVer—Beta (1)

Beta—Other (1)

(b) Other version formats used in
commits with n-coexistent versions

Fig. 7: Multiple Versions in Production

Q6: What is the prevalence of APIs with multiple versions in production?
how many concurrent versions exist, and which formats are used in this case?

We analyzed the usage of the “two in production” evolution pattern [14,22] by
examining the APIs that have paths with distinct version identifiers. Out of 7114
APIs, we found 175 with multiple version identifiers attached to their paths. The
majority (119 APIs) had exactly two versions across 2,102 commits. In one case,
an API supported up to 14 different versions in production across five commits.

The commonly used format for version identifiers attached to the API path varies
based on the number of coexisting versions. For APIs with fewer than six ver-
sions, the most prevalent format is to reference only the major version. However,
for APIs with more than six coexisting versions, the widely adopted format is se-
mantic versioning. This suggests that an increased number of coexisting versions
requires a more detailed identifier for proper differentiation.

5.1 Threats to Validity

– Internal validity: Our formats classification approach allowed us to accu-
rately identify the presence of version identifiers embedded in the URL. However,
this process is susceptible to errors or omissions if the version information is not

14 Serbout and Pautasso

already retrieved from the info.version or if the identifier matched in the URL
is not meant to be used for versioning.

– External validity: Our study relies on API history snapshots from GitHub,
potentially missing the full evolution of the APIs. Findings should be viewed with
caution given the possibility of missing updates and changes. The APIs in the
study come from a single platform, GitHub, and caution should be exercised in
generalizing the results to APIs developed elsewhere.

6 Related Work

In previous work on Web API evolution [11] we studied the API size changes
over time, without considering how developers tend to summarize these changes
through versioning. Other studies have investigated the relationship between
software changes and versioning for software libraries published in package man-
agement tools [21,16], our work takes a different approach by focusing exclusively
on the evolution of the interface due to the limitations and challenges posed by
the lack of access to the corresponding backend implementation code for Web
APIs. These results highlight the need for further research on the impact of
different versioning practices on API and backend development.

In the study conducted by Dietrich et al. [12], the authors aimed to ana-
lyze versioning practices in software dependency declarations. To do this, they
leveraged a rich dataset collected from the libraries.io repository, which con-
tained metadata from 71,884,555 packages published on 17 different package
management platforms, including Home-brew, Maven, and NPM, along with
their respective dependency information. The authors employed a similar ap-
proach with detectors based on regular expressions to categorize the dependency
versions into 13 different formats. Their findings revealed that the majority of
package managers predominantly use flexible dependency version syntax, with a
considerable uptake of semantic versioning in case of Atom, Cargo, Hex, NPM,
and Rubygems. Additionally, a survey of 170 developers showed that they rarely
modified the declared dependencies’ version syntax as the project evolved.

In a separate study [10], the author focused on the versioning practices
adopted by developers when using continuous integration services such as GitHub
Actions. The results indicated that 89.9% of the analyzed version tags followed
GitHub’s recommendation of only referring to the major version in the identifier,
with only a small fraction (0.9%) including minor version information and 9.2%
using the SemVer-3 format. This differs from our findings, where we found that
SemVer-3 was the most widely adopted semantic versioning format.

7 Conclusion

Versioning in Web APIs is a fundamental practice to ensure their compatibility
and ease their maintainability. In this empirical study we focused on version
identifiers, observing their location, formats, and evolution. Out of 7114 APIs,
the majority (5022) utilized static versioning in the API metadata, while a small

An empirical study of Web API versioning practices 15

fraction (220) supported dynamic discovery of the current version through a
dedicated endpoint. In terms of version format, we identified 55 distinct formats
used to distinguish stable and preview releases, with 535 APIs including preview
versions in their Github histories. The number of preview releases pushed to
Github showed an upward trend with a yearly average of 1858 commits.

With regards to metadata versions, we found that 85% of the 6580 APIs
which consistently used the same format throughout their lifespan utilized Se-
mantic Versioning. The adopted version format was unstable in 534 APIs, with
30% switching to SemVer. Our analysis indicated a steady usage rate of SemVer
for 75% (on average) of API releases, while preleases adopted more often less
detailed formats that only reference the major version of the API, typically with
a tag (e.g., “beta” being the most frequent) to indicate their purpose.

We also observed the usage of the “two in production” evolution pattern in
175 APIs (56 with more than 2 versions). In these cases, the most prevalent
format for version identifiers attached to the path was to reference only the
major version, particularly among APIs with fewer than six coexisting versions.

As future work, we plan to further investigate the adherence of developers
to semantic versioning guidelines and study the types of API changes that drive
major or minor version changes.

Acknowledgements The authors acknowledge Fabio Di Lauro for gathering
the raw dataset, and Deepansha Chowdhary for conducting a feasibility study
on it. This work was supported by the SNF with the API-ACE project number
184692.

References

1. Semantic Versioning. https://semver.org/
2. OpenAPI Initiative. https://www.openapis.org/
3. https://github.com/USI-INF-Software/API-Versioning-practices-detection

4. https://docs.npmjs.com/about-semantic-versioning

5. SwaggerHub. https://app.swaggerhub.com/
6. Release naming conventions. https://www.drupal.org/node/1015226
7. https://docs.fedoraproject.org/en-US/packaging-guidelines/Versioning/

8. SWR Audio Lab - Radiohub API. https://github.com/swrlab/swrlab/blob/

main/openapi/openapi.yaml

9. Bogart, C., Kästner, C., Herbsleb, J., Thung, F.: How to break an API: cost nego-
tiation and community values in three software ecosystems. In: Proc. 24th Inter-
national Symposium on Foundations of Software Engineering. pp. 109–120 (2016)

10. Decan, A., Mens, T., Mazrae, P.R., Golzadeh, M.: On the use of github actions in
software development repositories. In: International Conference on Software Main-
tenance and Evolution (ICSME). pp. 235–245 (2022)

11. Di Lauro, F., Serbout, S., Pautasso, C.: A large-scale empirical assessment of web
api size evolution. Journal of Web Engineering 21(6), 1937–1980 (2022)

12. Dietrich, J., Pearce, D., Stringer, J., Tahir, A., Blincoe, K.: Dependency versioning
in the wild. In: Proc. 16th International Conference on Mining Software Reposito-
ries (MSR). pp. 349–359 (2019)

https://semver.org/
https://www.openapis.org/
https://github.com/USI-INF-Software/API-Versioning-practices-detection
https://docs.npmjs.com/about-semantic-versioning
https://app.swaggerhub.com/
https://www.drupal.org/node/1015226
https://docs.fedoraproject.org/en-US/packaging-guidelines/Versioning/
https://github.com/swrlab/swrlab/blob/main/openapi/openapi.yaml
https://github.com/swrlab/swrlab/blob/main/openapi/openapi.yaml

16 Serbout and Pautasso

13. Lauret, A.: The design of web APIs. Simon and Schuster (2019)
14. Lübke, D., Zimmermann, O., Pautasso, C., Zdun, U., Stocker, M.: Interface evo-

lution patterns: balancing compatibility and extensibility across service life cycles.
In: Proc. 24th EuroPLoP (2019)

15. Marquardt, K.: Patterns for software release versioning. In: Proc. of the 15th Eu-
ropean Conference on Pattern Languages of Programs (EuroPLoP) (2010)

16. Ochoa, L., Degueule, T., Falleri, J.R., Vinju, J.: Breaking bad? semantic versioning
and impact of breaking changes in maven central. Empirical Software Engineering
27(3), 1–42 (2022)

17. Raatikainen, M., Kettunen, E., Salonen, A., Komssi, M., Mikkonen, T., Lehtonen,
T.: State of the practice in application programming interfaces (APIs): A case
study. In: Proc. 15th European Conference on Software Architecture (ECSA). pp.
191–206 (2021)

18. Serbout, S., Di Lauro, F., Pautasso, C.: Web apis structures and data models anal-
ysis. In: Companion Proc. 19th International Conference on Software Architecture
(ICSA). pp. 84–91 (2022)

19. Varga, E.: Creating Maintainable APIs. APress (2016)
20. Yang, J., Wittern, E., Ying, A.T., Dolby, J., Tan, L.: Towards extracting web

api specifications from documentation. In: Proceedings of the 15th International
Conference on Mining Software Repositories (MSR). pp. 454–464 (2018)

21. Zhang, L., Liu, C., Xu, Z., Chen, S., Fan, L., Chen, B., Liu, Y.: Has my release
disobeyed semantic versioning? static detection based on semantic differencing. In:
Proc. 37th International Conference on Automated Software Engineering (2023)

22. Zimmermann, O., Stocker, M., Lübke, D., Zdun, U., Pautasso, C.: Patterns for
API Design - Simplifying Integration with Loosely Coupled Message Exchanges.
Addison-Wesley (2022)

An empirical study of Web API versioning practices 17

A Version Formats Detectors

This appendix lists only the detectors (stable releases: Table 5 and preview
releases: Table 6) that enabled classifying the most frequently occurring formats
listed in Tables 7 and 8 of Appendix B. The dataset and the detectors code can
be found in the replication package on GitHub [3].

Format Regex detector

Major version number

integer integer: /^(\d{3}|\d{2}|\d{1})+$/i

v* /^v\d$/i

SemVer

#semver-2 /(v|)(\d{3}|\d{2}|\d{1})\.\d+$/i

#semver-3 /(v|)(\d{3}|\d{2}|\d{1})\.\d+\.\d+$/i

#semver-6 /(v|)\d+\.\d+\.\d+\.\d+\.\d+\.\d+/i

semver-2 /^(v|)(\d{3}|\d{2}|\d{1})\.\d+$/i

semver-2# /^(v|)(\d{3}|\d{2}|\d{1})\.\d+/i

semver-3 /^(v|)(\d{3}|\d{2}|\d{1})\.\d+\.\d+$/i

semver-3# /^(v|)(\d{3}|\d{2}|\d{1})\.\d+\.\d+/i

semver-4 /^(v|)\d+\.\d+\.\d+\.\d+$/i

semver-5 /^(v|)\d+\.\d+\.\d+\.\d+\.\d+$/i

semver-6 /^(v|)\d+\.\d+\.\d+\.\d+\.\d+\.\d+$/i

semver-6# /^(v|)\d+\.\d+\.\d+\.\d+\.\d+\.\d+/i

Tag

stable* /^stable\d*$/i

latest* /latest\d*$/i

Date

date(Month yy) /(Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec) [1-2][0-9]$/i

date(Month yyyy) /(Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec) 20[1-2][0-9]$/i

date(yyyy) /^\d{4}$/i

date(yyyy-mm) /^\d{4}-\d{2}$/i

date(yyyy-mm-dd) /^\d{4}-\d{2}-\d{2}/i

date(yyyy.mm) /(^\d{4}\.[1-12]$/i|/^\d{4}\.\d{2}$/i)

date(yyyy.mm.dd) /\d{4}\.\d{2}\.\d{2}$/i

date(yyyy/mm) /^\d{4}\/\d{2}$/i

date(yyyy/mm/dd) /^\d{4}\/\d{2}\/\d{2}$/i

date(yyyymmdd) /^20[1-2][0-9](0[1-9]|1[0-2])(0[1-9]|[12][0-9]|3[01])$/i

Other Any other format that wasn’t caught by one of the detectors defined in here

Table 5: Detectors of version identifiers formats of API releases. * stands for an
integer and # stands for an arbitrary combination of characters

https://github.com/USI-INF-Software/API-Versioning-practices-detection/blob/6c785e7c4048cd3389f0d763a0b812232085f577/regex-detectors.js

18 Serbout and Pautasso

Format

Develop

dev* /^dev\d*$/i

develop* /^develop\d*$/i

semver-dev* /^(v|)\d+\.\d+(\.\d)*(\.|-)dev\d*$/i

semver-dev*.* /^(v|)\d+\.\d+(\.\d)*(\.|-)dev\d*\.\d+$/i

v*dev* /^v\d+dev\d*$/i

Snapshot

snapshot* /^SNAPSHOT\d$/i

semver-SNAPSHOT* /^(v|)\d+\.\d+(\.\d)*(\.|-)SNAPSHOT\d*$/i

Preview

date-preview* [date](-|\.)preview$/i
semver-pre*.* /^(v|)\d+\.\d+(\.\d)*(\.|-)pre\d*\.\d+$/i

semver-preview* /^(v|)\d+\.\d+(\.\d)*(\.|-)preview\d*\.\d+$/i

Alpha

alpha* /^alpha\d*$/i

semver-alpha* /^(v|)\d+\.\d+(\.\d)*(\.|-)alpha\d*$/i

semver-alpha*.* /^(v|)\d+\.\d+\.\d+(\.\d)*(\.|-)alpha\d*\.\d+$/i

v*alpha* /^v\d+alpha\d*$/i

v*alpha*.* /^v\d+alpha\d+\.\d+$/i

Beta

beta /^\d+beta\d*$/i

beta* /^beta\d*$/i

semver (beta*) /^(v|)\d+\.\d+(\.|-|)\(beta\d*\)/i

semver beta* /^(v|)\d+\.\d+(\.|-|)beta\d*/i

semver.beta*.date /^(v|)\d+\.\d+(\.|-)beta\d*(\.|-)\d{4}\.\d{2}\.\d{2}$/i

v*.beta /^v\d+(\.|-)beta\d*$/i

v*beta* /^v\d+beta\d*$/i

v*beta*.* /^v\d+beta\d+\.\d+$/i

v*p*beta* /v\d+p\d+beta\d*/i

Release Candidate

rc* /^rc\d*$/i

semver-rc* /^(v|)\d+\.\d+(\.\d)*(\.|-)rc\d*$/i

semver-rc*.* /^(v|)\d+\.\d+(\.\d)*-rc\d*\.\d+$/i

semver.rc*.date /^(v|)\d+\.\d+(\.|-)rc\d*(\.|-)[date]$/i

Table 6: Detectors of version identifiers formats of API preview releases. * stands
for an integer

An empirical study of Web API versioning practices 19

B Versions Formats Classification

In this appendix we include detailed results about the version identifier classifi-
cation for stable (Table 7) and preview (Table 8) releases.

Location
Format info.version path server All

Major version number 29129 45310 14944 89383

integer 3738 592 144 4474
v* 25391 44718 14800 84909

SemVer 114663 788 18172 133623

#semver-2 166 0 4249 4415
#semver-3 111 0 2686 2797
#semver-6 6 0 0 6
semver-2 23248 772 1594 25614
semver-2# 212 0 4260 4472
semver-3 88964 22 2686 91672
semver-3# 1448 0 2697 4145
semver-4 513 3 3 519
semver-5 1 3 3 7
semver-6 20 3 3 26
semver-6# 2 0 0 2

Tag 845 1199 6 2050

latest* 819 1174 3 1996
stable* 26 25 3 54

Date 5447 299 27 5773

date(Month yy) 0 3 3 6
date(Month yyyy) 22 0 0 22
date(yyyy) 21 3 3 27
date(yyyy-mm) 43 33 3 79
date(yyyy-mm-dd) 5146 245 3 5394
date(yyyy.m) 10 0 0 10
date(yyyy.mm) 4 3 3 10
date(yyyy.mm.dd) 134 3 3 140
date(yyyy/mm) 20 3 3 26
date(yyyy/mm/dd) 20 3 3 26
date(yyyymmdd) 27 3 3 33

Other 1549 1354 0 2309

Table 7: Number of commits with version identifiers of API releases classified by
their formats. * stands for an integer and # stands for an arbitrary combination
of characters

20 Serbout and Pautasso

Location
Format info.version path server All

Develop 545 92 106 743

dev* 185 91 104 380
develop* 12 0 2 14
semver-dev* 335 0 0 335
semver-dev*.* 12 0 0 12
v*dev* 1 1 0 2

Snapshot 964 0 11 975

SNAPSHOT* 34 0 0 34
semver-SNAPSHOT* 930 0 11 941

Preview 863 0 0 863

date-preview* 830 0 0 830
semver-pre*.* 10 0 0 10
semver-preview* 23 0 0 23

Alpha 3003 2339 10 5352

alpha* 65 25 10 100
semver-alpha* 510 0 0 510
semver-alpha*.* 385 0 0 385
v*alpha* 1975 2314 0 4289
v*alpha*.* 68 0 0 68

Beta 19410 15459 207 35076

beta 105 0 0 105
beta* 339 37 175 551
semver (beta*) 368 0 0 368
semver beta* 557 0 0 557
semver.beta*.date 9 0 0 9
v*.beta 254 44 0 298
v*beta* 15720 15378 32 31130
v*beta*.* 638 0 0 638
v*p*beta* 1420 0 0 1420

Release Candidate 548 0 0 548

rc* 26 0 0 26
semver-rc* 118 0 0 118
semver-rc*.* 355 0 0 355
semver.rc*.date 49 0 0 49

Table 8: Number of commits with version identifiers of API preview releases
classified by their formats. * stands for an integer

	An empirical study ofWeb API versioning practices

