LiquidAI: Towards an Isomorphic AI/ML
System Architecture for the Cloud-Edge
Continuum

Kari Systi!, Cesare Pautasso?, Antero Taivalsaari'3, Tommi Mikkonen?*

! Tampere University, Tampere, Finland
kari.systa@tuni.fi
2 USI, Lugano, Switzerland

cesare.pautasso@Qusi.ch

3 Nokia Bell Labs, Tampere, Finland

antero.taivalsaari@nokia-bell-labs.com

4 University of Jyviskyld, Jyviskyls, Finland

tommi.j.mikkonen@jyu.fi

Abstract. A typical Internet of Things (IoT) system consists of a large
number of different subsystems and devices, including sensors and actua-
tors, gateways that connect them to the Internet, cloud services, end-user
applications and analytics. Today, these subsystems are implemented
with a broad variety of programming technologies and tools, making it
difficult to migrate functionality from one subsystem to another. In our
earlier papers, we have predicted the rise of isomorphic IoT system archi-
tectures in which all the subsystems can be developed with a consistent
set of technologies. In this paper we expand the same research theme
to machine learning technologies, highlighting the need to use ML in a
consistent and uniform fashion across the entire Cloud-Edge continuum.

Keywords: Isomorphic Software, Software Architecture, Internet of Things,
IoT, Web of Things, WoT, Artificial Intelligence, AI, Machine Learning, ML,
Software Deployment, Deployment in the Large, Programmable World

1 Introduction

A typical Internet of Things (IoT) system consist of a large number of com-
putational elements. These elements include sensors and actuators, gateways
that connect them to the Internet, cloud services, end-user applications running
on mobile devices, and different kinds of analytics capabilities. Today, these
computational elements are implemented with a broad variety of programming
technologies and tools; for instance, IoT device development is still carried out
primarily with traditionally embedded systems languages and tools, while web
application and cloud backend development use an entirely different set of tools
and technologies. This diversity makes it difficult to migrate functionality across
the end-to-end system from one computational element to another. Instead, the



2 K. Systa et al.

functionality must be implemented using toolchains that are only applicable
to certain types of components in the overall system. Any deployment changes
typically imply a tedious re-implementation of the corresponding functionality.

Modern IoT systems and applications associated with them can generate and
handle huge amounts of data. This has enabled Machine Learning (ML) and
Artificial Intelligence (AI) in various use cases, ranging from smart home and
smart city applications to healthcare, retail and industrial systems. Although
IoT devices are generally assumed to be connected, not all the data from them
can be moved to the cloud for processing because of privacy, latency or limited
connectivity reasons. Thus, it is necessary to keep some computations close to the
source of data, while other computations can run in the cloud. In many use cases
there is a need to transfer data and computations seamlessly between different
parts of the system, though. We have discussed this cloud-edge continuum in
our earlier papers [22]. A recent literature study defined cloud continuum as “an
extension of the traditional cloud towards multiple entities (e.g., edge, fog, IoT)
that provide analysis, processing, storage, and data generation capabilities” [13].
Given the rapidly increasing use of ML technologies, we expect that the same
technical challenges that apply to conventional computations shall emerge also
in the context of ML technologies across the cloud-edge continuum.

The LiquidAlT vision presented in this paper promises savings in the develop-
ment effort by allowing flexible, dynamic, decentralized deployment of intelligent
functions across the cloud-edge continuum. This is achieved by using a compat-
ible set of technologies in all the subsystems, thus allowing different parts of the
system to run the same code in an isomorphic fashion [20,12]. The LiquidAI
concept builds upon liquid software — a paradigm in which software applications
can flow from one computing node to another in a seamless fashion [8,23]. As
a follow-up to our earlier work, we expand the liquid software concept to ML
models that have an important role in today’s IoT development and summarize
the research challenges associated with it.

2 Background and Motivation

2.1 Artificial Intelligence in the Context of IoT

In recent years, processing and storage capabilities have grown dramatically,
cloud computing has become commodity, data science has blossomed due to in-
creasing amounts of data, and ML has emerged as everyday technologies even in
devices with limited processing capabilities and resources such as mobile phones.
These changes are leading us to a Programmable World [21], in which everyday
things around us are becoming connected and programmable.

More broadly, the emergence of the IoT is acting as a catalyst for major
changes in the development mindset. IoT developers must consider factors that
are unfamiliar to many application developers today. Such factors include:

— multidevice programming of heterogeneous, diverse types of devices;
— the reactive, always-on nature of the overall system;



LiquidAIL: Towards an Isomorphic AI/ML System Architecture 3

— intermittent, potentially unreliable nature of connectivity;
— the distributed, dynamic, and potentially migratory nature of software; and
— the general need to write software in a fault-tolerant and defensive manner.

In general, a typical IoT application is continuous and reactive. On the ba-
sis of observed sensor readings, computations get triggered (and retriggered)
and may eventually result in various actionable events. In the context of the
overall end-to-end system, programs are essentially asynchronous, parallel and
distributed. In addition, the computational elements in the overall end-to-end
system are typically heterogeneous and may possess very different processing
capabilities and storage capacities.

In the context of this paper, we wish to highlight two areas especially:

— Intelligence in the Edge. In “classic” 1oT systems, the majority of compu-
tation and analytics are performed in the cloud in a centralized fashion.
However, in recent years there has been a noticeable trend in IoT system
development to move intelligence closer to the edge (see, e.g., [10,9]).

— Rise of Swarm Intelligence. In IoT systems that consist of a massive number
of devices overall, device topologies can be expected to be highly dynamic
and ephemeral (e.g. [18,16]). This dynamism calls for technologies that can
cope with dynamically changing swarms of devices and their dynamically
evolving responsibilities at the holistic system level.

2.2 Liquid Software

Liquid software makes it possible for data and applications to move seamlessly
between multiple devices and screens [23]. The concept of liquid software emerged
originally in the context of multiple device ownership [8], referring especially to
those use cases in which an individual user needs to use software applications in
an uninterrupted fashion on different types of computing devices such as mobile
phones, tablets, desktop computers and TVs — without having to explicitly install
and/or launch applications anew or manually transfer data between those devices
[23]. In recent years, liquid software technologies have expanded into IoT and
other systems that do not necessarily have user interfaces [12]. In those contexts,
liquid software typically refers to seamless transfer or migration of computations
from one part of the system to another in order to best utilize the available
computational resources. Moreover, liquid stream processing has been proposed,
wherein data from Web-enabled sensors are gathered and sent for processing
across a peer-to-peer cloud of computing peers [1].

The prerequisites of liquid software in the context of the IoT are (i) uniform
API for accessing features of different subsystems, and (ii) a common runtime
that is fast but small enough for embedded devices yet powerful enough to imple-
ment lightweight containers in order to deploy applications everywhere. In addi-
tion, (iii) an orchestrator is needed that will guide the deployment and potential
migration of the different subsystems based on device proximity, connectivity
and battery levels.



4 K. Systa et al.

3 LiquidAlI: Premises and Design Goals

3.1 The LiquidAI Vision

The requirement to run — and optionally also train — ML models and analytics
algorithms in the edge increases the demand for consistent programming tech-
nologies in the overall end-to-end system. Our vision is that the required algo-
rithms can be decomposed so that their components can be flexibly located and
migrated in the cloud-edge continuum. Then, when requirements and network
topology later evolve, the components can be relocated at different nodes in the
ToT network. Moreover, security and privacy related issues must be reconsidered.
Then, one can flexibly allocate and migrate functions across the cloud-edge con-
tinuum, considering available network bandwidth, latency, and computational
resources.

To manifest an infrastructure capable of running such algorithms, the charac-
teristics of liquid software need some revision. As stated above, the basic features
include a uniform API, a common runtime, components that can be deployed
and re-deployed at the cloud-edge continuum, and an orchestrator that can allo-
cate and reallocate components. In addition, the creation of ML models requires
reconsideration. Instead of creating individual ML models to process the given
data, processing shall take place in a piecemeal fashion following the flow of
data from the edge to the cloud, typically using techniques such as federated
learning [11] and streaming data pipelines. To enable such piecemeal processing,
monolithic ML models must be avoided and replaced with models that perform
simple tasks and then forward the results to the next node for further processing.

Next, we present the design and research goals to reach the vision above.

3.2 Design Goals for LiquidAI

Uniform API. One of the key challenges in realizing the Liquid Al vision is the
heterogeneous nature of the development languages, environments and tools, and
the APIs and data formats that are associated with those technologies. There is
a need for APIs to access resources on heterogeneous sets of devices, as well as
for operations to manage data streams and various infrastructure features.

In the area of machine learning, application code needs to control the ma-
chine learning components (Al functions). API features shall be coherent and
accessible from all relevant programming languages. Candidate base solutions in
this area include the Web Thing APT [3] and various service discovery protocols,
which lack support for liquidity.

The research questions for a uniform liquid API include the following:

— What kind of an API allows liquid components to communicate with each
other regardless of their current location?

— How can the API support access to streaming data in a unified fashion when
the functions for processing the data streams may migrate as well?

— How wide a selection of programming languages can be supported and catered
to with consistent APIs?



LiquidAIL: Towards an Isomorphic AI/ML System Architecture 5

Common Runtime. By runtime we refer to technologies such as virtualization
or virtual machines (VMs) that allow applications to run on top of the computing
hardware — preferably independently of its physical architecture. In our context
it is not enough to support built-in system applications only but also those that
can be deployed and uninstalled dynamically.

The runtime shall support strong migration of software, where both the code
and its current execution state can be transferred across different devices [4].
Such runtimes for liquid software have several and partially conflicting require-
ments: performance, hardware independence, support for various development
paradigms, programming languages, and security. As concrete examples, Web-
Assembly and Node.js are both candidate runtimes for liquid applications. Due
to virtualization, the runtime solutions that are used in the context of liquid
software may not meet the performance requirements of machine learning appli-
cations. Moreover, runtimes used for ML applications may not support liquidity.
Pathway to a compelling solution includes the following research challenges:

— What are the functional requirements of ML models towards the runtime?

— What are the performance and scalability requirements of ML models?

— How much can resource consumption be reduced if the runtimes for model
training, validation, testing and inference in production are separated?

Decomposition and Deployment. Decomposition of software is essential for
software maintainability, task allocation, and effective utilization of distributed
computational elements. In addition to providing maintainability to software
and its development, decomposition should split the software so that its compo-
nents, optionally including ML features, can roam across the cloud-edge contin-
uum. This places new requirements on decomposition. These observations have
inspired a lot of research (e.g. [15,5]). Today’s state of the art approaches advo-
cate the use of containers and orchestration to dynamically manage VM images
and select specific node(s) according to algorithmic requirements (e.g. [2]). Un-
fortunately, this approach is rather heavyweight because of the use of containers,
and thus lighter alternatives would be preferred (e.g. [17]).

Since ML models are key elements of LiquidAl systems, decomposing and
deploying them across the cloud-edge continuum has received a lot of attention
on a broad variety of use cases (e.g. [15]). However, isomorphic use of such func-
tions is a new research direction that will be fundamental to achieving flexible
composition of future IoT systems. Furthermore, when an application or com-
ponent is deployed onto a target device, the software and required metadata
have to be encapsulated in a proper way. The deployment, initialization and
monitoring of the software may also require a specialized protocol, which should
support both traditional and ML components. Based on the observations above,
research questions related to decomposition include the following:

— What kind of decompositions are technically feasible for ML components, in
relation to working practices in this field?
— Which solutions are compatible with the requirements of liquid deployment?



6 K. Systa et al.

— What is the lifecycle of liquid functions, including both traditional and ML
software?

— How to update liquid ML components with minimal disruption to system
behavior?

Orchestration. Decomposition of LiquidAl systems into separate components
introduces an orchestration challenge: how can multiple components ensure reli-
able end-to-end execution, provide scalability with large datasets and potentially
massive amount of devices, as well as react to changing situations? Because loT
is largely about data, it is assumed that many of the target applications in-
volve data streams. The foundation for orchestrating data streams across an
IoT network has already been laid out in the Web Liquid Streams framework
[1]. That framework helps developers create stream processing topologies and
run them across a peer-to-peer network of connected devices and Web browsers.
ML models are often also used for processing data via a series of pipes and filters
(e.g. [19,14]). In our vision, pipes are represented by connections in the stream
processing topology, and filters are then dynamically deployed on the common
runtime and communicate via the uniform API. We have identified the following
research questions:

How can the orchestrator control the migration of ML models?

How to manage and monitor ML models in liquid context?

How to ensure reliability and trustworthiness a distributed system where

stateful components may roam between locations?

— How can performance, memory and bandwidth be optimized if ML models
are partitioned across a pipeline operating on a common data stream?

— What is state for processing streaming data with Al functions?

Liquid Features. In our earlier work [6] we have investigated the architecture
and design issues of liquid software. Much of the earlier research has focused
on user interfaces and especially user interface adaption to a set of devices
with different usage modalities (phones, tablets, laptops, TVs, etc.) In LiquidAI,
most system components are headless (have no user interface), and therefore
many aspects need to be revisited and extended. First, the handling of state —
seamless data transfer and state synchronization is a key characteristic of liquid
software. In LiquidAl, the viewpoint might be different given that the presence
of data streams and learning — especially incremental learning — can be regarded
as a form of state. Second, while the LiquidAI concept has no user sessions
roaming across devices, applications still need to take full advantage of all devices
that they run across. There is a need to optimize performance, including both
computing and network traffic, with tradeoff factors such as power consumption
and latency. The research questions related liquid functionality include:

— Do machine-learning components have a state?
— How can liquid components adapt to different hardware characteristics?



LiquidAIL: Towards an Isomorphic AI/ML System Architecture 7

Security and Privacy. Because many of the LiquidAl systems will deal with
sensitive data, they should be decomposed in such a fashion that privacy and
access rules are enforced. So far, relatively small amount of research has been
directed into security features needed by liquid software at large given that the
prime use case has been personal computing experience in which all the devices
have the same owner. Furthermore, security related concerns in IoT are common
in general (e.g. [24, 7]), which underlines research needs on this topic. Important
research questions include the following:

— How to provide security for liquid software across the cloud-edge continuum?

— How to ensure privacy guarantees with a set of ML components learning
from or processing data streaming pipelines?

— How containers for liquid software can prevent leaks of sensitive data?

4 Conclusions

In this paper, we presented a vision and a tentative research agenda for Liquid Al
— a framework in which machine learning and data streaming can coexist and
be flexibly orchestrated in IoT networks. The vision extends our earlier work
on liquid software applications, refocusing the technology to end-to-end IoT
systems. As part of this work, we have formulated the concept and identified a
set of research questions that must be answered in order to realize the vision.
We hope that this paper, for its part, encourages the Web engineering research
community to collaborate with us on finding answers to these research questions.

Acknowledgments.This work has been supported by Business Finland (project
LiquidAI, 8542/31/2022).

References

1. Babazadeh, M., Gallidabino, A., Pautasso, C.: Decentralized stream processing
over web-enabled devices. In: European Conference on Service-Oriented and Cloud
Computing. pp. 3-18. Springer (2015)

2. Debauche, O., Mahmoudi, S., Mahmoudi, S.A., Manneback, P., Lebeau, F.: A new

edge architecture for AI-IoT services deployment. Procedia Computer Science 175,

10-19 (2020)

Francis, B.: Web Thing API. https://webthings.io/api/, retrieved 2023-01-25

4. Fuggetta, A., Picco, G.P., Vigna, G.: Understanding code mobility. IEEE Trans-
actions on software engineering 24(5), 342-361 (1998)

5. Gallidabino, A., Pautasso, C.: The LiquidWebWorker API for horizontal offloading
of stateless computations. Journal of Web Engineering 17, 405-448 (March 2019).
https://doi.org/10.13052/jwe1540-9589.17672

6. Gallidabino, A., Pautasso, C., Mikkonen, T., Systd, K., Voutilainen, J.P.,
Taivalsaari, A.: Architecting liquid software. Journal of Web Engineer-
ing 16(5-6), 433-470 (September 2017). https://doi.org/10.26421/JWE16.5-6,
http://www.rintonpress.com/journals/jweonline.html#v16n56

@



8

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

K. Systa et al.

Gurunath, R., Agarwal, M., Nandi, A., Samanta, D.: An overview: security issue
in ToT network. In: 2018 2nd International Conference on I-SMAC (IoT in Social,
Mobile, Analytics and Cloud). pp. 104-107. IEEE (2018)

Hartman, J.J., Bigot, P.A., Bridges, P., Montz, B., Piltz, R., Spatscheck, O., Proeb-
sting, T.A., Peterson, L.L., Bavier, A.: Joust: A platform for liquid software. Com-
puter 32(4), 50-56 (1999)

Keshavarzi, A., van den Hoek, W.: Edge intelligence—on the challenging road to
a trillion smart connected IoT devices. IEEE Design & Test 36(2), 41-64 (2019)
Liu, Y., Peng, M., Shou, G., Chen, Y., Chen, S.: Toward edge intelligence: Mul-
tiaccess edge computing for 5G and internet of things. IEEE Internet of Things
Journal 7(8), 67226747 (2020)

Ludwig, H., Baracaldo, N.: Federated Learning: A Comprehensive Overview of
Methods and Applications. Springer (2022)

Mikkonen, T., Pautasso, C., Taivalsaari, A.: Isomorphic Internet of Things archi-
tectures with web technologies. Computer 54(7), 69-78 (2021)

Moreschini, S., Pecorelli, F., Li, X., Naz, S., Hastbacka, D., Taibi, D.: Cloud con-
tinuum: The definition. IEEE Access 10, 131876-131886 (2022)

Padkkonen, P., Pakkala, D.: Reference architecture and classification of technolo-
gies, products and services for big data systems. Big data research 2(4), 166-186
(2015)

Peltonen, E.;, Ahmad, 1., Aral, A., Capobianco, M., Ding, A.Y., Gil-Castineira, F.,
Gilman, E., Harjula, E.; Jurmu, M., Karvonen, T., et al.: The many faces of edge
intelligence. IEEE Access 10, 104769-104782 (2022)

Puschmann, D., Barnaghi, P., Tafazolli, R.: Adaptive clustering for dynamic IoT
data streams. IEEE Internet of Things Journal 4(1), 64-74 (2016)

Raghavendra, M.S., Chawla, P.: A review on container-based lightweight virtu-
alization for fog computing. In: 2018 7th International Conference on Reliability,
Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO).
pp. 378-384. IEEE (2018)

Seeger, J., Deshmukh, R.A., Sarafov, V., Bréring, A.: Dynamic IoT choreographies.
IEEE Pervasive Computing 18(1), 19-27 (2019)

Sena, B., Garcés, L., Allian, A.P., Nakagawa, E.Y.: Investigating the applicability of
architectural patterns in big data systems. In: Proceedings of the 25th Conference
on Pattern Languages of Programs. pp. 1-15 (2018)

Strimpel, J., Najim, M.: Building Isomorphic JavaScript Apps: From Concept to
Implementation to Real-World Solutions. O’Reilly Media (2016)

Taivalsaari, A., Mikkonen, T.: A roadmap to the programmable world: software
challenges in the IoT era. IEEE software 34(1), 72-80 (2017)

Taivalsaari, A., Mikkonen, T., Pautasso, C.: Towards seamless IoT device-edge-
cloud continuum. In: International Conference on Web Engineering. pp. 82-98.
Springer (2021)

Taivalsaari, A., Mikkonen, T., Systéd, K.: Liquid software manifesto: The era of
multiple device ownership and its implications for software architecture. In: 2014
IEEE 38th Annual Computer Software and Applications Conference. pp. 338-343.
IEEE (2014)

Zhang, Z.K., Cho, M.C.Y., Wang, C.W., Hsu, C.W., Chen, C.K., Shieh, S.: IoT
security: ongoing challenges and research opportunities. In: 2014 IEEE 7th inter-
national conference on service-oriented computing and applications. pp. 230-234.
IEEE (2014)



