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Abstract—The concept of liquid software, i.e., software with
flexible deployment, over the past two decades has appeared in
the fields of edge computing, Internet of Things (IoT), Human-
Computer Interaction, DevOps and Web engineering. In this pa-
per, we survey, compare, and provide a comprehensive definition
of liquid software by analyzing how the metaphor has been used
in existing literature and identifying gaps and inconsistencies
in the current vs. past understanding of the concept. Overall,
liquid software can be seamlessly deployed and redeployed within
a dynamic and distributed runtime environment in response
to changes applied to the set of available devices and to the
software itself. Liquid software has been introduced in the context
of active networks and intelligent environments, it has been
applied to describe the user interaction with multi and cross-
device user interfaces, it has found a promising foundation in
Web technology, continuous software delivery pipelines, as well
as isomorphic software architectures running across the IoT, edge
and Cloud continuum.

Index Terms—Liquid Software, Software Deployment, Isomor-
phic Software Architecture, Continuum, Liquid User Experience,
Multi-Device User Interface, Cross-Device User Interface

I. INTRODUCTION

The liquid metaphor has been applied to software as it
gets dynamically deployed and redeployed across multiple IoT,
edge or endpoint devices [1]. It describes the seamless user
experience of interacting with applications which can migrate
between different devices following the user attention [2], [3]
as well as take full advantage of all available devices [4], for
example, in a collaboration scenario when multiple users are
involved [5]. It refers to the ability of software to adapt to the
capabilities of a set of devices [6], just like liquids adapt to
the shape of their containers. It has also been recently used to
compare the delivery of software updates with zero downtime
to the ”constant, unending flow of a river” [7].

In this paper we survey, compare and provide a com-
prehensive definition of liquid software. As many different
authors over the past decades have interpreted and revisited
the concept of liquid software in their own context – e.g.,
from edge computing to artificial intelligence, from cross-
device user interfaces to task migration and offloading, from
development frameworks and tools for continuous build and
integration pipelines – the main contribution of this paper is
a comprehensive definition of liquid software that synthesizes
diverse interpretations based on a critical analysis of existing
literature. This analysis helps in identifying the gaps and
inconsistencies in the various interpretations of the liquid
software metaphor and lays the groundwork for future research
directions.

While countless publications have appeared in the past
two decades proposing seamless solutions to the problem of
flexible software deployment, we have selected to include only
the ones which explicitly make use of the terms ”liquid”,
”liquidity”, or ”fluid” as a metaphor to illustrate the behavior
of the software deployed in a dynamic environment as it adapts
to changes in the available devices or in the software itself.
The metaphor has been mainly used to refer to two different
aspect of liquids:

1) their ability to flow between different containers. The
action of software deployment is often depicted as the latest
version of the software being “poured” into a container [7] just
like the migration of a running software application from one
device to another [3]. In the latter, what is flowing is not only
the software assets, but also its complete runtime execution
state: liquid software features strong migration capabilities [8].

2) their ability to adapt to the shape of their container1.
For example, user interfaces can adjust to fit on all available
screens across all devices on which the liquid software is
running [5]. Liquid big data analytics workflows can occupy
all available devices across the IoT-Edge-Cloud continuum [9],
[10].

In both cases, such adaptation and flow happen seam-
lessly, without user intervention [2] and minimal developer
effort [11]. We classified each definition of liquid software we
have collected in Table I, depending on which aspect (flow,
adaptation, or both) has been emphasized. The dates refer to
the year of publication of the earliest work on the topic.

The rest of this paper is structured as follows. We first
present how existing works have introduced the liquid soft-
ware metaphor (Section II), applied it to the user experience
(Section III), to development and operation tools (Section IV)
and to intelligent edge computing applications (Section V). We
then synthesize the various interpretations of liquid software
we have surveyed into a novel definition in Section VI, before
we present related work in Section VII, draw some conclusions
in Section VIII and sketch some future research directions in
Section IX.

II. TOWARDS LIQUID COMPUTING

A. Active Networks (1996)

One of the early references to the term liquid software
was introduced in the context of active networking applica-
tions to refer to the ”entire infrastructure for dynamically

1Unlike gases, liquids do not expand to fill up all available space



TABLE I
LIQUID SOFTWARE DEFINITIONS

Year Term Context Definition Liquidity

1996 Liquid Software [12], [13] Active Networks Low-level, comunication-oriented code that easily flows
from machine to machine

Flow

1996 Liquid Load Balancing [14] Load Balancing Shifts in workload allocation are seen as liquid flow
reaching a stable equilibrium in a hydrodynamic system

Flow and Adapt

2002 Liquid State Machine [15], [16] Theoretical Computer Science A generalization of a finite state machine to continuous
time and continuous (“liquid”) internal states

Flow

2003 Liquid Media [17] Ubiquitous Computing Seamless handover of streaming media Flow

2005 Fluid Computing [18] State Replication The seamless transfer of an application’s data and state
between devices, possibly without user intervention.

Flow

2006 Fluid Architecture [19] Intelligent Environments Accommodate continuous user-induced structural
changes without adversely affecting the system’s
behavior

Adapt

2008 Liquid Metal [20] Programming Languages Programming with a single high-level OO language that
maps well to both CPUs and FPGAs.

Adapt

2011 Liquid Web Services [4] Service-Oriented Computing Provide elastic scalability to applications deployed on
heterogeneous environments

Adapt

2014 Liquid Software Manifesto [2] Multi-device User Interfaces A multi-device user experience where software can
seamlessly and effortlessly flow from one device to
another

Flow and Adapt

2014 Liquid Computing [21] Multi-device User Interfaces Your activities, not just your data, flow from device to
device

Flow

2015 Liquid Stream Processing [22] Stream Processing Pipelines Autonomously deal with deployment, parallelisation, mi-
gration and recovery of streaming operators

Flow and Adapt

2015 Liquid Privacy Spheres [23] Privacy Unclear boundaries, confusing settings make users un-
aware of personal information leaks

Flow

2015 Liquid Web Applications [3] Multi-device User Interfaces Benefit from all user-owned devices’ computing, storage,
and communication resources, while smoothly roaming
across Web browsers following the user attention and
usage context.

Flow and Adapt

2016 Liquid Web Component [24] Web Technology Web Component whose HTML/CSS/JS assets and dy-
namic state can be dynamically redeployed across dif-
ferent Web browsers

Flow and Adapt

2016 Liquid Context [25] Context-Awareness Seamless synchronization of contextual metadata for
consistently personalized multi-device applications

Flow

2016 Liquid Model [26] Model-driven Engineering Model evolution reflecting runtime operations Adapt

2018 Liquid Software Updates [7] DevOps Pipelines Practices to enable continuous updates and evolution of
software systems without downtime or disruption to end
users

Flow

2019 Liquid Web Worker [27] Opportunistic Computing Transparent offloading of Web workers to run on nearby
devices

Flow

2020 Liquid Media Query [28] Multi-device User Interface Detect which devices, roles, users are present to declar-
atively control the placement of liquid Web components
across a distributed user interface

Adapt

2020 Liquid Handover [29] 6G Networks Seamless handover of tasks being shared between de-
vices and edge nodes while devices move in the network.

Flow

2020 Liquid Mode [30] Responsive User Interfaces A breakthrough reading experience that enables a much
easier way to read PDF documents on mobile

Adapt

2022 Liquid Functions [11] Serverless Computing Code offloading and placement depending on annota-
tions, load metrics, data affinity, and expected capacities

Flow

2023 Liquid AI [31] Machine Learning Flexible deployment of continuously re-trained models
along IoT-Edge-Cloud analysis pipelines

Flow



moving functionality throughout a network” [32]. This new
paradigm was driven by the requirements of supporting mobile
code [8] and the vision for seamless integration of local
and remote code [12]. According to the authors, the key
distinction between mobile code and liquid software lies in
the ability to deploy each software component in the optimal
location along a network communication path. The concept
was demonstrated with a MPEG video streaming application
(NetTV) implemented using the Joust framework, running
over a highly-optimized Java virtual machine. The main chal-
lenges addressed by Joust [13] concerned ensuring efficient
code portability to support running ”low-level, comunication-
oriented code that easily flows from machine to machine’.

While portability concerns have become less critical, the
flexible deployment of continuously evolving software com-
ponents across dynamic, distributed and diverse runtime envi-
ronments still remains a challenging problem.

B. Load Balancing (1996)
By mimicking the behavior of liquids which reach a stable

equilibrium level across communicating vessels, the liquid
model for load balancing [14] used hydrodynamic systems
as a vivid analogy to represent the process of distributing the
workload across a network of computers with heterogeneous
capacities. By repeatedly shifting superfluous load to direct
neighbours (the approach prioritizes load sharing over load
balancing) the load eventually equalizes itself: a global effect
achieved asymptotically by iterating a strictly local mecha-
nism.

C. Liquid State Machines (2002)
As a model of computations carried out by biological

neural circuits, liquid state machines are designed to repre-
sent real-time and anytime computations on continuous input
streams [15]. In this work the liquid metaphor refers to the lack
of predefined structure in the internal states and the continuous
nature of the input/output signals. For example, the liquid
internal states “consisted of a randomly connected circuit
of just 135 spiking neurons” [16] or even literally a bucket
of water “harnessed to solve nonlinear pattern recognition
problems” [33].

D. Liquid Media (2003)
The Liquid Computing System for Liquid Media from

Motorola Labs was a Multi-Device Streaming Media Or-
chestration Framework [17]. The work identified the lack of
”peripheral vision” of devices as a problem to support dynamic
discovery of resources in pervasive computing applications.
The proposed framework relies on a ”liquid computing server”
to keep track of the available devices and ”select the best set of
resources for rendering content”. With it, users could migrate
streaming media sessions across devices as their location
changed [34].

While the technology addressed the seamless handover of
multimedia streams between devices, we could not find an
explicit depiction of the liquid metaphor in this work beyond
using it to name key system components.

E. Fluid Computing (2005)

Fluid [18] is a middleware for replicating application data
so that it can ”flow, as a liquid, between devices”. Trans-
parent replication of application data and state is achieved
in a decentralized, peer to peer network of mobile devices
by dealing with intermittent connectivity issues. The Fluid
middleware is designed to be seamlessly integrated within the
Model-View-Controller architecture of mobile applications. As
a consequence, users do not need to manage the physical
location of their data, which is automatically synchronized
between their devices. Developers do not have to redesign their
applications, as long as they strictly follow the Model-View-
Controller pattern using Models which implement a liquefy
method. This is at the foundation of a weak and asynchronous
approach to replication [35] based on operations which can
be rolled back or rolled forward by the middleware. The
synchronization protocol supports two modes of operation:
”trickle“ and “batch” [36]. Trickle replication occurs in real-
time, propagating each update as it is generated (e.g., as the
user enters keystrokes) as long as there is some connectiv-
ity. Batch mode replication refers instead to the process of
exchanging all accumulated updates at once after regaining
connectivity following a disconnection. During synchroniza-
tion, the middleware can resolve syntax-level conflicts by re-
ordering operations and will inform the application code about
semantic-level conflicts.

In this work the liquid metaphor is used to represent the
seamless (from the user perspective), implicit (without devel-
opers worrying about implementing it in their applications),
and epidemic (between nearby devices without requiring a
central Cloud-based master copy) transfer of application state
across user devices, making it possible for users to pick up a
work session on a different device without having to explicitly
transfer it or request a synchronization action. This is the result
of solving the state transfer problem at the model layer through
a data replication protocol, under the assumption that a suitable
view layer is already present and ready to display the updated
model on each device.

F. Intelligent Environments (2006)

Intelligent environments are defined by their key ability
of being resilient to changes in their structural and physi-
cal configurations initiated by users, without disrupting the
overall system behavior. The “Fluid architectures” [19] of
such environments need to be capable of accommodating
continuous structural modifications while maintaining system
stability and correct operation. They are defined by capturing
how the structure of intelligent environments can evolve over
time in terms of defining the sets of permissible architecture
configurations and rules to anticipate which transitions are
possible. Possible reconfiguration actions included not only
adding, moving, replacing or removing individual components,
but also changing the location in which the system is deployed,
as well as the possibility to merge multiple systems into a
single deployment.



The author used the fluid concept to illustrate the dynamic
reconfiguration of the software and the corresponding flexibil-
ity of its architecture. No attempts are made to further develop
the metaphor and apply it to the corresponding software
deployed in an intelligent environment.

G. Liquid Metal (2008)

The Liquid Metal (LIME) extensions to the Java pro-
gramming language use the liquid metaphor to refer to the
automated translation of ”large portions of a program in
hardware via direct synthesis into a programmable or recon-
figurable logic fabric such as Field Programmable Gate Array
(FPGA)” [20]. By employing a unified programming language,
the authors simplify the intricacies of domain crossing between
CPU and FPGA. Additionally, it becomes possible to support
a fluid movement (i.e., a seamless transfer) of computations
between them and optimize the execution based on efficiency
gains or resource availability constraints.

H. Liquid Services (2011)

Liquid services [37] are capable of 1) handling varying
workloads and traffic patterns, 2) dynamically adjusting to
different environmental conditions, such as changing resource
availability. In other words, they feature elastic scalability by
taking advantage of a wide variety of heterogeneous deploy-
ment environments, including both shared-nothing virtualized
Cloud computing clusters and shared-memory multicore ar-
chitectures.

Liquid services satisfy the SAFE qualities [4]: they are
Scalable, Adaptive with respect to their environment, Flexible
thus supporting heterogeneity, and Elastic with respect to
their workload. The metaphor was introduced to highlight
the flexible nature of the deployment, with the ability of the
services themselves to fill up (i.e., fully use) all kinds of
available container resources in response to changes in both
environment and workload.

In the design process of liquid services, it is important to
delay making design decisions related to service deployment
until runtime. Achieving this is helped by the following
design constraints [38]: 1) services should have a fine-granular
structure, allowing for flexible deployment, replication, and
dynamic migration. 2) connectors between services should
be underspecified, so that the most efficient communication
mechanism available at runtime can be employed. 3) Service
interfaces should explicitly define the semantics of interac-
tions, particularly regarding how these affect the state of
services, to select appropriate replication mechanisms.

I. Liquid Stream Processing (2015)

Data stream processing pipelines provide a natural environ-
ment in which to embed the liquid software metaphor, as the
data continuously flows through pipes and filters, as it springs
from sources into sinks [39]. Liquid stream processing targets
the automatic deployment of stream processing operators,
which is no longer statically pre-determined along the pipeline.
A liquid stream processing operator can dynamically change

its location, moving closer to the source or closer to the sink
depending on the constraints and the opportunities provided
by its execution environment and the corresponding network
conditions [22].

III. LIQUID USER EXPERIENCE

While the early forays into liquid computing focused on the
flexible deployment of headless software components across
the network, the liquid metaphor was also adopted to describe
a novel, activity-centric user experience, vs. the traditional
device-centric user experience born with the personal com-
puting (PC) age. In other words, “a world where both data
and activities move around as needed” [21].

A. Liquid Software Manifesto (2014)

Motivated by the explosive growth in network-connected
devices owned by individual users [5], [40] and inspired by
Mark Weiser’s vision of the disappearing computer [41], the
liquid software manifesto launched a call for action to make
multiple device ownership as ”casual, fluid, and hassle-free
as possible”. The authors define liquid software as “a multi-
device software experience that can seamlessly and effortlessly
flow from one device to another” [2]. The focus is on the
experience and the efficiency of the users, whereby users are
empowered to ”seamlessly roam and continue their activities
on any available device”.

Given its major impact in subsequent developments, in the
following we report the main requirements2 for liquid software
enumerated by the manifesto [2]:

1) Seamless roaming – Users shall be able to effortlessly
roam between all the computing devices that they have;

2) Maintenance-free – Such roaming shall be as casual,
fluid and hassle-free as possible;

3) Transparent Synchronization – Applications and data
shall be synchronized transparently between all user devices,
insofar they are compatible with such applications and data;

4) Strong Migration – Such roaming shall include the
transportation and synchronization of the full state of each ap-
plication, so that users can seamlessly continue their previous
activities on any device;

5) Platform Independent – Such roaming shall not be
limited to devices from a single vendor ecosystem only; any
compatible device with adequate resources from any vendor
shall run liquid software;

6) Privacy – Users should remain in control of the liquidity
of applications and their data, with the option to restrict access
to specific functionality or data on specific devices.

B. Liquid Web Applications (2015)

The call of the Liquid Software Manifesto found resonance
within the Web engineering community, leading to the vision
of Liquid Web Applications [3]. Unlike existing proprietary ef-
forts such as Apple Continuity [42], Samsung Flow, Microsoft
Continuum – Web technology can satisfy the requirements for
platform independence, with many popular Web applications

2Titles added by the author



featuring support for multi- and cross-device workflows in
single user but also multi-user collaboration scenarios.

Liquid Web applications have the capability to fully utilize
the computing, storage, and communication resources of all
devices owned by the end user. Additionally, they are designed
to seamlessly and dynamically migrate [43] from one device
to another in real-time, in response to the user’s attention
and changing usage context. As opposed to treating the same
user connecting from different devices as a security threat,
liquid Web applications adapt their user interface to the set of
devices currently connected. Responsive ones do so only for
one device at a time [44] – with the exception of the ”Liquid
Mode” of the mobile Acrobat Reader app, a ”revolutionary
mobile reading experience powered by machine learning tech-
nology” [30] which reflows the layout of a PDF document to
enhance its readability on the small screen of a single mobile
phone or tablet device.

Table II summarizes the key properties defining the behavior
of a liquid vs. solid (traditional) Web application [3]. While
it has always been possible to migrate the state of a Web
application by encoding it as a URL and sharing the URL
across different Web browsers, more complex solutions based
on the WebSockets and WebRTC protocols are needed to
support multi-device collaboration scenarios which require
real-time synchronization [45].

C. Liquid Software Design Space (2016)

The design space of Liquid Software has been mapped
in [46] and further refined in [47]. We report the most
important design issues and alternatives in Table III. They can
be used to position and compare to which extent and under
which constraint alternative technologies implement the liquid
software concept. For example, migration and synchronization
is rather easy to achieve when relying on a highly available
centralized storage element (e.g., deployed in the Cloud) and
devices simply attach or detach a view to display the same
shared information. Building the same liquid experience on
top of a mesh network [48] of mobile phones or any kind of
decentralized architecture remains more challenging3.

D. Liquid Context (2016)

The liquid metaphor was also applied to context-aware
applications [25]. Here the context in which an application
is running is kept seamlessly synchronized across all devices
running the application. This way applications are consis-
tently adapted to the user preference settings, their location,
goals and ongoing activities, social relationships, as well as
many other contextual aspects, no matter which device is
running them. Given the large amounts of contextual meta-
data involved, developers can explicitly control which are
the portions of the user virtual profile that should be kept
synchronized.

3One of the most prominent efforts to re-decentralized the Web and get
end-users back in control of their content and their devices – a result that
could be easily achieved with liquid software – has been named the Social
Linked Data (Solid) project [49], [50].

TABLE II
LIQUID VS. SOLID WEB APPLICATIONS [3]

Element Liquid Solid

Code Mobility [8] Strong Migration Weak Migration
State Synchronization Migration and Cloning Refresh
Adaptation Dynamic Restart required
Adaptation Target Set of Devices Single Device

TABLE III
LIQUID SOFTWARE DESIGN SPACE [46], [47]

Issue Alternatives

User Experience
Device Usage Sequential, Parallel
User Interface Adaptation Manual, Responsive, Complementary
Primitives Migrate, Clone, Forward, Fork
Discovery and Pairing Smartcard, WiFi, Bluetooth, Shared

URL, QR Code, Geolocation, Contact
List

Developer Experience
Granularity OS, VM, Container, Application, Com-

ponent
State Identification Implicit, Explicit
State Synchronization Trickle, Batch
State Replication Multi-primary, Primary/Replica
Topology Centralized, Decentralized, Hybrid
Deployment Pre-Installed, Cached, On-Demand
Deployment Source Single Repository, Multiple Repository,

Peer Repository

IV. TOOLS AND FRAMEWORKS

A. Elastic Database (2015)

The elastic database (EDB [51]) supports automatic multi-
master synchronization between multiple mobile devices in the
presence of intermittent network connectivity. It is positioned
as a fundamental building block for liquid software, making it
possible to keep application data and state synchronized across
devices. To ”support the illusion of truly liquid user interface
behavior”, the authors reiterate that ”it must be possible to
carry user interface state information from one device to
another as efficiently as possible.”.

This approach shares common requirements (e.g., partially
offline operation, update-anywhere replication) with the Fluid
computing middleware [36], although it allows for a central-
ized Cloud-based backup of the data to preserve it in case some
(or even all) users devices are lost. Replication between user
devices should still be possible however also in the absence
of the centralized Cloud master copy.

B. Liquid.js (2016)

Developers of liquid Web applications need to control how
to expose the liquid behavior of their cross-device Web appli-
cations to the users. The API of the Liquid.js framework [52]
offers primitives to manage how different devices are dis-
covered, paired and disconnected as well as the complete
lifecycle of “liquid Web components” as they are deployed
and instantiated within Web browsers running across multiple



devices. Concerning stateful components [24], it offers low-
level mechanisms to describe which are the “liquid properties”,
whose state is migrated and if necessary kept synchronized
across different devices. Other features include the offloading
of “liquid Web workers” on paired devices [27] and the
synchronization of “liquid storage”, again, across all connected
devices. “Liquid media queries” are used to detect the number
of users/devices connected to the liquid Web application, or
the role played by each device to control the deployment,
dynamic migration and cloning of liquid Web components
across multiple browsers [28]. A higher-level API to perform
the migration, fork, or cloning of entire Web components and
applications is also provided. Such operations may happen
through a WebRTC peer to peer communication channel,
thus demonstrating the possibility of developing a liquid Web
component on one device and transferring it to another device
without relying on a centralized Web server [53].

C. Liquid Model (2016)

A different interpretation of the liquid metaphor was intro-
duced to describe models which “should not be isolated and
frozen, but reusable and evolutionary” [26]. While design-
time models have been used to prescribe how a software
architecture should be built, they can also describe how a
software system has actually been built [54]. While there is
often a drift between the two, the goal of liquid models is
to reconcile the ’to-be’ with the ’as-is’ version of the model.
Liquid models do not simply abstract the underlying code,
but they are obtained by mining multiple heterogeneous data
streams monitoring the operational behaviour of a running
software system so that they reflect “also the feedback after
the release from the operation, to cover the complete lifecycle
of a system”.

D. Development and Operation Tools (2018)

In the context of Internet of Things applications, it has been
challenging to keep software tied to embedded devices up-to-
date [55] as the devices are installed away in the field and
there is a risk of “bricking” them [56]. A recent interpretation
of liquid software concerns its ability “to continuously update
itself”. Unlike traditional software suffering from downtimes
and disruptions during manual or automated upgrades, liquid
software is made up of ”tiny pieces, like drops of water make
up the ocean”. Thanks to user expectations for non-disruptive
updates driving the construction of more and more advanced
DevOps build pipelines, the software flowing through them has
become liquid. Devices will be “connected to software pipes
that stream updates” into them. As a consequence, “software
patches can instantly incorporated into running systems” [7].
Achieving this requires security mechanisms to avoid supply
chain attacks, quality assurance processes to release software
with high confidence, and a new kind of versioning metadata to
transparently identify and track which “versionless” software
has been automatically installed.

While the liquid user experience main target was the migra-
tion of running software across a dynamic set of user devices,

TABLE IV
LIQUID VS. SOLID SOFTWARE UPDATES [7]

Element Liquid Solid

Update Action Automated Manual
User Impact Seamless Disruptive
Restart None Required
Update Flow Continuous Discrete
Package Size Small Large
Change Delivery Incremental Entire Version Snapshot

here the main problem concerns changes to the software itself
(Table IV) and not (only) to the environment in which it runs
(Table II).

E. Collaborative Development Tools - LiquiDADE (2018)

LiquiDADE [57] applies the liquid user experience concept
to collaborative software development tools, whereby multiple
users can edit together on the same code artifacts. The tool
combines a live (or real-time [58]) collaborative editor with
a WebRTC-based audio/video conferencing system and offers
server-side compilation, deployment and testing of the code.
It does not specifically facilitates or targets the development
of liquid software.

V. INTELLIGENT EDGE COMPUTING

The development of intelligent edge computing applications
is currently limited by divergent tools, methods, and practices
targeting different kinds of devices and platforms across
the IoT-Edge-Cloud continuum [59]. This creates significant
friction in the ability of software to seamlessly flow between
devices. As a consequence, decisions on where to locate
intelligence in the network topology must be made at design
time due to the difficulty of relocating computations without
prior preparation [29].

The opportunity to overcome such limitations is repre-
sented by next-generation telecommunication networks, where
liquid software has been mentioned in the context of 6G
networks [60]. In this case, the metaphor is applied to both
data and resources. “In the data liquid model, the flow of
data is dynamic, and the data generated on devices” can be
fed to the appropriate intelligent edge devices. Additionally,
“virtualized communication and computation resources are
also fluid, and can be allocated to different nodes with different
requirements”.

A. Isomorphic Software Architecture (2021)

The concept of isomorphic software architectures [10]
has been introduced to refer to software which can be
used to create applications that run on different types of
devices/platforms, without requiring to maintain platform-
specific variants. Literally, from a developer’s perspective,
isomorphic software components do not change shape as they
are deployed across different types of containers. This can
be achieved by using containers or runtime environments
which abstract the heterogeneity of the underlying platforms,
or programming languages which can be compiled targeting



multiple runtime platforms. Isomorphic software can thus be
seen as a pre-requisite for liquid software, providing the nec-
essary portability and making it “easier, faster, and potentially
cheaper to develop ioT applications“ whose components can
be dynamically redeployed from the edge to the cloud and
back.

This vision should be achieved with minimal developer
effort, for example, by introducing simple annotations into the
code, as proposed by the “Liquid Functions” framework [11],
or by compiling to WebAssembly [61] to ensure portability.

B. WebAssembly (2021)

Flexible deployment of liquid software requires a suitable
packaging and runtime container. In [61], the authors propose
to use WebAssembly [62] modules as a technology platform
for the deployment of liquid applications which is sufficiently
lightweight to be also used for IoT devices. Originally intro-
duced within Web Browsers, this technology is also compat-
ible with Cloud deployments, making it suitable for running
the same WASM code across the computing continuum. While
this greatly simplifies code relocation, developers still need
to explicitly manage the migration of the stateful modules,
until more advanced serialization techniques become main-
stream [43], [63].

C. Liquid Functions (2022)

The functions as a service (FaaS) concept from serverless
computing [64] is revisited and applied to code which is
meant to run across the entire IoT-Edge-Cloud continuum.
Liquid functions “are abstracted to become useful for ap-
plications highly distributed across a topology of nodes that
do not necessarily have full mutual visibility” [11]. Unlike
the original FaaS concept – invoking functions exclusively at
their deployment locations – liquid functions can “traverse a
continuum as needed”. This includes the ability of functions
to be embedded in the caller for minimal invocation overhead,
as well as for functions to be pinned to specific container
nodes. No explicit packaging or pre-deployment is required
as the framework makes all deployment, binding and routing
decisions “until 100% correctness along with a peak perfor-
mance are reached as irrevocable optimisation goals”. While
in the extreme case each invocation may result in executing
the function on a different node, there are some fixed image
deployment costs that need to be amortized across multiple
calls. Likewise, it is not clear whether long-running liquid
functions are mobile while they are being executed, or only
across separate invocations.

D. Liquid AI (2023)

Another use case scenario for liquid software on the edge is
motivated by the rise of edge intelligence which has led to the
development of technologies that enable the scaling down of
AI/ML components to small devices (e.g., TensorFlow Lite,
AIfES, TinyML). This should be naturally followed by the
seamless migration of AI/ML components between the Cloud
and the Edge [1].

More in detail, considering machine learning models as a
particular type of software, trained and validated by using
specific algorithms on given curated input datasets, leads to
the question of whether also such software can be suscepti-
ble of becoming liquid. This would imply that ”liquid ML
models” [31] can be dynamically deployed across different
edge devices to make efficient use of all available resources,
reduce the latency between the sensors fed into the classifiers
as well as guarantee the privacy of the prompts engineered
by their users, as well as be kept continuously up-to-date
when the original training data is improved [65]. In other
words, “If we want a world of AI, we need a world of data
fluidity. Data needs to be free to move from system to system,
from platform to platform, without transfer fees, egress or
other nonsense” [66]. The developer experience of such liquid
intelligent edge applications would be as seamless as the liquid
user experience illustrated above, with no need for concern
regarding the deployment and maintenance of the ML pipeline.

VI. REDEFINING LIQUID SOFTWARE

As we have seen, the liquid software metaphor has been
introduced in many different contexts across the entire soft-
ware stack: from network interconnects, load balancers, stream
processing pipelines, continuous build, integration and delivery
pipelines, programming languages, replicated databases, state
machines, software functions, software components, software
architectures, all the way to multi-device and cross-device user
interfaces and Web technology. What do these uses of the term
liquid have in common? And is it possible to synthesize a
unique definition?

Liquid software provides a seamless user and developer
experience. No effort is required to install, maintain, and keep
liquid software synchronized and up-to-date across multiple
devices. Just as users can swipe windows across different
screen displays connected to the same computer, with liquid
software they can perform the same spontaneous action across
different devices. Likewise developers should not have to
dedicate significant effort to obtain liquid software: adding
some code annotations [11], injecting a new behavior into
existing components [24], deploying isomorphic software in
the right kind of container [10] – these simple steps should be
sufficient.

Liquid software flows between containers while it runs and
adapts to their shape. It fills them all up, taking full advantage
of available resources for enhanced usability, convenience,
scalability, reliability and performance. Such behavior is an
intrinsic property of the software being liquid.

More precisely, as a software quality attribute [67], “liq-
uidity” can be seen as a form of “flexibility” [68] combined
with “deployability” [69]. Liquid software implies flexible
deployment: deployment (and re-deployment) in the presence
of changes. These changes can affect the environment (i.e., the
set of available containers) in which the software is running.
As a new container is added, the software immediately flows
into it. As a container is removed, the software continues
seamlessly running in the remaining containers. Changes can



also affect the software itself. As a new version of the software
is released, it should immediately flow into all containers and
seamlessly replace the previous version running there.

In this context, the same term “migration” can be applied
both to the transfer of the execution state of the software
from one container to another, but also to the transfer of the
execution state of the software from its current version to the
next one. The same primitive can thus accommodate changes
that require the software – while it is running – to flow between
containers or changes that make a new version of the software
flow into the same containers replacing the previous version.

The viscosity of liquid software can be measured in pres-
ence of changes by observing the time and effort required to
redeploy the software as a consequence of the changes applied
to its runtime environment or to the software itself. Liquid
software presents minimal effort and very small (i.e., sub-
second) migration time. Solid software cannot be redeployed,
nor it can be updated without resetting its execution state. In
the extreme case, it cannot be changed and redeployed at all.
This might be a useful property to guarantee stability (not all
changes are necessarily improvements) and to prevent leaks
of sensitive application state onto untrusted devices.

VII. RELATED WORK

The liquid metaphor has also been applied beyond the soft-
ware domain, for example in philosophical and sociological
reflection to characterize the most significant aspects of the
present reality: “a dimension in which the lasting gives way
to the transient, the need to the desire, and the necessity to
the utility” [70].

Another example is the LiquidPub [71] project, whose goal
was to capture the “opportunities provided by the Web and
open source, agile software development to develop concepts,
models, metrics, and tools for an efficient (for people), ef-
fective (for science), and sustainable (for publishers and the
community) way of creating, disseminating, evaluating, and
consuming scientific knowledge”.

The liquid metaphor has been also used to illustrate the
lack of privacy guarantees. While a solid boundary does not
leak personal information, a liquid boundary is loosely defined.
This image has been used to represent how some users are
unaware or confused about the implications on their personal
information by the privacy policies and terms of service of
many smartphone apps [23].

There are also other nature-inspired metaphors that have
been applied to software, among others, in pervasive [72]
and distributed [73] computing, self-organizing systems [74]
or telecommunication technology [75]. Common goals for
introducing such metaphors include achieving qualities such
as flexibility, resilience, self-adaptation and self-organization,
sustainability in the face of diversity and heterogeneity under
the constraint of decentralization. Also the solid vs. liquid
(vs. gas) state of matter could be considered as a nature-
inspired metaphor from the physical domain, on a largely more
coarse-grained level than considering ”service components as

sort of computational particles living in a world of [...] virtual
computational force fields” [72].

VIII. CONCLUSION

In this paper we have tracked the history of the liquid
software metaphor, from its inception in the context of active
networks and load balancing (1996) until its latest appearance
as liquid functions as a service (2022) and liquid AI (2023).
Liquid software offers a high degree of flexibility and ease of
deployment, allowing for quick updating of software versions
and seamless adaptation to changing runtime environments.
With minimum efforts required for updates and changes, liquid
software provides a fitting depiction of desired qualities of
intelligent edge applications where flexibility, responsiveness,
resilience, smooth upgrades, user satisfaction and privacy
preservation are critical factors.

IX. OUTLOOK

While many existing efforts have focused on the liquid user
experience, the developer experience of liquid software needs
more attention. Delivering liquid software through continuous
and non-disruptive updates requires on the one hand to set up a
suitable build, quality assurance, release and delivery pipeline.
On the other hand, the development process of liquid software
could benefit from introducing live programming and coding
techniques [76] featuring an increased level of liveness [77],
[78].

As we have seen, the liquid metaphor has been applied
to many software artifacts of different granularity (from
liquid functions [11] to liquid components [24] and liquid
models [26], from liquid storage [51], [52] to liquid stream
processing [22] and liquid web services [4]). Many other
architectural elements and programming language constructs
could be liquefied. For example, liquid objects and classes,
liquid virtual machines, liquid file systems, liquid algorithms
and liquid data structures are still waiting to be discovered.

Given the ease with which liquid software can roam across
different devices while carrying its runtime state and associ-
ated data assets, its deployment locations should be chosen
with care. Simply put, liquid software requires secure and
trusted containers to avoid uncontrolled leaks.

The liquid software metaphor can be further stretched by
using it to distinguish different deployment locations, in partic-
ular concerning the ownership and control of the containers or
devices in which the software is deployed. This way software
running on trusted devices can be clearly distinguished from
software running on untrusted devices. For example, liquid
software runs on a set of personal user devices or across a
company-wide sensor network. Liquid software changes state
(it is no longer considered liquid) as it is deployed to run on
a Cloud or Fog computing platform (where it behaves like
a gas), given the increased latency and lack of transparency
concerning the ownership and control of such rented and
shared devices [79].
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