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Abstract—Middleware for web service orchestration, such
as runtime engines for executing business processes, work-
flows, or web service compositions, can easily become perfor-
mance bottlenecks when the number of concurrent service
requests increases. Many existing process execution engines
have been designed to address scalability with distribu-
tion and replication techniques. However, the advent of
modern multicore machines, comprising several chip multi-
processors each offering multiple cores and often featuring
a large shared cache, offers the opportunity to redesign
the architecture of process execution engines in order to
take full advantage of the underlying hardware resources.
In this paper we present an innovative process execution
engine architecture. Its design takes into account the spe-
cific constraints of multicore machines and scales well on

different processor architectures, as shown by our extensive
performance evaluation. A key feature of the design is self-
configuration at startup according to the type and number of
available CPUs. We show that our design makes efficient use
of the available resources and can scale to run thousands of
concurrent business process instances per second, highlight-
ing the potential and the benefits for multicore-awareness in
the design of scalable process execution engines.

Keywords-web service orchestration; process execution en-
gine; web service composition; multicores; performance and
scalability evaluation; testbed

I. INTRODUCTION

Service-oriented architectures promote the creation of

new applications by composing and orchestrating existing

Web services using business process models [1]. The

resulting compositions are executed by middleware for

Web service orchestration, such as business process or

workflow execution engines [2]. In this paper, we refer

to compositions as “processes” and to Web service or-

chestration middleware as “process execution engines”.

Since processes are accessible as Web services, process

execution engines may have to handle a large number of

concurrent service requests. Assuming that the composed

services are designed to scale (i. e. they are hosted in a

cloud environment), process execution engines can easily

become performance bottlenecks when the complexity

of their processes is high or the number of process

execution requests from their clients increase. For ex-

ample, some scientific computing applications require to

run many thousands of workflow instances for a single

experiment [3].

Some existing engines, such as OSIRIS [4], JOpera [5],

SpiderNet [6], or CEKK [7], rely on distribution and repli-

cation techniques so as to ensure scalability in peer to peer

environments or in clusters of computers. Modern multi-

core machines offer a promising alternative to clusters or

server farms, respectively allow to build a sufficiently pow-

erful infrastructure with less machines. However, modern

multicore architectures are fundamentally different from

previous micro-processor architectures [8]. Since it has

become difficult to further increase the clock rate of

processors, nowadays chip manufacturers are delivering

more processing power by increasing the number of cores

per CPU. Recent chip multi-processors combine several

cores with a hierarchy of caches on a single processor.

Typically, each core has its own small L1 and L2 caches,

while several or all cores on a chip share a larger L3 cache.

Examples include Intel’s Nehalem and AMD’s Opteron.

In order to take full advantage of the hardware resources

on modern multicore machines, which often comprise

many chip multi-processors, it is not sufficient (and in

some cases can produce adverse results) to simply config-

ure an engine to use a larger pool of execution threads.

Instead, as we are going to discuss, a performance increase

up to about 30% can be gained by explicitly considering

the characteristics of the multicore architectures in the

design of the process execution engine.

In this paper we extend the SOSOA process execution

engine, an innovative service composition middleware

based on a multicore-aware design, which is not limited to

a specific kind of processor architectures [9]. A key feature

of our design is its ability to perform self-configuration

at startup. This lets the architecture adapt according to

the type and number of available chip multi-processors.

While we take into account the specifics of multipro-

cessor architectures in the design of process execution

engines, we do not resort to any low-level implementation

and optimization techniques. The resulting engine is thus

platform-independent, but capable of self-tuning upon

startup according to the actual hardware configuration.

The main contributions of this paper are the following:

1) We propose to take emerging multicore architectures

of modern processors into account for the design of

process execution engines and demonstrate the clear

impact of multicore-awareness on their performance.

2) We introduce self-configuration upon startup for

process execution engines in order to optimize the

use of the available hardware without sacrificing the

portability of the engine across different processor

micro-architectures.
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Figure 1. Multi-stage architecture of the SOSOA process execution
engine for Web service composition

3) We thoroughly evaluate performance and scalability

of the SOSOA engine running on three different pro-

cessor micro-architectures, highlighting that replica-

tion used in conjunction with CPU affinity binding

techniques help increase performance.

The paper is organized as follows. Section II describes

the main requirements and architectural characteristics

of the process execution engine. Section III refines the

architecture describing how it has been designed to target

multicore machines with the self-configuration mechanism

triggered at startup. Section IV describes the evaluation

testbed and presents the results of our measurements.

Section V gives an overview of related work, while Sec-

tion VI concludes the paper and presents future research

directions.

II. ARCHITECTURE

The logical architecture of the SOSOA process execu-

tion engine is designed following a multi-stage pipeline,

comprising three components: the Request Handler, the

Kernel, and the Invoker (Fig. 1). The Request Handler

publishes processes as Web services. The Kernel performs

the actual execution of the processes and manages the state

of multiple process instances. The Invoker takes care of

interacting with the composed services.

The execution of a process begins with a request from

a client to instantiate a new process instance (1). This

request is forwarded by the Request Handler to a queue

(2) which is read by the Kernel. The Kernel is in charge of

retrieving pending requests from the queue (3) and then

instantiating and executing the corresponding processes,

while keeping their state up-to-date. Processes, modeling

how to compose Web services, require interactions with

the composed Web services. To this end, the Kernel

delegates the actual service invocations to the Invoker

via a second queue (4). The three components in the

SOSOA process execution engine are decoupled using

shared queues in order not to slow down the execution

of processes, due to the natural delay involved in the

invocation of remote Web services. Once the Web service

invocation completes (5), its results are enqueued by the

Invoker into the queue shared with the Kernel, so that they

can be used to continue the execution of the corresponding

process instance (6). Once the execution of the entire

process instance completes, the Kernel component notifies

the Request Handler component which sends results to the

client (7).

At this level of abstraction, the architecture does not

yet define how its three execution stages are mapped to

the available execution resources. The goal is to define

a scalable system architecture, where a limited number

of execution threads can be leveraged to execute a much

larger number of process instances. Thanks to the separa-

tion of the process execution stage from the Web service

publishing and invocation stages, this architecture makes

it possible to use only three execution threads to run any

number of process instances that may involve the parallel

invocation of any number of Web services. Clearly, allo-

cating one thread per component is necessary to make sure

the system can function and run its workload, but is not

sufficient to provide an acceptable level of performance. If

we need to implement parallel constructs commonly found

in most service composition languages, we need to assign

a larger number of threads to the Invoker component.

Likewise, the Request Handler component needs a pool

of worker threads to serve multiple concurrent clients.

The same concerns also apply to the Kernel: as it acts

as a bridge between two thread pools, it may become a

performance bottleneck unless it can also rely on multiple

threads to execute its process instances. The architecture

adopts thread pools to leverage the underlying hardware

parallelism. By assigning more than one thread to each

component, we can efficiently distribute computations on

the available cores.

However, optimal pool sizing is not a trivial task, as

the total amount of threads in the system could easily

become a crucial issue for performance. In fact, it is

not always guaranteed that increasing the number of

threads automatically translates into better performance.

On the contrary (as shown in Section IV), we observed a

significant performance degradation by (mis)configuring

the engine with an oversized number of threads. This

issue motivates the need for a different approach to scale

engine performance: instead of increasing the number of

worker threads of each pool, the engine should make

better usage of a bounded number of them. In the next

section we discuss how such limited number of execution

resources can be organized in an optimal way to fully

exploit multicore hardware capabilities.

III. DESIGN CHOICES FOR MULTICORES

Existing work in the area of performance optimization

clearly shows that hardware-related issues, such as thread

migrations, data locality, or cache sharing, have relevant

effects on execution times and performance [10]–[12].

The three-stage architecture characterizing the SOSOA

process execution engine is flexible enough to be deployed

as a set of replicated OS processes, each one independent

from the others but altogether sharing the workload by

handling different requests cooperatively. This is possible

because of the pipelined design, which is abstract enough



to allow its deployment to be adapted without requiring

the semantic of the execution to change.

Within each replica, we assign a thread pool to each

component in order to let several threads run the same

code paths. Thread pools communicate through queues,

minimizing synchronization issues and reducing con-

tention, as the number of shared data structures is reduced

and can be specifically optimized for concurrent access.

For example, only the threads of the Kernel can access the

state of the running process instances. Also, only a subset

of the threads of the engine performs I/O operations (in

the Invoker and the Request Handler components). This

means that when some thread gets blocked, the rest of the

engine continues the execution of other process instances.

A. Multicore Awareness

Our multicore-aware design combines the flexibility

offered by the multi-stage architecture with its capabil-

ity of replicating different instances of the engines and

controlling how many threads have been allocated to the

thread pools found in each replica.

The basic principle guiding our approach is that dif-

ferent hardware architectures have to be considered as

potential sources of performance degradation, unless the

system is deployed taking into account their specific

characteristics. Any system that claims to be portable

should deal with this aspect, and the wide adoption of

machines with multiple CPUs and cores makes this aspect

a relevant issue.

For example, targeting a multi-CPU machine with a sin-

gle instance of our engine and scaling only in the number

of threads does not result in optimal performance, mainly

because the homogeneous nature of this configuration is in

contrast with the heterogeneity of memory access patterns

that could be present on multicore machines. Instead of a

single application instance scaling in the number of worker

threads as the number of cores increases, multi-processor

hardware has to be addressed with specific approaches to

reduce contention, exploit locality, and balance the load

among all of the available cores. To tackle these issues,

we implemented a multicore-aware design strategy based

on replication.

With this approach, we fix the overall amount of threads

running on the machine but we modify the way they are

mapped to the underlying hardware. This way, the working

capacity of the engine is partitioned among multiple repli-

cas depending on the number and the type of processors

and cores. The size of each partition is defined in terms of

number of threads and memory assigned to each replica,

and the partitioning strategy changes according to the

hardware architectures.

B. Self-Configuration on Startup

To adapt itself to the actual hardware configuration, the

engine relies on a self-configuration on startup strategy.

First, a single instance of the engine is executed, which

scans the hardware configuration to determine the structure

of the system memory, the total number of CPUs, and
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Figure 2. Testbed setup

the number of available cores. More precisely, the engine

identifies sizes and levels of processor caches, finding out

(when available) cores under a common cache (usually a

L2 or L3). In this way, the engine creates affinity groups

composed by core IDs accessing the same last-level cache.

According to the information collected, the engine decides

if and how many times to clone itself by starting new

replicas and forcing the OS scheduler to constrain their

execution within a specific affinity group. The replication

phase keeps the total number of threads and memory

usage constant: the more replicas are instantiated, the less

amount of threads and memory is assigned to each of

them. Then, after the startup phase has completed, the

main instance receives and forwards requests to replicas

using a round-robin policy.

This adaptive startup procedure, coupled with the ability

to “pin” replicas to cores, allows the runtime to adapt

to different hardware configurations, from a single-CPU

setup to a multi-processor deployment in a transparent and

autonomous way.

IV. EVALUATION

In order to validate the SOSOA execution engine adapt-

ability, we have extended the approach presented in [13]

by developing a new workload generator targeting our

needs. The testing platform used to evaluate SOSOA

performance has been tuned to execute exhaustive tests

with several kinds of workload. Each workload represents

different load factors, allowing to analyze the average

throughput under different stress conditions.

A. Testbed Setup

The overall testing environment to evaluate SOSOA’s

performance is depicted in Fig. 2. The testbed environment

has been configured to stress the process execution engine

while minimizing the effect of the composed Web services

running on the back-end. In this way, the components

Workload Generator (WG) and Web Service Provider

(WSP) never become performance bottlenecks and mea-

surements are mostly influenced by SOSOA’s behavior.

1) Workload Generator: each test begins with the ac-

tivation of the WG client component. This component

drives the test generating a pseudo-random stream of

service requests to the SOSOA engine. The component

internally executes a specified number of clients, each

one performing concurrent service requests according to a

simple finite state machine composed of two states, “idle”

and “busy”.

When “idle”, a client sleeps for a random amount of

seconds determined by a Gaussian distribution (fixed at
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Figure 3. Benchmark workflows executed by the middleware for
performance evaluation

µ = 1.0 and σ2 = 0.5). When the sleep time elapses,

the client wakes up, moving to state “busy”. In this state,

the client makes a service request to the SOSOA engine,

starting a new workflow instance. The client then waits

for the response message. Once the process execution

completion acknowledgement is received (or a timeout

fixed at 30 seconds occurs), the client moves back to

state “idle”. This procedure is executed concurrently for

the desired number of clients and repeated for a given

number of iterations, in order to effectively measure the

system throughput under reproducible conditions and to

reduce the observed variance.

2) Workflow Engine Benchmark: the second component

of the testbed is the SOSOA process execution engine.

The engine has been tested with four different composite

Web services, chosen because each represents a common

workflow pattern used also in other benchmarking contexts

(such as [13], [14]).

All processes executed in the experiments contain the

same number (N = 6) of service invocations and have the

following control flow structures (see Fig. 3):

(a) Sequential — Each service invocation depends on

the previous one, thus the workflow invokes ser-

vices sequentially. This is equivalent to a BPEL

<sequence> block.

(b) ForEach — The composite service performs a paral-

lel invocation of a variable number of services. This

pattern occurs when data needs to be scattered to

a number of independent services for parallel pro-

cessing. Then, results are gathered by the composite

service which aggregates them and continues the

processing until all services have replied. In terms of

BPEL 2.0, this is equivalent to a <foreach> block.

(c) Parallel — In this case, each service invocation is

fully independent from the others and therefore they

can be invoked in parallel. This is equivalent to

a BPEL <flow> block without any control flow

dependencies between its child elements.

(d) Loop — The control flow of this composite service

executes a loop for a fixed number of times (6 itera-

tions), invoking a service at each sequential iteration.

It corresponds to a BPEL <while> block.

3) Web Service Provider: the third component of the

testbed, WSP, is a common Web Server hosting the Web

services invoked by the SOSOA engine. The component
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Figure 4. Scalability test using a growing number of threads assigned
to the Kernel and Invoker’s pools

is deployed to an independent machine hosting N = 6

services. Not to influence the overall execution time with

delays caused by the Web Server, each service responds to

any request with the same message after a controlled time

interval. The size of each request and response message

is negligible. This way, we can ensure that the measured

throughput is not limited by the WSP component.

4) Multicore Hardware and Software Environment: To

avoid interferences, components WG and WSP have been

deployed to separate machines for all experiments. We

analyzed the behavior of the SOSOA engine component

with different workloads and configurations by deploying

it on three multicore machines with different hardware

characteristics.

The first machine adopted for testing (M1) is equipped

with two 32GB RAM slots and two 2.6GHz Six-Core

AMD Opteron processors, for a total of 12 cores. Each

CPU comes with a high-capacity last level cache (6MB L3

cache) shared by all cores. Each core also features 512KB

L2 and 64KB L1 caches. This machine exploits a cache-

coherent non-uniform memory access (cc-NUMA) archi-

tecture: each CPU is optimally connected to a dedicated

RAM slot and can efficiently access its data with minimal

latency. When a CPU requires to access data stored on

another memory slot, request times increase significantly.

The second machine (M2) is equipped with 16GB RAM

and four Intel Xeon 2.4GHz processors with four cores

each, for a total of 16 cores. Processors on this second

machine miss L3 caches and have a total of 8MB L2

cache per CPU and 32KB L1 cache per core. L2 caches

are grouped into two 4096KB blocks per processor, each

shared by two cores (4096KB L2 for core 1 and core 2,

4096KB L2 for core 3 and core 4).

The third machine (M3) is a single-CPU Intel Core2-

Quad desktop machine with a 3.0GHz processor (12MB

L2 cache, 32KB L1 cache per core) and a total of 4GB

RAM. Like in M2, L2 caches are grouped into two

6144KB blocks per CPU, shared by cores 1-2 and cores

3-4, respectively.

The WG and WSP components are deployed on two

additional dedicated machines with the same specifica-

tions of M3. The whole testbed is connected through a

private 100MBit LAN, with an average message round-

trip time of 0.5 milliseconds. All machines in our testing

environment run on the Ubuntu Linux Server 10.04 64bit



Table I
DEPLOYMENT CONFIGURATIONS: THE FIXED AMOUNT OF

COMPUTATIONAL RESOURCES PER MACHINE (TOTAL THREADS) ARE

ALLOCATED TO A VARIABLE NUMBER OF REPLICAS OF THE ENGINE’S

COMPONENTS.

Machine CPUs Number of Threads used by Total
Name (cores) Replicas Kernel Invoker Threads

M1 2 (12)

1 12 12 24

2 6 6 24

6 2 2 24

12 1 1 24

M2 4 (16)

1 32 32 64

4 8 8 64

8 4 4 64

16 2 2 64

M3 1 (4)
1 8 8 16

2 4 4 16

4 2 2 16

distribution. We also used the standard Oracle Hotspot

JVM 64bit Server version 1.6.20, since the SOSOA engine

prototype is written in Java.

B. Deployment Configurations: Resource Allocation and

Replication

The preliminary experiment shown in Fig. 4 explores

the effect of simply increasing the number of threads allo-

cated to the thread pools of a single replica of the engine.

The performance of the SOSOA engine is measured in

terms of the throughput of an increasingly large number

of threads. Results (obtained on the M1 machine with a

constant workload of 2000 requests per second) clearly

show that the performance does not grow proportionally

with the execution resources that are allocated to the

engine. Depending on the underlying hardware configu-

ration, and for each workload type, there is an optimal,

limited number of threads that should be used for sizing

the thread pools.

Using the same approach, we identified the optimal

number of threads on each machine: the values adopted

for experiments are summarized in Table I.

For each machine, we first fix the total number of

execution threads that are dedicated to run each replica of

the SOSOA engine. Then we allocate the available threads

to the pools associated with each engine component. Since

the Request Handler uses non-blocking I/O, we observed

that it does not require a large number of threads to handle

client requests, thus we kept their total amount fixed at 32.

The remaining number of threads are allocated equally

among the other engine components. For replicated con-

figurations where we run multiple instances of the engine,

we reduce the number of threads of each replica in order

to keep the total amount of threads constant. The same

policy has been adopted for memory allocation. Since the

total amount of available memory is constant, we reduce

each replica’s JVM maximum heap size as the number of

them increases (e.g. 4096MB for 1 JVM, 2048 MB for 2

JVMs, 1024MB for 4 JVMs, etc.).

C. Results

The results of our extensive experiments show the

average throughput scalability and workflow performance

comparisons for M1, M2, and M3 using the different
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engine configurations summarized in Table I. In order to

minimize the noise introduced by the Java runtime, we

repeated all test runs 10 times.

Fig. 5 summarizes the results showing the relative

speedup that can be obtained with the best configuration

for each workflow and on each hardware configuration

(X axis). Fig. 6 shows the average throughput (Y axis)

of the four workflows for an increasingly large number

of clients (X axis). The charts help to compare the

scalability of the engine for different numbers of replicas

on the three hardware configurations. Fig. 7 shows a

more detailed performance comparison, breaking down the

average throughput obtained for each workflow and each

engine configuration fixing the number of clients at the

saturation point.

The two (a) charts in Fig. 6 and Fig. 7 show how

different replicas increase the throughput on M1 by an

average of ∼ 20% when compared to the single instance

configuration. Results on M1 can be explained considering

the architecture of the machine: on NUMA systems, mem-

ory is allocated on the optimal RAM slot connected to the

CPU where threads are running on. Hence, constraining

the execution of each JVM to a specific CPU makes sure

that threads do not migrate. This helps to reduce latency

times due to unoptimized memory access. Among the

several configurations tested, M1 shows the best results

when the number of replicas is equivalent to the number

of physical CPUs available. Since CPUs on M1 share a

large L3 cache among all cores, results confirm that two

replicas make the most efficient usage of the available

computing resources.

Results obtained on M2 are reported in the (b) charts,

showing speed gains introduced by the adoption of replicas

over the single instance configuration. While benefits

given by replication show an average speedup of about

30%, they also look almost identical among the three

replicated configurations. The explanation for this behav-

ior is related to the hardware of M2, which features more

processors than M1, but a less efficient memory archi-

tecture (no NUMA). Unlike M1, the M2 machine tends

to saturate the front-bus with memory requests coming

from its CPUs to access different locations concurrently.

This effect is less evident with configurations with four

and eight JVMs, for which replicas have been pinned
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(b) M2: 4 CPUs (16 cores)
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Figure 6. Average throughput for an increasing number of clients

to use the same last-level caches (assigning the threads

of each replicas to cores sharing an L2 cache), partially

decongesting the stress on the memory bus (although less

efficiently than architectures recurring to NUMA and a

larger L3). However, results converge towards the same

value at the highest throughput peak.

In the two (c) charts we show how the speedup on

M3 is introduced by a better usage of caches. M3 is

a single-CPU quad-core machine sharing a L2 cache

between two groups of cores. Running two replicas within

these sets of cores leads to a speed gain up to ∼ 15%

(Loop workflow). For this hardware configuration, the

optimal usage of cache memory is confirmed by repeating

the test and constraining the two replicas to cores not

sharing the same top level cache (in Fig. 7 (c), the “2

Replicas Interleaved” line shows the results obtained with

this CPU-affinity setting). The “2 Replicas Interleaved”

configuration has been designed to invalidate the ben-
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(b) M2: 4 CPUs (16 cores)
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efits introduced by the optimal cache usage of the “2

Replicas” configuration. Results clearly show the negative

impact on performance of non-optimal cache utilization. In

some cases, and on average (Geomean), the misconfigured

engine performs worse than the baseline non replicated

configuration. Similar arguments can be brought forward

concerning the usage of four replicas on M3: whereas, for

some workflows, replication gives a small speedup over

default settings (Sequential and Loop), these results are

not as robust as in the “2 Replicas” configuration, and the

average values show the highest slowdown in performance.

As summarized in Fig. 5, these results highlight the

advantages of our replication based approach, where for

some hardware configurations and some workflow type

we observed performance gains of more than 30%. Our

experiments support the validity of the multicore-aware

approach under the following viewpoints.

First, results show that partitioning a set of threads



across multiple replicas always leads to better performance

over the baseline approach which does not use replication.

Second, results hint at the existence of a direct correla-

tion between number of replicas, their performance, and

the underlying multicore platform architecture. By com-

paring data obtained using the optimal number of replicas

with the amount of shared last-level caches available on

M1, M2, and M3, we can claim that the optimal amount of

replication is related to the number of available last-level

caches.

Finally, our measurements provide useful feedback to

drive the self-configuration on startup procedure, as the

engine always exhibits best performance when the number

of replicas corresponds to the number of last-level shared

caches present in the system.

V. RELATED WORK

In prior work [13] we have considered the importance

of automated middleware performance assessment as a

first order issue for modern SOAs, and we have proposed

the class of benchmarks adopted in this paper. Other

approaches in the field of SOA performance evaluation

shift the focus of the experimentation towards the services

running in an SOA, dealing with testbed generation for

Web services.

A relevant example for this class of testbed generators

is the Genesis [15] framework. Genesis is aimed at the

generation of complex Web services that provide support

for creating and deploying services, for simulating QoS

metrics, and steering the service execution by changing

runtime and QoS parameters with a plug-in mechanism.

Genesis can be seen as a complement to what we have

done in our testbed, since it generates a testbed of services

that could be composed and executed to benchmark and

stress our middleware. Another notable example is Pup-

pet [16]. Puppet is a model-based generator of Web service

stubs, which can be used before the actual deployment of

a service, in order to test its behavior when interacting

with externals services that are unavailable for testing.

Concerning multicore-aware solutions for high perfor-

mance service composition, Lu et al. propose in [14] an

approach not based on thread parallelism but on event-

driven patterns and message passing interactions, using

the CCR runtime available in the .Net framework.

Outside the realm of service-composition engines, there

have been many proposals for multicore-aware middle-

ware solutions. For example, OCCAM [17] is a software

platform for developing multicore adaptive applications.

The main characteristics of OCCAM are its API-based

structure and its design-time platform, consisting of data

structures that allow developers to specify the performance

contract to be guaranteed. However, the platform seems to

target only a specific range of applications.

In the field of thread scheduling, there are many ap-

proaches showing the potential of correct thread-to-CPU

mapping. Tam et al. [18] propose an OS-level thread

scheduler for SMP-CMP-SMT machines able to identify

at runtime the best allocation strategy for each executed

thread. Unlike our approach, their scheduler is based on

constant hardware performance counter feedback, and the

allocation strategy is managed by a smart scheduler able

to monitor stall breakdowns and consequently to detect

so-called sharing patterns to obtain a realistic thread

clustering aimed at forcing affinity migrations of related

threads (i.e. threads influencing the same performance

counter by sharing the same memory). In our approach

the sharing pattern corresponds to the different threads

owned by each replica.

Rajagopalan et al. propose in [11] another approach

for affinity-based programming by introducing a thread

scheduler which makes use of a constraint called Related

Thread ID. The programmer is asked to specify a set of

related threads that the scheduler should consider to be

placed together. For example, a group of threads might

have a common RTID when sharing some data or lock.

The scheduler adopted is an extension of the one present

in McRT [19], implemented through a single task-queue

per processor core and a combination of existing work-

stealing and work-distribution scheduling policies. When

new software threads are initialized, the scheduler first

tries to distribute them taking into account the number of

available cores, and once all of the physical resources are

in use the scheduler submits jobs taking into account their

RTID value. This way, the scheduler tries to guarantee

locality of threads with a same RTID by associating them

to a same core, in order to minimize contention costs.

VI. CONCLUSION

Modern multi-processor machines have very heteroge-

neous and sophisticated architectures, featuring several

cores aggregated into various hardware configurations with

hierarchic, shared or privileged caches and memory access

paths. These newer architectures offer higher computa-

tional power through improved parallelism but also require

specific software optimizations to maximize performance

gains.

In this paper we have presented the SOSOA process

execution engine for service composition designed to scale

on multi-processor multi-core machines. We have shown

that the simple approach following the idea of “just add

an higher amount of execution threads to scale a system’s

performance” is not enough. Instead, it is important to con-

sider how threads of the engine components are mapped

among processors and cores.

Our design allows the engine to adapt to the different

processor architectures at deployment time. This self-

configuration on startup is performed taking into account

the number of available processors and the way cores

and caches are physically mapped. This hardware anal-

ysis process is performed at startup to let the engine

automatically decide if and how many replicas should be

bootstrapped. For best results, our experimental validation

suggests to create one replica for each last-level shared

cache available.

Our results show that this approach is significantly

faster when compared to the baseline design, which uses



the same number of execution threads within a single

JVM. Our experiments have also shown that overhead

introduced by the replication of the engine components

is compensated by the speedup gains obtained on multi-

processor architectures when replicas correctly exploit

the locality of the underlying hardware. Conversely, we

showed that the simple idea of replication can also be

detrimental to performance when incorrectly applied.

Overall, our multicore-aware design performs up to

about 30% better than the baseline.

An interesting possible extension of our approach

should go beyond self-configuration on startup, but also

take into account dynamic QoS aspects at runtime. It

should be possible to dynamically allocate and deallocate

replicas as the system load conditions change. A slightly

modified architecture could also reuse the replication

strategy to improve system reliability, by automatically

creating a new replica when another fails. Finally, a more

sophisticated dispatching policy (e.g. work-stealing) would

improve load-balancing among replicas with the potential

to give an additional boost to performance.
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